Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

CABI Book Chapter

Plant invasions: the role of biotic interactions.

Book cover for Plant invasions: the role of biotic interactions.

Description

This book contains 23 chapters divided into seven parts. Part I reviews the key hypotheses in invasion ecology that invoke biotic interactions to explain aspects of plant invasion dynamics; and reviews models, theories and hypotheses on how invasion performance and impact of introduced species in recipient ecosystems can be conjectured according to biotic interactions between native and non-native...

Chapter 15 (Page no: 270)

Allelopathic disruptions of biotic interactions due to non-native plants.

Allelopathy, or the process by which plants influence the growth and performance of their neighbours through the release of chemicals, may play a key role in mediating the impacts of non-native invasive species on their neighbours. The Novel Weapons Hypothesis purports that non-native invasive species are in part successful because they produce harmful allelochemicals to which resident species are particularly susceptible because residents lack a shared evolutionary history with the invader. While allelopathic non-native invaders may reduce the growth and performance of neighbours through direct phytotoxicity, they may more often exert negative impacts through disruption of biotic interactions among resident species. Allelopathy by non-native plants may disrupt mutualisms between resident plants and microbes, plant-herbivore interactions or existing competitive and facilitative interactions among resident plants. For example, several non-native plants are known to disrupt the mutualism between resident plants and mycorrhizal fungi, reducing resident plant fitness to the benefit of the invader. Allelopathic non-natives may also disrupt interactions among resident plants and their herbivores when allelochemicals also influence herbivore behaviour or fitness. Alternatively, biotic interactions can also be protective for resident species, which may be less susceptible to the impacts of non-native species when their mutualisms are intact. As we advance our understanding of allelopathy and its role in mediating the impacts of invasive plant species, we may gain new insights by viewing invasions within a network context rather than focusing on pairwise interactions.

Other chapters from this book

Chapter: 1 (Page no: 1) Plant invasions: the role of biotic interactions - an overview. Author(s): Traveset, A., Richardson, D. M.
Chapter: 2 (Page no: 26) The role of biotic interactions in invasion ecology: theories and hypotheses. Author(s): Hui Cang, Landi, P., Latombe, G.
Chapter: 3 (Page no: 45) Soil biota and non-native plant invasions. Author(s): Callaway, R. M., Lucero, J. E.
Chapter: 4 (Page no: 67) Pollination interactions promoting plant invasions. Author(s): Montero-Castaño, A., Traveset, A.
Chapter: 5 (Page no: 90) Seed dispersal interactions promoting plant invasions. Author(s): Díaz Vélez, M. C., Ferreras, A. E., Paiaro, V.
Chapter: 6 (Page no: 105) Ungulates as dispersal vectors of non-native plants. Author(s): Baltzinger, C., Shukla, U., Msweli, L. S., Downs, C. T.
Chapter: 7 (Page no: 138) The role of plant-plant facilitation in non-native plant invasions. Author(s): Cavieres, L. A.
Chapter: 8 (Page no: 153) How direct and indirect non-native interactions can promote plant invasions, lead to invasional meltdown and inform management decisions. Author(s): Kuebbing, S. E.
Chapter: 9 (Page no: 177) Biotic resistance to plant invasions. Author(s): Parker, J. D., Devaney, J. L., Lemoine, N. P.
Chapter: 10 (Page no: 192) EICA 2.0: a general model of enemy release and defence in plant and animal invasions. Author(s): Honor, R., Colautti, R. I.
Chapter: 11 (Page no: 208) The role of pathogens in plant invasions. Author(s): Kendig, A. E., Flory, S. L., Goss, E. M., Holt, R. D., Clay, K., Harmon, P. F., Lane, B. R., Adhikari, A., Wojan, C. M.
Chapter: 12 (Page no: 226) Direct and indirect effects of herbivores influencing plant invasions. Author(s): Kotanen, P. M.
Chapter: 13 (Page no: 241) Impacts of non-native plants on plant-pollinator interactions. Author(s): Aizen, M. A., Morales, C. L.
Chapter: 14 (Page no: 256) The effect of non-native plant invasions on the dispersal of native seeds. Author(s): Heleno, R. H.
Chapter: 16 (Page no: 281) Competition between native and non-native plants. Author(s): Wandrag, E. M., Catford, J. A.
Chapter: 17 (Page no: 308) Indirect biotic interactions of plant invasions with native plants and animals. Author(s): Allen, W. J.
Chapter: 18 (Page no: 324) How a network approach has advanced the field of plant invasion ecology. Author(s): Emer, C., Timóteo, S.
Chapter: 19 (Page no: 340) Molecular ecology of plant-microbial interactions during invasions: progress and challenges. Author(s): Roux, J. J. le
Chapter: 20 (Page no: 363) How can progress in the understanding of antagonistic interactions be applied to improve biological control of plant invasions? Author(s): Hill, M. P., Coetzee, J. A.
Chapter: 21 (Page no: 377) Restoration of pollination interactions in communities invaded by non-native plants. Author(s): Kaiser-Bunbury, C. N., Simmons, B. I.
Chapter: 22 (Page no: 391) Restoration of seed dispersal interactions in communities invaded by non-native plants. Author(s): Silva, F. R. da, Pizo, M. A.
Chapter: 23 (Page no: 402) Multiple feedbacks due to biotic interactions across trophic levels can lead to persistent novel conditions that hinder restoration. Author(s): Yelenik, S. G., D'Antonio, C. M., Rehm, E. M., Caldwell, I. R.