Water Dynamics in Plant Production, 2nd Edition www.cablors Questions and Discussion Points

Chapter 10 – Radiation and Dry Matter Production

Section 10.1

- 1. Please explain the term 'photosynthetically active radiation' (PAR).
- 2. Explain CO₂ exchange rate (CER). It is the result of which physiological processes?
- **3.** Sketch out the light response curves for a C_3 and a C_4 crop. Where is the light compensation point? Are there differences in light saturation between the crops?
- **4.** Is the efficiency of radiation use greater for net CO₂ fixation at a lower or a higher radiation level?
- **5.** What is photorespiration of C₃ plants? Why does it not exist in C₄ plants?

Section 10.2

- **1.** Radiation interception of a crop stand increases with leaf area index (LAI). What causes the difference in interception when comparing soybean and maize (Fig. 10.2)?
- **2.** Discuss the effect of leaf inclination on radiation use for CO₂ fixation, when radiation changes from a low to a high level.
- 3. Discuss the effect of leaf inclination on soil evaporation, weed control and transpiration.
- **4.** Show the connection between LAI and net assimilation rate (NAR). Why then does crop growth rate (CGR) increase, when with increasing LAI the NAR declines?
- **5.** When conditions for water and nutrient uptake are not growth limiting, a crop usually experiences a linear phase of dry matter increase per unit of time (Fig. 10.4). Please explain the connections that give rise to the linear phase.
- 6. What is 'radiation use efficiency'?

