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Abstract

Given the recognised role of blanket extension advice 

in the low uptake of productivity- enhancing technolo-

gies among developing country farmers, personalised or 

site- specific extension approaches are gaining attention. 

Focusing on the case of the plant clinic extension model 

which provides personalised crop protection services to 

smallholder farmers, we investigate to what extent and 

how accurately farmers adopt personalised extension ad-

vice, and the implications for agricultural productivity. 

We combine a unique database of personalised integrated 

pest management (IPM) recommendations provided to 

420 plant clinic attendees in Zambia with survey data on 

the actual IPM practices implemented by these same clinic 

attendees. We find that more than 80% of the sample farm-

ers deviated from the personalised IPM recommendations 

they received from plant clinics. Based on the degree of 

deviation from the personalised recommendations, we 

identify five categories of adopters of IPM practices and 

show their heterogeneous effects on maize productivity. 

For example, our multi- valued treatment effect estimates 

suggest an 82% yield penalty for non- adopters compared 

to full adopters of recommended IPM practices, while the 

yield gain for full adopters is more than double that of 

partial adopters, as well as that of those who adopted ad-

ditional practices beyond what was recommended. Our 

findings have important implications for the promotion 
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1 |  INTRODUCTION

The role of agricultural extension in information and knowledge transfer, technology diffusion 
and agricultural development has long been recognised (Anderson & Feder, 2007). Several 
studies have shown that extension services promote the adoption of agricultural technologies 
and practices, which are in turn associated with increased productivity, higher incomes, im-
proved food and nutrition security, poverty alleviation and environmental benefits (Fabregas 
et al., 2019; Lambrecht et al., 2016; Pan et al., 2018; Piñeiro et al., 2020; Tambo et al., 2020a; 
Waddington et al., 2014). Thus, enhancing farmers’ access to extension services can contribute 
to the achievement of several of the sustainable development goals (SDGs), particularly those 
related to poverty (SDG 1) and hunger (SDG 2).

Unfortunately, the adoption of extension- recommended practices and inputs remains low 
in many sub- Saharan African countries (Aker, 2011; Sheahan & Barret, 2017). This is espe-
cially true for complex and knowledge- intensive technology packages such as conservation 
agriculture (CA) (Arslan et al., 2014); integrated pest management (IPM) (Parsa et al., 2014); 
and integrated soil fertility management (ISFM) (Lambrecht et al., 2016). Among the barriers 
to adopting these practices are top- down extension delivery systems and the provision of gen-
eral blanket recommendations (Norton & Alwang, 2020). Smallholder farming in sub- Saharan 
Africa (SSA) is conducted in heterogeneous contexts, requiring customised rather than gen-
eralised extension recommendations. Personalised extension services, in which recommenda-
tions are tailored to individual farmers or farm- specific conditions, provide a solution to this 
shortcoming. In the area of plant health, a promising model for providing personalised exten-
sion services is the provision of plant clinics, which is the focus of this study.

Plant clinics are a novel approach to providing plant health diagnostic and advisory services 
to smallholder farmers worldwide. At plant clinics, farmers facing pest problems can bring 
samples of infested crops and consult plant doctors (specially trained extension agents), who 
will diagnose the problem and give science- based recommendations following IPM principles.1 
Plant doctors consult the farmer on the extent and severity of pest attack and adapt their rec-
ommendations accordingly. For example, they may recommend monitoring and handpicking 
of pest at low levels of infestation or pesticide use at high levels of infestation; and the recom-
mendations should be effective, safe and practical, as well as reflect the plant doctors’ under-
standing of the farmers’ conditions. Thus, plant clinics provide one- on- one personalised 
advisory services in response to farmers’ queries on plant health, similar to the approach of 
human health clinics. It is expected that the plant clinic model of delivering personalised ex-
tension services will promote farmers’ adoption of recommended technologies and practices 
because the plant doctors respond directly to the specific plant health needs of the clinic 

 1IPM aims to minimise reliance on synthetic pesticides by encouraging the use of a combination of sustainable pest control 
practices, including intensive monitoring, resistant varieties, biological control, cultural control and mechanical control.

of personalised extension services and for the measure-

ment of the impact of complex agricultural technologies.
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attendees. In this article, we examine how accurately plant clinic users in Zambia adopt the 
personalised extension recommendations provided by plant clinics, and the implications for 
agricultural productivity. To this end, records on pest management recommendations pro-
vided by plant doctors to 420 individual maize farmers are compared with survey data on the 
pest management practices adopted by the same farmers.

We make several contributions to the agricultural extension and technology adoption lit-
erature. First, despite the recognition that technology adoption is a multistage process with 
heterogeneous adopter groups, adoption is often modelled in the literature as a binary deci-
sion (adoption versus non- adoption) (Pannell & Claassen, 2020; Weersink & Fulton, 2020). In 
this study, we specify a typology of adopters based on the extent to which plant clinic users 
deviate from personalised extension advice provided by plant doctors. In particular, we dis-
tinguish between (1) non- adopters (did not implement any of the recommended practices); 
(2) ‘non- adopters+’ (non- adopters who at least applied some non- recommended practices); (3) 
partial adopters (implemented components of recommended practices); (4) full adopters (im-
plemented the practices exactly as recommended); and (5) innovators (implemented additional 
practices beyond what was recommended). In addition, we analyse the factors determining 
these adoption practices.

Second, there is an extensive literature on the impact of agricultural extension recommen-
dations (for reviews, see Birkhaeuser et al., 1991; Anderson & Feder, 2007; Waddington et al., 
2014; Pan et al., 2018); however, most of the existing studies rely solely on farmers’ self- reported 
information on whether and to what extent they have adopted recommended practices, with-
out considering how accurately the recommendations were adopted. Failure to align the ad-
opted recommendations with the precise recommendations provided by extension services 
may mask important information about adoption heterogeneity and could lead to measure-
ment errors (misreporting bias), which is not a trivial issue in self- reported survey data (Abay 
et al., 2020; Floro IV et al., 2017; Wineman et al., 2020; Wossen et al., 2019). Using matched data 
on the specific recommendations given by plant doctors to farmers and the farmers’ adoption 
choices present an opportunity to mitigate this potential misreporting bias that may exist in 
extension impact studies.

Third, we add to the limited empirical evidence on personalised extension services, rather 
than the often- studied conventional extension services that are usually characterised by blan-
ket recommendations. Previous works in this area include field- specific soil nutrient man-
agement advice using decision support tools (Arouna et al., 2020; Oyinbo et al., 2020) and 
farmer- specific pest diagnostics and recommendations provided by plant clinics (Silvestri 
et al., 2019; Tambo et al., 2021). We extend the scope of these previous studies by investigating 
the heterogeneous deviations from personalised extension recommendations.

Finally, we analyse extension advice and farmers’ management strategies for fall armyworm 
(FAW), Spodoptera frugiperda, which is a major threat to maize production and food security 
in Africa and Asia. Native to north and south America, the invasive FAW pest was first de-
tected in West Africa in 2016 and has since spread rapidly across over 60 countries in Africa 
and Asia (CABI, 2020). According to an estimate by Rwomushana et al. (2018), for 12 maize- 
producing countries in Africa alone, the pest has the potential to cause annual losses of up to 
17.7 million tonnes of maize, if left uncontrolled. Moreover, the severe damage caused by FAW 
has led to increased use of synthetic pesticides, which can pose a serious risk to human and en-
vironmental health (Tambo et al., 2020b). Hence, understanding the extent to which Zambian 
farmers are adhering to plant doctors’ advice on IPM for FAW control is relevant for policies 
aimed at promoting sustainable pest management in smallholder farming systems.

It should be emphasised that our sample consists of only plant clinic users, as we were partic-
ularly interested in measuring the extent of clinic users’ deviations from the personalised IPM 
recommendations they received from plant clinics and the associated implications. Hence, 
our study cannot examine who uses plant clinic services, the benefits of plant clinics for the 
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communities where they are situated, or how clinic non- users have been managing FAW. This 
limits the generality of our findings. Nonetheless, our data can be considered representative of 
Zambian clinic users in major maize- producing provinces with high incidence of FAW, and are 
useful for evaluating farmer deviations from personalised extension recommendations.

The remainder of the paper proceeds as follows. Section 2 provides a brief discussion on 
the plant clinic approach to delivering personalised extension services. Section 3 presents the 
data sources and sample characteristics, and Section 4 describes the empirical models. Section 
5 presents and discusses the empirical results. Section 6 concludes and provides some policy 
implications.

2 |  TH E PLA NT CLIN IC MODEL OF PERSONA LISED 
EXTENSION DELIVERY

The use of plant clinics to provide personalised plant health advisory services to smallholder 
farmers first began in Bolivia in 2003 (Boa, 2009). The introduction of the Plantwise programme 
in 2011 by the Centre for Agriculture and Biosciences International (CABI) has promoted the 
application of the plant clinic extension model worldwide. The Plantwise programme aims at 
helping farmers reduce crop loss from pests and diseases, thereby contributing to increased 
agricultural productivity and food security. The programme has supported the establishment 
of over 4500 plant clinics and the training of nearly 11,500 plant doctors in 34 countries across 
Africa, Asia and the Americas (CABI, 2020). These plant clinics are operated by several insti-
tutions, including district local governments, farmer organizations, ministries of agriculture, 
non- governmental organizations, and academic and research institutions.

The Plantwise programme, in conjunction with national partners, launched the plant clinic 
extension initiative in Zambia in 2013. So far, around 120 plant clinics have been set up in 40 
districts across the country's 10 provinces. Each of these plant clinics are typically manned by 
two plant doctors, who are local extension workers trained by the Plantwise programme in 
visual pest diagnosis and how to run a plant clinic and give good plant health advice. The plant 
clinic sessions are held on a regular basis (weekly or fortnightly) near easily accessible sites 
such as health posts, village centres, markets, schools and farmers’ cooperative offices. A 
farmer can send a sample of any crop showing any plant health problem to the clinics, where a 
plant doctor will examine the sample, diagnose the problem and give actionable IPM- based 
advice free of charge. The plant doctors have access to reference books on pests and diseases, 
factsheets, diagnostic photosheets and the Plantwise Knowledge Bank (an online repository 
for pest information), which help them to provide accurate diagnostic and advisory services.2 
Since their establishment, the plant clinics in Zambia have attracted more than 12,000 farmers’ 
queries on roughly 100 crops (POMS, 2020), signifying their importance in delivering plant 
health advice to farmers in the country.

Given the widespread use of the plant clinic extension model, there is a growing interest in 
understanding its impact on agricultural and welfare outcomes. For example, evidence from 
cross- sectional studies show that using plant clinic services is significantly associated with the 
adoption of clinics’ recommendations and improved incomes in Bolivia (Bentley et al., 2011); 
increased adoption of IPM practices and higher maize productivity in Rwanda (Silvestri et al., 
2019); and a reduction in household food insecurity in Rwanda (Tambo et al., 2021). Using a 
randomised control trial design, AIR (2018) found that plant clinics contribute to increased 
farmer productivity and incomes, and reduced use of pesticides in Kenya. A recent panel data 
analysis also suggests positive technology adoption, productivity and poverty reduction effects 

 2Note that, at times, the plant doctors may not be able to diagnose difficult or unfamiliar pest problems on the spot, in which case 
they refer the problems to other plant health experts, plant diagnosticians or laboratories.
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400 |   TAMBO And MATIMELO

of plant clinic participation in Rwanda (Tambo et al., 2020a). In the present paper, we extend 
these previous studies by exploring how and why farmers deviate from plant clinic recommen-
dations, and the implications for maize yields and incomes.

3 |  DATA

Our empirical analysis is based on data obtained from plant clinic records, plant clinic users 
and plant doctors for the 2018/2019 agricultural year in Zambia. An important feature of the 
plant clinic extension model is that the diagnosis and advice given to clinic attendees are docu-
mented. The plant doctors record the name, gender, location and contact details of each clinic 
attendee, sample brought to the clinic, symptoms of pest attack, the diagnosed plant health 
problem and recommendations on how to manage the problem. These data are captured on a 
paper or tablet- based prescription sheet, of which a copy is given to the clinic attendee or sent 
to his/her mobile phone via SMS. The data are instantly or eventually fed into the Plantwise 
Online Management System (POMS). For our analysis, we extracted from the POMS database 
information on the diagnosed pest problem, specific recommendations given to a farmer for 
managing the problem, the year the farmer first noticed the problem, and the farmer's self- 
reported pest infestation levels prior to visiting the plant clinic.

These POMS data on plant clinic users were supplemented with survey data collected for 
this study. A multi- level stratified sampling approach was used to select the surveyed plant 
clinic users. First, given that maize is the primary food crop in Zambia and has by far the high-
est number of plant clinic queries, the survey concentrated on maize farmers. In particular, we 
focused on maize farmers who had visited the plant clinics with symptoms of FAW, an import-
ant invasive pest that constituted over 80% of the queries on maize during the 2018/2019 agri-
cultural season (POMS, 2020). In the second stage, the plant clinic users were stratified based 
on the core maize producing agro- ecological zones (AEZs) of Zambia, which are AEZ I, AEZ 
IIa and AEZ III (Figure A1, Appendix S1).3,4 Six, twelve and seven plant clinic sites were se-
lected from these three AEZs respectively, based on POMS data on the number of plant clinics 
that have recorded high incidence of FAW (at least 50 queries on FAW) in each AEZ. Then, in 
each selected plant clinic site, about 5% of the farmers who had attended the clinic with queries 
on FAW were randomly selected and interviewed. The POMS database was used to confirm 
that the selected clinic users had actually visited plant clinics in the past cropping season to 
seek advice related to FAW. Overall, our survey data comprise 420  clinic users operating 
545 maize plots.

The survey data were collected between August and September 2019 by trained enumer-
ators using tablet- based questionnaires. The questionnaires included modules on household 
demographic and wealth characteristics; maize production and decision- making; FAW inci-
dence and management strategies; participation in plant clinics; and access to infrastructure 
and institutional support services. An analysis of data from the POMS database revealed that 
the 420 clinic users in our sample were attended to by 32 plant doctors. These plant doctors 
were subsequently interviewed via telephone to obtain information about their gender and 
work experience. Finally, plant clinic- level rainfall data for the 2018/2019 cropping season 

 3Zambia has four AEZs. AEZ I: low- rainfall area (annual rainfall <800 mm), hot and drought- prone region; AEZ IIa: soils and 
rainfall (800– 1000 mm of rain/year) are more favourable for farming; AEZ IIb: sandy soils with 800– 1000mm annual rainfall; AEZ 
III: high rainfall area (> 1000 mm of rain/year).

 4The data cover seven (Central, Copperbelt, Eastern, Luapula, Lusaka, Muchinga and Northern) out of the country's ten 
provinces.
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were extracted from the Climatology Resource for Agroclimatology database of the National 
Aeronautics and Space Administration (NASA).

Table 1 provides a list and summary statistics of the study variables. The study sample 
consists of smallholder farmers who cultivate less than two hectares of maize, on average. The 
average maize yield is about 1650 kg/ha, which is higher than the reported national average of 
roughly 1300 kg/ha for the 2018/2019 cropping season in Zambia (MoA, 2019). A typical clinic 
user in our sample is a middle- aged farmer with low level of education. Besides plant clinics, 
the majority of the farmers also use media and peers as sources of information on FAW. A 
clinic user must travel about 17 km to reach agro- dealers. Most of the farmers took FAW- 
infested samples to the plant clinics when they observed low to medium infestation levels. The 
mean level of experience of the sample plant doctors is 9 years, and nearly half of the plant 
doctors had interacted with clinic users of the same gender.

4 |  M ETHOD

As previously mentioned, we propose a typology of plant clinic users on the basis of the extent 
of deviation from personalised extension advice. We do so by comparing clinic data on the per-
sonalised recommendations on FAW offered to a sample of clinic users with survey data on the 
actual recommendations implemented by these same clinic users. These results are presented 
descriptively. We then use econometric methods to analyse the determinants and productivity 
effects of the level of adoption of the personalised recommendations.

To explore the determinants of plant clinic users’ adoption of or deviation from person-
alised IPM recommendations, we specify the following equation:

The dependent variable, AC ip, measures the adopter category of a plant clinic user i on plot 
p. The adopter categories (which we present in the next section) are based on the degree of de-
viation from personalised IPM recommendations. The choice of covariates was guided by lit-
erature on the factors affecting IPM and agricultural technology adoption (e.g. Alwang et al., 
2019; Midingoyi et al., 2019). CU  captures plant clinic user characteristics, such as age, gender, 
education level, household size, asset wealth, access to off- farm opportunities, risk prefer-
ence,5 and access to FAW information through media and peers. FS measures a clinic user's 
self- assessed severity of FAW infestation (i.e., low, moderate or high infestation) prior to visit-
ing a plant clinic. We hypothesise that high infestation levels may encourage the implementa-
tion of plant clinic recommendations. PD is a vector of plant doctor characteristics, which 
include the number of years of working experience as a plant doctor and as an extension agent. 
We also test whether farmers are more likely to adopt recommended practices when the advice 
is provided by extension agents of the same gender (i.e., gender homophily effect). Specifically, 
we construct a dummy variable that is equal to one if the advisor (plant doctor) and the recip-
ient of the advice (clinic user) share the same gender. The hypothesis is that gender homophily 
can help build mutual understanding and trust, thereby influencing farmers’ adoption choices 
(Lahai et al., 1999; Lecoutere et al., 2019). A is a vector of agro- climatic variables, which ac-
count for differences in growing conditions. It includes rainfall and agro- ecological location of 
a plant clinic user. The �s are the parameters to be estimated, and � is the error term. We 

(1)AC ip = �0 + �1CU i + �2FSi + �3PDi + �4Ai + �ip

 5Following Dohmen et al. (2011), we applied a survey- based risk preference measure that ranges from 0 (not at all willing to take 
risks) to 10 (fully prepared to take risks). This measure is hypothetical, but it has been widely validated for the elicitation of an 
individual's risk preference (for a brief overview, see Roe, 2015). It has also been used by several studies (e.g., Tambo et al., 2020; 
Sellare et al., 2020) to measure the risk preferences of smallholder farmers in Africa, including Zambia.
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402 |   TAMBO And MATIMELO

TA B L E  1  Definitions and summary statistics of study variables.

Variable Description Mean SD

Outcome variables

Maize yield Quantity of maize harvested on plot (kg/ha) 1652.23 1734.09

Maize income Net income from maize production (ZMW/
ha)a 

2833.09 3559.39

Plant doctor characteristics

Gender homophily The plant doctor and clinic user share the 
same gender (1/0)

0.49 0.50

Plant doctor experience Years of experience as a plant doctor 3.16 1.62

Extension experience Years of experience as an agricultural 
extension agent

8.73 4.90

Plant clinic user characteristics

Age Age of plant clinic user (years) 49.99 12.84

Gender Gender of plant clinic user (1=male) 0.53 0.50

Education Years of schooling of plant clinic user 7.95 3.21

Household size Number of household members 7.24 2.90

Off- farm activity Household member has off- farm job (1/0) 0.46 0.50

Asset index Household asset indexb 0.10 1.54

Risk attitude Risk preference of clinic user (0– 10) 5.83 3.09

Media information Clinic user obtained FAW information from 
media (1/0)

0.62 0.49

Peer information Clinic user obtained FAW information from 
peers (1/0)

0.71 0.45

Distance to agro- dealer Distance from household to the nearest 
agro- dealer (km)

16.30 13.53

FAW experience Years since clinic user first observed FAW 
on maize

1.78 1.05

Plot characteristics

Maize area Size of maize plot (ha) 1.42 2.03

Plot distance Distance of plot from homestead (km) 1.74 3.57

Plot fertility Soil quality is good (1/0) 0.36 0.48

Seed rate Quantity of seed applied (kg/ha) 23.74 24.34

Fertiliser rate Quantity of mineral fertiliser applied (kg/ha) 188.71 198.13

Manure use Plot received manure (1/0) 0.21 0.41

Herbicide use Plot received herbicide (1/0) 0.39 0.49

Hired labour use Use of hired labour (1/0) 0.40 0.49

Low FAW infestation Low FAW infestation prior to visiting plant 
clinic (1/0)

0.58 0.49

Moderate FAW infestation Medium FAW infestation prior to visiting 
plant clinic (1/0)

0.31 0.46

High FAW infestation High FAW infestation prior to visiting plant 
clinic (1/0)

0.11 0.31

Agro- climatic characteristics
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estimate Equation (1) using the multinomial logit (MNL) regression, given that the dependent 
variable (plant clinic users’ adoption decisions) is an unordered categorical variable.

To examine the productivity outcomes of the clinic users’ decisions to deviate from recom-
mended practices, the following equation is used:

where Y ip represents the two productivity outcome measures (maize yield and income). Maize 
yield is measured by the quantity of maize harvested (expressed in kg/hectare) by plant clinic user 
i on plot p. Maize income (expressed in ZMW/hectare) consists of gross maize income6 less pro-
duction costs, such as costs of seed, fertiliser, herbicide, insecticide and hired labour. AC is the 
main explanatory variable of interest, and it denotes a vector of adopter categories. It is expected 
that a plant clinic user will choose the category with the greatest expected outcome or utility. P is 
a vector of plot- level explanatory variables, including plot size, distance of plot from homestead 
and plot quality, as well as plot- level input use variables, such as seed, mineral fertiliser, manure, 
herbicide and hired labour. CU, FS and A are as defined in Equation (1). α is a vector of coeffi-
cients associated with the covariates, and � is the error term. The main coefficient of interest is �1, 
which gives estimates of the average effects of the adoption decision on maize yield and income. A 
description of the variables included in Equations (1) and (2) is given in Table 1.

While Equation (2) can be estimated using an ordinary least squares (OLS) regression 
model, we note the possibility that adopters and non- adopters of plant clinic recommenda-
tions may differ systematically in observable and unobservable factors that could influence the 
outcomes of interest, potentially leading to biased results. To attenuate this potential bias, we 
apply the doubly robust estimator in which the OLS model is weighted by an inverse propensity 
score to balance the confounding factors between adopters and non- adopters of the person-
alised extension recommendations.

In the doubly robust procedure, inverse- probability weights are computed from the MNL 
regression of plant clinic users’ adoption decisions (Equation 1). Using the estimated inverse- 
probability weights, weighted OLS models are fitted to obtain the expected productivity out-
comes of the probabilities of adoption and non- adoption of recommended practices. The 
differences in mean outcomes between adopters and non- adopters of the plant clinic recom-
mendations provide estimates of the average productivity effects of the clinic users’ adop-
tion decisions. An attractive property of the doubly robust estimator is that it is robust to 

(2)Y ip = �0 + α1AC p + �2Pp + �3CU i + �4FSi + �5Ai + �ip

 6Gross maize income was calculated as total maize yield multiplied by the village- level price of maize for the 2018/2019 cropping 
season.

Variable Description Mean SD

Rainfall Total rainfall during the past cropping 
season (mm)

907.22 292.56

AEZ I Household is located in agro- ecological 
zone I

0.13 0.33

AEZ IIa Household is located in agro- ecological zone 
IIa

0.48 0.50

AEZ III Household is located in agro- ecological zone 
III

0.39 0.49

Observations Number of clinic user (plot) observations 420 (545)

aZMW =Zambian Kwacha. At the time of the survey, 1 USD =13 ZMW.
bWe used principal component analysis to construct the asset index, based on household ownership of 11 durable assets.

TA B L E  1  (Continued)
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404 |   TAMBO And MATIMELO

misspecification in either the outcome model (OLS model) or the treatment model (MNL 
model). In other words, even if only one of the two models is correctly specified, our produc-
tivity effect estimates will still be consistent (Imbens & Wooldridge, 2009). For comparison 
purposes, we report results from both the OLS and doubly robust methods.

We recognise that the OLS and doubly robust methods address selection bias due to ob-
servable factors but may not correct for potential bias arising from unobserved heterogeneity. 
While the inclusion of a rich set of covariates in our models may help to reduce unobserved 
heterogeneity, panel data or instrumental variables techniques would have been more appro-
priate to address this potential source of bias. However, our analysis is based on cross- sectional 
data, and finding instruments that satisfy exclusion restriction conditions is challenging, par-
ticularly when there are multiple adopter categories, as in our case. This should be taken into 
consideration when interpreting the estimation results on how the farmers’ decisions to deviate 
from recommended practices affect maize productivity.

5 |  RESU LTS A N D DISCUSSION

5.1 | Deviations from IPM recommendations

Table 2 compares the personalised IPM recommendations made by plant doctors to the sample 
clinic users for the management of FAW and the observed levels of adoption of these recom-
mendations by the clinic users. We find significant differences between the proportion of farm-
ers who were advised by plant doctors to use a particular FAW management practice and the 
proportion of farmers who actually used the practice, pointing to high deviations from the 
recommended practices. For example, plant doctors advised about 44% and 52% of the clinic 
attendees, respectively, to apply biopesticides and synthetic pesticides for the control of FAW, 
but only about 38% of the clinic attendees adopted these crop protection strategies. A notice-
able finding is that for cost- intensive recommendations such as the spraying of biopesticides 
and synthetic pesticides, the number of adopters are significantly less than those who received 
these recommendations, while for relatively simple mechanical and traditional practices such 
as handpicking of larvae, application of ash or sand into maize whorls and the spraying of 
detergents, the number of adopters far exceeds the number of clinic users who were encouraged 
to adopt these practices. Nearly 10% of the clinic users simply did nothing for the management 

TA B L E  2  Summary statistics of recommended and adopted practices

Plant doctors' advice
Farmers who received this 
advice (%)

Farmers who implemented this 
practice (%)

Mean 
difference

Monitoring 49.48 42.36 7.12***

Field sanitation 33.33 36.81 −3.48***

Synthetic pesticides 52.43 38.02 14.41***

Biopesticides 43.92 37.67 6.25**

Handpicking 8.68 44.27 −35.59***

Ash or sand 1.91 15.28 −13.37***

Detergent 0.35 10.59 −10.24***

Pheromone trap 0.52 0.00 0.52*

Do nothing 3.47 9.72 −6.08***

Note: *, ** and *** denote that the mean difference between the recommended and adopted practices is statistically significant at 
the 10%, 5% and 1% significant level, respectively.

 14779552, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1477-9552.12455 by T

est, W
iley O

nline L
ibrary on [06/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    | 405
FARMER DEVIATION FROM PERSONALISED EXTENSION 
ADVICE

of the pest, as compared to 3% of them who were asked by the plant doctors not to 
intervene.6

Based on the pattern of deviations from the plant doctors’ advice in Table 2, we identify 
five categories of adopters of personalised IPM recommendations: (1) non- adopters, (2) ‘non- 
adopters+’, (3) partial adopters, (4) full adopters, and (5) innovators. The non- adopters are the 
clinic users who did not implement any of the personalised advice they received from plant doc-
tors. The data also show a group of non- adopters who at least implemented non- recommended 
practices. For lack of a better term, we refer to this group of clinics users as ‘non- adopters+’. 
For instance, if a clinic attendee is advised to apply a certain biopesticide against FAW, but 
rather applied detergents, he/she is categorised as a ‘non- adopter+’.

The third category (partial adopters) comprises those who adopted only components of 
the recommended practices. Plant doctors tend to recommend multiple complementary pest 
management methods, in line with the tenets of IPM. Thus, for example, a farmer who adopts 
only one recommended practice when he/she is advised to combine two or more practices is 
considered to be a partial adopter. Full adopters consist of the clinic attendees who accurately 
implemented all the personalised recommendations. Finally, we observe a group of adopt-
ers who accurately adopted the recommended practices (just like the full adopters), but also 
adopted extra practices beyond what was recommended. For instance, if a farmer is advised 
to scout for FAW and use a particular pesticide (e.g., Azadirachtin), and he/she implemented 
these practices exactly as recommended but also poured ash and sand into the maize whorls 
(a traditional practice) or sprayed a non- recommended pesticide (e.g., Dichlorvos) as an addi-
tional solution, such a farmer is classified as an innovator, for lack of a better term.

It should be stressed that the classification of the clinic users into the five adopter cate-
gories was based on detailed information (beyond the summary in Table 2) on personalised 
IPM practices recommended to and adopted by the clinic users. For example, a plant doctor's 
recommendation on the use of synthetic pesticide or biopesticide also includes information on 
which specific pesticide product to use and the rate of application. Hence, a full adopter should 
have used the exact recommended product, and not a substitute product. This is important 
because some of the pesticides used in Africa against FAW are ineffective and pose high risk 
to humans and the environment (Jepson et al., 2020). Therefore, in situations where pesticide 
use is inevitable, plant doctors are obliged to recommend only locally registered products, as 
well as pesticides that both pose minimal risk to human health and the environment, and are 
not restricted by international agreements (Plantwise, 2020).

Figure 1 shows that over 80% of the plant clinic users adopted at least one IPM recommen-
dation, with about half of them (42%) implementing all the recommended practices. This is 
compelling, given previous reports of limited adoption of IPM practices by smallholders in de-
veloping countries (Alwang et al., 2019; Parsa et al., 2014). This may suggest that greater uptake 
of IPM practices or composite technologies is encouraged if they are promoted through per-
sonalised extension advice. These results also complement previous studies that have shown 
that plant clinics stimulate the adoption of crop protection technologies (Silvestri et al., 2019; 
Tambo et al., 2020a). Figure 1 also indicates that nearly 40% of the clinic users adopted com-
ponents of the recommended practices, confirming previous evidence that partial adoption of 
IPM is prevalent among developing country farmers (Norton et al., 2019). We also find that 
among the 20% non- adopters of plant clinic recommendations, about half of them at least took 
non- recommended actions in attempts to curb the effects of FAW. Overall, Figure 1 suggests 
that more than 80% of the clinic attendees in our sample deviated from the personalised IPM 
recommendations they received from plant clinics. We examine the correlates and implications 
of these farmer deviation decisions below.

 6Given the intensity of infestation or economic threshold, a plant doctor may advise a clinic attendee not to adopt any control 
measure as it would not be cost- effective to do so.
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406 |   TAMBO And MATIMELO

Table 3 displays the summary statistics of the outcome variables according to the adopter 
categories of plant clinic advice.7 The results show that all the clinic users who implemented a 
FAW control practice (whether recommended or not) achieved higher maize productivity than 
those who did not apply any control measure (non- adopters). Notable are the statistically sig-
nificant differences in outcomes between the full adopters and non- adopters. In particular, the 
yield and income of full adopters are almost twice those of the non- adopters, suggesting im-
proved outcomes when the personalised recommendations are fully implemented. However, 
the results in Table 3 do not control for important confounding factors, such as farmer, input 
use and plot characteristics, and thus cannot be interpreted as necessarily causal effects of the 
adoption decisions.

Note that given the small proportion of farmers in the ‘non- adopters’ and ‘non- adopters+’ 
categories (see Figure 1), and to overcome problems of insufficient statistical power (and thus 
imprecise parameter estimates) as well as poor overlap in the doubly robust estimation, these 
two adopter categories are merged into one category (non- adopters) in the following regression 
analysis.

 7A disaggregation of the covariates by the adopter categories are presented in Table A1 in the Online Appendix.

F I G U R E  1  Percentage of adopter categories of plant clinic recommendations

TA B L E  3  Summary statistics of maize outcomes by adopter categories

Maize yield (kg/ha) Maize income (ZMW/ha)

Mean SD Mean SD

Non- adopters 1199.2 1553.8 1873.4 2967.5

Non- adopters+ 1431.3 965.2 2567.8 2451.3

Partial adopters 1481.2 1622.1 2580.9 3447.4

Full adopters 2102.5*** 2100.3 3684.1*** 3841.0

Innovators 1671.7 1887.1 2741.8 3936.1

Note: *** denotes that the mean difference in maize yield and income between full adopters and non- adopters are statistically 
significant at the 1% significant level.
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5.2 | Correlates of adoption decisions

Table 4  shows the results from the first- stage MNL model on the factors influencing plant 
clinic users’ decisions to adopt the personalised advice received from plant doctors. We find 
that male clinic users are significantly more likely than their female counterparts to adopt 
the complete personalised IPM package. This may reflect the well- known problem of gender 
disparity in access to productive resources (FAO, 2011). The probability of adopting the full 
recommendations of plant doctors increases with clinic users’ age, which may be related to 
farming experience or risk- taking propensity. The coefficients on maize area are positive and 
statistically significantly for all the three adopter categories, suggesting that clinic users with 
more hectares of maize are more likely to follow the personalised recommendations. A plausi-
ble explanation is that a larger area under maize may signify the economic importance of the 
crop to the household and thus interest in limiting yield loss by adopting recommended prac-
tices. It is also possible that larger maize plots are exposed to higher FAW infestation levels; 
hence, such farmers may be more willing to follow recommendations to limit the spread of the 
pest. Participating in off- farm income earning activities, which may relax household liquid-
ity constraints, is significantly associated with the adoption of personalised crop protection 
recommendations.

We also find that risk averse clinic users have a lower probability of adopting any of the 
plant clinic recommendations. This lends credence to the hypothesis that risk and uncertainty 
are among the main factors contributing to the slow adoption of IPM in developing countries 
(Parsa et al., 2014; Alwang et al., 2019). Seeking FAW information from peers is significantly 
correlated with a higher likelihood of adopting plant clinic recommendations, either partially, 
fully or beyond what was recommended. Perhaps peer information may reinforce farmers’ 
confidence in applying a practice recommended by plant doctors. Additionally, FAW- related 
media information significantly increases the probability of implementing the recommenda-
tions of plant doctors, beyond what was recommended. Taken together, these results under-
score the importance of information in the adoption of IPM practices, particularly when the 
pest in question (FAW) is a new invasive species that causes serious crop damage within a short 
period of time. The crucial role of information in IPM adoption has also been highlighted in 
previous research (Alwang et al., 2019; Carrión Yaguana et al., 2016; Midingoyi et al., 2019).

The coefficient on the gender homophily variable is not statistically significant, suggesting 
that a farmer's decision to adopt recommended practices is not influenced by whether or not 
the advice is provided by a plant doctor who is of the same gender as the farmer. This is in con-
trast to Lahal et al. (1999) who found evidence of gender homophily effect in the adoption of 
extension- recommended technologies and practices in Nigeria. Plant clinic recommendations 
provided by experienced extension agents are more likely to be completely followed than those 
by less experienced agents. This is intuitive, as several years of working with farmers may help 
the plant doctors to understand farmers’ technology adoption behaviour and recommend mea-
sures that are most likely to be adopted, while more experienced advisors are, perhaps, seen as 
more trustworthy. The number of years of experience with FAW is a significant determinant 
of the adoption of plant clinic recommendations, probably because previous experience with 
the pest allows a farmer to appreciate its potential damage in case no action is taken. Farmers 
who observed a high level of FAW infestation prior to visiting the plant clinics are less likely 
to adopt the recommended management practices. This somewhat unexpected result might 
be because plant doctors’ recommendations against severe pest infestation tend to include the 
use of pesticides, which may be too costly for risk- averse smallholders to implement. Finally, 
the results show that farmer adoption of personalised IPM recommendations is also related to 
differences in agro- climatic conditions.
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408 |   TAMBO And MATIMELO

TA B L E  4  Correlates of clinic users’ IPM adoption decisions

Partial adoptersa Full adoptersa Innovatorsa 

Age 0.001 0.028** 0.007

(0.011) (0.013) (0.012)

Gender (1 = Male) 0.266 0.621* 0.346

(0.300) (0.374) (0.342)

Education 0.009 0.050 −0.004

(0.047) (0.054) (0.052)

Household size −0.061 −0.134** −0.097*

(0.048) (0.056) (0.054)

Maize area 0.278* 0.365** 0.295*

(0.152) (0.157) (0.158)

Off- farm activity 0.725** 0.539 1.028***

(0.287) (0.340) (0.319)

Asset index 0.036 0.107 0.094

(0.110) (0.128) (0.120)

Risk attitude 0.127*** 0.197*** 0.183***

(0.048) (0.056) (0.053)

Media information 0.424 −0.065 0.631**

(0.281) (0.333) (0.321)

Peer information 0.862*** 0.889*** 1.106***

(0.285) (0.343) (0.334)

Distance to agro- dealer −0.004 −0.004 −0.003

(0.012) (0.014) (0.013)

Gender homophily −0.037 −0.076 0.055

(0.296) (0.364) (0.337)

Plant doctor experience 0.167 0.085 0.048

(0.134) (0.160) (0.145)

Extension experience 0.022 0.118*** 0.099***

(0.038) (0.037) (0.037)

FAW experience 0.253* 0.400** 0.287*

(0.134) (0.158) (0.150)

Moderate FAW infestation −0.997** −0.469 −0.592

(0.444) (0.507) (0.491)

High FAW infestation −1.626*** −1.448*** −1.448***

(0.434) (0.500) (0.480)

Rainfall 0.002** 0.003** 0.001

(0.001) (0.001) (0.001)

AEZ IIa −1.324* −0.174 −0.808

(0.700) (0.864) (0.756)

AEZ III −2.750*** −1.793* −2.289**

(0.830) (1.019) (0.927)

Observations =545
Prob > Chi2 = 0.000

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors in parentheses.
aBase category is non- adopters.
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5.3 | Treatment effects on maize yield and income

Table 5 presents the OLS and doubly robust estimates of how farmers’ deviations from plant 
clinic recommendations affect maize yield. The signs and statistical significances of the yield 
effect estimates are generally similar across the two estimators. We focus on the results from 
the doubly robust model, which is our preferred estimator. Given that the doubly robust 
method relies on the assumption of common support (Imbens, 2004), we first examine whether 
or not this assumption is violated by visually checking the extent of propensity score overlap 
and by checking for covariate balancing using the overidentification test suggested by Imai 
and Ratkovic (2014). Figure A2 in the Appendix S1 shows sufficient overlaps in the distribution 
of the propensity scores between adopters and non- adopters of the plant clinic recommenda-
tions, confirming satisfaction of the common support condition. Moreover, the balance diag-
nostic test results (Table A2, Appendix S1) show insignificant chi- squared statistics, implying 
that the first- stage MNL model successfully balanced the covariates by weighting.

We find evidence that the adoption of personalised extension recommendations increases 
maize yield significantly, but the effect is disproportionally greater for plant clinic users who 
fully adopt the recommended practices (Table 5). In particular, after controlling for plant clinic 
user and plot characteristics, input use and other determinants of maize yield, the full adopters 
obtain an increase in maize yields by 949 kg/ha, which represents an 82% gain over maize yields 
for non- adopters. The innovators achieve about 414 kg/ha (33%) significantly more maize yield 
than the non- adopters. Thus, the plant clinic users who modify recommended practices by 
adding additional practices obtain higher yields compared to non- adopters, but the yield gain 
is lower when compared with those of their full adopter counterparts. This suggests that some 
of the non- recommended practices are counterproductive when implemented in combination 
with the recommended practices. Finally, we find a yield advantage of about 26% for the par-
tial adopters relative to the non- adopters, implying that it is worthwhile to encourage the plant 
clinic participants to implement components of the personalised IPM recommendations even 
if full adoption is not possible. This may also partly explain why partial adoption of IPM and 
other composite technologies is very common in developing country settings (Midingoyi et al., 
2019; Norton et al., 2019).

Table 6 reports the treatment effect estimates of the implications of the varied adoption of 
the personalised IPM recommendations on maize income. We find positive and significant 

TA B L E  5  Treatment effect on maize yield (kg/ha)

OLS Doubly robust

Coefficient Percentage effect Treatment effect
Percentage 
effect

Partial adoptersa 394.79*** 30.17 307.30** 26.18

(150.20) (137.92)

Full adoptersa 870.99*** 66.56 948.80*** 82.24

(228.53) (242.32)

Innovatorsa 522.62*** 39.94 413.83** 32.90

(118.78) (202.88)

Control variables Yes Yes

Observations 545 545

R- squared 0.34

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors in parentheses.
aBase category is non- adopters.

 14779552, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1477-9552.12455 by T

est, W
iley O

nline L
ibrary on [06/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



410 |   TAMBO And MATIMELO

income gains from adopting personalised IPM recommendations, but the size of the gains 
depends on the extent of deviation from the recommendations. The results show an increase 
in maize income ranging from 43% for innovators to 73% for full adopters, compared to the 
non- adopters of the recommended practices. As with the results for maize yields, we find that 
the treatment effect is greater for plant clinic users who adopt the full set of recommendations 
provided by plant doctors. These results suggest that the extra production costs incurred by 
the three categories of adopters of plant clinic recommendations are less than the gain in maize 
yield. Our results also confirm previous findings that plant clinics stimulate the adoption of 
crop protection technologies, which translate into increased crop yield and income (Bentley 
et al., 2011; Silvestri et al., 2019; Tambo et al., 2020a). Complementarily, our findings show that 
there are varied categories of adopters of plant clinic recommendations, and this matters for 
the level of productivity gains achieved.

6 |  CONCLUSION

In many developing countries, the provision of blanket extension advice to farmers is widely 
recognised as one of the major reasons for the low adoption of agricultural innovations, par-
ticularly complex technologies such as integrated pest management (IPM). This recognition 
has spurred the promotion of personalised or site- specific extension services in which exten-
sion recommendations are tailored to the needs of individual farms or farmers. While there are 
few empirical studies on the uptake and impact of personalised extension advice, little is known 
about to what extent or how accurately farmers implement personalised extension advice, or 
about the implications for yields and incomes. This paper aimed to fill this knowledge gap by 
measuring the degree to which farmers deviate from personalised extension recommendations 
and the effect on maize productivity. We also examined the factors influencing the decisions 
of farmers to follow or deviate from personalised extension recommendations. Our analysis 
is based on data from the plant clinic extension model in which trained plant doctors provide 
personalised diagnostic services and IPM- based recommendations to smallholder farmers.

By matching clinic data on personalised IPM recommendations offered to 420 clinic users 
in Zambia with survey data on the actual IPM practices implemented by these same clinic 
users, we differentiated five adopter categories, based on the degree of deviation from the 

TA B L E  6  Treatment effect on maize income (ZMW/ha)

OLS Doubly robust

Coefficient Percentage effect Treatment effect
Percentage 
effect

Partial adoptersa 917.54*** 41.90 826.97*** 47.32

(317.75) (308.93)

Full adoptersa 1827.15*** 83.45 1553.05*** 72.88

(418.50) (472.33)

Innovatorsa 1128.05*** 51.52 824.68** 43.02

(393.76) (369.54)

Control variables Yes Yes

Observations 545 545

R- squared 0.35

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Robust standard errors in parentheses.
aBase category is non- adopters.
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personalised recommendations. The categories include: (1) non- adopters (ignored the person-
alised IPM recommendations); (2) ‘non- adopters+’ (ignored the recommendations but imple-
mented some non- recommended practices); (3) partial adopters (implemented components 
of the recommended practices); (4) full adopters (implemented the practices exactly as rec-
ommended); and (5) innovators (implemented additional practices beyond what was recom-
mended). We found that more than 80% of the clinic users deviated from the personalised 
IPM recommendations they received from plant clinics. Regression results showed that risk 
aversion (at least as measured here), farm size, access to alternative sources of pest informa-
tion, severity of pest infestation and agro- climatic conditions are the key factors explaining the 
heterogeneity in farmers’ deviations from the personalised extension recommendations.

Results further showed that 80% of the plant clinic users adopted at least one of the rec-
ommended IPM practices, while 42% implemented the full package of recommendations. 
These results imply that the plant clinic method of providing personalised extension services 
to smallholder farmers could be used to foster the adoption of IPM recommendations. This is 
particularly salient, given the low rate of IPM adoption in developing countries, and the rec-
ognition that failure of extension systems is a major obstacle to widespread adoption (Norton 
et al., 2019; Orr, 2003; Parsa et al., 2014).

We found clear evidence that the adoption of personalised extension advice increases maize 
productivity, with significant effects even for partial adopters. However, the effect is much 
larger for the plant clinic users who accurately followed the recommendations of their plant 
doctors (i.e., full adopters). For example, our multi- valued treatment effect estimates suggest 
an 82% yield penalty for non- adopters compared to full adopters of recommended IPM prac-
tices, while the yield gain for full adopters is more than double that of partial adopters or inno-
vators. These results emphasise the need to encourage farmers to accurately adopt a complete 
set of recommended IPM strategies. However, in situations where full adoption is challenging, 
it would still be worthwhile to encourage farmers to implement certain components of an IPM 
package. Our findings also imply that in the context of farmers’ management of the invasive 
fall armyworm pest, the adoption of additional unrecommended practices offers no added 
advantage (in terms of productivity gains) when combined with accurate implementation of 
the plant doctors’ recommendations.

Overall, we show that farmers deviate considerably from personalised extension recom-
mendations, resulting in significant implications for agricultural productivity. Hence, failure 
to account for farmer deviation decisions when assessing the adoption and impact of exten-
sion recommendations (as is often the case in the literature) can obscure important insights. 
Further research on this topic could include the use of panel data to explore the dynamics of 
deviations from personalised extension advice and to reduce unobserved heterogeneity bias 
that may be present when examining the effects of the deviations. Moreover, we only examined 
the economic implications of farmer deviations from IPM recommendations. Given that IPM 
is also promoted for its potential health and environmental benefits (Midingoyi et al., 2019; 
Norton et al., 2019), it would be interesting for future research to investigate the health and 
environmental consequences of the decisions of farmers to deviate from personalised IPM 
recommendations.
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