Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Blattella germanica
(German cockroach)

Toolbox

Datasheet

Blattella germanica (German cockroach)

Summary

  • Last modified
  • 27 September 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Animal
  • Preferred Scientific Name
  • Blattella germanica
  • Preferred Common Name
  • German cockroach
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • B. germanica is one of the most widespread cockroaches in the genus Blattella. It is native to North Africa (Ethiopia and Sudan) and has since spread rapidly around the world facilitated by internation...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Blattella germanica (German cockroach); adults caught on a sticky trap. USA.
TitleAdults
CaptionBlattella germanica (German cockroach); adults caught on a sticky trap. USA.
Copyright©Gary Alpert/Harvard University/Bugwood.org - CC BY-NC 3.0 US
Blattella germanica (German cockroach); adults caught on a sticky trap. USA.
AdultsBlattella germanica (German cockroach); adults caught on a sticky trap. USA.©Gary Alpert/Harvard University/Bugwood.org - CC BY-NC 3.0 US
Blattella germanica (German cockroach); various nymphal stages caught on a sticky trap.
TitleVarious nymphal stages
CaptionBlattella germanica (German cockroach); various nymphal stages caught on a sticky trap.
Copyright©Gary Alpert/Harvard University/Bugwood.org - CC BY-NC 3.0 US
Blattella germanica (German cockroach); various nymphal stages caught on a sticky trap.
Various nymphal stagesBlattella germanica (German cockroach); various nymphal stages caught on a sticky trap.©Gary Alpert/Harvard University/Bugwood.org - CC BY-NC 3.0 US
Blattella germanica (German cockroach); egg case, or oothecae.
TitleEgg case
CaptionBlattella germanica (German cockroach); egg case, or oothecae.
Copyright©Gary Alpert/Harvard University/Bugwood.org - CC BY-NC 3.0 US
Blattella germanica (German cockroach); egg case, or oothecae.
Egg caseBlattella germanica (German cockroach); egg case, or oothecae.©Gary Alpert/Harvard University/Bugwood.org - CC BY-NC 3.0 US
Blattella germanica (German cockroach); nymph caught on a sticky trap. USA.
TitleNymph
CaptionBlattella germanica (German cockroach); nymph caught on a sticky trap. USA.
Copyright©Gary Alpert/Harvard University/Bugwood.org - CC BY-NC 3.0 US
Blattella germanica (German cockroach); nymph caught on a sticky trap. USA.
NymphBlattella germanica (German cockroach); nymph caught on a sticky trap. USA.©Gary Alpert/Harvard University/Bugwood.org - CC BY-NC 3.0 US

Identity

Top of page

Preferred Scientific Name

  • Blattella germanica Linnaeus

Preferred Common Name

  • German cockroach

Other Scientific Names

  • Blatta germanica Linnaeus
  • Blatta transfuga
  • Ectobia germanica Linnaeus
  • Periplaneta germanica (L.)
  • Phyllodromia germanica
  • Phyllodromica germanica (L.)

International Common Names

  • English: croton bug; Russian roach; steam fly
  • Spanish: cucaracha alemana; cucaracha europea; cucaracha pequena de las casas
  • French: blatte germanique

Local Common Names

  • Denmark: køkkenkakerlak; tysk kakerlak
  • Germany: Deutsche Schabe; Hausschabe
  • Israel: hatikan hagermani
  • Netherlands: duitsche kakkerlak; Huiskakkerlak; kleine kakkerlak
  • Norway: tysk kakerlakk
  • Turkey: alman hamam bocegi

EPPO code

  • BLTTGE (Blattella germanica)

Summary of Invasiveness

Top of page

B. germanica is one of the most widespread cockroaches in the genus Blattella. It is native to North Africa (Ethiopia and Sudan) and has since spread rapidly around the world facilitated by international trade. This species is not tolerant of cold conditions and lives in close association with humans and/or human activities. B. germanica can be a major pest species which is both a nuisance and can cause health problems (allergies and infections). This species can also vector a number of potentially harmful pathogens and is linked with the spread of pathogens in hospitals and can lead to food borne illnesses. The ability of this species to spread rapidly is exacerbated by a resistance to chemicals for control.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Dictyoptera
  •                         Suborder: Blattaria
  •                             Family: Blattellidae
  •                                 Genus: Blattella
  •                                     Species: Blattella germanica

Notes on Taxonomy and Nomenclature

Top of page

Cockroaches have an evolutionary history going back 350 million years and have one of the most consistent fossil records of all terrestrial arthropods (Vrsansky, 2008). There are 49 species in the genus Blattella and B. germanica is said to be probably the most important pest and the most widespread in the genus (Roth, 1985). B. germanica was designated the type-species of the genus Blattella in the 1980s (International Commission on Zoological Nomenclature, 1982). The International Commission on Zoological Nomenclature ruled that germanica (published in 1767 as Blatta germanica L.) was to be given precedence over transfuga, whenever the two names were considered to be synonymous (International Commission on Zoological Nomenclature, 1982).

B. germanica is most widely referred to as the German cockroach, but in Germany it is known as the Russian roach (Berenbaum, 1989).

During a study on the saltatory changes in ribosomal gene clusters during the evolution of Blattella species, it was noted that B. germanica is closely related to B. lituricollis and B. vaga (Mukha et al., 1999). This was based on the similarity between species in the 1270-bp fragment of 28S ribosomal RNA, which was 94.5% for B. germanica and B. lituricollis and 88.0% for B. germanica and B. vaga.

Description

Top of page

An adult B. germanica is 10-15 mm long, brown to black, with two distinct parallel bands running the length of the pronotum. The males have thin, slender bodies, the posterior abdomen is tapered, the terminal segments of the abdomen are visible and not covered by tegmina. In contrast, the female has a stout body, the posterior abdomen is rounded and the entire abdomen is just covered by tegmina (Valles, 1996).

Ramaswamy and Gupta (1981) studied the sensilla of the antennae and the labial and maxillary palps of B. germanica. They reported that all these organs contain thick-walled chemoreceptors with fluted shafts and articulated bases. The flaggellar segments of the antennae and the distal segments of the palps contain thin-walled receptors without fluted shafts or articulated bases. The adult male antennae have more thin-walled chemoreceptors than those of the females. At the joints of segments on the palps, scape-head and scape pedicel, hair-plate sensilla can be found. The distal margin of the pedicel, the scape, pedicel and flagellar segments of the antennae and the first segment of the maxillary palps are all sites of campaniform sensilla. Sensilla coeloconica and cold-receptor sensilla are sometimes found on the antennal flagellum.

The nymphs of B. germanica are dark-brown to black, with dark parallel bands running the length of the pronotum. The most frequently reported number of moults required to reach adulthood is six, but the number of moults can vary. Development of the nymphs at room temperature takes approximately 60 days (Valles, 1996). The nymphs eat the moulted skins (Precise Pest Control, 2014).

Distribution

Top of page

B. germanica is probably the most widespread species to occur in the genus Blattella (Roth, 1985). Early documentation considered B. germanica to be native to Europe (Cory and McConnell, 1917) however it is now thought to be a native of Ethiopia and Sudan (Hill, 2002) or elsewhere in North Africa (Eaton and Kaufmann, 2007). This species has since been widely introduced around the world into parts of Australia, Africa, North America and the Oceanic Islands. The distribution presented in the Distribution Table, is likely an underestimate of the actual distribution of B. germanica.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

ChinaPresentIntroducedWoo and Guo, 1984
-BeijingPresentIntroducedGe et al., 2009
-FujianPresentIntroducedHuang, 1986
-GansuPresentIntroducedJia et al., 2011Lanzhou
-GuangdongPresentIntroducedZhou et al., 2012
-HainanPresentIntroducedWang and Chen, 2011Haikou city
-HebeiPresentIntroducedWang et al., 2012Handan city
-HeilongjiangPresentIntroducedGe et al., 2010
-HenanPresentIntroducedWang and Tang, 2012Kaifeng city
-HubeiPresentIntroducedDeng et al., 2013Wuhan city
-JiangsuPresentIntroducedCao et al., 2013Changzhou
-JiangxiPresentWu et al., 2009Yichun
-JilinPresentIntroducedMa et al., 2012Tonghu
-LiaoningPresentIntroducedWu et al., 2010Dalian city
-ShaanxiPresentIntroducedShe et al., 2012Yulin urban area
-ShandongPresentIntroducedTao et al., 2011Qufu city
-ShanghaiPresentIntroducedLiang et al., 1981, recd. 1984
-SichuanPresentIntroducedChen and Tang, 2009Panzhihua
-ZhejiangPresentIntroducedXu et al., 2013Wenzhou
IndiaPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
IndonesiaPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
IranPresentIntroducedShahraki et al., 2013Yasuj City, southwestern Iran
JapanPresentPresent based on regional distribution.
-HonshuPresentIntroducedOgata et al., 1975
Korea, Republic ofPresentIntroduced
MalaysiaPresentIntroducedAbdullah et al., 1993Animal facility in Kuala Lumpur
PhilippinesPresentIntroducedGonzales JC Jr, 1980, publ. 1981, recd. 1982
Saudi ArabiaPresentIntroducedEncyclopedia of Life, 2015
SingaporePresentIntroducedWang et al., 2012Jurong city
TaiwanPresentIntroducedPai et al., 2005
ThailandPresentIntroducedTawatsin et al., 2001
TurkeyPresentIntroducedKutrup, 2003

Africa

BotswanaPresentMpuchane et al., 2005
EgyptPresentEncyclopedia of Life, 2015
EthiopiaPresentNativeTachbele et al., 2006
NamibiaPresentRoth, 1996
Spain
-Canary IslandsPresentGangwere et al., 1972Tenerife
SudanPresentNativeHill, 2002

North America

BermudaPresentIntroducedHughes, 1977; Schotman, 1989
CanadaPresentPresent based on regional distribution.
-AlbertaPresentIntroducedInsect Identification, 2016
-British ColumbiaPresentIntroducedInsect Identification, 2016
-ManitobaPresentIntroducedInsect Identification, 2016
-New BrunswickPresentIntroducedInsect Identification, 2016
-Newfoundland and LabradorPresentIntroducedInsect Identification, 2016
-Nova ScotiaPresentIntroducedInsect Identification, 2016
-OntarioPresentIntroduced
-Prince Edward IslandPresentIntroducedInsect Identification, 2016
-QuebecPresentIntroducedKevan and Vickery, 1977, publ. 1978
-SaskatchewanPresentIntroducedInsect Identification, 2016
MexicoPresentIntroducedEspinosa-Islas et al., 2002
USAPresentIntroducedSchotman, 1989
-AlabamaPresentIntroducedAppel and Tucker, 1986; Appel, 1998
-AlaskaPresentIntroducedEncyclopedia of Life, 2015
-ArizonaPresentIntroducedInsect Identification, 2016
-ArkansasPresentIntroducedEncyclopedia of Life, 2015
-CaliforniaPresentIntroducedOlson et al., 1987
-ColoradoPresentIntroducedInsect Identification, 2016
-ConnecticutPresentIntroducedInsect Identification, 2016
-DelawarePresentIntroducedInsect Identification, 2016
-FloridaPresentIntroducedAtkinson et al., 1990
-GeorgiaPresentIntroducedHaines and Palmer, 1956
-HawaiiPresentIntroducedITIS, 2016
-IdahoPresentIntroducedInsect Identification, 2016
-IllinoisPresentIntroducedEncyclopedia of Life, 2015
-IndianaPresentIntroducedRunstrom and Bennett, 1990
-KansasPresentIntroducedInsect Identification, 2016
-KentuckyPresentIntroducedInsect Identification, 2016
-LouisianaPresentIntroducedInsect Identification, 2016
-MainePresentIntroducedInsect Identification, 2016
-MarylandPresentIntroducedInsect Identification, 2016
-MassachusettsPresentIntroducedInsect Identification, 2016
-MichiganPresentIntroducedInternational Commission Zoological Nomenclature on, 1982
-MinnesotaPresentIntroducedInsect Identification, 2016
-MississippiPresentIntroducedInsect Identification, 2016
-MissouriPresentIntroducedInternational Commission Zoological Nomenclature on, 1982
-MontanaPresentIntroducedInsect Identification, 2016
-NebraskaPresentIntroducedBallard et al., 1984
-New HampshirePresentIntroducedInsect Identification, 2016
-New JerseyPresentIntroducedInsect Identification, 2016
-New MexicoPresentIntroducedInternational Commission Zoological Nomenclature on, 1982
-New YorkPresentIntroducedEncyclopedia of Life, 2015
-North CarolinaPresentNalyanya et al., 2009
-North DakotaPresentIntroducedInsect Identification, 2016
-OhioPresentIntroducedInsect Identification, 2016
-OklahomaPresentIntroducedInsect Identification, 2016
-OregonPresentIntroducedInsect Identification, 2016
-PennsylvaniaPresentIntroducedInsect Identification, 2016
-Rhode IslandPresentIntroducedInsect Identification, 2016
-South CarolinaPresentIntroducedInsect Identification, 2016; Insect Identification, 2016
-South DakotaPresentIntroduced
-TexasPresentIntroducedAppel and Tucker, 1986Houston
-UtahPresentIntroducedInsect Identification, 2016
-VermontPresentIntroducedInsect Identification, 2016
-VirginiaPresentIntroducedInsect Identification, 2016
-WashingtonPresentIntroducedInsect Identification, 2016
-West VirginiaPresentIntroducedInsect Identification, 2016
-WisconsinPresentIntroducedInsect Identification, 2016
-WyomingPresentIntroducedInsect Identification, 2016

Central America and Caribbean

BarbadosPresentIntroducedSchotman, 1989
Costa RicaPresentIntroducedVargas and Fisk, 1973
PanamaPresentIntroducedWolda et al., 1983
Puerto RicoPresentIntroducedEncyclopedia of Life, 2015

South America

BrazilPresentPresent based on regional distribution.
-AmazonasPresentIntroducedRafael et al., 2008
ChilePresentIntroducedFaundez and Carvajal, 2011Magallanes region
EcuadorPresentIntroducedBonsall, 1995
UruguayPresentIntroducedCrespo and Valverde, 2003

Europe

BulgariaPresentIntroducedHristova and Apostolova, 1982
CroatiaPresentIntroducedKlobucar et al., 2012
Czech RepublicPresentRettich, 1993
Czechoslovakia (former)PresentIntroducedStejskal and Verner, 1996
DenmarkPresentIntroducedMartin and Jensen, 1993
EstoniaPresentIntroducedEncyclopedia of Life, 2015
FinlandPresentIntroducedHuldén and Huldén, 2003
FrancePresentIntroducedRivault, 1989
GermanyPresentIntroducedEngelbrecht and Buske, 1983
IrelandPresentIntroducedEncyclopedia of Life, 2015
NetherlandsPresentIntroducedJonge de, 1982
PolandPresentIntroducedKrzeminska et al., 1994
Russian FederationPresentIntroducedAlesho, 1997
SpainPresentPresent based on regional distribution.
SwedenPresentIntroducedEncyclopedia of Life, 2015
SwitzerlandPresentIntroducedLandau et al., 1999
UKPresentIntroducedAlexander et al., 1991
-England and WalesPresentIntroducedEncyclopedia of Life, 2015
-ScotlandPresentIntroducedEncyclopedia of Life, 2015

Oceania

AustraliaPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
-Australian Northern TerritoryPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
-New South WalesPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
-South AustraliaPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
-TasmaniaPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
-VictoriaPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
Cook IslandsPresentIntroducedCook Islands Biodiversity Database, 2016
French PolynesiaPresentIntroducedEncyclopedia of Life, 2015
New ZealandPresentIntroducedLandcare Research, 2016
Papua New GuineaPresentIntroducedBeccaloni, 1991

History of Introduction and Spread

Top of page

B. germanica is thought to have originated from Ethiopia and Sudan, but is now the most widely distributed cockroach after being spread by humans and commerce (Hill, 2002). It is spread as far north as Canada and Scandinavia; it has also been reported in Alaska in heated buildings (Hill, 2002). B. germanica is susceptible to cold temperatures and therefore dependent upon humans or human activity and hence why it is only found in heated buildings in Alaska (Valles, 1996).

A survey carried out in 1989 in the UK, suggested an increase in the known ranges of B. germanica (and Blatta orientalis) with new vice-county records for Scotland (including the Western Isles), England and Wales (Alexander et al., 1991).

Risk of Introduction

Top of page

It is likely that the distribution of B. germanica will increase and be introduced into new countries. This is a result of urbanisation and commerce providing the opportunity and favourable conditions encouraging an increase in the range of B. germanica (Sommer, 1974; Hill, 2002). For example, the structural features of a building can assist in the dispersal of cockroaches. In addition to this globalisation and increased trade between countries increases the likelihood of it spreading between countries.

Habitat

Top of page

B. germanica is unable to survive in locations away from humans or human activity (Valles, 1996). This pest is therefore found in hotels, residential areas, farm produce markets, catering establishments (Jia et al., 2011), swimming baths (Rivault, 1989), hospitals, shops, stores, restaurants, food manufactures’, nurseries, crèches (Engelbrecht and Buske, 1983) and grain stores (Stejskal et al., 2006). They are gregarious during their resting period and research by Ame et al. (2004) suggested that different strains are able to aggregate at the same site.

The major limiting factor for survival of B. germanica appears to be cold temperatures. They are unable to colonise inactive ships during cool temperatures and survival in northern climates is dependent on the presence of central heating installations (Valles, 1996). In contrast to this, Vater (1979) studied B. germanica found in a refrigerator in Germany where the temperature ranged from 7-12°C. The first to sixth larval instars were found to be mobile in this environment.

Habitat List

Top of page
CategoryHabitatPresenceStatus
Other
Stored products Principal habitat Harmful (pest or invasive)
Terrestrial-managed
Urban / peri-urban areas Principal habitat Harmful (pest or invasive)
Urban / peri-urban areas Principal habitat Natural

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Oryza sativa (rice)PoaceaeUnknown

Biology and Ecology

Top of page

Genetics

Xiao et al. (2012) reported that the complete mtDNA nucleotide sequence of B. germanica is 15,584 bp.

Reproductive Biology

B. germanica has panoistic ovaries (Irles et al., 2013), meaning that the ovarian follicle is formed exclusively by one germinal cell (the oocyte) surrounded by a monolayer of follicular cells (the most basal ovarian type in insects) (Piulachs, 2013). B. germanica breeds continuously (Valles, 1996) and during a study under laboratory conditions females were shown to oviposit up to five oothecae during their lifetime (Aguilera et al., 1996). The egg case is approximately 8 mm long, 3 mm high and 2 mm wide, brown and purse-shaped and thirty to forty eggs are usually held in a typical egg case (Valles, 1996). The eggs are carried by the female in egg cases (ootheca) until just before egg hatch. The egg case protrudes from the posterior of the adult female and the nymphs often hatch from the case while the female is carrying it.

Typical field populations consist of 80% nymphs and 20% adults (Valles, 1996). B. germanica has a short lifecycle and under optimum conditions one female could, in theory, produce over 10 million females within one year and over 10 billion females in 11/12 years (Hill, 2002).

Longevity

On average, male B. germanica live for up to 130 days and females for 150 days (Hill, 2002). However, a study by Aguilera et al. (1996) found that under laboratory conditions mean development time of the six nymphal stages was 114.71 days at 29+/-1°C and 80.9% RH. The average longevity of the males (77.23 days) was lower than that of the females (98.40 days). Dambach and Goehlen (1999) showed that humidity affects survival times of nymphs when deprived of food and drinking water. The longevity was found to be inversely proportional to saturation deficiency.

Activity Patterns

B. germanica demonstrates aggregation behaviour, where individuals accumulate due to a mutual attraction (Sommer, 1974; Jeanson et al., 2005). The aggregation pheromone is both emitted and perceived using antennae. Various physiological and ecological factors determine the spatial-temporal patterns of aggregation (Sommer, 1974). At lower relative humidity grouping is denser than under higher humidity (Dambach and Goehlen, 1999).

In a survey of B. germanica in Yichun city, Jiangxi, China, a peak in activity was recorded from June to August (Wu et al., 2009). In South Korea, the peak densities of B. germanica occurred between May and September in hospitals (Lee, 1995).

When Stein and Haschemi (1994) studied dispersal and emigration of B. germanica in a rubbish tip in Germany, they reported that movement was influenced by the sun which resulted in a southward dispersal. Rivault (1989) studying the spatial distribution of B. germanica in a swimming bath in France, found it to be contiguous. Insects move from the centre to the periphery in a circular motion within an aggregate and vice versa, which is dependent on lifecycle stage. New larvae explore further afield to the border of the aggregate; considered as the spreading phase when they need to forage or find new shelters. Older larvae tend to gather in the middle of the aggregate and newly-moulted adults search for a sexual partner. The females remain in the shelters during maturation of the oothecae.

Durier and Rivault (2003) reported when familiar with their environment B. germanica does not follow edges, rather it exploits different parts of accessible surfaces within their range. When placed into a new environment they showed a tendency to follow edges.

Heating and food supply are said to be factors that influence the distribution and population of B. germanica in buildings (Tanaka et al., 1993) and male adults tend to seek new space more actively than female adults (Takahashi et al., 1998). Starvation increases the distance travelled, velocity and the proportion of time in motion of adult males and final instars, but not adult females (Barclay and Bennett, 1991).

Nutrition

B. germanica are omnivorous and eat items such as table scraps, pet food and book bindings (Valles, 1996). When three different diets of poultry feed, sugar and wheat flour and rusk were investigated for their effect on biological parameters of B. germanica, it was found that individuals which fed on poultry feed showed maximum hatching and male and female longevity (Khuhro et al., 2007). The minimum mean incubation period and minimum mean nymphal development period was also recorded on a poultry diet.

Associations

Blattabacterium are mutualistic endosymbiont bacteria which inhabit specialised cells in the body fat of B. germanica and all species of cockroach except those in the genus Nocticola (Bandi et al., 1994).

Environmental Requirements

B. germanica is unable to survive in locations away from humans or human activity, but the major limiting factor for survival appears to be cold temperatures (Valles, 1996). It is reported that this species is unable to colonise inactive ships during cool temperatures. In northern climates survival of B. germanica is dependent on the presence of central heating installations (Valles, 1996). Therefore this species is often found in temperate and tropical environments. Due to cold temperatures, B. germanica is found at elevations of 1,200 m and rarely found above 2000 m (Encyclopedia of Life, 2015).

Notes on Natural Enemies

Top of page

The natural enemies of B. germanica include nematodes (Blatticola blattae and Cephalobellus ovumglutinosus) (Waerebeke, 1978; Rizvi and Jairajpuri, 2002), parasitoids (Ripidius pectinicornis) (Falinm 2001), predators (Ampulex compressa) (Menke and Yustiz, 1983) and parasitic fungi (Herpomyces ectobiae) (Kesel, 2001).

The parasitic wasp Aprostocetus hagenowii lays its eggs in the egg cases of B. germanica and have been used as a biocontrol agent (Cook Islands Biodiversity Database, 2016). The fungus Metarhizium anisopliae has been studied under laboratory conditions as a potential biocontrol agent (Quesada-Moraga et al., 2004). Other reports suggest that entomophilic nematodes such as Neoaplectana carpocapsae and Steinernema carpocapsae could provide control of B. germanica (Zukowski, 1984; Manweiler et al., 1993).

Means of Movement and Dispersal

Top of page

Natural Dispersal

B. germanica will disperse naturally to new locations. Their dispersal is influenced by environmental conditions and starvation (Barclay and Bennet, 1991).

Accidental Introduction

The spread of B. germanica into new countries is likely to have occurred accidentally through the globalisation and increased trade between countries.

Impact Summary

Top of page
CategoryImpact
Economic/livelihood Negative
Human health Negative

Economic Impact

Top of page

B. germanica is a serious pest of urban and rural areas and although it has been the subject of many research projects due to its pest status, it is difficult to put a price on its economic impact. B. germanica is resistant to pesticides (Briggs et al., 1984) and this poses obvious costs associated with research for alternative control measures and application of available chemicals. Although studies have shown Integrated Pest Management (IPM) methods to be more effective at controlling cockroach infestations, they are also significantly more costly than conventional methods (Miller and Meek, 2004; Shahraki et al., 2011). A study by Shahraki et al. (2011) found that the cost for IPM could be up to 363.2% more than conventional methods. A survey of residents of public housing in Virginia, USA found that on average they spent between 0.4 and 1.0% of their annual income on pesticides to supplement the pest control programme provided by the housing authorities (Wood et al., 1981).

Environmental Impact

Top of page

In Japan, B. germanica has been shown to be an intermediate host of Protospirura muris, a parasitic nematode of Rattus norvegicus (brown rat) in both the wild and under laboratory conditions (Shogaki et al., 1972). The impact of this however is unknown.

Social Impact

Top of page

B. germanica regularly inhabits areas of food preparation and storage; thus food left out overnight and food preparation surfaces are likely to become contaminated during the course of foraging (Brenner, 1992). This could lead to digestive upsets of consumers due to the ingestion of insect excreta, indigestible cast skins or moulds developing (Angeli, 1979; Gore and Schal, 2004). In a study of food-borne pathogens in Ethiopia, Tachbele et al. (2006) identified a species of Salmonella, Shigella flexneri, Escherichia coli, Staphylococcus aureus and Bacillus cereus from B. germanica. This indicates that B. germanica may be a possible reservoir and potential vector of some food-borne pathogens. In addition to this they are carriers of human pathogens, which can be problematic in hospitals. A study of bacterial loads of B. germanica in hospitals in Alergia found a large number of bacteria present including species of Pseudomonas, Enterobacter and Citrobacter.B. germanica has also been shown to be a possible vector of Klebsiella pneumonia (Cotton at al., 2000).

B. germanica is known to cause sensitisation of people with asthma around the world (Rosenstreich et al., 1997).

Other impacts to humans caused by infestations of B. germanica include anxiety caused by the potential health hazards and the repulsive nature of the species (Davies and Petranovic, 1986).

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Tolerant of shade
  • Capable of securing and ingesting a wide range of food
  • Highly mobile locally
  • Benefits from human association (i.e. it is a human commensal)
  • Fast growing
  • Has high reproductive potential
  • Gregarious
Impact outcomes
  • Negatively impacts agriculture
  • Negatively impacts human health
  • Negatively impacts livelihoods
  • Reduced amenity values
  • Damages animal/plant products
  • Negatively impacts trade/international relations
Impact mechanisms
  • Causes allergic responses
  • Pest and disease transmission
  • Herbivory/grazing/browsing
  • Rapid growth
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect in the field
  • Difficult/costly to control

Detection and Inspection

Top of page

The presence of B. germanica in food stuffs can be detected by visual inspection for filth and extraneous material using microscopy; however, this can be time-consuming and inaccurate. Jones et al. (2013) sequenced DNA from common pests, including B. germanica and generated DNA barcodes for each one. The authors suggested that this could be a powerful tool to aid the mission of the U.S. Food, Drug and Cosmetic Act, which is to prohibit the distribution of adulterated food.

Similarities to Other Species/Conditions

Top of page

B. germanica, B. asahinai and B. vaga are morphologically similar species of cockroach, therefore there has been much research carried out into different ways of reliably identifying them. The tenth tergite (T10) of male B. asahinai is narrower than that of B. germanica; a trait that is intermediate in F1 hybrids (Ross, 1992). The oothecae of B. asahinai are also smaller than those of B. germanica; first instars of B. asahinai are smaller and the number of the antennal annuli is less in B. asahinai. In addition, the abdominal margins of late-instar nymphs and the spots on each side of the mid-dorsal line are colourless in B. asahinai, as opposed to lightly pigmented in B. germanica (Ross and Mullins, 1988).

Carlson (1988) reported on the use of hydrocarbons for identifying these species and reported that the hydrocarbon components of the three species were consistently different, independent of geography, sex or age.

Prevention and Control

Top of page

Prevention and Control

Public Awareness

Infestations of B. germanica are exacerbated by poor hygiene, therefore it is important to create public awareness on how to prevent and control the spread of this public health pest. Shahraki et al. (2010) studied the efficacy of sanitation and sanitary factors against B. germanica infestations and the effectiveness of educational programmes on sanitation in Iran. Pamphlets, posters and lectures were used to describe the importance of sanitation and the comprehensive education programme led to a reduction in infestations.

Control

Cultural Control and Sanitary Measures

B. germanica live where humans and human activity is, feeding on scraps of food (Valles, 1996) and their presence is associated with poor hygiene. However they can also occur in the cleanest and most hygiene-conscious dairies and cheese factories (Rockman, 1992). By eliminating food and water sources and clutter, the risk of encouraging new infestations and population increase is decreased (Valles, 1996). Sealing cracks and crevices can be effective in reducing harbourage space and population size (Valles, 1996) because B. germanica are smaller than most other cockroaches, with the ability to conceal themselves in many places inaccessible to larger species (Jacobs, 2013).

Beccaloni (1991) reported that freshly cut plants of Tagetes minuta placed into the wooden walls and thatched roofs of dwellings in Papua New Guinea repelled B. germanica.Tabaru and Mochizuki (2005) reported that B. germanica was repelled by ethanol extracts of some herbs under laboratory conditions. Herbs showing the most repellent effect were Anethum graveolens (dill), Apium graveolens (celery), Carum carvi (caraway), Cuminum cymimum (cumin), Coriandrum sativum (coriander), Cinamomum zeylanicum (cinnamon), Myristica fragrans (mace) and Capsicum annuum (chili pepper).

Physical/Mechanical Control

Sticky traps can be used to monitor and/or reduce population size of B. germanica (Valles, 1996); however, Ballard and Gold (1983) reported that sticky traps did not reduce populations in Nebraska, USA. Ballard and Gold (1983) evaluated two different types of traps for the control of B. germanica: tent-shaped sticky traps and electrified traps, in Macy, Nebraska, USA. It was found that the sticky traps did not reduce populations, but the electrified traps caused a 76% reduction in catch after two months of trapping.

Biological Control

Pathogens and in particular fungi, appear to be the most promising group for the biological control of B. germanica, according to a review of different methods published by Suiter (1997). Ren et al. (2005) reported successful infection rates of B. germanica using Metarhizium anisopliae under laboratory conditions. Infected B. germanica were erratic in their movements and hyphae of the fungi were found in most parts of the body 4-5 days post-infection. Other reported symptoms of infection by M. anisopliae are a reduction in the mean number of oothecae laid by females, oothecal production, hatchability and nymphal production (Quesada-Moraga et al., 2004).

Other reports suggest that entomophilic nematodes such as Neoaplectana carpocapsae and Steinernema carpocapsae could provide acceptable control of B. germanica (Zukowski, 1984; Manweiler et al., 1993). The parasitic wasp Aprostocetus hagenowii lays its eggs in the egg cases of B. germanica and other species of cockroach and have been used as a biocontrol agent (Cook Islands Biodiversity Database, 2016).

Chemical Control

Due to the speed at which B. germanica reproduces and thus the rapidity of developing resistance to chemicals, much of the early work on chemical control is out of date.

Resistance of B. germanica to insecticides poses a serious concern; they have been shown to be resistant to organophosphorous insecticides (Ge at al., 2009) and tetramethrin (Deng et al., 2013). The extent to which they are resistant has been studied in the Chaoyang District, Beijing, China and it was found that the highest resistance was observed for organophosphorous insecticides. Resistance differed between the eight sites sampled, indicating that control methods should be modified accordingly (Ge et al., 2009).

In a review of B. germanica, Jacobs (2013) indicated that the use of baits containing hydramethylnon, fipronil, sulfluramid, boric acid or abamectin is a successful method of chemical control. Also insecticidal dusts such as boric acid, silica aerogel and diatomaceous earth can provide additional control. Populations of B. germanica were observed to rapidly evolve to become repelled by the glucose present in bait traps rather than attracted to it, a process known as bait aversion (Silverman and Bieman, 1993). This highlights the ability of B. germanica to rapidly change in response to environmental pressures.

Jacobs (2013) indicated that residual insecticidal sprays or aerosol foggers are of little value and may actually disperse B. germanica, hampering control. Bacterial insecticides based on Bacillus thuringiensis were evaluated against B. germanica (Zukowski, 1994). Thuridan (based on B. thuringiensis subsp. thuringiensis) was reported as the most effective and males were more sensitive than females.

IPM

Alternative methods for controlling cockroaches have been the focus of numerous studies (Miller and Meek, 2004; Shahraki et al., 2011), particularly with the advent of resistance to chemicals used in conventional control methods (Nasirian et al., 2006) and the fact that cockroaches live in close proximity to humans. Methods used in IPM include the provision of education using pamphlets and lectures and hydramethylnon gel baits (Shahraki et al., 2011), vacuuming and insect growth regulator devices (Miller and Meek, 2004).

Monitoring and Surveillance

It is important to survey populations by setting traps before applying control measures to ascertain the level of infestation (Jacobs, 2013). Sticky traps can be used to both monitor population sizes (Valles, 1996). Jacobs (2013) suggested that one week of trapping at approximately ten or more trapping sites usually provides sufficient information for effective control.

Passenger ships provide a suitable environment for populations of B. germanica and a Hazard Analysis Critical Control Point (HACCP) system is employed on vessels to ensure food safety is adhered to. Mouchtouri et al. (2008) reported a negative association between infestations and the application of HACCP on board ferries.

References

Top of page

Abdullah S; Oothuman P; Jeffery J; Zahedi M; Baskaran G, 1993. Report on cockroaches collected from an animal facility in Kuala Lumpur. Tropical Biomedicine, 10(2):197-198.

Aguilera L; Marquetti MC; Fuentes O; Navarro A, 1996. Observations on biological aspects of Blattella germanica (Dictyoptera: Blattellidae) under laboratory conditions. (Observaciones sobre aspectos biológicos de Blattella germanica (Dictyoptera: Blattellidae) en condiciones de laboratorio.) Revista Cubana de Medicina Tropical, 48(1):12-14.

Alesho NA, 1997. Synanthropic cockroaches of Russia. In: Proceedings of the International Colloquia on Social Insects: Volume 3-4 [ed. by Kipyatkov, V. E.]. St. Petersburg, Russia: Socium, 45-50.

Alexander JB; Newton J; Crowe GA, 1991. Distribution of Oriental and German cockroaches, Blatta orientalis and Blattella germanica (Dictyoptera), in the United Kingdom. Medical and Veterinary Entomology, 5(4):395-402.

Amé JM; Rivault C; Deneubourg JL, 2004. Cockroach aggregation based on strain odour recognition. Animal Behaviour, 68(4):793-801.

Angeli Adegli, 1979. Control of infestation in relation to hygiene and the storage of bakery products. (Lotta contro le infestazioni per l'igiene e la conservazione dei prodotti da forno.) In: Domenichini, G. (Convener): 2nd symposium on pest control in food-processing industrial plant and the protection of foodstuffs.: 2o simposio sulla difesa antiparassitaria nelle industrie alimentari e la protezione degli alimenti. Piacenza, Italy: Camera di Commercio Industria Artigianato e Agricoltura., 373-377.

Appel AG, 1998. Daily pattern of trap-catch of German cockroaches (Dictyoptera: Blattellidae) in kitchens. Journal of Economic Entomology, 91(5):1136-1141.

Appel AG; Tucker JB, 1986. Occurrence of the German cockroach, Blattella germanica (Dictyoptera: Blattellidae), outdoors in Alabama and Texas. Florida Entomologist, 69(2):422-423.

Arzone A, 1979. A new cockroach of stored foodstuffs in Italy. (Nuovo blatta delle derrate alimentari in Italy.) In: Domenichini, G. (Convener): 2nd symposium on pest control in food-processing industrial plant and the protection of foodstuffs.: 2o simposio sulla difesa antiparassitaria nelle industrie alimentari e la protezione degli alimenti. Piacenza, Italy: Camera di Commercio Industria Artigianato e Agricoltura., 367-371.

Atkinson TH; Koehler PG; Patterson RS, 1990. Annotated checklist of the cockroaches of Florida (Dictyoptera: Blattaria: Blattidae, Polyphagidae, Blattellidae, Blaberidae). Florida Entomologist, 73(2):303-327.

Ballard JB; Gold RE, 1983. Field evaluation of two trap designs used for control of German cockroach populations. Journal of the Kansas Entomological Society, 56(4):506-510.

Ballard JB; Gold RE, 1984. Laboratory and field evaluations of German cockroach (Orthoptera: Blattellidae) traps. Journal of Economic Entomology, 77(3):661-665.

Ballard JB; Gold RE; Rauscher JD, 1984. Effectiveness of six insecticide treatment strategies in the reduction of German cockroach (Orthoptera: Blattellidae) populations in infested apartments. Journal of Economic Entomology, 77(5):1092-1094.

Bandi C; Damiani G; Magrassi L; Grigolo A; Fani R; Sacchi L, 1994. Flavobacteria as intracellular symbionts in cockroaches. Proceedings of the Royal Society of London. Series B, Biological Sciences, 257(1348):43-48.

Barcay SJ; Bennett GW, 1991. Influence of starvation and lighting on the movement behavior of the German cockroach (Blattodea: Blattellidae). Journal of Economic Entomology, 84(5):1520-1524.

Beccaloni G, 1991. Some traditional methods of cockroach control used in Papua new Guinea. Antenna, 15:80-81.

Berenbaum M, 1989. Ninety-nine gnats, nits and nibblers. University Illinois Press. Illinois, USA 3.

Bonsall MB, 1995. Domiciliary cockroach diversity in Ecuador. Entomologist, 114(1):31-39.

Booth W; Santangelo RG; Vargo EL; Mukha DV; Schal C, 2011. Population genetic structure in German cockroaches (Blattella germanica): differentiated islands in an agricultural landscape. Journal of Heredity, 102(2):175-183. http://jhered.oupjournals.org/

Brenner RJ, 1992. Implications of cockroach behavior, allergens and pathogenic associates to the food supply and human health. In: Proceedings of the 3rd World Congress on Foodborne Infections and Intoxications, Berlin, Germany, 16-19 June 1992: Volume 2. Berlin 48, Germany: Institute of Veterinary Medicine - Robert von Ostertag-Institute, 1111-1114.

Briggs GG; Elliott M; Janes NF, 1984. Present and future of the synthetic pyrethroids. (Presente e futuro dei piretroidi di sintesi.) Informatore Fitopatologico, 34(7/8):9-14.

Brooks MA, 1965. The effects of repeated anesthesia on the biology of Blattela germanica (Linnaeus). Entomologia Experimentalis et Applicata, 8(1):39-48.

Cao G; Zhang J; Wang L; Lin Q; Zhao L, 2013. Investigation on the population distribution and infestation of the cockroaches in Changzhou. Modern Preventative Medicine, 40(1):151-152.

Carlson DA, 1988. Hydrocarbons for identification and phonetic comparisons: cockroaches, honey bees and tsetse flies. Florida Entomologist, 71(3):333-345.

Carlson DA; Brenner RJ, 1988. Hydrocarbon-based discrimination of three North American Blattella cockroach species (Orthoptera: Blattellidae) using gas chromatography. Annals of the Entomological Society of America, 81(5):711-723.

Chen Z; Tang G, 2009. Vectors surveillance in Panzhihua in 2007. Chinese Journal of Vector Biology and Control, 20(4):323-325.

Cook Islands Biodiversity Database, 2016. Tapinoma minutum, tiny ghost-ant. The Cook Islands Natural Heritage Trust. http://cookislands.bishopmuseum.org/species.asp?id=9329

Cory EN; McConnell HS, 1917. Bulletin no. 8: insects and rodents injurious to stored products. Maryland, USA: Maryland State College of Agriculture Extension Service, 135.

Cotton MF; Wasserman E; Pieper CH; Theron DC; Tubbergh Dvan; Campbell G; Fang FC; Barnes J, 2000. Invasive disease due to extended spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal unit: the possible role of cockroaches. Journal of Hospital Infection, 44(1):13-17.

Council of Heads of Australasian Herbaria, 2016. Australia's Virtual Herbarium., Australia: Council of Heads of Australasian Herbaria. http://avh.ala.org.au

Crespo FA; Valverde Adel C, 2003. Introduction to the knowledge of "cockroaches" of Uruguay (Blattaria). (Introducción al conocimiento de las "cucarachas" del Uruguay (Blattaria).) Entomología y Vectores, 10(4):587-594.

Dambach M; Goehlen B, 1999. Aggregation dnsity and longevity correlate with humidity in first-instar nymphs of the cockroach (Blattella germanica L., Dictyoptera). Journal of Insect Physiology, 45(5):423-429.

Davies K; Petranovic T, 1986. Survey of attitudes of apartment residents to cockroaches and cockroach control. Journal of Environmental Health, 49(2):85-88.

Deng L; Liu D; Liu X; Liu J, 2013. Infestation and pesticide resistance of cockroaches in market and relevant comprehensive control measures. Chinese Journal of Vector Biology and Control, 24(1):67-68.

Durier V; Rivault C, 2003. Exploitation of home range and spatial distribution of resources in German cockroaches (Dictyoptera: Blattellidae). Journal of Economic Entomology, 96(6):1832-1837.

Eaton ER; Kaufmann K, 2007. Kaufman Field Guide to Insects of North America. Boston, USA: Houghton Mifflin Harcourt, 62.

Encyclopedia of Life, 2015. Encyclopedia of Life. www.eol.org

Engelbrecht H; Buske M, 1983. A model of complex cockroach infestation. II. Occurrence and distribution of Blattella germanica and Blatta orientalis in Potsdam district (DDR)- a case analysis. (Ein Modell der komplexen Schaben-Grossraumbekämpfung. II. Vorkommen und Verbreitung von Blattella germanica und Blatta orientalis im Bezirk Potsdam (DDR)- eine Befallsanalyse.) Angewandte Parasitologie, 24(1):27-39.

Espinosa-Islas A; Maciel JCR; Sanchez-Arroyo H, 2002. Proceedings of the 4th International Conference on Urban Pests [ed. by Jones, S. C. \Zhai, J. \Robinson WmH]. 155-158.

Falin ZH, 2001. Notes on the occurrence of Ripidius pectinicornis Thunberg (Coleoptera: Rhipiphoridae) in the continental United States and Hawaii. Coleopterists Bulletin, 55(2):194-197.

Faundez EI; Carvajal MA, 2011. Balttella germanica (Linnaeus, 1767) (Insecta: Balttaria) in Magallanes Region (Chile). Boletin de Biodiversidad de Chile, 5:50.

Gangwere SK; Morales Martin M; Morales Agacino E, 1972. The distribution of the Orthopteroidea in Tenerife, Canary Islands, Spain. Contributions of the American Entomological Institute, 8(1). 40 pp.

Ge J; Zhang H; Zhang Z; Wang Z; Meng F, 2009. Study on geographic distribution of insecticide resistance of German cockroaches (Blattella germanica) in Chaoyang district, Beijing. Zhongguo Meijie Shengwuxue ji Kongzhi Zazhi, 20(6):525-527.

Ge T; Ji Z; Yuan S; Tang L; Liu Y, 2010. Surveillance of disease vectors in Heilongjiang Province from 2006 to 2008. Chinese Journal of Vector Biology and Control, 21(2):143-145.

Gonter F; Vamos G; Gaal F; Bajomi D; Erdos G, 1982. Cockroach infestation of Budapest and organizational questions of the cockroach control action. Lectures delivered at the international symposium on the subject "the modern defensive approach of cockroach control [ed. by Bajoi, D. \Erdos, G.]. 9-15.

Gonzales JC Jr, 1980. Urban pest control in the Philippines. Philippine Entomologist, 4(6):543-547

Gore JC; Schal C, 2004. Gene expression and tissue distribution of the major human allergen Bla g 1 in the German cockroach, Blattella germanica L. (Dictyoptera: Blattellidae). Journal of Medical Entomology, 41(5):953-960.

HAINES TW; PALMER EC, 1956. Studies of Distribution and Habitat of Cockroaches in southwestern Georgia, 1952-53. American Journal of Tropical Medicine and Hygiene, 4(6):1131-1134 pp.

Hill DS, 2002. Pests of Stored Foodstuffs and their control., Netherlands: Kluwer Academic Publishers, 145-146.

Hristova T; Apostolova V, 1982. Cockroach control in Bulgaria. In: Lectures delivered at the international symposium on the subject "the modern defensive approach of cockroach control" [ed. by Bajomi, D.\Erdos, G.\Bajomi, D.\Erdos, G.]. Budapest, Hungary: Babolna Agricultural Trust, 63-70.

Huang LX, 1986. A survey of domestic cockroaches in Jianyang District of North Fujian. Wuyi Science Journal, 6:107-109.

Hughes IW, 1977. Cockroaches. Monthly Bulletin, Bermuda Department of Agriculture and Fisheries, 47(9):69-72.

Huldén L; Huldén L, 2003. The arrival of the cockroaches Blatta orientalis and Blattella germanica into Finland. (Den orientaliska och den tyska kackerlackans ankomst till Finland.) Entomologisk Tidskrift, 124(4):201-207.

Insect Identification, 2016. German cockroach (Blattella germanica). http://www.insectidentification.org/insect-description.asp?identification=German-Cockroach

International Commission Zoological Nomenclature on, 1982. Opinion 1231. Blatta germanica Linnaeus, 1767 (Insecta, Dictuoptera) conserved and designated as type species of Blattella Caudell, 1903. Bulletin of Zoological Nomeclature, 39(4):243-246.

Irles P; Silva-Torres FA; Piulachs MD, 2013. RNAi reveals the key role of Nervana 1 in cockroach oogenesis and embryo development. Insect Biochemistry and Molecular Biology, 43(2):178-188. http://www.sciencedirect.com/science/journal/09651748

ITIS, 2016. Integrated Taxonomic Information System online database. http://www.itis.gov

Jacobs S, 2013. German cockroaches. Pennsylvania State Extension.

Jeanson R; Rivault C; Deneubourg JL; Blanco S; Fournier R; Jost C; Theraulaz G, 2005. Self-organized aggregation in cockroaches. Animal Behaviour, 69(1):169-180.

Jia Y; Zhang S; Ning J; Jiang H; Liu X, 2011. Cockroach dynamics in Lanzhou from 2006 to 2010. Chinese Journal of Vector Biology and Control, 22(6):601-602.

Jones YL; Peters SM; Weland C; Ivanova NV; Yancy HF, 2013. Potential use of DNA barcodes in regulatory science: identification of the U.S. Food and Drug Administration's "Dirty 22," contributors to the spread of foodborne pathogens. Journal of Food Protection, 76(1):144-149. http://www.foodprotection.org

Jonge de, 1982. Cockroach control in Holland. In: Lectures delivered at the international symposium on the subject "the modern defensive approach of cockroach control" [ed. by Bajomi, D.\Erdos, G.\Bajomi, D.\Erdos, G.]. Budapest, Hungary: Babolna Agricultural Trust, 59-62.

Kesel A de, 2001. Laboulbeniales (fungi Ascomycetes) from Belgian Blattodea. Bulletin de la Société Royale Belge d'Entomologie, 137(7/12):101-106.

Kevan DKM; Vickery VR; 1977, publ. 1978. The orthopteroid insects of the Magdalen Islands with notes from adjacent regions. Annals of the Entomological Society of Quebec, 22(3):193-204.

Khuhro IA; Solangi GS; Khuhro SN; Khuhro RD; Oad FC, 2007. Effect of different diets on biological parameters of German cockroach Blattela germanica L. Journal of Entomology, 4(4):317-323. http://www.academicjournals.net/2/c4p.php?id=2&theme=2&jid=je

Klobucar A; Benic N; Krajcar D, 2012. Proceedings, 24th Scientific and Educational Seminar, DDD and ZUPP 2012, Disinfection, Disinsection, Deratization and Protection of Stored Agricultural Products, Split, Croatia, 20-23 March, 2012 [ed. by Zbornik Radova, 2. 4.]. 165-174.

Krzeminska A; Gliniewicz A; Styczynska B, 1994. The assessment of resistance to permethrin of German cockroaches (Blattella germanica L.) in Poland. (Badania opornosci na permetryne prusaków (Blattella germanica L.) odowionych z terenu Polski.) Roczniki Panstwowego Zakadu Higieny, 45(1/2):145-150.

Kutrup B, 2003. Cockroach infestation in some hospitals in Trabzon, Turkey. Turkish Journal of Zoology, 27(1):73-77.

Landau I; Müller G; Schmidt M, 1999. The Urban Pest Advisory Service of Zurich (Switzerland) and the situation of some selected pests. In: Proceedings of the 3rd International Conference on Urban Pests. Czech University of Agriculture, Prague, Czech Republic, 19-22 July 1999 [ed. by Robinson, W. H.\Rettich, F.\Rambo, G. W.]. Hronov, Czech Republic: Grafické závody, 67-72.

Landcare Research, 2016. German cockroach., New Zealand. http://www.landcareresearch.co.nz/resources/identification/animals/bug-id/alphabetic-list-of-bugs/german-cockroach

Lee DongKyu, 1995. Distribution and seasonal abundance of cockroaches (Blattellidae and Blattidae, Blattaria) in urban general hospitals. Korean Journal of Entomology, 25(1):57-67.

Liang TL; Xu RQ; Yang CQ; 1981, recd. 1984. Observations on the nocturnal activity of Blattella germanica L., Periplaneta americana L. and P. emarginata Karny. Insect Knowledge (Kunchong Zhishi), 18(5):211-212.

Ma J; Yu J; Huang Q; Wang Z; Liu Y, 2012. Surveillance of vectors in Tonghua in 2010. Chinese Journal of Hygienic Insecticides & Equipments, 18(6):507-510.

Manweiler S; Appel A; Weber T, 1993. Nematode-based biological control of German cockroaches. In: Proceedings of the 1st International Conference on Insect Pests in the Urban Environment [ed. by Wildey, K. B.\Robinson, W. H.]. Cambridge, UK: International Conference on Insect Pests in the Urban Environment, 173-180.

Martin K; Jensen V, 1993. Proceedings of the 1st International Conference on Urban Pests [ed. by Wildey, K. B. \Robinson WmH]. 135-139.

Menasria T; Moussa F; El-Hamza S; Tine S; Megri R; Chenchouni H, 2014. Bacterial load of German cockroach (Blattella germanica) found in hospital environment. Pathogens and Global Health, 108(3):141-147. http://www.maneyonline.com/doi/abs/10.1179/2047773214Y.0000000136

Menke AS; Yustiz E, 1983. Ampulex compressa (F.) in Venezuela (Hymenoptera: Sphecidae). Proceedings of the Entomological Society of Washington, 85(1):180.

Miller DM; Meek F, 2004. Cost and efficacy comparison of integrated pest management strategies with monthly spray insecticide applications for German cockroach (Dictyoptera: Blattellidae) control in public housing. Journal of Economic Entomology, 97(2):559-569.

Mouchtouri VA; Anagnostopoulou R; Samanidou-Voyadjoglou A; Theodoridou K; Hatzoglou C; Kremastinou J; Hadjichristodoulou C, 2008. Surveillance study of vector species on board passenger ships, risk factors related to infestations. BMC Public Health, 8(100):(27 March 2008). http://www.biomedcentral.com/1471-2458/8/100

Mpuchane S; Allotey J; Gashe BA; Matsheka MI; Coetzee SI; Jordaan A; Oteng M, 2005. Association between German cockroaches (Blattella germanica) and street food vending: implications for food safety in Botswana. In: Fifth International Conference on Urban Pests, Singapore, 11-13 July 2005 [ed. by Lee, C. Y.\Robinson, W. H.]. UK, UK: International Conference on Urban Pests (ICUP), 123-130.

Mukha DV; Wiegmann BM; Schal C, 1999. Saltatory changes in ribosomal gene clusters during evolution of cockroaches of the genus Blattella. Doklady, Biological Sciences, 364(1/6):38-43.

Nalyanya G; Gore JC; Linker HM; Schal C, 2009. German cockroach allergen levels in North Carolina schools: comparison of integrated pest management and conventional cockroach control. Journal of Medical Entomology, 46(3):420-427. http://esa.publisher.ingentaconnect.com/content/esa/jme/2009/00000046/00000003/art00002

Nasirian H; Ladonni H; Shayeghi M; Vatandoost H; Yaghoobi-Ershadi MR; Rassi Y; Abolhassani M; Abaei MR, 2006. Comparison of permethrin and fipronil toxicity against German cockroach (Dictyoptera: Blattellidae) strains. Iranian Journal of Public Health, 35(1):63-67. http://diglib.tums.ac.ir/pub/index.asp

Nigam BS; Perti SL; Agarwal PN, 1969. Susceptibility of packaging materials to insects and rodents. Labdev Journal of Science and Technology, B, 7(2):89-98.

Ogata K; Tanaka I; Ogawa T, 1975. Studies on establishing factors of domiciliary cockroaches. 1. Field surveys of the distribution of domiciliary cockroaches in Tokyo and Kawasaki. Japanese Journal of Sanitary Zoology, 26(4):241-245.

Olson AR; Bryce JR; Lara JR; Madenjian JJ; Potter RW; Reynolds GM; Zimmerman ML, 1987. Survey of stored-product and other economic pests in import warehouses in Los Angeles. Journal of Economic Entomology, 80(2):455-459

Pai HH; Wu SC; Hsu EL, 2005. Insecticide resistance in German cockroaches (Blattella germanica) from hospitals and households in Taiwan. International Journal of Environmental Health Research, 15(1):33-40.

Piulachs MD, 2013. Insect Reproduction Lab: research. Barcelona, Spain: Institut de Biologia Evolutiva. http://biologiaevolutiva.org/mdpiulachs/research.html

Precise Pest Control, 2014. Precise Pest Control. North Carolina, USA. http://www.precisepestcontrol.com

Quesada-Moraga E; Santos-Quirós R; Valverde-García P; Santiago-Álvarez C, 2004. Virulence, horizontal transmission, and sublethal reproductive effects of Metarhizium anisopliae (Anamorphic fungi) on the German cockroach (Blattodea: Blattellidae). Journal of Invertebrate Pathology, 87(1):51-58.

Rafael JA; Silva NMda; Dias RMNS, 2008. Syanthropic cockroaches (Insecta, Blattaria) from Manaus, Amazonas, Brazil. Acta Amazonica, 38(1):173-178.

Ramaswamy SB; Gupta AP, 1981. Sensilla of the antennae and the labial and maxillary palps of Blattella germanica (L.) (Dictyoptera: Blattellidae): their classification and distribution. Journal of Morphology, 168(3):269-279.

Ren XH; Jio MQ; Zhang Y, 2005. Study on histopathology of Blattella germanica infected by Metarhizium anisopliae. Chinese Journal of Vector Biology and Control, 16(3):171-173.

Rettich F, 1993. Hydramethylnon baits and sticky traps and Blattella germanica (L.) (Dictyoptera: Blattellidae) behaviour. In: Proceedings of the 1st International Conference on Insect Pests in the Urban Environment [ed. by Wildey, K.B.\Robinson, W.H.]. Cambridge, UK: International Conference on Insect Pests in the Urban Environment, 107-111.

Rivault C, 1989. Spatial distribution of the cockroach, Blattella germanica, in a swimming-bath facility. Entomologia Experimentalis et Applicata, 53(3):247-255.

Rizvi AN; Jairajpuri DS, 2002. Studies on a new and some known species of insect oxyurid nematodes. Research and Reviews in Parasitology, 62(1/2):1-7.

Rockman R, 1992. Cockroaches pose dangers in the dairy industry. Deutsche Milchwirtschaft, 43(7):190-192.

Rosenstreich DL; Eggleston P; Kattan M; Baker D; Slavin RG; Gergen P; Mitchell H; McNiff-Mortimer K; Lynn H; Ownby D; Malveaux F, 1997. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. New England Journal of Medicine, 336(19):1356-1363.

Ross MH, 1992. Genetic studies of a morphological character that separates two species of Blattella (Dictyoptera: Blattellidae). Journal of Entomological Science, 27(3):251-256.

Ross MH; Mullins DE, 1988. Nymphal and ootheca comparisons of Blattella asahinai and Blattella germanica (Dictyoptera: Blattellidae). Journal of Economic Entomology, 81(6):1645-1647.

Roth LM, 1985. A taxonomic revision of the genus Blattella Caudell (Dictyoptera, Blattaria: Blattellidae). Entomologica Scandinavica, Supplement, No. 22. 221pp.

Roth LM, 1996. Cockroaches from the Seychelles Islands (Dictyoptera: Blattaria). Journal of African Zoology, 110(2):97-128.

Runstrom ES; Bennett GW, 1990. Distribution and movement patterns of German cockroaches (Dictyoptera: Blattellidae) within apartment buildings. Journal of Medical Entomology, 27(4):515-518.

Runstrom ES; Bennett GW, 1990. Movement of German cockroaches (Orthoptera: Blattellidae) as influenced by structural features of low-income apartments. Journal of Economic Entomology, 77(2):407-411.

Schotman CYL, 1989. Plant pests of quarantine importance to the Caribbean. RLAC-PROVEG, No. 21:80 pp.

Schulze G, 1977. Cockroaches in hospitals. (Schaben in Krankenhausern.) Praktische Schadlingsbekampfer, 29(4):41-46.

Shahraki G; Hafidzi MN; Khadri MS; Rafinejad J; Ibrahim YB, 2011. Cost-effectiveness of integrated pest management compared with insecticidal spraying against the German cockroach in apartment buildings. Neotropical Entomology, 40(5):607-612. http://www.scielo.br/ne

Shahraki GH; Noor HM; Rafinejad J; Shahar MK; Ibrahim Y, 2010. Efficacy of sanitation and sanitary factors against the German cockroach (Blattella germanica) infestation and effectiveness of educational programs on sanitation in Iran. Asian Biomedicine, 4(5):803-810.

Shahraki GH; Parhizkar S; Nejad ARS, 2013. Cockroach infestation and factors affecting the estimation of cockroach population in urban communities. International Journal of Zoology, 2013:Article ID 649089. http://www.hindawi.com/journals/ijz/2013/649089/

She J; Lv W; Gao H; Li D; Sun Y, 2012. Research on population and distribution of three medical insects in Yulin urban area of Shaanxi province. Chinese Journal of Vector Biology and Control, 23(1):57-60.

Shogaki Y; Mizuno S; Itoh H, 1972. On Protospirura muris (Gmelin), a parasitic nematode of the brown rat in Nagoya City. Japanese Journal of Parasitology, 21(1):28-38.

Silverman J; Bieman DN, 1993. Glucose aversion in the German cockroach, Blattella germanica. Journal of Insect Physiology, 39(11):925-933.

Sommer SH, 1974. Aggregation behavior in cockroaches. Angewandte Parasitologie, 15(1):10-30.

Stein W; Haschemi H, 1994. Dispersal and emigration of the house cricket, Acheta domesticus (L.) (Ensifera, Gryllidae), and the German cockroach, Blattella germanica (L.) (Blattodea, Blattellidae), of a rubbish tip. (Dispersion und Auswanderung der Hausgrille, Acheta domesticus (L.) (Ensifera, Gryllidae), und der Deutschen Schabe, Blattella germanica (L.) (Blattodea, Blattellidae), aus einer Rottedeponie.) Zeitschrift für Angewandte Zoologie, 80(2):249-258.

Stejskal V; Kosina P; Kanyomeka L, 2006. Arthropod pests and their natural enemies in stored crops in northern Namibia. Journal of Pest Science, 79(1):51-55.

Stejskal V; Verner PH, 1996. Long-term changes of cockroach infestations in Czech and Slovak food-processing plants. Medical and Veterinary Entomology, 10(1):103-104.

Suiter DR, 1997. Biological suppression of synanthropic cockroaches. In: Journal of Agricultural Entomology, 14(3) [ed. by Hinkle, N. C.\Oi, F. M.]. 259-270.

Tabaru Y; Mochizuki K, 2005. Repellency of ethanol extracts of herbs to the German cockroach, Blattella germanica (Blattaria: Blattellidae), observed by feces distribution in the extract treated harborages. Medical Entomology and Zoology, 56(2):139-143.

Tachbele E; Erku W; Gebre-Michael T; Ashenafi M, 2006. Cockroach-associated food-borne bacterial pathogens from some hospitals and restaurants in Addis Ababa, Ethiopia: distribution and antibiograms. Journal of Rural and Tropical Public Health, 5:34-41. http://www.jcu.edu.au/jrtph/vol/v05ashenafi.pdf

Takahashi T; Tsuji H; Watanabe N; Hatsukade M, 1998. Movement of adult German cockroaches, Blattella germanica (Linnaeus), from an occupied harbourage shelter to a vacant new shelter. 3. Interaction between males and females. Medical Entomology and Zoology, 49(3):201-206.

Tanaka I; Motoki M, 1993. Release and recapture of German cockroaches Blattella germanica (L.), in a vacant house. In: Proceedings of the 1st International Conference on Insect Pests in the Urban Environment [ed. by Wildey, K.B.\Robinson, W.H.]. Cambridge, UK: International Conference on Insect Pests in the Urban Environment, 281-283.

Tao Hui; Cui Hua; Song Hua, 2011. Invasion situation of cockroach and its control strategies in urban area. Chinese Journal of Hygienic Insecticides & Equipments, 17(4):281-282. http://www.chines.cn

Tawatsin A; Thavara U; Chompoosri J; Kong-ngamsuk W; Chansang C; Paosriwong S, 2001. Cockroach surveys in 14 provinces of Thailand. Journal of Vector Ecology, 26(2):232-238.

Valles S, 1996. Featured creatures: Battella germanica. Gainesville, USA: University of Florida. http://entnemdept.ufl.edu/creatures/urban/roaches/german.htm#top

Vargas V M; Fisk FW, 1973. Two new records of roaches invading houses in Costa Rica. Journal of Medical Entomology, 10(4):411-412.

Vater G, 1979. Cockroaches (Blattella germanica) in a refrigerator. (Hausschaben (Blattella germanica) im Kuhlschrank.) Angewandte Parazitologie, 20(3):147-154.

Vrsanský P, 2008. Mesozoic relative of the common synanthropic German cockroach (Blattodea). Deutsche Entomologische Zeitschrift, 55(2):215-221. http://www.wiley-vch.de

Waerebeke DVan, 1978. Description of Cephalobellus ovumglutinosus sp. n. and Leidynema portentosae sp. n. (Nematoda: Thelastomatidae), intestinal parasites of cockroaches, and redefinition of the genus Leidynema Schwenk, 1926 (in Travassos, 1929). (Description de Cephalobellus ovumglutinosus n. sp. et de Leidynema portentosae n. sp. (Nematoda: Thelastomatidae), parasites intestinaux de blattes, et redefinition du genre Leidynema Schwenk, 1926 (in Travassos, 1929).) Revue de Nematologie, 1(2):151-163.

Wang D; Tang Z, 2012. Investigation on the cockroach's infestation situation in Kaifeng city. Chinese Journal of Hygienic Insecticides & Equipments, 18(2):152-153.

Wang J; Jin Z; Wang Z; Wang X; Li X, 2008. Investigation report of cockroach background at lodging school in Handan city. Chinese Journal of Hygienic Insecticides & Equipments, 14(4):287,290.

Wang X; Chen S; Wu X; Li S, 2012. Analysis on biological vector control result in Jurong city from 2008 to 2010. Chinese Journal of Hygienic Insecticides & Equipments, 18(2):123-124.

Wang X; Chen Yi, 2011. Monitoring of cockroach density and seasonal fluctuation in Haikou city. China Tropical Medicine, 11(11):1369-1370.

Wolda H; Fisk FW; Estribi M, 1983. Faunistics of Panamanian cockroaches (Blattaria). Uttar Pradesh Journal of Zoology, 3(1):1-9.

Woo FC; Guo YY, 1984. The specific identification, distribution, bionomics and economic importance of the genus Blattella Caudell (Blattaria: Blattidae) from China. Acta Entomologica Sinica, 27(4):439-443.

Wood FE; Robinson WH; Kraft SK; Zungoli PA, 1981. Survey of attitudes and knowledge of public housing residents toward cockroaches. Bulletin of the Entomological Society of America, 27(1):9-13.

Wright CG; McDaniel HC, 1973. Further evaluation of the abundance and habitat of five species of cockroaches on a permanent military base. Florida Entomologist, 56(3):251-254.

Wu H; Long H; Long Q; He Q; Cheng X; Gao H, 2009. Investigation on cockroach population distribution and the infestation situation on Yichun city in 2008. Chinese Journal of Vector Biology and Control, 20(6):593-594.

Wu W; Pang W; Zhou Y; Qi S, 2010. The breeding sites and type of cockroach in Dalian city. Chinese Journal of Hygienic Insecticides & Equipments, 16(3):207-209.

Xiao B; Chen A; Zhang Y; Jiang G; Hu C; Zhu C, 2012. Complte mitochondrial genomes of two cockroaches, Blattella germanica and Periplaneta Americana, and the phytlogenetic position of termites. Current Genetics, 58(2):65-77.

Xu Y; Ni C; Zhuang R; Cao J; Huang Z; Chen S, 2013. Investigation of population of cockroaches indoors in Wenzhou, China. Chinese Journal of Vector Biology and Control, 24(4):355-357.

Zhou Z; Zhuang H; Wang Y; Fang Q; Cao L; Lin B, 2012. Analysis of surveillance results of main vectors in Shenzhen Universiade venues from 2010 to 2011. Chinese Journal of Vector Biology and Control, 23(6):564-566.

Zukowski K, 1984. Laboratory observations on the role of Neoaplectana carpocapsae in reducing numbers of Blattella germanica.. (Badania laboratoryjne roli nicieni Neoaplectana carpocapsae Weiser w redukcji prusaków (Blattella germanica L.).) Roczniki Panstwowego Zakadu Higieny, 35(5):451-457.

Zukowski K, 1994. Testing the effectiveness of selected bioinsecticides in reduction of the population of cockroaches (Blattella germanica L.). (Badania efektywnosci wybranych biopreparatów owadobójczych w redukcji liczebnosci prusaków (Blattella germanica L.).) Roczniki Panstwowego Zakadu Higieny, 45(1/2):139-144.

Contributors

Top of page

29/05/2014 Original text by:

Claire Beverley, CABI, UK

Distribution Maps

Top of page
You can pan and zoom the map
Save map