Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Alosa pseudoharengus
(alewife)

Toolbox

Datasheet

Alosa pseudoharengus (alewife)

Summary

  • Last modified
  • 22 November 2019
  • Datasheet Type(s)
  • Invasive Species
  • Natural Enemy
  • Host Animal
  • Preferred Scientific Name
  • Alosa pseudoharengus
  • Preferred Common Name
  • alewife
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Chordata
  •       Subphylum: Vertebrata
  •         Class: Actinopterygii
  • Summary of Invasiveness
  • A. pseudoharengus is native to the western Atlantic Ocean off the coast of North America, where it occurred historically from Labrador, Nova Scotia, and northeastern Newfoundland, Canada south to South Carolina...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Alosa pseudoharengus (alewife); artwork of adult fish.
TitleArtwork of adult fish
CaptionAlosa pseudoharengus (alewife); artwork of adult fish.
Copyright©Duane Raver/US Fish and Wildlife Service/Bugwood.org - CC BY-NC 3.0 US
Alosa pseudoharengus (alewife); artwork of adult fish.
Artwork of adult fishAlosa pseudoharengus (alewife); artwork of adult fish.©Duane Raver/US Fish and Wildlife Service/Bugwood.org - CC BY-NC 3.0 US
Alosa pseudoharengus (alewife); speciamen from the landlocked population in Lake Ontario, Canada.
TitleAlewife
CaptionAlosa pseudoharengus (alewife); speciamen from the landlocked population in Lake Ontario, Canada.
Copyright©Theodore Strang/USGS, Oswego, NY, USA.
Alosa pseudoharengus (alewife); speciamen from the landlocked population in Lake Ontario, Canada.
AlewifeAlosa pseudoharengus (alewife); speciamen from the landlocked population in Lake Ontario, Canada.©Theodore Strang/USGS, Oswego, NY, USA.

Identity

Top of page

Preferred Scientific Name

  • Alosa pseudoharengus Wilson, 1811

Preferred Common Name

  • alewife

International Common Names

  • French: gaspareau

Local Common Names

  • : bang racer; big-eyed herring; blear-eyed herring; branch herring; ellwife; freshwater herring; glut herring; golden shad; gray herring; grayback; green shad; kiack; kyak; mulhaden; sawbelly; seth; skipjack; spring herring; wall-eyed herring; white herring

Summary of Invasiveness

Top of page

A. pseudoharengus is native to the western Atlantic Ocean off the coast of North America, where it occurred historically from Labrador, Nova Scotia, and northeastern Newfoundland, Canada south to South Carolina, USA (ASMFC, 2009). It is anadromous, ascending rivers and streams to spawn, and the young naturally occur in many coastal lakes and streams (Scott and Crossman, 1973). Although A. pseudoharengus is a valued fish in its native range, where there are numerous projects aimed at restoring anadromous populations (Maine DMR, 2009; USFWS, 2009), when introduced into lakes and reservoirs, they can become invasive. They can complete their life cycle in freshwater, they are fecund (Norden, 1967; Bronte et al., 1991), they can spawn successfully in a wide variety of habitats (ASMFC, 2009), and, they are relatively long lived with a maximum age of 11 having been reported from the Laurentian Great Lakes of North American (O’Gorman et al., 1987, 1997; Madenjian et al., 2003). In land-locked waterbodies A. pseudoharengus can become overabundant, altering the zooplankton community by size-selective predation (Brooks and Dodson, 1965; Wells, 1970; Warshaw, 1972), affecting native fishes by preying on their young (O’Gorman and Stewart, 1999; Madenjian et al., 2008; O’Gorman et al., in press) and, sometimes, causing a thiamine deficiency among the fishes that eat them (Brown et al., 2005). Dense populations are subject to periodic die-offs and the dead fish washing ashore create odour and sanitation problems (Greenwood, 1970).

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Chordata
  •             Subphylum: Vertebrata
  •                 Class: Actinopterygii
  •                     Order: Clupeiformes
  •                         Family: Clupeidae
  •                             Genus: Alosa
  •                                 Species: Alosa pseudoharengus

Notes on Taxonomy and Nomenclature

Top of page

The alewife, Alosa pseudoharengus, is one of 216 fishes in the family Clupeidae, a well distributed taxonomic group, mainly tropical and marine, that includes herrings, sardines, menhadens, pilchards, sprats, and shads (UMMZ, 2009). The genus Alosa (river herrings), subfamily Alosinae (shads), has 24 species. Alewives and the blueback herring, Alosa aestivalis, are collectively referred to as river herring in North America perhaps because not only are both species similar in appearance but also because both move into rivers and streams to spawn at about the same time.

Description

Top of page

A. pseudoharengus has an overall silvery colour with a greyish-green back. A black spot at the eye level is directly behind the head. Adults have longitudinal lines that run along the scale lines above the midline of the body. The large scales are deciduous and the lateral line is not well-developed (Scott and Crossman, 1973). Scales on the midline of the belly form scutes, creating a serrated surface (Trautman, 1957). The body is strongly laterally compressed and relatively deep. Eyes are large. The front of the lower jaw is thick and extends past the upper jaw when the mouth is closed. The maxillary extends to below the middle of the eye. A few small teeth are present on the premaxillary and mandible (Scott and Crossman, 1973). There are more than 30 gill rakers on the lower angle of the first gill arch (Trautman, 1957). The single dorsal fin usually has 13-14 rays but may have 12-16. The caudal fin is forked. The anal fin is short and wide with 15-19 rays (usually 17-18). The pelvic fins are rather small and contain 10 rays. The pectoral fins are low on the sides and they usually have 16 rays but may have as few as 14 (Scott and Crossman, 1973). A. pseudoharengus in landlocked populations become stunted; their maximum total length rarely exceeds 200 mm and average total length ranges from 125 to 175 mm (O’Gorman et al., 1987; Madenjian et al., 2003). Average length usually increases with the size of the waterbody. In contrast, anadromous A. pseudoharengus can grow to 360 to 380 mm (Collette and Klein-MacPhee, 2002).

Distribution

Top of page

Established populations of A. pseudoharengus in North American waterbodies are mainly in the United States and in the easternmost part of the continent. All but a few are located east of the Mississippi River (USGS, 2009). The lone exceptions are in the north part of the state of Nebraska. Although there are records of alewife in the western state of Colorado (Minckley, 1973; USGS, 2009), the fish was not recently listed as being present in that state (Johnson and Nomanbhoy, 2005).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 12 Mar 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

North America

CanadaPresentCABI (Undated a)Present based on regional distribution.
-Newfoundland and LabradorPresentNativeScott and Crossman (1973)
-Nova ScotiaPresentNativeScott and Crossman (1973)
-OntarioPresent, LocalizedIntroducedInvasiveScott and Crossman (1973)Great Lakes and some inland lakes
-Prince Edward IslandPresentNativeScott and Crossman (1973)
-QuebecPresentNativeScott and Crossman (1973)
United StatesPresentCABI (Undated a)Present based on regional distribution.
-ColoradoAbsent, Formerly presentJohnson and Nomanbhoy (2005)Not listed as being present
-ConnecticutPresent, LocalizedNativeUSA, CTDEP (2007); Warshaw (1972)Anadromous
-DelawarePresent, LocalizedUSA, DDFW (2008)Lums Pond, stocked for forage. Anadromous elsewhere.
-GeorgiaPresent, LocalizedIntroducedDahlberg and Scott (1971)Savannah River, stocked for forage
-IllinoisPresent, Localized2008IntroducedInvasiveUSA, INHS (2009)Lake Michigan
-IndianaPresent, Localized1972IntroducedInvasiveRhodes et al. (1974); USA, IDNR (2009); CABI (Undated)Lake Michigan
-KentuckyPresent1986IntroducedBurr and Warren (1986)Ohio River, escapees from Claytor Lake, VA
-MainePresent, LocalizedNativeUSA, Maine DMR (2009); USA, Maine DIFW (2002)Anadromous
-MarylandPresent, LocalizedNativeUSA, Maryland DNR (2009)Chesapeake Bay and tributaries, anadromous
-MassachusettsPresent, LocalizedNativeUSA, USGS (2009)Anadromous
-MichiganPresent, Localized2008Introduced1935InvasiveCABI (Undated b)Lakes Michigan, Superior, Huron, and Erie
-MinnesotaPresent, Few occurrencesIntroduced1956Miller (1957); CABI (Undated)Lake Superior
-NebraskaPresent, LocalizedIntroducedUSA, USGS (2009)Merritt Reservoir
-New HampshirePresent, LocalizedNativeUSA, USGS (2009)Anadromous
-New JerseyPresent, LocalizedUSA, NJDFW (2009)Anadromous. Found in a number of lakes throughout state
-New YorkPresent, LocalizedNativeKraft et al. (2006)Native anadromous along Atlantic coast and introduced invasive in Great Lakes and other inland lakes
-North CarolinaPresent, LocalizedNativeUSA, HRLA (2009)Native anadromous along Atlantic coast, introduced in impoundments across state
-OhioPresent, LocalizedIntroduced1940InvasiveMiller (1957); CABI (Undated)Lake Erie
-PennsylvaniaPresent, LocalizedNativeInvasiveMiller (1957); Steiner (2002); CABI (Undated)Native anadromous in Delaware River; introduced in impoundments across state, and also in Lake Erie.
-Rhode IslandPresent, LocalizedNativeUSA, USGS (2009)Anadromous
-South CarolinaPresent, LocalizedIntroducedRhode et al. (2009)Introduced for forage
-TennesseePresent, LocalizedIntroducedEtnier and Starnes (1993)Stocked in impoundments for forage
-VermontPresent, Localized2009Introduced1997InvasiveMarsden and Hauser (2009)Lake St. Catherine & Lake Champlain
-VirginiaPresent, LocalizedNativeJenkins and Burkhead (1994); USA, USGS (2009)Anadromous as a native species; also stocked in impoundments for forage.
-West VirginiaPresent, LocalizedIntroducedStauffer et al. (1995)Stocked in impoundments for forage
-WisconsinPresent, LocalizedIntroduced1952InvasiveMiller (1957); CABI (Undated)Lake Michigan, Lake Superior

Sea Areas

Atlantic - NorthwestPresent2009NativeUSA, NOAA (2009)

History of Introduction and Spread

Top of page

The largest geographical spread of alewife occurred in the mid-twentieth century when the fish moved into Lakes Erie, Huron, Michigan, and Superior, four of the five Laurentian Great Lakes of North America (Miller, 1957). A. pseudoharengus had been present in Lake Ontario, the fifth and easternmost of the interconnected Great Lakes, since the mid-1800s and had been abundant there since the late 1870s (O’Gorman and Stewart, 1999).  Although Lake Ontario drains to the Atlantic Ocean through the 500-km long St. Lawrence River, it is generally believed that A. pseudoharengus is not native to Lake Ontario, mainly because of its absence from the historical record until hundreds of years after the arrival of European colonists. Moreover, there is also genetic evidence that suggests alewife were not indigenous to Lake Ontario (Ihssen et al., 1992). There is no agreement on how A. pseudoharengus may have invaded Lake Ontario (Daniels, 2001); some have suggested migration through navigation canals or perhaps inadvertent introduction from planned releases of other fishes (Miller, 1957; Smith, 1970). A. pseudoharengus in Lake Ontario were prevented from moving westward to the other four Great Lakes by Niagara Falls. In the 1920s, improvements to the Welland Canal, a navigation canal which connects Lake Ontario to Lake Erie, apparently allowed A. pseudoharengus to use the canal to bypass Niagara Falls (O’Gorman and Stewart, 1999). A. pseudoharengus were first reported from Lake Erie in 1931, from Lake Huron in 1933, from Lake Michigan in 1949, and from Lake Superior in 1954 (Miller, 1957).

The spread of A. pseudoharengus through the four Great Lakes in the mid-1900s was facilitated by favourable climatic conditions and the collapse of native piscivorous fishes (O’Gorman and Stewart, 1999). In Lake Superior, the northernmost Great Lake, A. pseudoharengus never became abundant, presumably because the cold temperature regime was unfavourable for successful reproduction (Bronte et al., 1991; O’Gorman et al., 1997). In Lake Erie, the shallowest Great Lake, A. pseudoharengus became abundant, but only in some years; this was most likely due to cold water temperatures in most winters limiting survival (Smith, 1968; Colby, 1973; Ryan et al., 2003). In Lakes Michigan and Huron, however, where temperature regimes were suitable for successful reproduction and where there were relatively warm, deep-water winter refugia, A. pseudoharengus thrived and by the mid-1960s their numbers reached nuisance levels (O’Gorman and Stewart, 1999; O’Gorman et al., in press). Massive die-offs in Lake Michigan left tons of rotting fishes on beaches and caused a public outcry (Greenwood, 1970). Initially, two techniques were employed to reduce alewife numbers, commercial harvest and large-scale stocking of hatchery-reared, Pacific salmon Onchorynchus spp., lake trout Salvelinus namaycush, and brown trout Salmo trutta. Commercial harvest of the low-value alewife was not economically viable whereas stocking of salmon and trout by government agencies created a high-value recreational fishery (Bence and Smith, 1999). Moreover, the hatchery-reared salmonids, particularly Chinook salmon Oncorhynchus tshawytscha, successfully reduced alewife numbers in Lakes Michigan, Huron, and Ontario (O’Gorman et al., in press). Indeed, in Lake Huron, a surge in natural reproduction by Chinook salmon was largely responsible for the collapse of the A. pseudoharengus population (O’Gorman et al., in press). In Lake Erie, where there was limited habitat for salmonids, resurgence of native walleye Sander vitreus contributed to holding the A. pseudoharengus population in check (Knight and Vondracek, 1993; O’Gorman et al., in press).

Risk of Introduction

Top of page

Introduction of A. pseudoharengus is unlikely without a concerted effort unless the receiving waterbody is in a watershed where A. pseudoharengus are already established. A. pseudoharengus can move within a watershed through rivers and canals, even through canals with navigation locks. There is a large body of literature on the adverse affects of introducing alewife to freshwater ecosystems (O’Gorman and Stewart, 1999; Madenjian et al., 2008; O’Gorman et al., in press) so natural resource management agencies are vigilant against further introductions. The greatest risk for introduction appears to be from illicit releases by individuals seeking to “improve” fishing, followed by accidental introduction by release of A. pseudoharengus, illegally used for live bait. A. pseudoharengus are somewhat fragile and are therefore not used in the aquarium trade or transported live for human consumption.

Habitat

Top of page

A. pseudoharengus is a pelagic fish that occupies open waters. In the northwestern Atlantic Ocean, A. pseudoharengus favour a depth range of 56 to 110 m (Neves, 1981). In the Laurentian Great Lakes, the depths occupied by A. pseudoharengus change seasonally and vary somewhat among lakes due to differences in bathymetry and temperature regimes (Wells, 1968; O’Gorman and Schneider, 1986; O’Gorman et al., 2000). In general, A. pseudoharengus overwinter offshore in deep water and move shoreward into shallower water in spring to spawn, after which they move back to open waters where they remain throughout the summer, occupying mid to upper levels in the water column (Bergstedt and O’Gorman, 1989; O’Gorman et al., in press). In autumn, as the lakes cool, A. pseudoharengus descend to greater depths. The depth distribution of A. pseudoharengus within a lake can change, however, as it did in Lake Ontario following changes in the lake ecosystem (O’Gorman et al., 2000).

In the Laurentian Great Lakes, A. pseudoharengus are found in schools during daylight hours. At night, the schools break up and some of the fish move to waters near shore. Larval A. pseudoharengus are pelagic and are found in bays as well as in nearshore waters around the periphery of Lake Huron and Lake Ontario (O’Gorman, 1983; Klumb et al., 2003). Young-of-year A. pseudoharengus in Lake Michigan prefer rocky substrate over sandy substrate when near shore (Janssen and Luebke, 2004). The young of anadromous A. pseudoharengus migrate to the Atlantic after spending their first summer in fresh water whereas the young of Great Lakes A. pseudoharengus move farther from shore as they grow, overwintering in deep water with their parents.

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Freshwater
 
Lakes Present, no further details Harmful (pest or invasive)
Lakes Present, no further details Natural
Reservoirs Present, no further details Harmful (pest or invasive)
Rivers / streams Present, no further details Harmful (pest or invasive)
Rivers / streams Present, no further details Natural
Ponds Present, no further details Harmful (pest or invasive)
Ponds Present, no further details Natural
Marine
Pelagic zone (offshore) Present, no further details Natural

Biology and Ecology

Top of page

Reproductive Biology

A. pseudoharengus spawn in spring, at night, near the surface, throughout nearshore areas including bays, harbours, and in tributaries (Scott and Crossman, 1973). The minimum temperature at which Atlantic A. pseudoharengus spawn is 10ºC (Cianci, 1965) and spawning peaks at 13-16ºC (Richkus, 1974; Tyus, 1974). In landlocked populations, the spawning period is protracted, lasting more than a month (Odell, 1934; Norden, 1967; Hlavek and Norden, 1978). Mean fecundity of Lake Michigan A. pseudoharengus was 11,150 for fish averaging 160 mm total length, 16,140 for fish averaging 176 mm, and 22,400 for fish averaging 192 mm (Norden, 1967; Hlavek and Norden, 1978). The non-adhesive eggs are demersal and are broadcast at random over any type of bottom (Odell, 1934; Mansueti, 1956). Optimum temperature for egg incubation is 17.8ºC and incubation time varies from 15 days at 7.2ºC to 3.7 days at 21.1ºC (Edsall, 1970). Alewife larvae average 3.8 mm at hatching, 5.1 mm at yolk sac absorbtion, and, when held at 20ºC, they begin feeding two days after hatching (Norden, 1967; Heinrich, 1981). The larvae are positively phototropic and pelagic (Odell, 1934).

Nutrition

Land-locked A. pseudoharengus eat zooplankton throughout their life (Morsell and Norden, 1968; Mills et al., 1992, 1995; Stewart et al., 2009). They are size-selective feeders, preferentially eating the largest available zooplankters (Kohler, 1980). Indeed, the movements of A. pseudoharengus around a large lake or the magnitude of an alewife population can sometimes be tracked by the size and species composition of zooplankton (Wells, 1970; Warshaw, 1972; O’Gorman et al., 1991). The first food of larval alewife is cyclopoid copepodites and as the larvae grow they incorporate larger zooplankton in their diet (Heinrich, 1981). When the fish grow to about 110-119 mm they begin to feed on larger invertebrates (Morsell and Norden, 1968) - amphipods, insects, and, in the Laurentian Great Lakes, the opossum shrimp Mysis diluviana and the bloody-red shrimp Hemimysis anomola (Walsh et al., 2008; Stewart et al., 2009; Lantry et al., 2010). A. pseudoharengus are adept at capturing prey in mid-water but have difficulty capturing prey located on or near the lake bottom (Janssen, 1978a). They can feed in the dark (Janssen, 1978b; Janssen et al., 1995; Kelso and Ney, 1983) and they have three modes of feeding: particulate, filtering, and gulping (Janssen, 1976). Nocturnal movement of A. pseudoharengus to nearshore areas of lakes to feed has been recorded (Kelso and Ney, 1983). Conversely, A. pseudoharengus have been found feeding at night far offshore in the Great Lakes on vertically migrating Mysis (Boscarino et al., 2009). A. pseudoharengus also eat their own larvae (Odell, 1934; Rhodes et al., 1974) as well as the larvae of other fishes and small young-of-year fishes (Kohler and Ney, 1980; Brandt et al., 1987; Kreuger et al., 1995).

Environmental Requirements

A. pseudoharengus in Lake Michigan begin spawning when water temperatures reach about 15.6ºC; spawning is interrupted when water temperatures exceed 27.8ºC (Edsall, 1970). Eggs hatch when incubated at 6.9 to 29.4ºC but not at lower or higher temperatures. About 69% of the larvae from eggs incubated at less than 10.6ºC are deformed and not likely to survive. Alewife young-of-year (YOY) have been found at 16 to 29ºC in Lake Michigan (Brandt, 1980; Dufour et al., 2008). Laboratory studies show a YOY temperature preference range of 21 to 31ºC (Otto et al., 1976; Spotila et al., 1979) and critical thermal maximum range of 32 to 34ºC for YOY acclimated to 20-25ºC (Otto et al., 1976). In the Laurentian Great Lakes, A. pseudoharengus must grow to a total length of 60 mm or longer if they are to survive the winter (O’Gorman and Stewart, 1999). A. pseudoharengus are rare in Lake Superior, the northern-most Great Lake, presumably because the short growing season does not allow most young A. pseudoharengus sufficient time to grow to a size that would allow successful overwintering (O’Gorman et al., 1997; O’Gorman et al., in press). In summer, adult A. pseudoharengus in the Great Lakes avoid the cold hypolimnetic waters and occupy the warm epilimnetic waters although under certain conditions they some can be found in the thermocline (Wells, 1968; Olson et al., 1988; Johannsson and O’Gorman, 1991; but see Janssen and Brandt, 1980). Laboratory temperature preferences for adult A. pseudoharengus were 21ºC in spring, 16-19ºC in summer, and 16 -20ºC in autumn (Otto et al., 1976; Spotila et al., 1979). Ultimate upper lethal temperatures were 31-34ºC for adult alewives acclimated to 20-27ºC (Otto et al., 1976; McCauley and Binkowski, 1982).

A. pseudoharengus are severely stressed by temperatures lower than 3ºC (Colby, 1973). In the Great Lakes A. pseudoharengus are in water at 1 to 3ºC during most winters. In severe winters, as water temperature may be at or below 1ºC (Mortimer, 1971; Rodgers, 1987), mass mortalities of A. pseudoharengus sometimes occur (O’Gorman and Schneider, 1986; Bergstedt and O’Gorman, 1989; O’Gorman et al., in press). Low-temperature mortalities appear to be due to osmoregulatory failure caused by a loss of homeoviscous adaptation (altering the lipid composition of biomembranes to compensate for temperature-induced changes in membrane fluidity; Stanley and Colby, 1971; Snyder and Hennessey, 2003). Homeoviscous adaptation can be influenced by diet (Synder and Murray, 2009) and inter-annual variation in diet may be the reason for discrepancies in the severity of die-offs among years with similar winter weather (O’Gorman et al., in press). When held in ponds where water temperatures were < 2ºC for more than six weeks, A. pseudoharengus experienced sublethal immunosuppression, increasing their susceptibility to disease (Lepak and Kraft, 2008).

Climate

Top of page
ClimateStatusDescriptionRemark
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Ds - Continental climate with dry summer Tolerated Continental climate with dry summer (Warm average temp. > 10°C, coldest month < 0°C, dry summers)

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
32-51

Water Tolerances

Top of page
ParameterMinimum ValueMaximum ValueTypical ValueStatusLife StageNotes
Depth (m b.s.l.) 180 Optimum Overwinter as deep as 180 in Great Lakes. Prefer 56-110m in Atlantic.
Water temperature (ºC temperature) 16 20 Optimum 1-30 tolerated

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
ForageFor piscivorous fishes, within the USA Yes Yes
Hunting, angling, sport or racingRelease of alewives used as live bait Yes
Intentional releaseWithin the USA Yes Yes
Interconnected waterwaysWithin the USA and Canada Yes Yes
StockingSanctioned and illicit within the USA Yes Yes

Impact Summary

Top of page
CategoryImpact
Economic/livelihood Positive and negative
Environment (generally) Negative

Economic Impact

Top of page

Establishment of alewife populations in land-locked waterbodies has had both positive and negative economic impacts. The negative impact most noticeable to the general public has been the periodic die-offs of large numbers of fish. As early as 1892, residents of Burlington, Canada, on Lake Ontario, were complaining of the costs of removing the smelly, dead A. pseudoharengus that washed ashore in summer (Pritchard, 1929). In 1967, a massive die-off of A. pseudoharengus in Lake Michigan (the fifth largest lake in the world) resulted in an estimated loss in excess of 100 million dollars to industry, municipalities, and businesses dependent on recreation (Greenwood, 1970). Other less visible but no less important negative economic impacts include harmful effects on other fishes important to recreational and commercial fisheries.

The largest positive economic impact was the development of multi-million dollar recreational fisheries for hatchery-raised salmon and trout in the Laurentian Great Lakes (Bence and Smith, 1999; Connelly and Brown, 2009) -- A. pseudoharengusprovides an important food source for these fish. These new fisheries are hatchery-dependent, however, and thus require large capital investments to start and continuing investments of capital to maintain.

Environmental Impact

Top of page

When A. pseudoharengus become established in a waterbody they alter the size and species composition of the zooplankton community by size-selective predation (Brooks and Dodson, 1965; Wells, 1970; Warshaw, 1972; Johannsson, 2003). Kelso and Ney (1983) noted that the high foraging efficiency of A. pseudoharengus on zooplankton may result in trophic competition with juvenile fishes in the littoral zone of a reservoir. Depression of zooplankton can reduce grazing of phytoplankton resulting in decreased water clarity.

Impact on Biodiversity

Alewife populations in landlocked waterbodies negatively impact biodiversity in three ways. First by size-selective predation on zooplankton they can eliminate the largest species and shift dominance to the smallest species (Brooks and Dodson, 1965; Wells, 1970; Warshaw, 1972; Johannsson, 2003). Second, by preying on pelagic larvae of native fishes with no evolutionary exposure to A. pseudoharengus, they can sharply curtail recruitment, depressing populations of native fishes (Madenjian et al., 2008; O’Gorman et al., in press). Third, by causing a thiamine deficiency among some salmonines that eat mainly A. pseudoharengus, they can lower reproductive success of ecologically and economically important top predators. A. pseudoharengus contain high concentrations of thiaminase, an enzyme that breaks down thiamine (Gnaedinger, 1964). Female salmonines that eat mostly A. pseudoharengus can produce thiamine-deficient eggs (Marcquenski, 1996; Brown et al., 1998, 2005) and the young that emerge from those eggs develop Early Mortality Syndrome (EMS), a syndrome characterized by abnormal behaviour, physical abnormalities, and death (McDonald et al., 1998). EMS is thought to be one of the major impediments to restoring the native lake trout Salvelinus namaycush to many areas of the Laurentian Great Lakes (Madenjian et al., 2008). The final elimination of the native, land-locked Atlantic salmon Salmo salar from Lake Ontario in the late 1800s, soon after alewife proliferated, may well have been due to thiaminase-induced thiamine deficiency (Ketola et al., 2000; Madenjian et al., 2008).

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Capable of securing and ingesting a wide range of food
  • Highly mobile locally
  • Long lived
  • Fast growing
  • Has high reproductive potential
  • Gregarious
Impact outcomes
  • Damaged ecosystem services
  • Ecosystem change/ habitat alteration
  • Negatively impacts cultural/traditional practices
  • Negatively impacts animal health
  • Negatively impacts aquaculture/fisheries
  • Reduced native biodiversity
  • Threat to/ loss of native species
Impact mechanisms
  • Competition (unspecified)
  • Herbivory/grazing/browsing
  • Predation
Likelihood of entry/control
  • Difficult/costly to control

Uses List

Top of page

Animal feed, fodder, forage

  • Bait/attractant
  • Forage

Human food and beverage

  • Meat/fat/offal/blood/bone (whole, cut, fresh, frozen, canned, cured, processed or smoked)

Similarities to Other Species/Conditions

Top of page

A. pseudoharengus is similar in appearance to the blueback herring Alosa aestivalis. Indeed, due to their similarity, the two species are often harvested and managed together as “river herring” in the USA or as “gaspereau” in Canada (Mullen et al., 1986; NOAA, 2009). The eye of A. pseudoharengus is large with a diameter greater than the length of the snout whereas the eye of the blueback herring is small with a diameter equal to or less than the snout length (Mullen et al., 1986). Internally, the peritoneum of the alewife is pearly to white, sometimes with grey flecks, whereas that of the blueback herring is sooty to black (Scott and Crossman, 1973; Owens et al., 1998). Landlocked populations of A. pseudoharengus are common and occur across a broad geographic range whereas landlocked populations of blueback herring are uncommon and are confined to the southern USA (Owens et al., 1998).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Once established in a waterbody, an alewife population cannot be eradicated although it can be reduced by increasing the number of piscivorous fishes (O’Gorman et al., in press). Invasive populations of alewife were established by movement of alewife through navigation canals (O’Gorman and Stewart, 1999) and by introduction, either accidental or intentional. Stocking of alewife was once done to augment prey fish populations but once the deleterious effects of establishing a population became known, it was no longer sanctioned. Illicit, intentional introductions are now the primary means of movement and they are most likely done by anglers who view A. pseudoharengus favourably because of the well-advertised, large size of piscivorous fishes in some lakes where A. pseudoharengus are abundant (Marsden and Hauser, 2009). Populations may also become established by anglers releasing the fish they are using for bait, some of which may be A. pseudoharengus. The state of New York, as well as other states, prohibit or greatly limit the use of A. pseudoharengus for live bait in inland waters.

References

Top of page

ASFMC, 2009. Atlantic States Marine Fishery Commission, Amendment 2 to the Interstate Fishery Management Plan for shad and river herring (River Herring Management), May 2009. 173 pp.

Bean TH, 1882. Movements of young alewives (Pomolobus sp.) in Colorado River, Texas. In: Report of the Commissioner of Fishes and Fisheries for 1881, Volume I [ed. by Baird, S. F.]. Washington, D.C., USA: U.S. Commission of Fish and Fisheries, 69-70.

Bence JR; Smith KD, 1999. An overview of recreational fisheries of the Great Lakes. In: Great Lakes Policy and Management: A Binational Perspective [ed. by Taylor, W. W. \Ferreri, P.]. East Lansing, USA: Michigan State University Press, 259-306.

Bergstedt RA; O'Gorman R, 1989. Distribution of alewives in southeastern Lake Ontario in autumn and winter: a clue to winter mortalities. Transactions of the American Fisheries Society, 118:687-692.

Boscarino BT; Rudstam LG; Eillenberger JL; O'Gorman R, 2009. Importance of light, temperature, zooplankton and fish in predicting the nighttime vertical distribution of Mysis diluviana. Aquatic Biology, 5:263-279.

Brandt SB, 1980. Spatial segregation of adult and young-of-the-year alewives across a thermocline in Lake Michigan. Transactions of the American Fisheries Society, 109:469-478.

Brandt SB; Mason DM; MacNeill DB; Coates T; Gannon JE, 1987. Predation by alewives on larvae of yellow perch in Lake Ontario. Transactions of the American Fisheries Society, 116:641-645.

Bronte CR; Selgeby JH; Curtis GL, 1991. Distribution, abundance, and biology of the alewife in U. waters of Lake Superior. Journal of Great Lakes Research, 17:304-313.

Brooks JL; Dodson SI, 1965. Predation, body size, and composition of plankton. Science, 150:28-35.

Brown SB; Fitzsimons JD; Palace VP; Vandenbyllaardt L, 1998. Thiamine and early mortality syndrome in lake trout. In: Early life stage mortality syndrome in fishes of the Great Lakes and Baltic Sea. American Fisheries Society, Symposium 21, Dearborn, Michigan, USA, 28 August 1996 [ed. by McDonald, G.\Fitzsimons, J.D.\Honeyfield, D.C.]. Bethesda, USA: American Fisheries Society, 18-25.

Brown SB; Honeyfield DC; Hnath JG; Wolgamood M; Marcquenski SV; Fitzsimons JD; Tillitt DE, 2005. Thiamine status in adult salmonines in the Great Lakes. Journal of Aquatic Animal Health, 17(1):59-64.

Burr BM; Warren ML, 1986. A Distributional Atlas of Kentucky Fishes (A Distributional Atlas of Kentucky Fishes.). Frankfort, Kentucky, USA: Kentucky State Nature Preserves Commission, 398 pp. [Kentucky State Nature Preserves Commission Scientific and Technical Series Number 4.]

Cianci JM, 1965. Larval development of the the alewife, Alosa pseudoharengus, and the glut herring, Alosa aestivalis. Storrs, USA: University of Connecticut, 62 pp.

Colby PJ, 1973. Response of the alewives, Alosa pseudoharengus, to environmental change. In: Responses of fish to environmental changes [ed. by Chavin, W.]. Springfield, Illinois, USA: Charles C. Thomas Publishers, 163-196.

Collette BB; Klein-MacPhee G, 2002. Atlantic halibut. In: Bigelow and Schroeder's fishes of the Gulf of Maine [ed. by Collette, B. B.\Klein-MacPhee, G.]. Washington, DC, USA: Smithsonian Press, 748 pp.

Connelly NA; Brown TL, 2009. New York statewide angler survey 2007, Report 2: Angler effort and expenditures. Albany, USA: New York State Department of Environmental Conservation, Bureau of Fisheries, 104 pp.

CTDEP, 2007. Connecticut Department of Environmental Protection. Prohibition on the taking of alewife and blueback herring from Connecticut waters extended for another year. Connecticut Department of Environmental Protection. Prohibition on the taking of alewife and blueback herring from Connecticut waters extended for another year. http://www.ct.gov/dep/cwp/view.asp?Q=335656&A=2794

Dahlberg MD; Scott DC, 1971. The freshwater fishes of Georgia. Bulletin of the Georgia Academy of Science, 29:1-64.

Daniels RA, 2001. Untested assumptions: the role of canals in the dispersal of sea lamprey, alewife, and other fishes in the eastern United States. Environmental Biology of Fishes, 60(4):309-329.

DDFW, 2008. Delaware Division of Fish and Wildlife. Delaware Division of Fish and Wildlife. http://www.fw.delaware.gov/Pages/FWPortal.aspx

Dufour E; Höök TO; Patterson WP; Rutherford ES, 2008. High-resolution isotope analysis of young alewife Alosa pseudoharengus otoliths: assessment of temporal resolution and reconstruction of habitat of occupancy and thermal history. Journal of Fish Biology, 73:2434-2451.

Edsall TA, 1970. The effect of temperature on the rate of development and survival of alewife eggs and larvae. Transactions of the American Fisheries Society, 99:376-380.

Etnier DA; Starnes WC, 1993. The Fishes of Tennessee. Knoxville, USA: University of Tennessee Press, 681 pp.

Gnaedinger RH, 1964. Thiaminase activity in fish: an improved assay method. U.S. Fish and Wildlife Service, Fishing Industry Research, 2:55-59.

Greenwood MR, 1970. 1968 state-federal Lake Michigan alewife die-off control investigation. Ann Arbor, Michigan, USA: Exploratory Fishing and Gear Research Base, Bureau of Commercial Fisheries, Fish and Wildlife Service, U.S. Department of the Interior, 156 pp.

Heinrich JW, 1981. Culture, feeding, and growth of alewives hatched in the laboratory. Progressive Fish-Culturist, 43(1):3-7.

Hlavek RR; Norden CR, 1978. The reproductive cycle and fecundity of the alewife in Lake Michigan. Wisconsin Academy of Sciences, Arts and Letters, 66:80-90.

HRLA, 2009. High Rock Lake Association, alewife. High Rock Lake Association, alewife. http://www.hrla.com/NCFish/alewife.htm

IDNR, 2009. Indiana Department of Natural Resources, Aquatic Invasive Species, Alewife. Indiana Department of Natural Resources, Aquatic Invasive Species, Alewife. http://www.in.gov/dnr/files/ALEWIFE.pdf

Ihssen PE; Martin GW; Rodgers DW, 1992. Allozyme variation of Great Lakes alewife, Alosa pseudoharengus: genetic differentiation and affinities of a recent invader. Canadian Journal of Fisheries and Aquatic Sciences, 49:1770-1777.

INHS, 2009. Illinois Natural History Survey, Alosa pseudoharengus collection sites in Illinois, before and after 1979. Illinois Natural History Survey, Alosa pseudoharengus collection sites in Illinois, before and after 1979. http://www.inhs.uiuc.edu/cbd/ilspecies/fishmaps/al_pseudoh.gif

Janssen J, 1976. Feeding modes and prey size selection in the alewife (Alosa pseudoharengus). Journal of the Fisheries Research Board of Canada, 33(9):1972-1975.

Janssen J, 1978. Feeding-behavior repertoire of the alewife, Alosa pseudoharengus, and the ciscoes Coregonus hoyi and C. artedii. Journal of the Fisheries Research Board of Canada, 35(2):249-253.

Janssen J, 1978. Will alewives (Alosa pseudoharengus) feed in the dark? Environmental Biology of Fishes, 3:239-240.

Janssen J; Brandt SB, 1980. Feeding ecology and vertical migration of adult alewives (Alosa pseudoharengus) in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 37(2):177-184.

Janssen J; Jones WR; Whang A; Oshel PE, 1995. Use of the lateral line in particulate feeding in the dark by juvenile alewife (Alosa pseudoharengus). Canadian Journal of Fisheries and Aquatic Sciences, 52:358-363.

Janssen J; Luebke MA, 2004. Preference for rocky habitat by age-0 yellow perch and alewives. Journal of Great Lakes Research, 30:93-99.

Jenkins RE; Burkhead NM, 1994. Freshwater fishes of Virginia. Bethesda, MD, USA: American Fisheries Society.

Johannsson OE, 2003. A history of changes in zooplankton community structure and function in Lake Ontario: Responses to whole-lake remediation and exotic invasions. In: The State of Lake Ontario: Past, Present, and Future [ed. by Munawar, M.]. Burlington, Ontario, Canada: Ecovision World Monograph Series, Aquatic Ecosystem Health and Management Society, 221-256.

Johannsson OE; O'Gorman R, 1991. Roles of predation, food, and temperature in structuring the epilimnetic zooplankton populations in Lake Ontario, 1981-1986. Transactions of the American Fisheries Society, 120:193-208.

Johnson B; Nomanbhoy N, 2005. An eField Guide to Western Fishes - Colorado and Wyoming. An eField Guide to Western Fishes - Colorado and Wyoming. Fort Collins, USA: Colorado State University.

Kelso WE; Ney JJ, 1983. Nocturnal foraging by alewives in reservoir coves. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies, 36:125-134.

Ketola HG; Bowser PR; Wooster GA; Wedge LR; Hurst SS, 2000. Effects of thiamine on reproduction of Atlantic salmon and a new hypothesis for their extirpation in Lake Ontario. Transactions of the American Fisheries Society, 129(2):607-612.

Klumb RA; Rudstam LG; Mills EL; Schneider CP; Sawyko PM, 2003. Importance of Lake Ontario embayments and nearshore habitats as nurseries for larval fishes with emphasis on alewife (Alosa pseudoharengus). Journal of Great Lakes Research, 29:181-198.

Knight RL; Vondracek B, 1993. Changes in prey fish populations in western lake Erie, 1969-88, as related to walleye, Stizostedion vitreum, predation. Canadian Journal of Fisheries and Aquatic Sciences, No. 50:1289-1298.

Kohler CC, 1980. Trophic ecology of an introduced, land-locked alewife (Alosa pseudoharengus) population and assessment of alewife impact on resident sportfish and crustacean zooplankton communities in Claytor Lake, Virginia. Blacksburg, USA: Virginia Polytechnic Institute and State University, 192 pp.

Kohler CC; Ney JJ, 1980. Piscivory in a land-locked alewife (Alosa pseudoharengus) population. Canadian Journal of Fisheries and Aquatic Sciences, 37:1314-1317.

Kraft CE; Carlson DM; Carlson M, 2006. Inland Fishes of New York (Online), Version 4. Inland Fishes of New York (Online), Version 4., USA: Department of Natural Resources, Cornell University, and the New York Department of Environmental Conservation. http://pond.dnr.cornell.edu/nyfish/fish.html

Krueger CC; Perkins DL; Mills EL; Marsden JE, 1995. Predation by alewives on lake trout fry in Lake Ontario: role of an exotic species in preventing restoration of native species. Journal of Great Lakes Research, 21(Supplement 1):458-469.

Lantry BF; Walsh MG; Johnson JH; McKenna JE Jr, 2010. Occurrence of the Great Lake's most recent invader, Hemimysis anomala, in the diet of fishes in southeastern Lake Ontario. Journal of Great Lakes Research, 36(1):179-183. http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B984D-4Y1WK7X-2-1&_cdi=59068&_user=10&_pii=S0380133009002202&_orig=browse&_coverDate=03%2F31%2F2010&_sk=999639998&view=c&wchp=dGLbVlz-zSkWb&md5=a8bd41ee186895957fd2322ee24c2c2a&ie=/sdarticle.pdf

Lepak JM; Kraft CE, 2008. Alewife mortality, condition, and immune response to prolonged cold temperatures. Journal of Great Lakes Research, 34:134-142.

Madenjian CP; Holuszko JD; Desorcie TJ, 2003. Growth and condition of alewives in Lake Michigan, 1984-2001. Transactions of the American Fisheries Society, 132:1104-1116.

Madenjian CP; O'Gorman R; Bunnell DB; Argyle RL; Roseman EF; Warner DM; Stockwell JD; Stapanian MA, 2008. Adverse effects of alewives on Laurentian Great Lakes fish communities. North American Journal of Fisheries Management, 28:263-282.

Maine DIFW, 2002. Fishes of Maine. Augusta, Maine, USA: Maine Department of Inland Fisheries and Wildlife, 40 pp.

Maine DMR, 2009. Maine River Herring Fact Sheet. Maine River Herring Fact Sheet. Augusta, USA: State of Maine, Department of Marine Resources.

Mansueti RJ, 1956. Alewife herring eggs and larvae reared successfully in lab. Maryland Tidewater News, 13(1):2-3.

Marcquenski SV, 1996. Characterization of early mortality syndrome (EMS) in salmonids from the Great Lakes. In: Report from the second workshop on reproduction disturbances in fish, November 20-23, 1995, Report 4534 [ed. by Bengtsson, B. E. \Hill, C. \Nellbring, S.]. Stockholm, Sweden: Swedish Environmental Protection Agency, 73-75.

Marsden JE; Hauser M, 2009. Exotic species in Lake Champlain. Journal of Great Lakes Research, 35(2):250-265. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B984D-4W4S3CK-3&_user=10&_coverDate=06%2F30%2F2009&_rdoc=12&_fmt=high&_orig=browse&_srch=doc-info(%23toc%2359068%232009%23999649997%231184079%23FLA%23display%23Volume)&_cdi=59068&_sort=d&_docanchor=&_ct=21&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=57bd160d466f4d8a11767aecbfc08de0

Maryland DNR, 2009. Creature feature, alewife, Alosa pseudoharengus. Maryland, USA: Maryland Department of Natural Resources. http://dnr.maryland.gov/mydnr/creaturefeature/alewife_herring.asp

McCauley RW; Binkowski FP, 1982. Thermal tolerance of the alewife. Transactions of the American Fisheries Society, 111:389-391.

McDonald G; Fitzsimons JD; Honeyfield DC, 1998. Early life stage mortality syndrome in fishes of the Great Lakes and Baltic Sea. Bethesda, USA: American Fisheries Society, x + 177 pp.

Miller RR, 1957. Origin and dispersal of the alewife, Alosa pseudoharengus, and the gizzard shad, Dorosoma cepedianum, in the Great Lakes. Transactions of the American Fisheries Society, 86:97-111.

Mills EL; O'Gorman R; Degisi J; Heberger RF; House RA, 1992. Food of the alewife (Alosa pseudoharengus) in Lake Ontario before and after establishment of Bythotrephes cederstroemi. Canadian Journal of Fisheries and Aquatic Sciences, 49:2009-2019.

Mills EL; O'Gorman R; Roseman EF; Adams C; Owens RW, 1995. Planktivory by alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) on microcrustacean zooplankton and dreissenid (Bivalvia: Dreissenidae) veligers in southern Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 52:925-935.

Minckley WL, 1973. Fishes of Arizona. Arizona Fish and Game Department. Phoenix, AZ, USA: Sims Printing Company, Inc.

Morsell JW; Norden CR, 1968. Food habits of the alewife, Alosa pseudoharengus (Wilson), in Lake Michigan. In: International Association of Great Lakes Research, Proceedings of the 11th Conference on Great Lakes Research. 96-102.

Mortimer CH, 1971. Large scale oscillatory motions and seasonal temperature changes in Lake Michigan and Lake Ontario. Milwaukee, USA: University of Wisconsin-Milwaukee, Center for Great Lakes Studies. [Special Report 12, parts I and II.]

Mullen DM; Fay CW; Moring JR, 1986. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic)-alewife/blueback herring. Fish and Wildlife Service Biological Report, 82(11.56). U.S. Army Corps of Engineers, 21 pp.

Neves RJ, 1981. Offshore distribution of alewife, Alosa pseudoharengus, and blueback herring, Alosa aestivalis, along the Atlantic coast. National Marine Fisheries Service Fishery Bulletin, 79:473-485.

NJDFW, 2009. New Jersey Department of Environmental Protection, Division of Fish and Wildlife, alewife (Alosa pseudoharengus). New Jersey Department of Environmental Protection, Division of Fish and Wildlife, alewife (Alosa pseudoharengus). http://www.state.nj.us/dep/fgw/pdf/fishfact/alewife.pdf

NOAA, 2009. National Oceanic and Atmospheric Admistration, National Marine Fishery Service, Species of Concern, River Herring. National Oceanic and Atmospheric Admistration, National Marine Fishery Service, Species of Concern, River Herring. http://www.nmfs.noaa.gov/pr/pdfs/species/riverherring_highlights.pdf

Norden CR, 1967. Age, growth, and fecundity of the alewife, Alosa pseudoharengus (Wilson), in Lake Michigan. Transactions of the American Fisheries Society, 96:387-393.

Odell TT, 1934. The life history and ecological relationships of the alewife (Pomolobus pseudoharengus [Wilson]) in Seneca Lake, New York. Transactions of the American Fisheries Society, 64:118-126.

O'Gorman R, 1983. Distribution and abundance of larval fish in the nearshore waters of western Lake Huron. Journal of Great Lakes Research, 9:14-22.

O'Gorman R; Barwick DH; Bowen CA, 1987. Discrepancies between ages determined from scales and otoliths for alewives from the Great Lakes. In: Age and growth of fish [ed. by Summerfelt, R. C. \Hall, G.]. Ames, USA: Iowa State University Press, 203-2l0.

O'Gorman R; Elrod JH; Owens RW; Schneider CP; Eckert TH; Lantry BR, 2000. Shifts in depth distributions of alewives, rainbow smelt, and age-2 lake trout in southern Lake Ontario following establishment of dreissenids. Transactions of the American Fisheries Society, 129:1096-1106.

O'Gorman R; Johannsson OE; Schneider CP, 1997. Age and growth of alewives in the changing pelagia of Lake Ontario, 1978-1992. Transactions of the American Fisheries Society, 126:112-126.

O'Gorman R; Madenjian CP; Roseman EF; Cook A; Gorman OT, in press. Alewife in the Great Lakes: Old invader - New millennium. In: Great Lakes Fisheries Policy and Management: A Binational Perspective [ed. by Taylor, W. W. \Lynch, A. M. \Leonard, N. J.]. East Lansing, USA: Michigan State University Press.

O'Gorman R; Mills EL; DeGisi JS, 1991. Use of zooplankton to assess the movement and distribution of alewife (Alosa pseudoharengus) in south-central Lake Ontario in spring. Canadian Journal of Fisheries and Aquatic Sciences, 48:2250-2257.

O'Gorman R; Schneider CP, 1986. Dynamics of alewives in Lake Ontario following a mass mortality. Transactions of the American Fisheries Society, 115:1-14.

O'Gorman R; Stewart TJ, 1999. Ascent, dominance, and decline of the alewife in the Great Lakes: food web interactions and management strategies. In: Great Lakes Policy and Management: A Binational Perspective [ed. by Taylor, W. W. \Ferreri, P.]. East Lansing, USA: Michigan State University Press, 489-514.

Olson RA; Winter JD; Nettles DC; Haynes JM, 1988. Resource partitioning by salmonids in south-central Lake Ontario. Transactions of the American Fisheries Society, 117:552-559.

Otto RG; Kitchel MA; Rice JO, 1976. Lethal and preferred temperatures of the alewife (Alosa pseudoharengus) in Lake Michigan. Transactions of the American Fisheries Society, 105:96-106.

Owens RW; O'Gorman R; Mills EL; Rudstam LG; Hasse JJ; Kulik BH; MacNeill DB, 1998. Blueback herring (Alosa aestivalis) in Lake Ontario: first record, entry route, and colonization potential. Journal of Great Lakes Research, 24:723-730.

Pritchard AL, 1929. The alewife (Pomolobus pseudoharengus) in Lake Ontario. Publication of the Ontario Fisheries Research Laboratory, 38:37-54. [University of Toronto Studies Biological Series Publication 33.]

Rhode FC; Arndt RG; Foltz JW; Quattro JM, 2009. Freshwater fishes of South Carolina. Columbia, South Carolina, USA: University of South Carolina Press, 430 pp.

Rhodes RJ; Webb DA; McComish TS, 1974. Cannibalism by the adult alewife (Alosa pseudoharengus) in southern Lake Michigan. In: Proceedings of the 17th Conference on Great Lakes Research. 593-595.

Richkus WA, 1974. Factors influencing the seasonal and daily patterns of alewife (Alosa pseudoharengus) migration in a Rhode Island river. Journal of the Fisheries Research Board of Canada, 31:1485-1497.

Rodgers GK, 1987. Time of onset of full thermal stratification in Lake Ontario in relation to lake temperatures in winter. Canadian Journal of Fisheries and Aquatic Sciences, 44:2225-2229.

Ryan PA; Knight R; MacGregor R; Towns G; Hoopes R; Culligan W, 2003. Fish-community goals and objectives for Lake Erie. Ann Arbor, Michigan, USA: Great Lakes Fishery Commission, 64 pp. [Great Lakes Fishery Commission Special Publication 03-02.]

Scott WB; Crossman EJ, 1973. Freshwater Fishes of Canada. Bulletin 184, NO. 184:966 pp.

Smith SH, 1968. Species succession and fishery exploitation in the Great Lakes. Journal of the Fisheries Research Board of Canada, 25:667-693.

Smith SH, 1970. Species interactions of the alewife in the Great Lakes. Transactions of the American Fisheries Society, 99:754-765.

Snyder RJ; Hennessey TM, 2003. Cold tolerance and homeoviscous adaptation in freshwater alewives (Alosa pseudoharengus). Fish Physiology and Biochemistry, 29:117-126.

Snyder RJ; Murray EK, 2009. Influence of dietary nutrients on low temperature tolerance of freshwater alewives. Journal of Great Lakes Research, 35(3):473-476. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B984D-4WPHRP0-1&_user=10&_coverDate=09%2F30%2F2009&_rdoc=19&_fmt=high&_orig=browse&_srch=doc-info(%23toc%2359068%232009%23999649996%231477109%23FLA%23display%23Volume)&_cdi=59068&_sort=d&_docanchor=&_ct=19&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=e8234563f7f645b0818bc50583398eec

Spotila JR; Terpin KM; Koons RR; Benati RL, 1979. Temperature requirements of fishes from eastern Lake Erie and the Upper Niagara River: a review of the literature. Environmental Biology of Fishes, 4:281-307.

Stanley JG; Colby PG, 1971. Effects of temperature on electrolyte balance and osmoregulation in the alewife (Alosa pseudoharengus) in fresh and sea water. Transactions of the American Fisheries Society, 100:624-638.

Stauffer JR; Boltz JM; White LR, 1995. The fishes of West Virginia. The Proceedings of the Academy of Natural Sciences of Philadelphia, 146:1-389.

Steiner L, 2002. Pennsylvania Fishes. Harrisburg, Pennsylvania, USA: Pennsylvania Fish and Boat Commission, 170 pp.

Stewart TJ; Sprules WG; O'Gorman R, 2009. Shifts in the diet of Lake Ontario alewife in response to ecosystem change. Journal of Great Lakes Research, 35(2):241-249. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B984D-4W7RK45-2&_user=10&_coverDate=06%2F30%2F2009&_rdoc=11&_fmt=high&_orig=browse&_srch=doc-info(%23toc%2359068%232009%23999649997%231184079%23FLA%23display%23Volume)&_cdi=59068&_sort=d&_docanchor=&_ct=21&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a648ab357fd8feef23a7741a9811c1a5

Trautman MB, 1957. Fishes of Ohio. Columbus, Ohio: Ohio State University Press.

Tyus HM, 1974. Movements and spawning of anadromous alewives, Alosa pseudoharengus (Wilson) at Lake Mattmuskett, North Carolina. Transactions of the American Fisheries Society, 103:392-396.

UMMZ, 2009. Animal Diversity Web. Michigan, USA: University of Michigan Museum of Zoology. http://animaldiversity.ummz.umich.edu/site/accounts/classification/Clupeidae.html#Clupeidae

USFWS, 2009. United States Fish and Wildlife Service, Conneticut River Coordinator's Office. United States Fish and Wildlife Service, Conneticut River Coordinator's Office. http://www.fws.gov/r5crc/fish/ze_alps.html#distribution

USGS, 2009. United States Geological Survey, Nonindigenous Aquatic Species, alewife. http://nas3.er.usgs.gov/queries/FactSheet.asp?speciesID=490

Walsh MG; O'Gorman R; Strang T; Edwards WH; Rudstam LG, 2008. Fall diets of alewife, rainbow smelt, and slimy sculpin in the profundal zone of southern Lake Ontario during 1994-2005 with an emphasis on occurrence of Mysis relicta. Aquatic Ecosystem Health and Management, 11:368-376.

Warshaw SJ, 1972. Effects of alewives (Alosa pseudoharengus) on the zooplankton of Lake Wononskopomuc, Connecticut. Limnology and Oceanography, 17:816-825.

Wells L, 1968. Seasonal depth distribution of fish in southeastern Lake Michigan. Fish and Wildlife Service Fishery Bulletin, 67:1-15.

Wells L, 1970. Effects of alewife predation on zooplankton populations in Lake Michigan. Limnology and Oceanography, 15:556-565.

Distribution References

Burr B M, Warren M L, 1986. A Distributional Atlas of Kentucky Fishes. Frankfort, Kentucky, USA: Kentucky State Nature Preserves Commission. 398 pp.

CABI, Undated. Compendium record. Wallingford, UK: CABI

CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI

CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

Dahlberg M D, Scott D C, 1971. The freshwater fishes of Georgia. In: Bulletin of the Georgia Academy of Science. 29 1-64.

Etnier D A, Starnes W C, 1993. The Fishes of Tennessee. Knoxville, TN, USA: University of Tennessee Press. 681 pp.

Jenkins R E, Burkhead N M, 1994. Freshwater fishes of Virginia. Bethesda, MD, USA: American Fisheries Society.

Johnson B, Nomanbhoy N, 2005. Alosa pseudoharengus. In: An eField Guide to Western Fishes - Colorado and Wyoming, Fort Collins, USA: Colorado State University.

Kraft C E, Carlson D M, Carlson M, 2006. Alosa pseudoharengus. In: Inland Fishes of New York (Online), Version 4, USA: Department of Natural Resources, Cornell University, and the New York Department of Environmental Conservation. http://pond.dnr.cornell.edu/nyfish/fish.html

Marsden J E, Hauser M, 2009. Exotic species in Lake Champlain. Journal of Great Lakes Research. 35 (2), 250-265. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B984D-4W4S3CK-3&_user=10&_coverDate=06%2F30%2F2009&_rdoc=12&_fmt=high&_orig=browse&_srch=doc-info(%23toc%2359068%232009%23999649997%231184079%23FLA%23display%23Volume)&_cdi=59068&_sort=d&_docanchor=&_ct=21&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=57bd160d466f4d8a11767aecbfc08de0 DOI:10.1016/j.jglr.2009.01.006

Miller R R, 1957. Origin and dispersal of the alewife, Alosa pseudoharengus, and the gizzard shad, Dorosoma cepedianum, in the Great Lakes. Transactions of the American Fisheries Society. 97-111.

Rhode F C, Arndt R G, Foltz J W, Quattro J M, 2009. Freshwater fishes of South Carolina. Columbia, South Carolina, USA: University of South Carolina Press. 430 pp.

Rhodes R J, Webb D A, McComish T S, 1974. Cannibalism by the adult alewife (Alosa pseudoharengus) in southern Lake Michigan. In: Proceedings of the 17th Conference on Great Lakes Research [Proceedings of the 17th Conference on Great Lakes Research.], International Association of Great Lakes Research. 593-595.

Scott W B, Crossman E J, 1973. Fisheries Research Board of Canada, Bulletin, Ottawa, Canada: Fisheries Research Board of Canada. 966 pp.

Stauffer J R, Boltz J M, White L R, 1995. The Fishes of West Virginia. Proceedings of the Academy of Natural Sciences of Philadelphia. 1-389.

Steiner L, 2002. Pennsylvania Fishes. Harrisburg, Pennsylvania, USA: Pennsylvania Fish and Boat Commission. 170 pp.

USA, CTDEP, 2007. Connecticut Department of Environmental Protection. Prohibition on the taking of alewife and blueback herring from Connecticut waters extended for another year. In: Connecticut Department of Environmental Protection. Prohibition on the taking of alewife and blueback herring from Connecticut waters extended for another year, http://www.ct.gov/dep/cwp/view.asp?Q=335656&A=2794

USA, DDFW, 2008. Alosa pseudoharengus. In: Delaware Division of Fish and Wildlife, http://www.fw.delaware.gov/Pages/FWPortal.aspx

USA, HRLA, 2009. Alewife. In: High Rock Lake Association Factsheet, http://www.hrla.com/NCFish/alewife.htm

USA, IDNR, 2009. Alewife. In: Indiana Department of Natural Resources, Aquatic Invasive Species, http://www.in.gov/dnr/files/ALEWIFE.pdf

USA, INHS, 2009. Alosa pseudoharengus collection sites in Illinois, before and after 1979. In: Illinois Natural History Survey, http://www.inhs.uiuc.edu/cbd/ilspecies/fishmaps/al_pseudoh.gif

USA, Maine DIFW, 2002. Fishes of Maine. Augusta, Maine, USA: Maine Department of Inland Fisheries and Wildlife. 40 pp. http://www.maine.gov/ifw/fishing/pdfs/fishesofmaine.pdf

USA, Maine DMR, 2009. Alosa pseudoharengus. In: Maine River Herring Fact Sheet, Augusta, Maine, USA: State of Maine, Department of Marine Resources. http://www.maine.gov/dmr/searunfish/alewife/index.htm

USA, Maryland DNR, 2009. Creature feature, alewife, Alosa pseudoharengus. In: Creature feature, alewife, Alosa pseudoharengus. Maryland, USA: Maryland Department of Natural Resources. http://dnr.maryland.gov/mydnr/creaturefeature/alewife_herring.asp

USA, NJDFW, 2009. Alewife (Alosa pseudoharengus). In: New Jersey Department of Environmental Protection, Division of Fish and Wildlife Factsheet, http://www.state.nj.us/dep/fgw/pdf/fishfact/alewife.pdf

USA, NOAA, 2009. River Herring. In: National Oceanic and Atmospheric Admistration, National Marine Fishery Service, Species of Concern. http://www.nmfs.noaa.gov/pr/pdfs/species/riverherring_highlights.pdf

USA, USGS, 2009. Alewife. In: United States Geological Survey, Nonindigenous Aquatic Species Factsheet, http://nas3.er.usgs.gov/queries/FactSheet.asp?speciesID=490

Warshaw S J, 1972. Effects of alewives (Alosa pseudoharengus) on the zooplankton of Lake Wononskopomuc, Connecticut. Limnology and Oceanography. 816-825.

Links to Websites

Top of page
WebsiteURLComment
Department of Marine Resources, State of Maine, USAhttp://www.maine.gov.dmr/
United States Fish and Wildlife Servicehttp://www.fws.gov
United States Geological Surveyhttp://nas.er.usgs.gov

Contributors

Top of page

13/04/10 Original text by:

Robert O'Gorman, Lake Ontario Biological Station, USGS7 Lake Street, Oswego, NY 13126, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map