install.packages("rworldmap") library(rworldmap) data(countryExData) country2Region(regionType="Stern") sternEnvHealth<-country2Region(inFile=countryExData, nameDataColumn="ENVHEALTH",joinCode="ISO3", nameJoinColumn="ISO3V10",regionType="Stern",FUN="mean") sPDF<-joinCountryData2Map(countryExData,joinCode = "ISO3",nameJoinColumn="ISO3V10") mapCountryData(sPDF, nameColumnToPlot="BIODIVERSITY", mapTitle="World Biodiversity", oceanCol="lightblue", missingCountryCol="white", borderCol="black") ###### mapCountryData(sPDF,nameColumnToPlot="BIODIVERSITY", mapTitle="Asia",oceanCol="lightblue",missingCountryCol="white", mapRegion="Asia",borderCol="black") ###### mapCountryData(sPDF,nameColumnToPlot="BIODIVERSITY", mapTitle="Australia",oceanCol="lightblue",missingCountryCol="white", xlim=c(110,160), ylim=c(-48,-5),borderCol="black") # mapBubbles(dF=getMap()) mapBubbles(dF=getMap(),oceanCol="lightblue",landCol="wheat") head(getMap()$NAME) mammals<- read.table(text=" Country 'Mammal species' 'threatened spp' Lat Lon Canada 426 40 60 -95 Brazil 648 80 -34 -64 Mexico 923 96 24 -102 Peru 647 63 -9 -75 Colombia 442 58 3.9 -73 'United States' 440 40 39 -99 Argentina 374 38 -35 -65 Ecuador 372 47 -1 -78 Bolivia 362 21 -17 -64 Chile 143 19 -37 -72 ", header=TRUE) mapBubbles(dF=mammals, nameZSize="Mammal.species",nameZColour="Country",oceanCol="lightblue", landCol="wheat",nameX = "Lat", nameY = "Lon", main="Number of Mammal species",symbolSize=0.5)