Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

avian encephalomyelitis

Toolbox

Datasheet

avian encephalomyelitis

Summary

  • Last modified
  • 09 March 2021
  • Datasheet Type(s)
  • Animal Disease
  • Preferred Scientific Name
  • avian encephalomyelitis
  • Pathogens
  • avian encephalomyelitis virus
  • Overview
  • Avian encephalomyelitis (AE), caused by avian encephalomyelitis virus (AEV), is considered as an important and widespread neurotropic disease in poultry. AEV can be transmitted vertically or horizontally and causes neurological diseases with clini...

  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    Compendia
    CAB International
    Wallingford
    Oxfordshire
    OX10 8DE
    UK
    compend@cabi.org
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Identity

Top of page

Preferred Scientific Name

  • avian encephalomyelitis

International Common Names

  • English: avian encephalomyelitis; epidemic tremor in chickens; infectious avian encephalomyelitis

English acronym

  • AE

Pathogen/s

Top of page
avian encephalomyelitis virus

Overview

Top of page

Avian encephalomyelitis (AE), caused by avian encephalomyelitis virus (AEV), is considered as an important and widespread neurotropic disease in poultry. AEV can be transmitted vertically or horizontally and causes neurological diseases with clinical signs including paralysis, ataxia and paresis, muscular dystrophy, and subsequently blindness in young chicks (Jones, 1934; Miyamae, 1983; Hauck et al., 2017). Infection of susceptible laying hens is mainly subclinical and can result in a reduction in egg production and hatchability. After recovery from infection, the birds become protected and maternally derived antibodies can provide protection against the disease in both eggs and progeny chicks (Sentíes-Cué et al., 2016; Lin et al., 2018). Consequently, in regions where AE is prevalent it is most appropriate to vaccinate pullets shortly before they come into lay (Butterfield, 1975; Calnek, 1998). Vaccination protects laying hens from AEV-induced drops in egg production, inhibits vertical transmission, and results in induction of maternally derived antibody which can protect offspring in the first three weeks of life. It has also been shown that vaccination reduces viral load and environmental contamination (Burtscher et al., 1967; Dorn and Schindler, 1970; Westbury and Sinkovic, 1976). In addition to chickens, the virus is also known to cause disease in other birds, including turkeys, pheasants and quail, there being serological evidence that other species are susceptible (Toplu and Alcigir, 2004; Welchman Dde et al., 2009). The disease was first described as an encephalitis in the USA during the 1930s. Affected chicks exhibited ataxia and a rapid tremor of the head and neck (Hunton, 1965; Yamagiwa et al., 1969). Due to the tremor and rapid transmission within a flock, the disease acquired the name ‘epidemic tremor’ (Jones, 1934), however, tremor may not be observed in all infected birds, thus the disease was renamed as “avian encephalomyelitis”.

Host Animals

Top of page
Animal nameContextLife stageSystem
Alectoris rufa (red-legged partridge)Experimental settings
Columba livia (pigeons)Experimental settings
Coturnix coturnixDomesticated host
Gallus gallus domesticus (chickens)Domesticated hostPoultry: All Stages
Meleagris gallopavo (turkey)Domesticated hostPoultry: All Stages
Numida meleagris (guineafowl)Experimental settingsPoultry: All Stages
Perdix perdix (grey partridge)Experimental settings
Phasianus colchicus (common pheasant)Domesticated host

Hosts/Species Affected

Top of page

Neurological avian encephalomyelitis (AE) is manifest in chicks of less than one month of age that do not have maternal immunity. In the presence of maternal antibody, neurological disease is less likely and less severe (Westbury and Sinkovic, 1978; Hauck et al., 2017). Clinical signs are less in older chicks. Experimental inoculation of young chickens with wild-type and egg adapted- AE virus caused the development of neurological signs in young and chickens of all ages, respectively (Hauck et al., 2017). The disease is also known in other galliform birds such as in turkeys (Deshmukh et al., 1971), pheasant (Welchman et al., 2009), guinea fowl (Vivo et al., 1988), quail (Oladele et al., 2014) and pigeons (Toplu and Alcigir, 2004). Bodin et al. (1981) inoculated three species of game bird, including by the oro-nasal route, with AE virus (AEV). All three species were susceptible, susceptibility being greater in grey partridge (Perdix perdix) than in red-legged partridge (Alectoris rufa) than in pheasant (Phasianus colchicus). Fan et al., 2017 showed tissue trophism and course of infection which lasted for 60 days in experimentally infected quail with AEV isolate XY/Q-1410 and concluded that experimental infection was affected by antibody level and immune maturity of the quail. AE has been induced by experimental infection of ducklings and guinea fowl (Calnek, 2003). Steenis (1971) reported naturally occurring antibodies to AEV in sera from turkeys, pheasants, and quail, but not in sera from doves, ducks, finches, jackdaws, pigeons, rooks, sparrows and starlings. Experimental oral exposure of ducks, jackdaws, and rooks also did not result in AEV antibody production. AE antibodies have been reported in ostrich (Struthio camelus) and rockhopper penguin (Eudyptes chrysocomes) (Karesh et al., 1999). Few cases of AE infection have been also reported in wild turkeys (Ingram et al., 2015).

Systems Affected

Top of page
digestive diseases of poultry
nervous system diseases of poultry

Distribution

Top of page

Avian encephalomyelitis is present in Africa, Asia, Australia, Europe, and North and South America, although there are many countries in these regions for which data is not available.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 10 Jan 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

Cabo VerdeAbsent, No presence record(s)
Central African RepublicAbsent, No presence record(s)
Côte d'IvoirePresent
DjiboutiAbsent, No presence record(s)
EgyptAbsent, No presence record(s)
EritreaAbsent, No presence record(s)
EswatiniAbsent, No presence record(s)
EthiopiaAbsent, No presence record(s)
GuineaAbsent, No presence record(s)
LibyaAbsent, No presence record(s)
MadagascarAbsent, No presence record(s)
MauritiusAbsent, No presence record(s)
NamibiaAbsent, No presence record(s)
NigeriaPresent
SeychellesAbsent, No presence record(s)
South AfricaPresent
SudanPresent
TogoAbsent, No presence record(s)
TunisiaAbsent, No presence record(s)
ZimbabweAbsent, No presence record(s)

Asia

BahrainAbsent, No presence record(s)
BhutanAbsent, No presence record(s)
ChinaPresent
GeorgiaAbsent, No presence record(s)
Hong KongAbsent, No presence record(s)
IndiaPresent
IndonesiaPresent
IranPresent
IraqPresent
JordanAbsent, No presence record(s)
KazakhstanAbsent, No presence record(s)
KuwaitAbsent, No presence record(s)
MalaysiaPresentPresent based on regional distribution.
-Peninsular MalaysiaAbsent, No presence record(s)
-SabahPresent, Serological evidence and/or isolation of the agent
-SarawakPresent
MongoliaAbsent, No presence record(s)
North KoreaAbsent, No presence record(s)
PhilippinesPresent
South KoreaPresent
Sri LankaPresent
SyriaAbsent, No presence record(s)
ThailandAbsent, No presence record(s)
UzbekistanAbsent, No presence record(s)

Europe

BelarusAbsent, No presence record(s)
CyprusAbsent, No presence record(s)
CzechiaAbsent, No presence record(s)
EstoniaAbsent, No presence record(s)
FinlandPresent
FrancePresent
GreecePresent
HungaryPresent
IcelandAbsent, No presence record(s)
IrelandPresent
Isle of ManAbsent, No presence record(s)
JerseyAbsent, No presence record(s)
LatviaAbsent, No presence record(s)
LiechtensteinAbsent, No presence record(s)
LithuaniaAbsent, No presence record(s)
LuxembourgAbsent, No presence record(s)
MaltaAbsent, No presence record(s)
MoldovaAbsent, No presence record(s)
NetherlandsPresent
North MacedoniaAbsent, No presence record(s)
NorwayPresent
PortugalPresent
RomaniaAbsent, No presence record(s)
RussiaAbsent, No presence record(s)
Serbia and MontenegroAbsent, No presence record(s)
SlovakiaAbsent, No presence record(s)
SloveniaAbsent, No presence record(s)
SpainAbsent, No presence record(s)
UkraineAbsent, No presence record(s)
United KingdomPresent
-Northern IrelandPresent

North America

BarbadosPresent
BermudaAbsent, No presence record(s)
British Virgin IslandsAbsent, No presence record(s)
CanadaPresent
Cayman IslandsAbsent, No presence record(s)
CuraçaoAbsent, No presence record(s)
DominicaAbsent, No presence record(s)
HaitiAbsent, No presence record(s)
HondurasAbsent, No presence record(s)
JamaicaPresent
MexicoPresent
PanamaAbsent, No presence record(s)
Saint Kitts and NevisAbsent, No presence record(s)
Saint Vincent and the GrenadinesAbsent, No presence record(s)
Trinidad and TobagoAbsent, No presence record(s)
United StatesPresent

Oceania

AustraliaPresent
French PolynesiaPresent
New CaledoniaPresent
New ZealandPresent
SamoaAbsent, No presence record(s)
VanuatuAbsent, No presence record(s)

South America

ArgentinaPresent
BrazilPresent
ColombiaAbsent, No presence record(s)
EcuadorPresent
Falkland IslandsAbsent, No presence record(s)
French GuianaAbsent, No presence record(s)
GuyanaAbsent, No presence record(s)
ParaguayPresent
UruguayPresent
VenezuelaAbsent, No presence record(s)

Pathology

Top of page

The gross lesion associated with avian encephalomyelitis virus (AEV) infection is whitish areas in the muscularis of the ventriculus, due to infiltrating lymphocytes (Calnek, 2003). Microscopic lesions have been observed in the central nervous system (CNS) and in some visceral tissues such as the proventriculus and pancreas. Calnek (2003) has summarized microscopic findings. In the CNS there is a disseminated, non-purulent encephalomyelitis and a ganglionitis of the dorsal root ganglia. There is a perivascular infiltrate in all portions of the brain and spinal chord, except in the cerebellum, where it is confined to the nucleus (n) cerebellaris.

It has been shown that experimentally AEV inoculated chick embryos develop focal haemorrhage, malacia, gliosis, focal oedema of brain with degeneration and necrosis of skeletal myofibers, ventriculitis and myocarditis. Calnek (2003) has described a number of lesions that can be considered to be pathognomonic; in the midbrain, two nuclei, rotundus and ovoidalis are, invariably affected with a loose microgliosis; and central chromatolysis (axonal reaction) of the neurons in the nuclei of the brain stem, especially those of the oblongata. The proventriculus exhibits another pathognomonic change, obvious dense nodules in the muscular wall. AE causes the number of lymphocyte follicles in the pancreas to increase several-fold.

Diagnosis

Top of page

Clinical diagnosis

Avian encephalomyelitis (AE) is largely a disease of chicks of up to two to three weeks of age. A dullness of the eyes is seen, which becomes more pronounced. There is progressive ataxia, although this is not always observed (Springer and Schmittle, 1968; Lin et al., 2018). At the later stage of the disease, the infected chicks may show difficulty in their movements and could be observed sitting on their hocks and move whilst still on their hocks or shanks. These birds will have poor coordination and may fall on their sides. Mortality in AE infected chicks is between 25 to 50% in severe cases with morbidity as high as 60% (Goto et al., 2019) There may be fine tremors of the head and neck, though these may not be apparent in all birds, and severity is variable. Ataxic signs usually, but not always, appear before tremor. Older birds may not show clinical sigs, with only a temporary drop in egg production and hatchability observed (Itakura and Goto, 1975; Meroz et al., 1990).

Differential diagnosis

The clinical signs of AE are similar to those of some other diseases: Newcastle disease (ND), equine encephalomyelitis infection, nutritional disturbances (rickets, encephalomalacia, riboflavin deficiency), and Marek’s disease (Tannock and Shafren, 1994Calnek, 2003). Consequently various factors should be taken into account before reaching a diagnosis, including the age of the chicks (typical signs of AE are usually only seen in chicks of up to two to three weeks of age), the AEV immunity status of the parent flocks and histopathological analysis. Although typical AE is associated with very young chicks, ND can affect birds of the same age. The pathognomic lesions described above differentiate AE from ND. Encephalomalacia generally occurs two to three weeks later than AE and the lesions revealed by histopathological analysis are very different from those of AE. Marek’s disease occurs in older chicks and exhibits changes not seen in AE; peripheral nerve involvement and the nature of lymphomatosis of visceral organs is different.

Laboratory diagnosis

Tannock and Shafren (1994) have reviewed the use of chicks, embryos and various cell cultures for the isolation and propagation of AEV. Chicks and embryos must be from AEV-susceptible flocks. Day-old chicks are inoculated intracerebrally, whilst embryos are inoculated via the yolk-sac at 6 to 7 days of age. Some strains have been adapted to grow in embryos, the most widely used adapted strain being that of Van Roekel. Growth of field strains in various cell cultures usually results in low titres. Chicken embryo brain cells have been used, although these tend to be overgrown by fibroblasts. Chick embryo fibroblasts, chicken embryo kidney cells and chicken pancreatic cells have been used, but with very low yields of AEV. Liu et al. (1999) described the use of the mammalian continuous cell line BGM-70 for the isolation of AEV from the brain of diseased broilers. The authors observed cytopathic effect by the third passage.

Tests like virus neutralization, immunodiffusion, passive haemagglutination, ELISA and fluorescent antibody test, which are based on detection of antibodies, have been developed for detection and diagnosis of AE (Choi and Miura, 1972; Ahmed et al., 1982; Girshick and Crary, 1982). Various agar gel precipitin (AGP) tests have been devised to detect antibody to AEV, summarized by Tannock and Shafren (1994). Extracts of the brain or gastrointestinal tract of experimentally inoculated susceptible embryos have been used as the source of antigen for the AGP test, with conflicting results as to which source is best. Although an inexpensive test, the AGP test has largely been replaced by ELISAs, the results from which have been shown to correlate well with the results of virus neutralization tests. Tannock and Shafren have described the AEV ELISAs as being ‘sensitive, specific, rapid, relatively cheap and amenable to large scale screening.’ Procedures for ELISAs include those of Smart and Grix (1985), Smart et al. (1986), Garrett et al. (1984) and an improved procedure of Shafren et al. (1989). An antigen-capture ELISA, to detect AEV in embryo and chicken tissues, has also been described (Shafren and Tannock, 1988).

A direct fluorescent antibody test was developed to detect AE virions in tissue sections of the cerebellum and pancreas of experimentally and naturally infected birds (Ide, 1974). Real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays for rapid detection of AEV have been described (Xie et al., 2005; Liu et al., 2014; Xue et al., 2016; Goto et al., 2019). Liu et al. (2014) developed a SYBR green based rRT-PCR test using primers targeting conserved VP1 gene of AE virus genome for rapid and specific detection of AE virus, whereas Xie et al. (2005) developed a RT-PCR kit targeting VP2 gene of AE virus. Goto et al. (2019) found that the RT-PCR test developed by Xie et al. (2005) failed to detect AEV virus in chickens suspected for AE infection based on pathological legions, hence they developed and identified these AE virus infections by RT-PCR test which targeted the 5’-untranslated region of the AE virus.

List of Symptoms/Signs

Top of page
SignLife StagesType
General Signs / Ataxia, incoordination, staggering, falling Sign
General Signs / Dysmetria, hypermetria, hypometria Sign
General Signs / Exercise intolerance, tires easily Poultry:Day-old chick Sign
General Signs / Inability to stand, downer, prostration Sign
General Signs / Increased mortality in flocks of birds Sign
General Signs / Lameness, stiffness, stilted gait in birds Poultry:Day-old chick Diagnosis
General Signs / Reluctant to move, refusal to move Poultry:Day-old chick Sign
General Signs / Trembling, shivering, fasciculations, chilling Sign
General Signs / Underweight, poor condition, thin, emaciated, unthriftiness, ill thrift Sign
General Signs / Weakness, paresis, paralysis of the legs, limbs in birds Sign
General Signs / Weakness, paresis, paralysis, drooping, of the wings Sign
General Signs / Weight loss Sign
Nervous Signs / Dullness, depression, lethargy, depressed, lethargic, listless Sign
Nervous Signs / Tremor Sign
Ophthalmology Signs / Blindness Poultry:Day-old chick,Poultry:Young poultry Sign
Ophthalmology Signs / Cataract, lens opacity Sign
Reproductive Signs / Decreased hatchability of eggs Sign
Reproductive Signs / Decreased, dropping, egg production Sign
Respiratory Signs / Change in voice, vocal strength Poultry:Young poultry Sign
Respiratory Signs / Hoarse chirp in birds Poultry:Day-old chick Sign

Disease Course

Top of page

The manifestation of avian encephalomyelitis (AE) depends on age and immune status. Chicks of less than one month of age from non-immune hens develop neurological disease, which can be fatal (Shafren and Tannock, 1991). Chicks hatched from eggs laid during an outbreak of AE develop neurological disease. In these circumstances, the infection causes paralysis, ataxia and muscular dystrophy (Tannock and Shafren, 1994; Calnek, 2003). Older chicks exhibit fewer neurological signs and in mature birds the infection can be subclinical, while a temporary drop in egg production and hatchability may be observed. Maternal immunity can protect chicks from the disease.

The virus is presumed to replicate first in epithelial cells of the alimentary tract; immunofluorescence revealed infected cells in the epithelium of the tunica mucosa of the duodenum, and in the proventriculus, jejunum and caecum (Miyamae, 1983). Afterwards the virus is believed to enter the bloodstream and spread to other organs and the central nervous system. The oral-faecal is thought to be the main route of infection, virus being detected in faeces within three days of oral administration (Calnek, 1998) Shedding may continue for more than two weeks in very young chicks but those over three weeks of age may shed virus for only about five days (Calnek, 2003). Although this is a major route of spread, the virus also spreads vertically. Following experimental infection of laying hens, infected embryos were laid in the following 5- to 13-day period (Hassan and Abdul-Careem, 2020). Infected eggs may exhibit reduced hatchability (Abdul-Cader et al., 2018). Contact transmission can occur in the incubator as well as in the brooder. Morbidity and mortality within a very young flock will vary depending on the AE history of the laying flocks from which the chicks collectively were derived; if the laying birds were immune to AE virus, their chicks will not develop the typical clinical signs of AE, in contrast to chicks originating from non-immune flocks. Chicks from an infected laying flock may exhibit morbidity of 40 to 60%, with mortality averaging 25% (Goto et al., 2019). Surviving birds develop lifelong immunity, attributed to circulating antibody, though some become blind (Calnek, 1998).

Epidemiology

Top of page

Avian encephalomyelitis (AE) has been mainly studied in the domestic fowl, though the course of the disease in turkeys is similar. In regions where AE virus (AEV) is present in laying flocks, all birds may become infected, however the vaccinated birds may not show clinical signs associated with the disease. Natural field strains of the virus are enterotropic, and thus the virus replicates in the alimentary tract and is shed in faeces during the second week after infection. Shedding ceases as specific antibody is produced. It spreads horizontally, by the faecal-oral route, and also vertically. Birds can also become infected by the oral route, (a route by which live AE vaccines can be applied), though the faecal-oral route is considered to be the main route of natural infection. The nature of the disease depends on age and immune status. Chicks of less than one month of age from non-immune hens develop neurological disease, which can be fatal. Chicks hatched from eggs laid during an outbreak of AEV develop neurological disease.

Older chicks exhibit fewer neurological signs and in more mature birds the infection can be unapparent. Chicks are protected from neurological signs by maternal antibody. Vectors are not known to be involved; presence of virus in faeces is sufficient for transmission. AEV is quite stable, remaining in a contaminated area for long periods (Westbury and Sinkovic, 1976). There is only one serotype and immunity is life-long.

The disease is also known in other galliform birds: turkeys, pheasant and quail. AE has been induced by experimental infection of ducklings, young pigeons and guineafowl (Calnek, 2003). Steenis (1971) reported naturally occurring antibodies to AEV in sera from turkeys, pheasants and quail, but not in sera from doves, ducks, finches, jackdaws, pigeons, rooks, sparrows and starlings. Experimental oral exposure of ducks, jackdaws, pigeons and rooks also did not result in AEV antibody production. AE antibodies have been reported in ostrich and penguin.

Yu et al. (2015) detected AE virus infection by RT-PCR and detected AE specific antibody by ELISA and further ascribed it as a potential reason for drop in egg production from 84% to 71% at 32 weeks of age in a breeder flock. Taunde et al. (2017) showed presence of AE virus infection in free-range indigenous chickens of Mozambique by detecting AE specific antibodies by ELISA in around 60 percent of the samples. Goto et al. (2019) showed presence of AE virus infection in hatched birds exhibiting neurological symptoms such as tremors, ataxia, leg paralysis and ataxia classical to AE infection.

Impact: Economic

Top of page

Susceptible layers have a temporary drop in egg production, which can be substantial. Young chicks can be killed. The economic importance of avian encephalomyelitis (AE) was greatly reduced when AE vaccines became available commercially.

Zoonoses and Food Safety

Top of page

Avian encephalomyelitis has no public health significance.

Disease Treatment

Top of page

There is no treatment for affected chicks with avian encephalomyelitis (AE). Affected chicks that do not die are considered unlikely to be profitable (Calnek, 2003). Surviving chicks will be immune to AE for life (Calnek, 1998).

Prevention and Control

Top of page

Control of avian encephalomyelitis (AE) is best achieved by vaccination of breeders or commercial layers with live embryo-attenuated virus at least 4 weeks before they come into lay. Calnek (1998) suggests that vaccination should be after eight weeks of age and at least four weeks before egg production. One objective of vaccination is to prevent replication of field virus so that there will be no vertical transmission of the virus to progeny. A second objective is to ensure that there are maternally derived antibodies to protect the chicks; AE virus (AEV) has its greatest effect in chicks of up to three weeks of age. Lastly, vaccination protects against drops in egg production caused by infection of mature layers. Inactivated AE vaccines may be given if previously non-vaccinated flocks that are in lay are believed to be at risk, or if application of live AE vaccine is contraindicated. Vaccination gives life-long immunity, however there are some cases that vaccinated chickens may become infected as early as two weeks post vaccination and the affected birds may show severe clinical signs (Sentíes-Cué et al., 2016). Protection of progeny to infection correlates with the titre of antibody in the layers (Garrett et al., 1985). Anti-AE maternal antibody can be detected in chicks for up to 21 days after hatch (Shafren et al., 1992).

AE vaccines are produced using embryo-propagated AEV virus. Shafren and Tannock (1990) have described an ELISA-based method, involving embryos, for assessing the infectivity of AE vaccines that is much faster than the conventional method that involves chicks. Care must be taken not to adapt the virus to embryos, as one consequence of adaptation is selection of virus that no longer replicates well in the gut when applied by eye-drop or in drinking water, thus resulting in poor stimulation of immunity. Embryo-adapted virus given by wing-web application can result in clinical disease (Glisson and Fletcher, 1987).

Live AE vaccine can be administered in drinking water. Shafren et al. (1992) compared the efficacy of antibody production, measured by ELISA, after vaccination by eye-drop with that achieved by drinking water application. They found that vaccination by eye-drop of only 10% of a flock gave the same results as drinking water application; the vaccinal virus spread to the littermates. However, when only 5% of the birds received the vaccine by eye-drop, the spread of the virus within the flock was not good enough for vaccination purposes.

Smyth et al. (1994) reported instances of clinical AE following live AE vaccination of 14-week-old chickens. Two to five weeks after vaccination, mortality reached 2%. The authors postulated that the birds had earlier been immunosuppressed, in one case probably by Marek’s disease virus, resulting in the vaccinal AE being able to produce severe lesions and mortality. The authors demonstrated by experiment that, contrary to popular opinion, AE vaccine given orally can spread to the central nervous system and produce mild encephalitis. Further, Sentíes-Cué et al. (2016) reported the presence of AE infection in three flocks of AE vaccinated leghorn pullets by clinical signs, histopathological and Rt-PCR diagnosis. Notwithstanding, under good conditions and with proper application live attenuated AE vaccines are very good at controlling AE. AE vaccines can also be used in turkeys (Deshmukh et al., 1974). In spite of routine AE vaccination, the AE outbreaks reported in the vaccinated as well as non-vaccinated flocks of chickens provide scope for further vaccine development.

Lin et al. (2018) reported the use of a low pathogenic GDt29 strain of AE as a live AE vaccine. GDt29 vaccinated birds developed a high-level AE specific antibody which showed high level of protective efficacy against AE challenge. Also, a high level of maternal antibodies in laying hens were developed which protected eggs against decreased hatchability on heterologous AE virus challenge. Sarma et al. (2019) showed that a mixture of AE, fowl pox and pigeon pox vaccines administered to chickens protected them against the respective diseases.

References

Top of page

Abdul-Cader, M. S., Palomino-Tapia, V., Amarasinghe, A., Ahmed-Hassan, H., Senapathi, U. de S., Abdul-Careem, M. F., 2018. Hatchery vaccination against poultry viral diseases: potential mechanisms and limitations. Viral Immunology, 31(1), 23-33. doi: 10.1089/vim.2017.0050

Ahmed, A. A. S., El-Azm, I. M. A., Ayoub, N. N. K., El-Toukhi, B. I. M., 1982. Studies on the serological detection of antibodies to avian encephalomyelitis virus. Avian Pathology, 11(2), 253-262. doi: 10.1080/03079458208436099

Asasi K, Farzinpour A, Tafti AK, 2008. Clinico-pathological studies on avian encephalomyelitis in Shiraz, Iran. Turkish Journal of Veterinary & Animal Sciences, 32(3):229-231. http://journals.tubitak.gov.tr/veterinary/

Bodin G, Pellerin JL, Milon A, Geral MF, Berthelot X, Lautie R, 1981. Experimental infection of game birds (pheasants, red-legged partridges, grey partridges) with avian encephalomyelitis virus. Revue de Medecine Veterinaire, 132(12):805-816

Burtscher, H., Köhler, H., Swoboda, R., 1967. On protective vaccination against avian encephalomyelitis. (Zur Schytzimpfung gegen Aviäre Encephalomyelitis). Wiener Tierarztliche Monatsschrift, 54(12), 835-842.

Butterfield, W. K., 1975. Avian encephalomyelitis: the virus and immune response. American Journal of Veterinary Research, 36(No.4), 557-559.

Calnek BW, 1998. Control of avian encephalomyelitis: a historical account. Avian Diseases, 42(4):632-647; 59 ref

Calnek BW, 2003. Avian Encephalomyelitis. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, McDougald, LR, Swayne DE, eds. Diseases of Poultry. Ames, Iowa, USA: Iowa State Press, 271-282

Choi, W.-P., Miura, S., 1972. Indirect fluorescent antibody technique for the detection of avian encephalomyelitis antibody in chickens. Avian Diseases, 16(No.4), 949-951. doi: 10.2307/1588777

Decaesstecker M, Meulemans G, 1989. Antigenic relationships between fowl enteroviruses. Avian Pathology, 18(4):715-723; 16 ref

Deshmukh DR, Hohlstein WM, McDowell JR, Pomeroy BS, 1971. Prevalence of avian encephalomyelitis in turkey breeder flocks. American Journal of Veterinary Research, 32(8):1263-1267

Deshmukh, D. R., Patel, B. L., Pomeroy, B. S., 1974. Duration of immunity in recycled turkey breeder hens vaccinated with a single dose of live avian encephalomyelitis virus vaccine. American Journal of Veterinary Research, 35(11):1463-1464

Dorn, P., Schindler, P., 1970. Vaccination against avian encephalomyeliíis (AE) for replacement stocks. Berliner und Münchener Tierärztliche Wochenschrift, 83, 320-322.

Fan LiLi, Li ZhiJun, Huang JiaLi, Yang ZengQi, Xiao Sa, Wang XingLong, Dang RuYi, Zhang ShuXia, 2017. Dynamic distribution and tissue tropism of avian encephalomyelitis virus isolate XY/Q-1410 in experimentally infected Korean quail. Archives of Virology, 162(11), 3447-3458. doi: 10.1007/s00705-017-3504-0

Freitas ESde, Back A, 2015. New occurance of avian encephalomyelitis in broiler - is this an emerging disease? Brazilian Journal of Poultry Science, 17(3):399-404. http://www.scielo.br/pdf/rbca/v17n3/1516-635X-rbca-17-03-00399.pdf

Garrett JK, Davis RB, Ragland WL, 1984. Enzyme-linked immunosorbent assay for detection of antibody to avian encephalomyelitis virus in chickens. Avian Diseases, 28(1):117-130; 27 ref

Garrett JK, Davis RB, Ragland WL, 1985. Correlation of serum antibody titer for avian encephalomyelitis virus (AEV) in hens with the resistance of progeny embryos to AEV. Avian Diseases, 29(3):878-880; 2 ref

Girshick, T., Crary, C. K., Jr., 1982. Preparation of an agar-gel-precipitating antigen for avian encephalomyelitis and its use in evaluating the antibody status of poultry. Avian Diseases, 26(4), 798-804. doi: 10.2307/1589866

Glisson JR, Fletcher OJ, 1987. Clinical encephalitis following avian encephalomyelitis vaccination in broiler pullets. Avian Diseases, 31:383-385

Goto, Y., Yaegashi, G., Kumagai, Y., Ogasawara, F., Goto, M., Mase, M., 2019. Detection of avian encephalomyelitis virus in chickens in Japan using RT-PCR. Journal of Veterinary Medical Science, 81(1), 103-106. doi: 10.1292/jvms.18-0550

Hao HuaFang, Zhang ShuXia, Yang Tao, Yang ZengQi, Wang XingLong, Du EnQi, Dang RuYi, Wang JingYu, 2014. Isolation, identification and sequencing VP1 gene of avian encephalomyelitis virus YL strain. Chinese Journal of Veterinary Medicine, 50(2):24-26, 29

Hassan, M. S. H., Abdul-Careem, M. F., 2020. Avian viruses that impact table egg production. Animals, 10(10), doi: 10.3390/ani10101747

Hauck, R., Sentíes-Cué, C. G., Wang Ying, Kern, C., Shivaprasad, H. L., Zhou HuaiJun, Gallardo, R. A., 2017. Evolution of avian encephalomyelitis virus during embryo-adaptation. Veterinary Microbiology, 204, 1-7. doi: 10.1016/j.vetmic.2017.04.005

Holstein WM, Deshmukh DR, Larsen, CT, Sautter JH, Pomeroy BS, McDowell JR, 1970. An epiornithic of avian encephalomyelitis in turkeys in Minnesota. American Journal of Veterinary Research, 31:2233-2242

Hunton, P., 1965. A note on the incidence of infectious avian encephalomyelitis (epidemic tremor) in a pedigreed chick population. Vet. Reo, 77, 592-593.

Ide, P. R., 1974. Application of the fluorescent antibody technique to the diagnosis of avian encephalomyelitis. Canadian Journal of Comparative Medicine, 38(No.1), 49-55.

Ingram, D. R., Miller, D. L., Baldwin, C. A., Turco, J., Lockhart, J. M., 2015. Serologic survey of wild turkeys (Meleagris gallopavo) and evidence of exposure to avian encephalomyelitis virus in Georgia and Florida, USA. Journal of Wildlife Diseases, 51(2), 374-379. http://www.jwildlifedis.org/doi/full/10.7589/2013-07-169

Itakura, C., Goto, M., 1975. Avian encephalomyelitis in embryos and abnormal chicks on the day of hatching-neurohistopathological observations. Japanese Journal of Veterinary Science, 37(No.1), 21-28.

Jana PS, Baksi S, Kundu SK, Guha C, Biswas U, 2005. Clinicopathological studies on avian encephalomyelitis. Indian Veterinary Journal, 82(10):1037-1039

Jeddah IEA, Ballal A, Egbal SA, 2007. Avian encephalomyelitis virus in Sudan. Research Journal of Animal and Veterinary Sciences, 1:9-11. http://www.insinet.net/rjavs/2007/9-11.pdf

Jones, E. E., 1934. Epidemic tremor, an encephalomyelitis affecting young chickens. Journal of Experimental Medicine, 59(6), 781-798.

Karesh WB, Uhart MM, Frere E, Gandini P, Braselton WE, Puche H, Cook RA, 1999. Health evaluation of free-ranging rockhopper penguins (Eudyptes chrysocomes [chrysocome]) in Argentina. Journal of Zoo and Wildlife Medicine, 30(1):25-31; 36 ref

Koutoulis KC, Horvath-Papp I, Tontis D, Papaioannou N, Evangelou K, 2015. An outbreak of Avian Encephalomyelitis in broilers in Greece. Deltion tes Ellenikes Kteniatrikes Etaireias = Journal of the Hellenic Veterinary Medical Society, 66(2):93-100

Lin WenCheng, Lu PiaoPiao, Li AiJun, Wu Yu, Li HongXin, Chen Feng, Ma JingYun, Xie QingMei, 2018. Assessing the efficacy of a live vaccine against avian encephalomyelitis virus. Archives of Virology, 163(9), 2395-2404. doi: 10.1007/s00705-018-3862-2

Liu Jue, Zhang Jie, Liu YouChang, Zhang FangLiang, Zhou Jiao, 1999. A preliminary study on the characteristics of avian encephalomyelitis virus culture in continuous cell line BGM-70. Acta Agriculturae Boreali-Sinica, 14(3):136-140; 15 ref

Liu QingTian, Yang ZengQi, Hao HuaFang, Cheng ShenLi, Fan WenTao, Du EnQi, Xiao Sa, Wang XingLong, Zhang ShuXia, 2014. Development of a SYBR Green real-time RT-PCR assay for the detection of avian encephalomyelitis virus. Journal of Virological Methods, 206:46-50. http://www.sciencedirect.com/science/journal/01660934

Malik G, 1969. Histopathological lesions of avian encephalomyelitis in Hungary. Acta veterinaria Academiae Scientiarum Hungaricae, 19:279-298

Marvil P, Knowles NJ, Mockett APA, Britton P, Brown TDK, Cavanagh D, 1999. Avian encephalomyelitis virus is a picornavirus and is most closely related to hepatitis A virus. Journal of General Virology, 80(3):653-662; 54 ref

McNulty MS, Connor TJ, McNeilly F, McFerran JB, 1990. Biological characterisation of avian enteroviruses and enterovirus-like viruses. Avian Pathology, 19(1):75-87; 14 ref

Meroz, M., Elkin, N., Hadash, D., Abrams, M., 1990. Egg drop associated with avian encephalomyelitis virus. Veterinary Record, 127(21), 532.

Miyamae T, 1983. Invasion of avian encephalomyelitis virus from the gastrointestinal tract to the central nervous system in young chickens. American Journal of Veterinary Research, 44(3):508-510

OIE Handistatus, 2002. World Animal Health Publication and Handistatus II (dataset for 2001). Paris, France: Office International des Epizooties

OIE Handistatus, 2003. World Animal Health Publication and Handistatus II (dataset for 2002). Paris, France: Office International des Epizooties

OIE Handistatus, 2004. World Animal Health Publication and Handistatus II (data set for 2003). Paris, France: Office International des Epizooties

OIE Handistatus, 2005. World Animal Health Publication and Handistatus II (data set for 2004). Paris, France: Office International des Epizooties

Oladele OA, Esan OO, Jubril A, Jarikre T, 2014. Presumptive diagnosis of Avian encephalomyelitis in Japanese quail in Ibadan, Nigeria. Bulletin of Animal Health and Production in Africa, 62(2):139-142. http://www.ajol.info/index.php/bahpa/article/view/114734

Oladele OA, Onwuka CO, 2013. Field evaluation of avian encephalomyelitis maternal antibody transfer in chicken flocks in Southwest Nigeria. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux, 66(2):47-50. http://remvt.cirad.fr/CD/derniers_num/2013/REMVT13_047_050.pdf

Sarma, G., Kersting, B. A., Spina, G., 2019. Field safety and efficacy of a unique live virus vaccine for controlling avian encephalomyelitis and fowlpox in poultry. Veterinary World, 12(8), 1291-1298. doi: 10.14202/vetworld.2019.1291-1298

Sentíes-Cué, C. G., Gallardo, R. A., Reimers, N., Bickford, A. A., Charlton, B. R., Shivaprasad, H. L., 2016. Avian encephalomyelitis in layer pullets associated with vaccination. Avian Diseases, 60(2), 511-515. doi: 10.1637/11306-102115-Case

Shafren DR, Tannock GA, 1988. An enzyme-linked immunosorbent assay for the detection of avian encephalomyelitis virus antigens. Avian Diseases, 32(2):209-214; 21 ref

Shafren DR, Tannock GA, 1990. Development and application of an improved infectivity assay for the standardization of avian encephalomyelitis vaccines. Vaccine, 8(3):283-285; 18 ref

Shafren DR, Tannock GA, Groves PJ, 1992. Antibody responses to avian encephalomyelitis virus vaccines when administered by different routes. Australian Veterinary Journal, 69(11):272-275; 10 ref

Shafren DR, Tannock GA, Roberts TK, 1989. Development and application of an ELISA technique for the detection of antibody to avian encephalomyelitis viruses. Research in Veterinary Science, 46(1):95-99; 16 ref

Shafren, D. R., Tannock, G. A., 1991. Pathogenesis of avian encephalomyelitis viruses. Journal of General Virology, 72(11), 2713-2719. doi: 10.1099/0022-1317-72-11-2713

Smart IJ, Grix DC, 1985. Measurement of antibodies to infectious avian encephalomyelitis virus by ELISA. Avian Pathology, 14(3):341-352; 20 ref

Smart IJ, Grix DC, Barr DA, 1986. The application of the ELISA to the diagnosis and control of avian encephalomyelitis. Australian Veterinary Journal, 63(9):297-299; 6 ref

Smyth JA, McNeilly F, Reilly GAC, McKillop ER, Cassidy JP, 1994. Avian encephalomyelitis following oral vaccination. Avian Pathology, 23(3):435-445; 10 ref

Springer, W. T., Schmittle, S. C., 1968. Avian encephalomyelitis: a chronological study of the histopathogenesis in selected tissues. Avian Diseases, 12, 229-239. doi: 10.2307/1588223

Steenis G van, 1971. Survey of various avian species for neutralizing antibody and susceptibility to avian encephalomyelitis virus. Research in Veterinary Science, 12:308-311

Tannock GA, Shafren DR, 1994. Avian encephalomyelitis: a review. Avian Pathology, 23(4):603-620; 85 ref

Taunde, P., Timbe, P., Lucas, A. F., Tchamo, C., Chilundo, A., Anjos, F. dos, Costa, R., Bila, C. G., 2017. Serological evidence of avian encephalomyelitis virus and Pasteurella multocida infections in free-range indigenous chickens in Southern Mozambique. Tropical Animal Health and Production, 49(5), 1047-1050. doi: 10.1007/s11250-017-1304-x

Todd D, Weston JH, Mawhinney KA, Laird C, 1999. Characterization of the genome of avian encephalomyelitis virus with cloned cDNA fragments. Avian Diseases, 43(2):219-226; 11 ref

Toplu, N., Alcİgİr, G., 2004. Avian encephalomyelitis in naturally infected pigeons in Turkey. Avian Pathology, 33(3), 381-386. doi: 10.1080/0307945042000220570

Vivo LM, Fonseca C, Gonzalez R, Moreno J, Boado E, 1988. Avian encephalomyelitis in guineafowls. Report of an outbreak. Revista Avicultura, 32(2):129-136; 12 ref

Welchman Dde B, Cox WJ, Gough RE, Wood AM, Smyth VJ, Todd D, Spackman D, 2009. Avian encephalomyelitis virus in reared pheasants: a case study. Avian Pathology, 38(3):251-256

Westbury, H. A., Sinkovic, B., 1976. The immunisation of chickens against infectious avian encephalomyelitis. Australian Veterinary Journal, 52(8), 374-377. doi: 10.1111/j.1751-0813.1976.tb09492.x

Westbury, H. A., Sinkovic, B., 1978. The pathogenesis of infectious avian encephalomyelitis. 4. The effect of maternal antibody on the development of the disease. Australian Veterinary Journal, 54(2), 81-85.

Xie ZhiQin, Khan, M. I., Girshick, T., Xie ZhiXun, 2005. Reverse transcriptase-polymerase chain reaction to detect avian encephalomyelitis virus. Avian Diseases, 49(2), 227-230. doi: 10.1637/7307-111804R

Xue QingHong, Guo Hui, Feng ZhongZe, Wang Jia, 2016. Establishment of a Real-time RT-PCR assay for avian encephalomyelitis virus. Medycyna Weterynaryjna, 72(7):418-422. http://www.medycynawet.edu.pl

Yamagiwa, S., Itakura, C., Shimizu, Y., 1969. Poliomyelitis of new-born chicks (epidemic tremor, avian encephalomyelitis). I. Proposal of a new name for the disease. Japanese Journal of Veterinary Science, 31, 105-118.

Yu XiaoHui, Zhao Jing, Qin XiuHui, Zhang GuoZhong, 2015. Serological evidence of avian encephalomyelitis virus infection associated with vertical transmission in chicks. Biologicals, 43(6), 512-514. http://www.sciencedirect.com/science/journal/10451056

Distribution References

Asasi K, Farzinpour A, Tafti A K, 2008. Clinico-pathological studies on avian encephalomyelitis in Shiraz, Iran. Turkish Journal of Veterinary & Animal Sciences. 32 (3), 229-231. http://journals.tubitak.gov.tr/veterinary/

CABI, Undated. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI

Freitas E S de, Back A, 2015. New occurance of avian encephalomyelitis in broiler - is this an emerging disease? Brazilian Journal of Poultry Science. 17 (3), 399-404. http://www.scielo.br/pdf/rbca/v17n3/1516-635X-rbca-17-03-00399.pdf

Hao HuaFang, Zhang ShuXia, Yang Tao, Yang ZengQi, Wang XingLong, Du EnQi, Dang RuYi, Wang JingYu, 2014. Isolation, identification and sequencing VP1 gene of avian encephalomyelitis virus YL strain. Chinese Journal of Veterinary Medicine. 50 (2), 24-26, 29.

Jana P S, Baksi S, Kundu S K, Guha C, Biswas U, 2005. Clinicopathological studies on avian encephalomyelitis. Indian Veterinary Journal. 82 (10), 1037-1039.

Jeddah I E A, Ballal A, Egbal S A, 2007. Avian encephalomyelitis virus in Sudan. Research Journal of Animal and Veterinary Sciences. 9-11. http://www.insinet.net/rjavs/2007/9-11.pdf

Koutoulis K C, Horvath-Papp I, Tontis D, Papaioannou N, Evangelou K, 2015. An outbreak of Avian Encephalomyelitis in broilers in Greece. Deltion tes Ellenikes Kteniatrikes Etaireias = Journal of the Hellenic Veterinary Medical Society. 66 (2), 93-100.

Malik G, 1969. Histopathological lesions of avian encephalomyelitis in Hungary. Acta veterinaria Academiae Scientiarum Hungaricae. 279-298.

OIE Handistatus, 2005. World Animal Health Publication and Handistatus II (dataset for 2004)., Paris, France: Office International des Epizooties.

Oladele O A, Onwuka C O, 2013. Field evaluation of avian encephalomyelitis maternal antibody transfer in chicken flocks in Southwest Nigeria. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux. 66 (2), 47-50. http://remvt.cirad.fr/CD/derniers_num/2013/REMVT13_047_050.pdf

Contributors

Top of page

09/03/2021 Updated by:

Dr Shahriar Behboudi, The Pirbright Institute

Distribution Maps

Top of page
You can pan and zoom the map
Save map
Select a dataset
Map Legends
  • CABI Summary Records
Map Filters
Extent
Invasive
Origin
Third party data sources: