#### Hope burial data exercise hope<-read.csv("HOPE Date Order-Table 1.csv",header=TRUE) burial<-as.Date(hope$Burial.date, "%m/%d/%y") burial[1:11]<-gsub("20","19", burial[1:11]) data<-data.frame(burial,hope$Sex,hope$Age) year<-format(as.Date(data$burial, format="%d/%m/%Y"),"%Y") ####### Answer to exercise births<-data$Year-data$hope.Age males<-which(data$hope.Sex=="m") females<-which(data$hope.Sex=="f") before1923<-which(births<1923) after1922<-which(births>1922) maleANDbefore<-intersect(males,before1923) maleANDafter<-intersect(males,after1922) femaleANDbefore<-intersect(females,before1923) femaleANDafter<-intersect(females,after1922) par(mfrow=c(2,2)) br<-seq(0,110,10) hist(hope$Age[maleANDbefore],breaks=br,col="blue") hist(hope$Age[maleANDafter],breaks=br,col="lightblue3") hist(hope$Age[femaleANDbefore],breaks=br,col="red") hist(hope$Age[femaleANDafter],breaks=br,col="pink3") # with %in% you would use something like maleANDafter<-males[which(males %in% after1922)]