Improving soybean production in Kenya using digital and extension approaches
In Kenya, soybean is a key crop in helping to improve livelihoods and nutrition. However, production only meets 10% of the market needs due to the effects of poor agricultural practices and pests and diseases. To address these issues, this project will provide a frontier system that integrates Earth Observation technology, pest modelling and best-practice approaches in agricultural extension to increase soybean productivity and quality. The project aims to reach 30,000 farmers, of which support will be given particularly to women farmers in helping them to engage with this high-value commodity, access local markets and improve their livelihoods.
Evaluating the mycoherbicide potential of a leaf-spot pathogen against Japanese knotweed
Japanese knotweed is a highly invasive weed that impacts severely on native biodiversity and local infrastructure in its introduced range. Whilst chemicals are currently used to control the weed, this approach is costly and unsustainable. Biological control is an alternative method. The damaging leaf-spot fungus, Mycosphaerella polygoni-cuspidati, which attacks the plant in its native range was found not to be suitable as a classical biocontrol agent. However, the pathogen is considered to hold potential as a mycoherbicide. The aim of this project is to undertake proof-of-concept research into a potential mycoherbicide, in collaboration with the private industry.