Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Bidens pilosa
(blackjack)

Toolbox

Datasheet

Bidens pilosa (blackjack)

Summary

  • Last modified
  • 30 June 2020
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Bidens pilosa
  • Preferred Common Name
  • blackjack
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • Bidens pilosa is a widespread weed of tropical, subtropical and warm temperate regions of the world. This species has high reproductive potential and fast-growing rates, which are traits enabling it to rapidly...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Bidens pilosa, flowers and fruit.
TitleFlowers and fruit
CaptionBidens pilosa, flowers and fruit.
Copyright©Chris Parker/Bristol, UK
Bidens pilosa, flowers and fruit.
Flowers and fruitBidens pilosa, flowers and fruit.©Chris Parker/Bristol, UK
B. pilosa seedlings have lanceolate cotyledons. The first true leaf is similar to later leaves.
TitleSeedling
CaptionB. pilosa seedlings have lanceolate cotyledons. The first true leaf is similar to later leaves.
CopyrightEduardo Leguizamon
B. pilosa seedlings have lanceolate cotyledons. The first true leaf is similar to later leaves.
SeedlingB. pilosa seedlings have lanceolate cotyledons. The first true leaf is similar to later leaves. Eduardo Leguizamon
Emerging seedlings of B. pilosa in the field.
TitleEmerging seedlings
CaptionEmerging seedlings of B. pilosa in the field.
Copyright©S.D. Sawant
Emerging seedlings of B. pilosa in the field.
Emerging seedlingsEmerging seedlings of B. pilosa in the field.©S.D. Sawant
Herbaceous, erect plant 20-150 cm tall, depending on growing conditions.
TitleGrowth habit
CaptionHerbaceous, erect plant 20-150 cm tall, depending on growing conditions.
Copyright©S.D. Sawant
Herbaceous, erect plant 20-150 cm tall, depending on growing conditions.
Growth habitHerbaceous, erect plant 20-150 cm tall, depending on growing conditions.©S.D. Sawant
Stems erect, square, glabrous or minutely hairy. Dark green, opposite leaves on stems and branches, 4-20 cm long, pinnate (or pinnatifid) with 2-3 pairs of pinnae and a single terminal leaflet.
TitleMature stems
CaptionStems erect, square, glabrous or minutely hairy. Dark green, opposite leaves on stems and branches, 4-20 cm long, pinnate (or pinnatifid) with 2-3 pairs of pinnae and a single terminal leaflet.
CopyrightEduardo Leguizamon
Stems erect, square, glabrous or minutely hairy. Dark green, opposite leaves on stems and branches, 4-20 cm long, pinnate (or pinnatifid) with 2-3 pairs of pinnae and a single terminal leaflet.
Mature stemsStems erect, square, glabrous or minutely hairy. Dark green, opposite leaves on stems and branches, 4-20 cm long, pinnate (or pinnatifid) with 2-3 pairs of pinnae and a single terminal leaflet.Eduardo Leguizamon
Achenes or seeds linear, black or dark brown, sparsely hairy. Pappus with 2-3 yellowish barbed awns which aid dispersal as they readily attach to animal skin, machinery or clothing.
TitleSeeds
CaptionAchenes or seeds linear, black or dark brown, sparsely hairy. Pappus with 2-3 yellowish barbed awns which aid dispersal as they readily attach to animal skin, machinery or clothing.
Copyright©S.D. Sawant
Achenes or seeds linear, black or dark brown, sparsely hairy. Pappus with 2-3 yellowish barbed awns which aid dispersal as they readily attach to animal skin, machinery or clothing.
SeedsAchenes or seeds linear, black or dark brown, sparsely hairy. Pappus with 2-3 yellowish barbed awns which aid dispersal as they readily attach to animal skin, machinery or clothing.©S.D. Sawant

Identity

Top of page

Preferred Scientific Name

  • Bidens pilosa L.

Preferred Common Name

  • blackjack

Other Scientific Names

  • Bidens abadiae DC
  • Bidens adhaerescens Vell.
  • Bidens africana Klatt
  • Bidens alausensis Kunth
  • Bidens alba (L.) DC.
  • Bidens arenaria Gand.
  • Bidens aurantiaca Colenso
  • Bidens barrancae M.E.Jones
  • Bidens bimucronata Turcz.
  • Bidens bonplandii Sch.Bip.
  • Bidens brachycarpa DC.
  • Bidens calcicola Greenm.
  • Bidens californica DC.
  • Bidens cannabina Lam.
  • Bidens caracasana DC.
  • Bidens caucalidea DC.
  • Bidens chilensis DC.
  • Bidens chilensis DC.
  • Bidens daucifolia DC.
  • Bidens deamii Sherff
  • Bidens decussata Pav. ex DC.
  • Bidens dichotoma Desf. ex DC.
  • Bidens exaristata DC.
  • Bidens hirta Jord.
  • Bidens hispida Kunth.
  • Bidens hybrida Thuill.
  • Bidens inermis S.Watson
  • Bidens leucantha (L.) Willd.
  • Bidens leucantha (L.) Willd.
  • Bidens leucanthemus (L.) E.H.L.Krause
  • Bidens minor (Wimm. & Grab.) Vorosch.
  • Bidens minuscula H.Lév. & Vaniot
  • Bidens montaubani Phil.
  • Bidens odorata Cav.
  • Bidens orendainae M.E.Jones
  • Bidens orientalis Velen. ex Bornm.
  • Bidens paleacea Vis.
  • Bidens pinnata Noronha
  • Bidens pumila (Retz.) Steud.
  • Bidens ramosissima Sherff
  • Bidens reflexa Link
  • Bidens rosea Sch.Bip.
  • Bidens scandicina Kunth
  • Bidens scandicina Kunth
  • Bidens striata Schott ex Sweet
  • Bidens sundaica Blume
  • Bidens taquetii H.Lev. & Vaniot
  • Bidens trifoliata Norona
  • Bidens valparadisiaca Colla
  • Bidens viciosoi Pau
  • Ceratocephalus pilosus Rich. ex Cass.
  • Coreopsis alba L.
  • Coreopsis corymbifolia Buch.-Ham. ex DC.
  • Coreopsis leucantha L.
  • Coreopsis leucantha L.
  • Coreopsis leucorrhiza Lour.
  • Coreopsis multifida DC.
  • Coreopsis odorata Poir.
  • Glossogyne chinensis Less.
  • Kerneria dubia Cass.
  • Kerneria pilosa (L.) Lowe

International Common Names

  • English: beggar tick; bur marigold; butterfly needles; cobbler's pegs; duppy needles; farmer's friend; needle grass; pitch forks; shepherd's needles; spanish needle; stick tight; white beggarticks
  • Spanish: acetillo; amor seco; arponcito; ceitilla; crespillo; moriseco; mozote; mozotillo; papuga; periquillo; pica-pica; picon
  • French: herbe d'aiguille; herbe villebague; piquant noirs
  • Chinese: gui zhen cao
  • Portuguese: agulha; amor-de-burro; erva-carneira; fura-capa

Local Common Names

  • Angola: olokosso
  • Argentina: amor seco; espina de erizo; picón; saetilla
  • Australia: cobbler's pegs
  • Barbados: Spanish needle
  • Bolivia: manzanilla del pais
  • Brazil: amor seco; carrapicho-de-duas pontas; coambi; erva-picao; fura-capa; goambu; picao; picao preto; picao-campo; pico-pico
  • Chile: asta de cabra; cacho de cabra
  • Colombia: cadillo; chipaca; masquia; papunga chipaca
  • Comoros: mtsohova; sindanou
  • Cook Islands: piripiri
  • Cuba: papuga; picon; romerillo blanco
  • Dominican Republic: margarita silvestre; romerillo
  • Fiji: batimadramadra; matakaro; matua kamate; mbatikalawau; mbatimandramandra
  • Germany: Zweizahn, Behaarter
  • Honduras: apestosa; rosilla grande
  • India: cobbler's pegs; dipmal; phutium
  • Indonesia: adjeran harenga; djaringan ketul
  • Jamaica: Spanish needle
  • Japan: ko-sendangusa
  • Kenya: blackjack
  • Laos: pak kwan cham
  • Mauritius: herbe villebague
  • Mexico: acahual; acahual blanco; aceitilla; aceitilla blanco; aceitillo; amapola; amor seco; cadillo; China; cruceta; é de milpa; hierba amarilla; hierba del pollo; iztacmozot; kutsúmu (purépecha); mozoquelite; mozote; mozote blanco; mozotl; quelite amargo blanco; rocía; rocilla; rosilla; saetilla; sepé; sepeke (tarahumara); stuyut; té de milpa blanco; te de playa; tutuk joi'dha (tepehuán); zetya
  • Myanmar: moat-so-ma-hlan; ne-gya-gale; ta-se-urt
  • New Caledonia: piquant noirs
  • New Zealand: cobbler's pegs
  • Niue: kofe tonga; kofetoga
  • Northern Mariana Islands: beggar ticks; Guam daisy
  • Panama: arponcito; cadillo; sirvulaca
  • Papua New Guinea: kobkob
  • Peru: amor seco; cadilla; pega-pega; perca
  • Philippines: dadayem; nguad; panibat; pisau-pisau; puriket; purpurikit; tagab; tubak-tubak
  • Puerto Rico: margarita; margarita silvestre; romerillo
  • Saudi Arabia: piquant; sornette zerb lapin
  • South Africa: blackjack; gewone knapseherel
  • Spain: jacalate; vara de jacalate
  • Taiwan: hsien-feng-tsau
  • Thailand: puen nok sai; yah koen-jam khao
  • Tonga: fisi'uli
  • Trinidad and Tobago: railway daisy; Spanish needle
  • Uruguay: amor seco
  • USA: beggar ticks; hairy beggarticks; Spanish needles
  • USA/Hawaii: ki; ki nehe; ki pipili; kookoolau; nehe; pilipili
  • Venezuela: cadillo rocero
  • Vietnam: cuc trang; su nha long
  • Zambia: blackjack
  • Zimbabwe: nyamaradza

EPPO code

  • BIDCH (Bidens chilensis)
  • BIDPI (Bidens pilosa)
  • CRLLE (Coreopsis leucantha)

Summary of Invasiveness

Top of page

Bidens pilosa is a widespread weed of tropical, subtropical and warm temperate regions of the world. This species has high reproductive potential and fast-growing rates, which are traits enabling it to rapidly spread and colonize new areas. A single plant may produce up to 6000 seeds per year and its seeds can easily be dispersed attached to animals, birds, human clothes or by wind and water. Seeds may remain viable for 5-6 years. This species is also adapted to grow in a wide range of habitats and soil types. It benefits from disturbances and quickly invades after fire and soil tillage. It has the potential to grow rapidly forming dense stands that outcompete and eliminate crops and native vegetation. The leaf and the root contain allelopathic substances that suppress the germination and establishment of seedlings of native plant species. The dense thickets can also affect roads, rails and recreation areas and are nuisance to travellers and tourists. Its burs irritate people and livestock and the roots, leaves, and flowers are strongly phytotoxic and poisonous. Currently it is listed as an agricultural and environmental weed in more than 40 countries.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Asterales
  •                         Family: Asteraceae
  •                             Genus: Bidens
  •                                 Species: Bidens pilosa

Notes on Taxonomy and Nomenclature

Top of page

Bidens is a taxonomically difficult genus of about 150-250 species occurring worldwide, but especially in subtropical, tropical, and warm-temperate regions of North and South America (Flora of North America, 2018). The taxonomy of Bidens is still unsatisfactory and some authors have suggested that this genus should be merged with the closely related genus Coreopsis. Numerous varieties of B. pilosa have been described, though not universally accepted (The Plant List, 2013). 

Description

Top of page

The following description is adapted from Flora of China Editorial Committee (2018):

Annual herbs, stems 30-180 cm tall, glabrous or very sparsely pubescent in upper part. Petiole 10-30(-70) mm; leaf blade either ovate to lanceolate, 30-70(-120) × 12-18(-45) mm, or pinnately 1-lobed, primary lobes 3-7, ovate to lanceolate, (10-)25-80 × (5-)10-40 mm, both surfaces pilosulose to sparsely hirtellous or glabrate, bases truncate to cuneate, ultimate margin serrate or entire, usually ciliate, apices acute to attenuate. Inflorescence of solitary capitula or capitula in lax corymbs. Capitula radiate or discoid; peduncles 10-20(-90) mm; calycular bracts (6-)7-9(-13), appressed, spatulate to linear, (3-)4-5 mm, abaxially usually hispidulous to puberulent, margins ciliate; involucres turbinate to campanulate, 5-6 × 6-8 mm; phyllaries (7-)8 or 9(-13), lanceolate to oblanceolate, 4-6 mm. Ray florets absent or (3-)5-8; lamina whitish to pinkish, 5-15 mm. Disk florets 20-40(-80); corollas yellowish, (2-)3-5 mm. Outer achenes red-brown, flat, linear to narrowly cuneate, (3-)4-5 mm, faces obscurely 2-grooved, sometimes tuberculate-hispidulous, margin antrorsely hispidulous, apex truncate or somewhat attenuate; inner achenes blackish, equally 4-angled, linear-fusiform, 7-16 mm, faces 2-grooved, tuberculate-hispidulous to sparsely strigullose, margin antrorsely hispidulous, apex attenuate; pappus absent, or of 2 or 3(-5) erect to divergent, retrorsely barbed awns (0.5-) 2-4 mm.

Plant Type

Top of page Annual
Biennial
Broadleaved
Herbaceous
Seed propagated

Distribution

Top of page

Bidens pilosa is a cosmopolitan weed native to South and Central America, but it is now very widespread throughout tropical and subtropical regions of the world. It can be found widely naturalized in Africa, Europe, Asia, America, Australia, and on many islands across the Indian and the Pacific Ocean (Flora of China Editorial Committee, 2018ISSG, 2018; PIER, 2018; PROTA, 2018; USDA-ARS, 2018). 

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 30 Jun 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

AlgeriaPresentIntroducedUSDA-ARS (2018)
AngolaPresentIntroducedGRIIS (2018); Holm et al. (1979)
BeninPresentIntroducedGRIIS (2018)
BotswanaPresentIntroducedInvasiveGRIIS (2018); Karikari et al. (2000)
Burkina FasoPresentTraore and Maillet (1998)
BurundiPresentIntroducedGRIIS (2018)
Cabo VerdePresentIntroducedUSDA-ARS (2018)
CameroonPresentIntroducedGRIIS (2018); Holm et al. (1979)
Central African RepublicPresentIntroducedUSDA-ARS (2018)
ChadPresentIntroducedGRIIS (2018)
ComorosPresentIntroducedGRIIS (2018)
Congo, Democratic Republic of thePresentIntroducedGRIIS (2018)
Congo, Republic of thePresentHolm et al. (1979)
Côte d'IvoirePresentIntroducedGRIIS (2018); Holm et al. (1979)
EgyptPresentIntroducedGRIIS (2018)
EritreaPresentIntroducedUSDA-ARS (2018)
EswatiniPresent, WidespreadIntroducedHolm et al. (1979); GRIIS (2018)
EthiopiaPresentIntroducedUSDA-ARS (2018); Sahile et al. (1992)
GabonPresentIntroducedUSDA-ARS (2018)
GhanaPresent, WidespreadIntroducedHolm et al. (1979); USDA-ARS (2018)
GuineaPresentIntroducedUSDA-ARS (2018); Holm et al. (1979)
KenyaPresent, WidespreadIntroducedInvasiveHolm et al. (1979); BioNET-EAFRINET (2016)
LesothoPresentIntroducedUSDA-ARS (2018)
LiberiaPresentHolm et al. (1979)
LibyaPresentIntroducedUSDA-ARS (2018)
MadagascarPresentIntroducedGRIIS (2018)
MalawiPresentIntroducedGRIIS (2018)
MaliPresentIntroducedUSDA-ARS (2018); Holm et al. (1979)
MauritiusPresent, WidespreadIntroducedInvasiveHolm et al. (1979); GRIIS (2018)
MayottePresentIntroducedInvasivePIER (2018)
MoroccoPresentIntroducedUSDA-ARS (2018)
MozambiquePresent, WidespreadIntroducedHolm et al. (1979); GRIIS (2018)
NamibiaPresentIntroducedInvasiveBethune et al. (2004)
NigerPresentIntroducedUSDA-ARS (2018); Holm et al. (1979)
NigeriaPresentIntroducedGRIIS (2018)
RéunionPresentIntroducedInvasivePIER (2018)
RwandaPresentIntroducedGRIIS (2018)
SenegalPresentIntroducedGRIIS (2018); Holm et al. (1979)
SeychellesPresentIntroducedInvasivePIER (2018)
Sierra LeonePresentIntroducedGRIIS (2018)
SomaliaPresentIntroducedUSDA-ARS (2018)
South AfricaPresentIntroducedInvasiveFoxcroft et al. (2008); Forsyth and Brown (1982)Weed
SudanPresentIntroducedUSDA-ARS (2018)
TanzaniaPresentIntroducedInvasiveBioNET-EAFRINET (2016); Chhabra et al. (1993)
TogoPresentIntroducedUSDA-ARS (2018)
UgandaPresentIntroducedInvasiveBioNET-EAFRINET (2016); Katende (1983)
ZambiaPresent, WidespreadIntroducedInvasiveHolm et al. (1979); GRIIS (2018)
ZimbabwePresent, WidespreadIntroducedInvasiveHolm et al. (1979); GRIIS (2018)

Asia

AfghanistanPresentHolm et al. (1979)
BangladeshPresentSudha et al. (1998)
BhutanPresentIntroducedGRIIS (2018)
British Indian Ocean TerritoryPresentIntroducedInvasivePIER (2018)
CambodiaPresentIntroducedInvasiveGRIIS (2018); Waterhouse (1993)
ChinaPresentHolm et al. (1979)
-AnhuiPresentFlora of China Editorial Committee (2018)
-FujianPresentIntroducedFlora of China Editorial Committee (2018)
-GansuPresentIntroducedFlora of China Editorial Committee (2018)
-GuangdongPresentIntroducedFlora of China Editorial Committee (2018)
-GuangxiPresentIntroducedFlora of China Editorial Committee (2018)
-GuizhouPresentIntroducedFlora of China Editorial Committee (2018)
-HainanPresentIntroducedFlora of China Editorial Committee (2018)
-HebeiPresentIntroducedFlora of China Editorial Committee (2018)
-HenanPresentIntroducedFlora of China Editorial Committee (2018)
-HubeiPresentIntroducedFlora of China Editorial Committee (2018)
-HunanPresentIntroducedFlora of China Editorial Committee (2018)
-JiangxiPresentIntroducedFlora of China Editorial Committee (2018)
-LiaoningPresentIntroducedFlora of China Editorial Committee (2018)
-ShaanxiPresentIntroducedFlora of China Editorial Committee (2018)
-ShandongPresentIntroducedFlora of China Editorial Committee (2018)
-SichuanPresentIntroducedFlora of China Editorial Committee (2018)
-YunnanPresentIntroducedFlora of China Editorial Committee (2018)
Hong KongPresentHolm et al. (1979)
IndiaPresentIntroducedGRIIS (2018); Moody (1989); Raj Singh and Patel (1992)
-Andhra PradeshPresentIntroducedInvasiveNaidu et al. (2015)
-Arunachal PradeshPresentIntroducedInvasiveChandra (2012)
-AssamPresentIntroducedInvasiveChandra (2012)
-Himachal PradeshPresentIntroducedInvasiveChandra (2012)
-Jammu and KashmirPresentIntroducedInvasiveChandra (2012)
-ManipurPresentIntroducedInvasiveChandra (2012)
-MeghalayaPresentIntroducedInvasiveChandra (2012); Sahay et al. (1999)
-MizoramPresentIntroducedInvasiveChandra (2012)
-NagalandPresentIntroducedInvasiveChandra (2012)
-SikkimPresentIntroducedInvasiveChandra (2012)
-TripuraPresentIntroducedInvasiveChandra (2012)
-Uttar PradeshPresentIntroducedInvasiveKhanna (2009); Singh (2010)
-UttarakhandPresentIntroducedInvasiveChandra (2012)
-West BengalPresentIntroducedInvasiveChandra (2012)
IndonesiaPresentIntroducedInvasiveSyamsuardi et al. (2016); Tjitrosemito (1987); Moody (1989); Waterhouse (1993)
-SumatraPresentIntroducedInvasiveSyamsuardi et al. (2016)
IsraelPresentIntroducedGRIIS (2018)
JapanPresentIntroducedInvasiveGRIIS (2018); Ishimine et al. (1986)
LaosPresentWaterhouse (1993)
LebanonPresentIntroducedUSDA-ARS (2018)
MalaysiaPresentIntroducedInvasiveWaterhouse (1993);
MaldivesPresentIntroducedGRIIS (2018)
MyanmarPresentIntroducedInvasiveGRIIS (2018); Waterhouse (1993)
NepalPresentIntroducedInvasiveGRIIS (2018)
North KoreaPresentIntroducedGRIIS (2018)
PakistanPresentIntroducedUSDA-ARS (2018)
PhilippinesPresentIntroducedInvasivePIER (2018); Moody (1989); Waterhouse (1993); Zulueta et al. (1995)
SingaporePresentIntroducedInvasiveChong et al. (2009)
South KoreaPresentIntroducedGRIIS (2018)
Sri LankaPresentIntroducedUSDA-ARS (2018)
TaiwanPresentIntroducedInvasiveGRIIS (2018); Guo and Lin (1986)
ThailandPresentIntroducedGRIIS (2018); Moody (1989); Waterhouse (1993)
United Arab EmiratesPresentIntroducedInvasiveGRIIS (2018)
VietnamPresentIntroducedInvasiveGRIIS (2018); Waterhouse (1993)
YemenPresentIntroducedInvasiveGRIIS (2018)

Europe

AustriaPresentIntroducedDAISIE (2018)
BelarusPresentIntroducedGRIIS (2018)
BelgiumPresentIntroducedDAISIE (2018)
CyprusPresentIntroducedInvasiveDAISIE (2018)
CzechiaPresentIntroducedDAISIE (2018)
DenmarkPresentIntroducedGRIIS (2018)
EstoniaPresentIntroducedDAISIE (2018)
FrancePresentIntroducedInvasiveDAISIE (2018); N'Dounga et al. (1983)
GermanyPresentIntroducedGRIIS (2018)
GreecePresentIntroducedInvasiveDAISIE (2018)
ItalyPresentIntroducedInvasiveDAISIE (2018)
NorwayPresentIntroducedGRIIS (2018)
PolandPresentIntroducedUSDA-ARS (2018)
PortugalPresentIntroducedInvasiveDAISIE (2018)
-AzoresPresentIntroducedInvasiveDAISIE (2018)
-MadeiraPresentIntroducedInvasiveDAISIE (2018)
SloveniaPresentIntroducedDAISIE (2018)
SpainPresentIntroducedInvasiveDAISIE (2018)
-Canary IslandsPresentIntroducedInvasiveDAISIE (2018)
United KingdomPresentIntroducedDAISIE (2018)

North America

Antigua and BarbudaPresentNativeBroome et al. (2007)
BarbadosPresentNativeBroome et al. (2007)
BelizePresentNativeUSDA-ARS (2018)
BermudaPresentIntroducedGRIIS (2018)
CanadaPresentIntroducedNaturalizedUSDA-NRCS (2018); Hudson et al. (1986)
-OntarioPresentIntroducedNaturalizedUSDA-NRCS (2018)
-QuebecPresentIntroducedNaturalizedUSDA-NRCS (2018)
Costa RicaPresentNativeUSDA-ARS (2018); CABI (Undated)
CubaPresentNativeAcevedo-Rodríguez and Strong (2012); Hudson et al. (1986)
DominicaPresentNativeBroome et al. (2007)
Dominican RepublicPresentIntroducedAcevedo-Rodríguez and Strong (2012); Holm et al. (1979)
El SalvadorPresentNativeUSDA-ARS (2018); Holm et al. (1979)
GuadeloupePresentNativeBroome et al. (2007)
HaitiPresentNativeAcevedo-Rodríguez and Strong (2012)
HondurasPresentNativeUSDA-ARS (2018); Holm et al. (1979)
JamaicaPresentNativeAcevedo-Rodríguez and Strong (2012); Holm et al. (1979)
MartiniquePresentNativeBroome et al. (2007)
MexicoPresentNativeVibrans (2018); Holm et al. (1979); CABI (Undated)Listed as a weed
MontserratPresentNativeBroome et al. (2007)
Netherlands AntillesPresentNativeBroome et al. (2007)
NicaraguaPresentNativeUSDA-ARS (2018); Salomon (1990); Otabbong et al. (1991)
PanamaPresentNativeUSDA-ARS (2018); Holm et al. (1979)
Puerto RicoPresent, WidespreadHolm et al. (1979); Acevedo-Rodríguez and Strong (2012); USDA-NRCS (2018)
Saint Kitts and NevisPresentNativeBroome et al. (2007)
Saint LuciaPresentNativeBroome et al. (2007)
Saint MartinPresentIntroducedNaturalizedISSG (2018)Listed as potentially invasive
Saint Vincent and the GrenadinesPresentNativeBroome et al. (2007)
Trinidad and TobagoPresent, WidespreadNativeHolm et al. (1979); Acevedo-Rodríguez and Strong (2012)
U.S. Virgin IslandsPresentAcevedo-Rodríguez and Strong (2012); USDA-NRCS (2018); CABI (Undated)St Thomas
United StatesPresentIntroducedInvasiveUSDA-NRCS (2018); Reddy and Singh (1992); Mitich (1994)
-AlabamaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-ArizonaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-CaliforniaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-ConnecticutPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-FloridaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-GeorgiaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-HawaiiPresent, WidespreadIntroducedInvasiveHolm et al. (1979); PIER (2018)
-KentuckyPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-LouisianaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-MarylandPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-MassachusettsPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-MississippiPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-MissouriPresentIntroducedNaturalizedUSDA-NRCS (2018)
-New MexicoPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-North CarolinaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-OhioPresentIntroducedNaturalizedUSDA-NRCS (2018)
-OregonPresentIntroducedNaturalizedUSDA-NRCS (2018)
-PennsylvaniaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-South CarolinaPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-TexasPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)
-WisconsinPresentIntroducedNaturalizedUSDA-NRCS (2018); CABI (Undated)

Oceania

American SamoaPresentIntroducedInvasivePIER (2018); USDA Forest Service (2000)
AustraliaPresentIntroducedInvasiveQueensland Government (2018); Holm et al. (1979)
-Lord Howe IslandPresentIntroducedInvasiveQueensland Government (2018); USDA Forest Service (2000)
-New South WalesPresentIntroducedInvasiveQueensland Government (2018); Agriculture Western Australia (2000)
-Northern TerritoryPresentIntroducedInvasiveQueensland Government (2018); Benson and McDougall (1994)
-QueenslandPresentIntroducedInvasiveQueensland Government (2018); Henderson (2000)
-South AustraliaPresentIntroducedInvasiveQueensland Government (2018); Benson and McDougall (1994)
-VictoriaPresentIntroducedInvasiveQueensland Government (2018); Benson and McDougall (1994)
-Western AustraliaPresentIntroducedInvasiveQueensland Government (2018); Agriculture Western Australia (2000)
Christmas IslandPresentIntroducedInvasiveQueensland Government (2018); USDA Forest Service (2000)
Cook IslandsPresentIntroducedInvasivePIER (2018); Waterhouse (1997)
Federated States of MicronesiaPresentUSDA Forest Service (2000)
FijiPresentIntroducedInvasivePIER (2018); Holm et al. (1979)
French PolynesiaPresentIntroducedInvasivePIER (2018); Waterhouse (1997)
GuamPresentIntroducedPIER (2018); USDA Forest Service (2000)
KiribatiPresentIntroducedInvasivePIER (2018); USDA Forest Service (2000)
Marshall IslandsPresentIntroducedInvasivePIER (2018); USDA Forest Service (2000)
NauruPresentIntroducedPIER (2018); USDA Forest Service (2000)
New CaledoniaPresentIntroducedInvasivePIER (2018); Waterhouse (1997)
New ZealandPresentIntroducedInvasiveUSDA-ARS (2018); Holm et al. (1979)
-Kermadec IslandsPresentUSDA Forest Service (2000)
NiuePresentIntroducedInvasivePIER (2018); USDA Forest Service (2000)
Norfolk IslandPresentIntroducedInvasiveQueensland Government (2018); Green (1994)
Northern Mariana IslandsPresentIntroducedInvasivePIER (2018); Seaver (2000)
PalauPresentIntroducedInvasiveQueensland Government (2018); USDA Forest Service (2000)
Papua New GuineaPresentIntroducedInvasivePIER (2018); Holm et al. (1979)
PitcairnPresentIntroducedInvasivePIER (2018); USDA Forest Service (2000)
SamoaPresentIntroducedInvasivePIER (2018); Waterhouse (1997)
Solomon IslandsPresentWaterhouse (1997)
TongaPresentIntroducedInvasivePIER (2018); Waterhouse (1997)
U.S. Minor Outlying IslandsPresentIntroducedInvasivePIER (2018)
-Johnston AtollPresentIntroducedInvasivePIER (2018)
VanuatuPresentWaterhouse (1997)
Wallis and FutunaPresentIntroducedInvasivePIER (2018); USDA Forest Service (2000)

South America

ArgentinaPresentFrancescangeli and Mitidieri (1990); GRIIS (2018); USDA-ARS (2018)
BoliviaPresentNativeUSDA-ARS (2018); Holm et al. (1979)
BrazilPresentIntroducedGRIIS (2018); Fleck et al. (1989); CABI (Undated)
-AlagoasPresentIntroducedNaturalizedFlora do Brasil (2018)
-AmazonasPresentIntroducedNaturalizedFlora do Brasil (2018)
-BahiaPresentIntroducedNaturalizedFlora do Brasil (2018)
-CearaPresentIntroducedNaturalizedFlora do Brasil (2018)
-Distrito FederalPresentIntroducedNaturalizedFlora do Brasil (2018)
-Espirito SantoPresentIntroducedNaturalizedFlora do Brasil (2018)
-GoiasPresentIntroducedNaturalizedFlora do Brasil (2018)
-MaranhaoPresentIntroducedNaturalizedFlora do Brasil (2018)
-Mato GrossoPresentIntroducedNaturalizedFlora do Brasil (2018); Sanchez and Zandonade (1997)
-Mato Grosso do SulPresentIntroducedNaturalizedFlora do Brasil (2018); Sanchez and Zandonade (1997)
-Minas GeraisPresentIntroducedNaturalizedFlora do Brasil (2018); CABI (Undated)
-ParaPresentIntroducedNaturalizedFlora do Brasil (2018)
-ParaibaPresentIntroducedNaturalizedFlora do Brasil (2018); CABI (Undated);
-ParanaPresentIntroducedNaturalizedFlora do Brasil (2018); Andrade et al. (1999)
-PernambucoPresentIntroducedNaturalizedFlora do Brasil (2018)
-PiauiPresentIntroducedNaturalizedFlora do Brasil (2018)
-Rio de JaneiroPresentIntroducedNaturalizedFlora do Brasil (2018)
-Rio Grande do NortePresentIntroducedNaturalizedFlora do Brasil (2018)
-Rio Grande do SulPresentIntroducedNaturalizedFlora do Brasil (2018)
-RondoniaPresentIntroducedNaturalizedFlora do Brasil (2018)
-Santa CatarinaPresentIntroducedNaturalizedFlora do Brasil (2018)
-Sao PauloPresentIntroducedNaturalizedFlora do Brasil (2018); Paulo et al. (1997); Fonseca et al. (1999)
-SergipePresentIntroducedNaturalizedFlora do Brasil (2018)
-TocantinsPresentIntroducedNaturalizedFlora do Brasil (2018)
ChilePresentPrado and Nitsche (1989); GRIIS (2018); USDA-ARS (2018)Also invasive on Juan Fernandez Islands
-Easter IslandPresentIntroducedInvasiveGRIIS (2018)
ColombiaPresentNativeUSDA-ARS (2018); CABI (Undated)
EcuadorPresentNativeUSDA-ARS (2018); CABI (Undated a)
-Galapagos IslandsPresentIntroducedInvasivePIER (2018); USDA Forest Service (2000)
French GuianaPresentNativeFunk et al. (2007); Mori and Brown (1998)
GuyanaPresentNativeFunk et al. (2007)
ParaguayPresentIntroducedParaguay Checklist (2020)
PeruPresentBazan and Ochea (1974); Cerna and Valdéz (1987); GRIIS (2018); USDA-ARS (2018)
SurinamePresentNativeFunk et al. (2007)
UruguayPresentNativeUSDA-ARS (2018); Holm et al. (1979)
VenezuelaPresent, WidespreadHolm et al. (1979); GRIIS (2018); USDA-ARS (2018)

Risk of Introduction

Top of page

The risk of new introduction of B. pilosa is very high. This species already has a widespread distribution across tropical, subtropical and warm temperate regions of the world where it behaves as a common weed of cultivated lands and pastures, but also of natural and semi-natural sites. It is a prolific seed producer and seeds can be easily dispersed attached to animals, birds, human clothes or by wind and water. It has also been reported as a contaminant in crop seeds and agricultural products (Sankaran and Suresh, 2013; ISSG, 2018; PROTA, 2018).

Habitat

Top of page

Bidens pilosa is a common weed of gardens, parks, pastures, roadsides, disturbed sites and waste areas near villages. It also invades waterways, riverbanks, wetlands, forest margins, open woodlands, coastal forests, grasslands, valleys, and secondary forests at elevations from sea level to 3600 m (Sankaran and Suresh, 2013; Davidse et al., 2018; Flora of China Editorial Committee, 2018; ISSG, 2018; Queensland Government, 2018). It is also grows as a weed in cultivated lands, pastures, and in extensive crops such as cereals, pulses and cotton (Holm et al., 1977; Galinato et al., 1999; Más and Lugo-Torres, 2013; ISSG, 2018; PROTA, 2018). 

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedCultivated / agricultural land Present, no further details
Managed forests, plantations and orchards Present, no further details
Disturbed areas Present, no further details
Rail / roadsides Present, no further details
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details
Natural grasslands Present, no further details
Riverbanks Present, no further details
Wetlands Present, no further details
Littoral
Coastal areas Present, no further details
Coastal dunes Present, no further details

Hosts/Species Affected

Top of page

Bidens pilosa is troublesome in both field and plantation crops and is reported to be a weed of 31 crops in more than 40 countries (Holm et al., 1977). It is regarded as a major weed of sugarcane, maize, coffee, tea, cotton, potatoes, vegetables, bananas, beans, tobacco, soybean and citrus in many countries across tropical American, Asia and Africa. It is also a serious weed in upland rice plantations in Thailand, Indonesia, Laos, Myanmar, Philippines and Vietnam (Holm et al., 1977; Galinato et al., 1999; PROTA, 2018; Vibrans, 2018).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Camellia sinensis (tea)TheaceaeMain
CitrusRutaceaeMain
Coffea arabica (arabica coffee)RubiaceaeMain
Glycine max (soyabean)FabaceaeMain
Gossypium (cotton)MalvaceaeMain
Musa (banana)MusaceaeMain
Nicotiana tabacum (tobacco)SolanaceaeMain
Oryza sativa (rice)PoaceaeMain
Phaseolus (beans)FabaceaeMain
Saccharum officinarum (sugarcane)PoaceaeMain
Solanum tuberosum (potato)SolanaceaeMain
Zea mays (maize)PoaceaeMain

Growth Stages

Top of page Flowering stage, Fruiting stage, Post-harvest, Vegetative growing stage

Biology and Ecology

Top of page

Genetics

The chromosome number reported for Bidens pilosa is 2n = 24, 36, 48, 72 (Flora of China Editorial Committee, 2018). For nine B. pilosa populations from Brazil the chromosome number was 2n = 48, 70 and 72 (Mariano and Marin-Morales, 1998). 

Reproductive biology

B. pilosa is a self-compatible species that may reproduce by selfing or by cross-pollination. Flowers are visited and pollinated by insects (ISSG, 2018; PROTA, 2018). In South Africa, bee-pollination has been reported (DAFF, 2011). 

Physiology and phenology

Germination on B. pilosa depends on light, humidity and oxygen concentration and under favourable conditions germination rates of 74–90% have been reported. Seeds germinate on the soil surface or in shallow soil (to a depth of 1 cm). Seeds are reported to have no dormancy, but may remain viable in the soil for 5-6 years (ISSG, 2018). There is usually a great flush of germination after tillage of the soil during the spring. In Brazil, it may be seen all year round but the major period of growth is during spring and summer (Kissmann and Groth, 1993). In North and Central America, this species flowers and produces fruits throughout the year (Holm et al., 1977; Davidse et al., 2018; Flora of North America, 2018). In South Africa, it has been reported flowering throughout the year, but primarily in summer to autumn (DAFF, 2011). 

Longevity 

B. pilosa is a C3 plant with a life cycle of about 150–360 days, (Kissmann and Groth, 1993). It normally behaves as an annual weed but may also behave as a perennial (Holm et al., 1979; Mitich, 1994).

Activity patterns 

B. pilosa is a fast-growing herb. Plants may start flowering six weeks after emergence and produce mature seeds four weeks after flowering. Each plant bears at least 80 flower heads with a potential production of ~3000 seeds in a single generation and four generations per year. Seed harvested from central achenes has a higher germination rate than that harvested from the peripheral achenes. Plants may continue producing fruits until their senescence (Sankaran and Suresh, 2013; PROTA, 2018).

Environmental requirements

B. pilosa has a strong taproot and tolerates low humidity, characteristics that allow it to grow in fairly dry places. Even when B. pilosa is capable of surviving severe droughts it prefers to grow in areas with annual rainfall in the range 500-3500 mm (Galinato et al., 1999). This species grows best in areas with full sunlight mean annual temperatures between 25°C and 38°C. The optimum temperature for germination is 25–30°C. Temperatures below 15°C and above 45°C are not favourable but it is tolerant to frosts and has roots capable of withstanding and regenerating after temperatures as low as -15°C. It thrives in a wide variety of soils with a pH ranging 4–9 and can tolerate a very high salinity, up to 100 mM NaCl. Flooding reduces seed emergence and plant survival. This species is not fire tolerant but is known to quickly invade burnt areas (Galinato et al., 1999; Sankaran and Suresh, 2013; ISSG, 2018; PIER, 2018; PROTA, 2018).

Climate

Top of page
ClimateStatusDescriptionRemark
Af - Tropical rainforest climate Preferred > 60mm precipitation per month
Am - Tropical monsoon climate Preferred Tropical monsoon climate ( < 60mm precipitation driest month but > (100 - [total annual precipitation(mm}/25]))
As - Tropical savanna climate with dry summer Preferred < 60mm precipitation driest month (in summer) and < (100 - [total annual precipitation{mm}/25])
Aw - Tropical wet and dry savanna climate Preferred < 60mm precipitation driest month (in winter) and < (100 - [total annual precipitation{mm}/25])
BS - Steppe climate Tolerated > 430mm and < 860mm annual precipitation
Cs - Warm temperate climate with dry summer Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Tolerated Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)
Cf - Warm temperate climate, wet all year Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
60 40

Air Temperature

Top of page
Parameter Lower limit Upper limit
Absolute minimum temperature (ºC) -15
Mean annual temperature (ºC) 25 38

Rainfall

Top of page
ParameterLower limitUpper limitDescription
Mean annual rainfall500 mm3500 mmmm; lower/upper limits

Rainfall Regime

Top of page Bimodal
Summer
Uniform
Winter

Soil Tolerances

Top of page

Soil reaction

  • acid
  • alkaline
  • neutral

Soil texture

  • heavy
  • light
  • medium

Special soil tolerances

  • saline

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Alternaria Pathogen Whole plant
Apion luteirostre Parasite Fruits/pods
Aspergillus Whole plant
Asphondylia bidens Parasite Seeds
Bidens mottle virus Pathogen Whole plant
Botryodiplodia Pathogen Whole plant
Botrytis Whole plant
Cassytha filiformis Parasite Whole plant
Cercospora bidentis Pathogen Leaves
Chalcophana viridipennis Herbivore Leaves
Chlamisus insularis Herbivore Leaves
Cladosporium Whole plant
Cropia minthe Herbivore Leaves
Curvularia Whole plant
Dioxyna chilensis Herbivore Seeds
Drechslera Whole plant
Ensina hyallipennis Herbivore Seeds
Entyloma guaraniticum Pathogen
Epicoccum Pathogen Whole plant
Fusarium Whole plant
Hypercompe hambletoni Herbivore Leaves
Liriomyza Herbivore Leaves
Liriomyza archboldi Herbivore Leaves
Liriomyza insignis Herbivore Seeds
Meloidogyne hapla Parasite Whole plant
Orobanche ramosa Parasite Whole plant
Penicillium Whole plant
Perrhybris phaloe Herbivore Leaves
Phaedon pertinax Herbivore Leaves
Phoma Whole plant
Physimerus pygmaeus Herbivore Leaves
Ralstonia solanacearum Whole plant
Rhizopus Pathogen Whole plant
Rhodobaenus cariniventris Herbivore Inflorescence/Stems
Rhodobaenus tredecimpunctatus Herbivore Stems
Rotylenchulus reniformis Whole plant
Sclerotinia sclerotiorum Whole plant
Sphaceloma bidentis Pathogen
Sphaceloma bidentis Whole plant
Trichoderma Whole plant
Uromyces bidenticola Pathogen Leaves
Xanthaciura insecta Herbivore Inflorescence

Notes on Natural Enemies

Top of page

 A wide range of pests and diseases have been recorded as affecting Bidens pilosa including Sonchus yellow net virus (SYNV) (Christie et al., 1974) and Bidens mosaic virus (BiMV; Kitajima et al.1961). A wide range of fungi have been detected in B. pilosa seeds including Cladosporium sp., Alternaria spp., Penicillium sp., Aspergillus sp. and others (Negishi, 1986). It is also susceptible to infection by Sclerotinia sclerotiorum (Phillips, 1992)., 
Ralstonia solanacearum causes wilt and death in B. pilosa (Kishun and Chand, 1987) while the love vine Cassytha filiformis and Orobanche ramosa parasitize plants of  B. pilosa (Holm et al., 1977; Torres, 1986).

Means of Movement and Dispersal

Top of page

Bidens pilosa spreads by seeds. A single plant may produce up to 6000 seeds per year. In this species, the fruits have tiny barbed hooks (or stiff bristles) that enable them to readily stick on humans clothes or the fur and feathers of passing animals as a means of dispersal. Seeds can also be dispersed by wind or water (DAFF, 2011; Sankaran and Suresh, 2013; ISSG, 2018; PROTA, 2018). 

Accidental introduction

The seeds of B. pilosa can be accidentally dispersed attached to humans clothes and agricultural machinery. It also has been reported as a crop seed contaminant (Elliot et al., 1993; DAFF, 2011; Sankaran and Suresh, 2013; ISSG, 2018; PROTA, 2018).

Intentional introduction

B. pilosa has been intentionally introduced for ornamental and agricultural purposes and to be used as medicinal herb (Sankaran and Suresh, 2013; PROTA, 2018; USDA-ARS, 2018). 

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Crop productionCommon weed of crops Yes Yes Holm et al., 1977
DisturbanceOften naturalizes along roadsides, ruderal areas and waste grounds Yes Yes ISSG, 2018
Escape from confinement or garden escapeSeeds Yes Yes DAFF, 2011
Garden waste disposalSeeds and weed of gardens Yes Yes ISSG, 2018
Intentional releaseIntroduced for ornamental and agricultural purposes and as medicinal herb Yes Yes Sankaran and Suresh, 2013
Medicinal useExtensively used in traditional medicine Yes Yes PROTA, 2018
Ornamental purposesIntroduced for ornamental and agricultural purposes and as a medicinal herb Yes Yes Sankaran and Suresh, 2013

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Clothing, footwear and possessionsSeed attached to human clothes Yes Yes Sankaran and Suresh, 2013
Debris and waste associated with human activitiesWeed of agricultural lands, contaminant in seed crops Yes Yes Sankaran and Suresh, 2013
Machinery and equipmentSeed as contaminant Yes Yes Sankaran and Suresh, 2013
LivestockSeed attached to animal fur Yes Yes Sankaran and Suresh, 2013
Soil, sand and gravelSeed as contaminant Yes Yes Sankaran and Suresh, 2013
WaterSeeds Yes Yes ISSG, 2018
WindSeeds Yes Yes ISSG, 2018

Impact Summary

Top of page
CategoryImpact
Cultural/amenity Positive and negative
Economic/livelihood Positive and negative
Environment (generally) Positive and negative
Human health Positive and negative

Impact

Top of page

Soyabean yield loss due to increased density (plants/m²) of B. pilosa was determined in Argentina (Arce et al., 1995). A density of one plant resulted in a yield loss of 9.4%; two plants, 17.3%; and four to eight plants, 28%. Higher densities than eight plants produced a 43% yield loss. Competition primarily affected the number of pods per plant.

Trials on coral limestone at Senbaru, Okinawa, Japan, showed that B. pilosa var. radiata was a serious competitor in sugarcane in terms of leaf area index, leaf dry weight and number of tillers, causing decreases in the main yield-controlling elements. Competition became severe 60 days after crop emergence and caused nearly 80% growth suppression on plots left with no control for 120 days. In contrast, suppression of the weed by the crop was only 10% at 60 days after planting, decreasing by a further 4% up to 120 days (Ishimine et al., 1986).

B. pilosa densities of 183-222 plants/m² reduced the growth of beans (Phaseolus vulgaris) in trials during 1978-79. Shading caused by the weed was the factor most affecting the dry weight of above-ground bean plants (Carvalho, 1980). B. pilosa at a density of 1.85 plants/m² produced a reduction of 18.75% of total bean production. Ten plants/m² caused a reduction of 48.9% (Cerna and Valdez, 1987). Blanco et al. (1996) reported that B. pilosa reduced the biomass, number and weight of bean plants and seeds. There was a significant, negative correlation between weed density and bean growth.

Economic Impact

Top of page

Bidens pilosa is listed as a troublesome agricultural weed impacting at least 31 crops in over 40 countries. For example, in soyabean, yield losses between 9.4% and 43% due to the presence of this weed have been reported (Arce et al., 1995). B. pilosa is also a serious competitor in sugarcane plantations (Ishimine et al., 1986). It has also produced losses from 18% to 48% in bean plantations reducing the biomass, number and weight of bean plants and seeds (Holm et al., 1977; Cerna and Valdez, 1987; Blanco et al. 1996; ISSG, 2018; PROTA, 2018).  

B. pilosa is also a host and vector of harmful parasites with substantiated detrimental impacts on agriculture such as Root knot nematodes (Meloidogyne incognita), Tomato spotted wilt virus and fungal pests such as Cercospora spp. and Uromyces spp. (ISSG, 2018; PROTA, 2018; Vibrans, 2018). 

Environmental Impact

Top of page

Bidens pilosa is an aggressive weed that grows forming dense stands that outcompete and displace crop and native vegetation. Under favourable conditions, B. pilosa may grow three times faster than similar plant species (Sankaran and Suresh, 2013; ISSG, 2018). Its leaf and root contain allelopathic substances that suppress the germination and establishment of seedlings of native plant species (Khanh et al., 2009). In highly invaded areas, the dense thickets can also impede access to roads, trails, and recreational areas, and are a nuisance to travellers and tourists. Its burs irritate people and livestock and the roots, leaves and flowers are strongly phytotoxic and poisonous (Sankaran and Suresh, 2013; BioNET-EAFRINET, 2016; ISSG, 2018; PIER, 2018; PROTA, 2018; Queensland Government, 2018).

B. pilosa is regarded as invasive and a serious environmental weed in Australia and on many islands in the Pacific region such as Hawaii, Fiji, Cook Islands, Marquesas and the French Polynesia (PIER, 2018; Queensland Government, 2018). In Australia, for instance, it has been listed as a priority environmental weed in two Natural Resource Management regions and in southeastern Queensland it is considered to be among the top 200 most invasive plant species (Queensland Government, 2018). 

Impact on habitats 

Bidens pilosa is a hardy weed capable of invading a vast range of habitats including grassland, heathland, forest clearings, wetlands, plantations, streamlines, roadsides, pasture, coastal areas and agriculture areas (Sankaran and Suresh, 2013; BioNET-EAFRINET, 2016PIER, 2018; PROTA, 2018; Queensland Government, 2018). In Australia, dense thickets of B. pilosa outcompete native species on the exposed margins of bushland and in revegetation sites (Queensland Government, 2018). 

Threatened Species

Top of page
Threatened SpeciesConservation StatusWhere ThreatenedMechanismReferencesNotes
Panicum fauriei (Carter's panicgrass)NatureServe; USA ESA listing as endangered speciesHawaiiCompetition (unspecified)US Fish and Wildlife Service, 2011
Scaevola coriacea (dwarf naupaka)NatureServe; USA ESA listing as endangered speciesHawaiiCompetition (unspecified)US Fish and Wildlife Service, 2010a
Schiedea spergulina var. leiopodaNational list(s); USA ESA listing as endangered speciesHawaiiCompetition - monopolizing resourcesUS Fish and Wildlife Service, 2010b

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Pioneering in disturbed areas
  • Highly mobile locally
  • Benefits from human association (i.e. it is a human commensal)
  • Fast growing
  • Has high reproductive potential
  • Gregarious
  • Has propagules that can remain viable for more than one year
Impact outcomes
  • Damaged ecosystem services
  • Infrastructure damage
  • Modification of successional patterns
  • Monoculture formation
  • Negatively impacts agriculture
  • Negatively impacts tourism
  • Reduced amenity values
  • Reduced native biodiversity
  • Threat to/ loss of native species
Impact mechanisms
  • Allelopathic
  • Competition - monopolizing resources
  • Competition - smothering
  • Pest and disease transmission
  • Pathogenic
  • Poisoning
  • Rapid growth
  • Produces spines, thorns or burrs
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Highly likely to be transported internationally deliberately
  • Difficult to identify/detect as a commodity contaminant
  • Difficult to identify/detect in the field
  • Difficult/costly to control

Uses

Top of page

Bidens pilosa has been reported to possess effective pharmacological properties like antibacterial activity, anti-inflammatory and antiallergic activity, antimalarial activity, T helper cell modulator, immunosuppressive antihyperglycemic, anti-hypertensive, antiulcerogenic, hepatoprotective, anti-leukemic, anticancer, antipyretic, anti-virus, anti-angiogenic, anti-rheumatic, antibiotic (Bairwa et al., 2010). 

Phenylheptatriyne, an insecticidal allelochemical extracted from B. pilosa, has been tested with mixed results (Bernard et al., 1990). 

B. pilosa is used in traditional Asian and African medicine to treat rheumatism, sore eyes, abdominal troubles, ulcers, swollen glands, heartaches, kidney problems, toothache, malaria and dysentery (Sankaran and Suresh, 2013; PROTA, 2018). In Mexico, it is used to treat stomach disorders, haemorrhoids and diabetes and it also possesses antimicrobial properties (Alvarez et al., 1996). This species also has a long history of use by the indigenous people of the Amazon and virtually all parts of the plant are used. Taylor (1998) provides detailed documentation of medicinal properties and ethnic uses of rainforest plants, including B. pilosa.

The Igorots of Bontoc (Philippines) mix B. pilosa with grains of rice to make rice wine (Galinato et al., 1999). It is also used as an indigenous leafy vegetable in southern Africa. In sub-Saharan Africa, its fresh or dried shoots and young leaves are eaten as a leaf vegetable, especially in times of food scarcity. It is also an ingredient of sauces eaten with many staple foods there (ISSG, 2018; PROTA, 2018).

Uses List

Top of page

Human food and beverage

  • Beverage base
  • Vegetable

Materials

  • Pesticide

Medicinal, pharmaceutical

  • Traditional/folklore

Similarities to Other Species/Conditions

Top of page

Bidens pilosa can be recognized by the elongated bur-like fruits that bear recurved or hooked bristles which have played an important role in its spread (Holm et al., 1977). Kissmann and Groth (1993) distinguish Bidens subalternans, on the basis that it has four awns on the achene, but other authors treat this as synonymous with B. pilosa. Several other Bidens species can occur as weeds but are readily distinguished by their more divided leaves (e.g. Bidens bipinnata) and/or deep yellow flowers (e.g. Bidens biternata).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Cultural Control

Bidens pilosa can be controlled by persistent mowing, hoeing and hand pulling in order to prevent seed production (Pope, 1968).

Biological Control

The natural enemies of B. pilosa have not been investigated in detail as potential biological control agents. Waterhouse (1994) considers the agromyzid flies as the most promising. The fungal pathogens in the list of natural enemies are all likely to be host specific and so they are also potential biological control agents.

Chemical Control

Chemical control of B. pilosa includes the use of herbicides such as glyphosate-trimesium, oxyfluorfen, atrazine, 2,4-D glyphosate, pendimethalin, metribuzin, diuron, paraquat, nicosulfuron, and simazine (EchegoyTn et al., 1996; Ferreira et al., 1996; Paulo et al., 1997; Vieira et al., 1998b; Melhoranca, 1999). 

Several biotypes of B. pilosa have developed resistance to paraquat, imazaquin, ALS herbicides, chlorimuron, and bipyridilium herbicides (Njoroge, 1991; Heap, 1997; Christoffoleti and Foloni, 1999).

References

Top of page

Abd El-Ghani MM, 1998. Weed communities of date-palm orchards in the Feiran Oasis (south Sinai, Egypt). Fragmenta Floristica et Geobotanica, 43(2):257-271; 46 ref

Acevedo-Rodríguez, P., Strong, M. T., 2012. Catalogue of the Seed Plants of the West Indies, Washington, DC, USA: Smithsonian Institution.1192 pp. http://botany.si.edu/Antilles/WestIndies/catalog.htm

Adams RM, Goss GJ, 1978. Empyreuma pugione L. (Lepidoptera: Ctenuchidae) - a new U.S. introduction. Florida Entomologist, 61(4):250

Agriculture Western Australia, 2000. Weed Science, Invasive garden plants list. Perth, Australia. [http://www.agric.wa.gov.au/progserv/plants/weeds/weedsci4.htm]

Alvarez L, Marquina S, Villarreal ML, Alonso D, Aranda E, Delgado G, 1996. Bioactive polyacetylenes from Bidens pilosa. Planta Medica, 62(4):355-357; 20 ref

Alwar RPA, Roa WK, 1992. Secondary and micro nutrient composition of a few common weeds of coffee plantations. Journal of Coffee Research, 22(2):143-147

Amaral A, Takaki M, 1998. Achene dimorphism in Bidens pilosa L. (Asteraceae) as determined by germination test. Brazilian Archives of Biology and Technology, 41(1):11-16; 12 ref

Andrade CAde B, Constantin J, Scapim CA, Lucca e Braccini Ade, Angelotti F, 1999. Effect of weed competition in different spacing upon yield of three common bean (Phaseolus vulgaris L.) cultivars. Cie^circumflex~ncia e Agrotecnologia, 23(3):529-539; 19 ref

Arce OE, Robinet HA, Mansilla de Andrada N, Dfaz y BE, Guillén S, 1995. Determinación de pérdidas de cultivo de soja (Glycine max) por competencia de saetilla (Bidens subalternans) en el noroeste de la provincia de Tucumán-Argentina. Res·menes XII Congreso Latinoamericano de Malezas, Montevideo, Uruguay

Asmus GL, Andrade PJM, 1997. Reproduction of Meloidogyne javanica in some weed species frequently found in the western region of Brazil. Comunicado Te^acute~cnico - EMBRAPA Centro de Pesquisa Agropecua^acute~ria do Oeste, No. 19:3 pp.; 10 ref

Bairwa K, Rajeev Kumar, Sharma, R. J., Roy, R. K., 2010. An updated review on Bidens pilosa L. Der Pharma Chemica, 2(3), 325-337. http://derpharmachemica.com/vol2-iss3/DPC-2010-2-3-325-337.pdf

Ballard R, 1986. Bidens pilosa complex (Asteraceae) in North and Central America. American Journal of Botany, 73(10):1452-1465

Bardner R, Mathenge WM, 1974. First record of Phytometra orichalcea (F.) (Lepidoptera: Noctuidae) feeding on coffee foliage. East African Agricultural and Forestry Journal, 40(2):214

Bartolome, A. P., Villaseñor, I. M., Yang WenChin, 2013. Bidens pilosa L. (Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based Complementary and Alternative Medicine, 2013, Article ID 340215. http://www.hindawi.com/journals/ecam/2013/340215/ doi: 10.1155/2013/340215

Bazan LC, Ochea RG, 1974. Determination of the period of weed competition in tomatoes (Lycopersicon esculentum var. Marglobe) in Lambayeque.Univ. Nac. Pedro Ruiz Gallo, Ocho de Octubre 637, Lambayeque, Peru., 2 pp

Becker B, Terrones F, Horchler P, 1998. Weed communities in Andean cropping systems of northern Peru. Angewandte Botanik, 72(3/4):113-130; 45 ref

Benson D, McDougall L, 1994. Ecology of Sydney plant species: Part 2 - Dicotyledon families Asteraceae to Buddlejaceae. Cunninghamia 3:789-1004

Bernard CB, Arnason JT, Philogene BJR, Lam J, Waddell T, 1990. In vivo effect of mixtures of allelochemicals on the life cycle of the European corn borer, Ostrinia nubilalis. Entomologia Experimentalis et Applicata, 57(1):17-22

Bethune, S., Griffin, M., Joubert, D. F., 2004. National Review of Invasive Alien Species, Namibia, Windhoek, Namibia: Ministry of Environment and Tourism.

BioNET-EAFRINET, 2016. Invasive plants key and fact sheets. In: Invasive plants key and fact sheets . http://keys.lucidcentral.org/keys/v3/eafrinet/index.htm

Blanco HG, Arevalo RA, 1991. Effect of soil management on the month by month emergence of six weeds in Sao Paulo, Brazil. Proceedings of the 1991 meeting of the Spanish Weed Science Society Madrid, Spain; Sociedad Espanola de Malherbologia, 82-86

Blanco HG, ArTvalo RA, Blanco FMG, 1996. Injury of Bidens pilosa L. on bean plants. Arquivos do Instituto Biolo^acute~gico (Sa^tilde~o Paulo), 63(2):35-40; 17 ref

Blanco HG, Blanco FMG, 1991. Effects of soil management on emergence of annual weeds. Pesquisa Agropecuaria Brasileira, 26(2):215-220

Broome, R., Sabir, K., Carrington, S., 2007. Plants of the Eastern Caribbean. Online database. In: Plants of the Eastern Caribbean. Online database , Barbados: University of the West Indies.http://ecflora.cavehill.uwi.edu/index.html

Cabrera A, Zardini E, 1978. Manual de la Flora de los alrededores de Buenos Aires. Acme. (2a Edición)

Campbell G, Lambert JDH, Arnason T, Towers GHN, 1982. Allelopathic properties of alpha - terthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae. Proceedings of the Florida State Horticultural Society, 84:168-171

Capote S, Orta R, Perez E, 1986. Reproduction strategy of a weed: Bidens pilosa L. Revista del Jardin Botanico Nacional, 7(1):73-79

Cardoso VJM, 1997. Germination and initial growth of some weeds in different soil types. Naturalia Sao-Paulo 22: 61-74

Carvalho DA de, 1980. Study of specific competition of weeds on bean crop. 1. Competitive effects of Alexander grass (Brachiaria plantaginea (Link) Hitch) and hairy beggarticks (Bidens pilosa L.) in different densities on growth and mineral nutrition of common bean (Phaseolus vulgaris L.). Pesquisa Agropecuaria Brasileira, 24(9):1131-1137

Carvalho DA, 1983. Competitive effect of different densities of Brachiaria plantaginea (Link) Hitch. and Bidens pilosa L. on the final stand, seed production and primary components of production in beans (Phaseolus vulgaris L.). Malezas, 11(3):228-234

Cerna L, Valdez V, 1987. The influence of populations of the weeds Sorghum halepense (L.) Pers. and Bidens pilosa L. on the yield of beans (Phaseolus vulgaris L.) 'Pirata 2'. Turrialba, 37(4):303-309

Chandra SK, 2012. Invasive Alien Plants of Indian Himalayan Region—Diversity and Implication. American Journal of Plant Sciences, 3, 177-184.

Chandran RS, Megh Singh, Sydha Salihu, 1999. Thiazopyr stimulates hairy beggarticks (Bidens pilosa) germination. Weed Technology, 13(3):576-580; 18 ref

Chhabra SC, Mahunnah RLA, Mshiu EN, 1993. Plants used in traditional medicine in Eastern Tanzania. VI. Angiosperms (Sapotaceae to Zingiberaceae). Journal of Ethnopharmacology, 39(2):83-103

Chivinge OA, 1996. Studies on the germination and seedling emergence of Bidens pilosa and its response to fertilizer application. Transactions of the Zimbabwe Scientific Association, 70:1-5; 18 ref

Chong, K. Y., Tan, H. T. W., Corlett, R. T., 2009. A checklist of the total vascular plant flora of Singapore: native, naturalised and cultivated species, Singapore: Raffles Museum of Biodiversity Research, National University of Singapore.273 pp. https://lkcnhm.nus.edu.sg/app/uploads/2017/04/flora_of_singapore_tc.pdf

Christie SR, Christie RG, Edwardson JE, 1974. Transmission of a bacilliform virus of sowthistle and Bidens pilosa. Phytopathology, 64(6):840-845

Christie SR, Crawford WE, 1978. Plant virus range of Nicotiana benthamiana. Plant Disease Reporter, 62(1):20-22

Christie SR, Edwardson JR, Zettler FW, 1968. Characterization and electron microscopy of a virus isolated from Bidens and Lepidium. Plant Disease Reporter 52:763-768

Christoffoleti PJ, Foloni LL, 1999. Dose response curves of resistant and susceptible Bidens pilosa to ALS inhibitor herbicides. 1999 Brighton crop protection conference: weeds. Proceedings of an international conference, Brighton, UK, 15-18 November 1999., Volume 1:159-162; 4 ref

Cui, Q. G., He, W. M., 2009. Soil biota, but not soil nutrients, facilitate the invasion of Bidens pilosa relative to a native species Saussurea deltoidea. Weed Research (Oxford), 49(2), 201-206. doi: 10.1111/j.1365-3180.2008.00679.x

DAFF, 2011. Blackjack. In: South Africa Department of Agriculture, Forestry and Fisheries brochures Pretoria, South Africa: South Africa Department of Agriculture, Forestry and Fisheries. .http://www.nda.agric.za/docs/Brochures/BlackjackPG.pdf

DAISIE, 2018. Delivering Alien Invasive Species Inventories for Europe. In: Delivering Alien Invasive Species Inventories for Europe . http://www.europe-aliens.org/

Davidse, G., Sousa-Sánchez, M., Knapp, S., Chiang, F., UUoa Ulloa, C., Pruski, J. F., 2018. Flora Mesoamericana, Volumen 5, Parte 2: Asteraceae, [ed. by Davidse, G., Sousa-Sánchez, M., Knapp, S., Chiang, F., UUoa Ulloa, C., Pruski, J. F.]. St. Louis, USA: Missouri Botanical Garden Press.xix + 608 pp.

Desbiez MO, Tort M, Thellier M, 1991. Control of a symmetry-breaking process in the course of the morphogenesis of plantlets of Bidens pilosa L. Planta, 184(3):397-402

Duke JA, Ayensu ES, 1985. Medicinal Plants of China, Reference Publications, Inc.

EchegoyTn PE, Valverde B, Garita I, 1996. Joint action of paraquat and 2,4-D on weeds associated with coffee in Costa Rica. Manejo Integrado de Plagas, No. 41:8-15; 14 ref

Edwardson JR, Purcifull DE, Christie RG, Christie SR, 1976. Blue lupine, a natural host for bidens mottle virus. Plant Disease Reporter, 60(9):776

Elliot P, Fujisaka S, Dapusala A, Jayson E, 1993. Farmers' upland rice seed management practices and resulting weed seed contamination. Paper presented at the 24th Annual Conference of the Pest Management Council of the Philippines, 4-7 May 1993, Cebu City, Philippines

Favero C, Jucksch I, Costa LM, Alvarenga RC, Neves JCL, 2000. Growth and nutrient accumulation by volunteer plants and by legumes used for green manure. Revista Brasileira de Cie^circumflex~ncia do Solo, 24(1):171-177; 19 ref

Fenner M, 1980. The induction of a light requirement in Bidens pilosa seeds by leaf canopy shade. New Phytologist, 84(1):103-106

Fenner M, 1980. The inhibition of germination of Bidens pilosa seeds by leaf canopy shade in some natural vegetation types. New Phytologist, 84(1):95-101

Ferreira FA, da Silva AA, Ferreira LR, 1996. Effectiveness of nicosulfuron, in two formulations, in controlling weeds in maize (Zea mays L.). Ciencia e Agrotecnologia 20: 1, 19-24

Finot SVL, Urbina PA, Minoletti OML, Wilckens ER, Figueroa RM, Riquelme CM, 1996. Achene and seedling morphology of Asteraceae weed species from south-central Chile. I. Agro-Ciencia, 12(1):15-29; 26 ref

Fleck NG, Mengarda IP, Pinto JJO, 1989. Weed interference in sunflower. Competition in space. Dep. Biol., Escol. Super. Agric. Lavras, Caixa Postal 37, 37 200 Lavras, Minas Gerais, Brasil

Flora do Brasil, 2018. Brazilian flora 2020. In: Brazilian flora 2020 Rio de Janeiro, Brazil: Rio de Janeiro Botanic Garden.http://floradobrasil.jbrj.gov.br

Flora of China Editorial Committee, 2018. Flora of China. In: Flora of China St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria.http://www.efloras.org/flora_page.aspx?flora_id=2

Flora of North America Editorial Committee, 2018. Flora of North America North of Mexico. In: Flora of North America North of Mexico St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria.http://www.efloras.org/flora_page.aspx?flora_id=1

Fonseca HS, Jaehn A, Silva M de FA, 1999. Associacao de Ditylenchus dipsaci com plantas daninhas colhidas apos a cultura do alho. (Association of Ditylenchus dipsaci with weeds harvested after the garlic crop.) Nematologia Brasileira, 23(2):100-102

Forsyth C, Brown NAC, 1982. Germination of the dimorphic fruits of Bidens pilosa L. New Phytologist, 90(1):151-164

Fourie PF, 1989. Citrus silver mite - a sporadic pest on citrus and tea. Information Bulletin - Citrus and Subtropical Fruit Research Institute, No. 201:7-8

Foxcroft, C. L., Richardson, D. M., Wilson, J. R. U., 2008. Ornamental plants as Invasive Aliens: Problems and Solutions in Kruger National Park, South Africa. Environmental Management, 41, 32-51.

Francescangeli N, Mitidieri A, 1990. Identificación de las principales malezas de la soja de a Rep·blica Argentina. INTA San Pedro

Gabard J, Thalinger PP, Nemergut K, Cotterman J, 1998. Azafenidin: a new herbicide with applications in perennial crops for the control of herbicide resistant weeds. Comptes-rendus 6e^grave~me symposium Me^acute~diterrane^acute~en EWRS, Montpellier, France, 13-15 Mai, 1998., 375-376

Galinato MI, Moody K, Piggin CM, 1999. Upland rice weeds of South and Southeast Asia. Upland rice weeds of South and Southeast Asia., v + 156 pp.; 15 pp. of ref

Garrido Lda R, Dhingra OD, 1997. Weed species as potential reservoir hosts of Diaporthe phaseolorum f.sp. meridionalis. Fitopatologia Brasileira, 22(1):108-110; 9 ref

Goly PG, TThT H, 1997. Effects of pineapple weeds on Pratylenchus brachyurus in C(te d'Ivoire. Cahiers Agricultures, 6(3):199-202; 17 ref

Green P, 1994. Flora of Australia Volume 49 - Oceanic Islands 1. Canberra, Australia: Australian Government Publishing Service

GRIIS, 2018. Global Register of Introduced and Invasive Species. http://www.griis.org/

Guo YX, Lin ZT, 1986. Review of the chemistry of natural products from Taiwan. National Science Council Monthly, 14(10):1223-1252

Heap IM, 1997. The occurrence of herbicide-resistant weeds worldwide. Pesticide Science, 51:235-243

Henderson C, 2000. Weed management in lettuce. DPI Note. Queensland Horticulture Institute, Department of Primary Industries, Brisbane, Australia. [http://www2.dpi.qld.gov.au/dpinotes/hortic/vegetable/h00004.html]

Herrera F, Ramfrez C, 1996. Soil solarization and poultry manure additions on propagule survival of Cyperus rotundus, Rottboellia cochinchinensis and Bidens pilosa. Agronomia Mesoamericana, 7(1):1-8; 17 ref

Hoffman B, Holzl J, 1988. New chalcones from Bidens pilosa. Planta Medica, 54(1):52-54

Hoffmann B, Holzl J, 1988. A methylated chalcone glucoside from Bidens pilosa. Phytochemistry, 27(11):3700-3701

Holm LG, Pancho JV, Herberger JP, Plucknett DL, 1979. A geographical atlas of world weeds. New York, USA: John Wiley and Sons, 391 pp

Holm LG, Plucknett DL, Pancho JV, Herberger JP, 1977. The World's Worst Weeds. Distribution and Biology. Honolulu, Hawaii, USA: University Press of Hawaii

Hudson JB, Graham EA, Chan G, Finlayson AJ, Towers GHN, 1986. Comparison of the antiviral effects of naturally occurring thiophenes and polyacetylenes.University of British Columbia, Vancouver, BC, Canada V6T 1W5. Planta Medica, No.6, 453-457

Igarashi M, Kinoshita N, Ikeda T, Kameda M, Hamada M, Takeuchi T, 1997. Resormycin, a novel herbicidal and antifungal antibiotic produced by a strain of Streptomyces platensis. I. Taxonomy, production, isolation and biological properties. Journal of Antibiotics, 50(12):1020-1025; 20 ref

Inostrosa S, I, Fournier O, LA, 1982. Allelopathetic effect of Gliricidia sepium (Jacq.) Steud (Madero Negro). Revista de Biologia Tropical, 30(1):35-39

Ishimine Y, Miyazato K, Matsumoto S, 1986. Physiological and ecological characteristics of weeds of sugarcane fields in the Ryukyu Islands. 7. Competition between sugarcane and Bidens pilosa L. var. radiata Scherff. at earlier stages of growth. Weed Research, Japan, 31(4):287-293

Ishimine Y, Nakama M, Matsumoto S, 1987. Allelopathic potential of Paspalum urvillei STEUD., Bidens pilosa L. var. radiata SCHERFF., and Stellaria aquatica SCOP., dominant weeds in sugarcane fields in the Ryukyu Islands. Weed Research, Japan, 32(4):274-281

ISSG, 2018. Global Invasive Species Database (GISD). In: Global Invasive Species Database (GISD) : Invasive Species Specialist Group of the IUCN Species Survival Commission.http://www.issg.org/database/welcome/

Karikari SK, Bagai C, Segwagwe A, 2000. Allelopathic activity of five Botswana weed species on Bambara groundnut [Vigna subterranea (L.) Verdc] and sorghum [Sorghum bicolor (L.) Moench]. Crop Research (Hisar), 20(3):397-406; 25 ref

Katende AB, 1983. Plant exploration in Uganda. Bothalia, 14(3/4):1016-1017

Khanh TD, Cong LC, Xuan TD, Uezato Y, Deba F, Toyama T, Tawata S, 2009. Allelopathic plants: 20 hairy beggarticks (Bidens pilosa L.). Allelopathy Journal, 24, 243-254.

Khanna, K. K., 2009. Invasive alien angiosperms of Uttar Pradesh. Biological Forum, 1(2), 34-39. http://www.researchtrend.net

Kirszenzaft SL, Felippe GM, 1978. Effects of photoperiod and growth regulators on flowering of Bidens pilosa L. Ciencia e Cultura, 30(3):357-361

Kissmann K, Groth D, 1993. Plantas infestantes e Nocivas. Sao Paulo, Brazil: BASF Brasileira Tomo II

Kitajima EW, Costa CL, Carvalho AMB, 1961. Bragantia 20: 503

Kuhn GB, Lin MT, Costa CL, 1980. Transmission, host range and symptoms of Bidens mosaic virus. Fitopatologia Brasileira, 5(1):39-50

Lines MN, Fournier O LA, 1979. Allelopathic effect of Cupressus lusitanica Mill. on the germination of weed seeds. Revista de Biologia Tropical, 27(2):223-230

Mariano AC, Marin-Morales MA, 1998. Chromosome polymorphism and cytotype establishment in Bidens pilosa (Asteraceae). Cytobios, No. 384:45-60; 34 ref

Marinis G de, 1973. Note on the reproductive capacity of Bidens pilosa.Sao Jose do Rio Preto, Sao Paulo, Brazil. Revista de Agricultura, 48(2/3):95-100

Más EG; Lugo-Torres ML, 2013. Common Weeds in Puerto Rico and US Virgin Islands. (Malezas Comunes en Puerto Rico and Islas Vírgenes Americanas). NRCS USDA Servicio de Conservación de Recursos Naturales. Ârea del Caribe/Caribbean Area. .http://www.nrcs.usda.gov/wps/portal/nrcs/detail/plantmaterials/newsroom/feature/?cid=stelprdb1078250

McSorley R, Campbell CW, 1980. Relationship between nematode density and weed density in avocado groves. Nematropica, 10(2):96-102

Melhoranca AL, 1999. Efficiency of fenoxaprop-P-ethyl applied in isolation and in a mixture with metsulfuron for control of weeds in unirrigated rice. Controle quimico de plantas daninhas nos cerrados: ata e anais. XII Reuniao de Pesquisadores em Controle de Plantas Daninhas nos Cerrados, 23 e 24 de junho de 1999, Corumba, MS, Brazil. Documentos -EMBRAPA-Agropecuaria-Oeste. No. 3, 71-74

Mitich LW, 1994. Beggarticks. Weed Technology, 8(1):172-175

Montenegro-Galvez V, Criollo-Escobar H, 1978. The effect of competition between cool climate Phaseolus beans cv. Diacol Andino and weeds. Revista de Ciencias Agricolas, 8(1/14):26-34

Moody K, 1989. Weeds reported in rice in South and Southeast Asia. Los Banos, Philippines: IRRI, 442

Mori SA, Brown JL, 1998. Epizoochorous dispersal by barbs, hooks, and spines in a lowland moist forest in central French Guiana. Brittonia 50: 2, 165-173

Mzengereza, K., Msiska, O. V., Kapute, F., Kang'ombe, J., Singini, W., Kamangira, A., 2014. Nutritional value of locally available plants with potential for diets of tilapia Rendalli in pond aquaculture in Nkhata Bay, Malawi. Journal of Aquaculture Research and Development, 5(6), 265. http://omicsonline.org/open-access/nutritional-value-of-locally-available-plants-with-potential-for-diets-of-tilapia-rendalli-in-pond-aquaculture-in-nkhatabay-malawi-2155-9546-5-265.php?aid=31198

Nagata T, Dusi AN, Inove AK, Kitajima EW, 1995. A new viral disease of pea (Pisum sativum) caused by bidens mosaic potyvirus. Plant Disease, 79(1):82

Naidu, M. T., Kumar, O. A., Venkaiah, M., 2015. Invasive alien plant species in tropical forests of Eastern Ghats in northern Andhra Pradesh, India. Indian Forester, 141(4), 428-432. http://indianforester.co.in

N'Dounga M, Balansard G, Babadjamian A, David PT, Gasquet M, Boudon G, 1983. A contribution to the study of Bidens pilosa L. Identification and antiparasitic activity of phenyl-1 heptatriene-1,3,5. Plantes Medicinales et Phytotherapie, 17(2):64-75

Negishi H, 1986. Studies on the scab of Bidens pilosa L. Journal of Agricultural Science, Japan, 31(2):111-118

Nirmal Singh, Gill JS, Krishnanada N, 1979. Prevalence of root-knot nematode in Nilgiri hills. Indian Phytopathology, 32(3):499-501

Njoroge JM, 1991. Tolerance of Bidens pilosa L and Parthenium hysterophorus L to paraquat (Gramoxone) in Kenya coffee. Kenya Coffee, 56(651):999-1001

Njume, C., Goduka, N. I., George, G., 2014. Indigenous leafy vegetables (imifino, morogo, muhuro) in South Africa: a rich and unexplored source of nutrients and antioxidants. African Journal of Biotechnology, 13(19), 1933-1942. http://www.academicjournals.org/article/article1399652386_Njume%20et%20al.pdf

Ocampo Ruiz RA, Medina Pitalua JL, Dominguez Valenzuela JA, 1990. Influence of temperature, light, stratification and mechanical scarification on germination of four weeds important to Mexican agriculture. Revista Chapingo, 15(67-68):167-171

Orsenigo JR, Zitter TA, 1971. Vegetable virus problems in South Florida as related to weed science. Proceedings of the Florida State Horticultural Society, 84:168-171

Otabbong E, Izquierdo MML, Talavera SFT, Geber UH, Ohlander LJR, 1991. Response to P fertilizer of Phaseolus vulgaris L. growing with or without weeds in a highly P-fixing mollic Andosol. Tropical Agriculture, 68(4):339-343

Paraguay Checklist, 2020. Paraguay Checklist, Tropicos website. In: Paraguay Checklist, Tropicos website St Louis, MO, USA: Missouri Botanical Garden.http://tropicos.org/Project/Paraguay

Pattison RR, Goldstein G, Ares A, 1998. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia, 117(4):449-459; 55 ref

Paulo EM, Fujiwara M, Terra MM, Martins FP, Pires EJP, 1997. Chemical weed control in grapevine 'Niagara Rosada'. Bragantia, 56(1):135-143; 11 ref

PFAF, 2018. Plants For A Future Database. In: Plants For A Future Database Dawlish, UK: Plants For A Future.http://www.pfaf.org/USER/Default.aspx

Phillips AJL, 1992. Some common weed species as alternative hosts for Sclerotinia sclerotiorum. Phytophylactica, 24(2):207-210

Piccolo ALG, Marinis Gde, 1980. Water loss from seedlings of Bidens pilosa grown in the open air. Resumos XIII Congresso Brasileiro de Herbicidas e Ervas Daninhas, Bahia, 1980., 97-98

Piepenbring M, 1999. New and poorly known smut fungi in Cuba. Mycological Research, 103(4):459-467; 29 ref

PIER, 2018. Pacific Islands Ecosystems at Risk. In: Pacific Islands Ecosystems at Risk Honolulu, Hawaii, USA: HEAR, University of Hawaii.http://www.hear.org/pier/index.html

Pitelli RA, Melo WJ, Costallat RF, Uptake and movement of nutrients in Bidens pilosa L. Trabajos y Resumenes, III Congreso Asociacion Latinoamericana de Malezas "ALAM" y VIII Reunion Argentina de Malezas y su Control, "ASAM", Mar del Plata, 1976. ASAM. 1356 Av. Corrientes 123, Buenos Aires Argentina, Vol. 1:169-181

Pope WT, 1968. Manual of wayside plants of Hawaii. Rutland, Vermont: Charles E. Tuttle Co

Prado CE, Nitsche MJ, 1989. Notes on two insects associated with weed species present in Chile: Protensina hyalipennis Hennig and Dioxyna chilensis (Macquart) (Diptera: Tephritidae). Agricultura Tecnica (Santiago), 49(4):370-372

Prete CEC, Nunes Júnior J, Menten JOM, 1984. Fungi associated with weed seeds. Summa Phytopathologica, 10(3/4):260-267; 19 ref

PROTA, 2018. PROTA4U web database. In: PROTA4U web database Wageningen and Nairobi, Netherlands\Kenya: Plant Resources of Tropical Africa.https://www.prota4u.org/database/

Purcifull DE, Christie SR, Zitter TA, Bassett MJ, 1971. Natural infection of lettuce and endive by bidens mottle virus. Plant Disease Reporter 55:1061-1063

Purcifull DE, Zitter TA, 1972. Virus diseases affecting lettuce and endive in Florida. Proceedings of the Florida State Horticultural Society 1971, 84:165-168

Py C, Lacoeuilhe JJ, Teisson C, 1984. L'ananas; sa culture, ses produits. Paris, France: Maisonneuve and Larose, and Agence de Cooperation Culturelle et Technique, 562 pp

Queensland Government, 2018. Weeds of Australia, Biosecurity Queensland Edition. In: Weeds of Australia, Biosecurity Queensland Edition , Australia: Queensland Government.http://keyserver.lucidcentral.org/weeds/data/media/Html/search.html

Ram Kishun, Ramesh Chand, 1987. New collateral hosts for Pseudomonas solanacearum. Indian Journal of Mycology and Plant Pathology, 17(2):237

Reddy KN, Singh M, 1992. Germination and emergence of hairy beggarticks (Bidens pilosa). Weed Science, 40(2):195-199

Rios A, Mantovani E, Sediyama C, 1989. Effect of temperature on the germination of polymorphic fruits of Bidens pilosa L. Malezas, 17(2):20-26

Rocha OJ, 1996. The effects of achene heteromorphism on the dispersal capacity of Bidens pilosa L. International Journal of Plant Sciences, 157(3):316-322; 35 ref

Rochecouste E, Vaughan R, 1959. Weeds of Mauritius. Bidens pilosa L. Leaflet series 1. Reduit, Mauritius: Mauritius Sugar Industry Research Institute

Sahay G, Sarma BK, Gupta HS, Pathak KA, Prasad MS, 1999. Biotic stresses of pulses in North Eastern Hill region of India. Indian Journal of Hill Farming, 12(1/2):8-16; 7 ref

Sahile G, Tanner DG, Zewdie L, 1992. A study of weed emergence patterns in the bread wheat producing agro-ecological zones of southeastern Ethiopia. The seventh regional wheat workshop for eastern, central and southern Africa [edited by Tanner, D.G.; Mwangi, W.] Mexico; CIMMYT, 503-509

Sahoo UK, Jha LK, 1997. Effect of depth and duration of burial on seed viability and dormancy of Bidens pilosa L. and Richardsonia pilosa H.B.K. Seed Research, 25(1):5-10; 21 ref

Salomon E, 1990. Maize-bean intercrop system in Nicaragua. Effect of plant arrangements and population densities on the land equivalent ratio (LER), relative yield total (RYT) and weed abundance. Working Paper - International Rural Development Centre, Swedish University of Agricultural Sciences, No. 148:35pp.; 56 ref

Sanchez W, Zandonade D, 1997. Problems and solutions on the control of weeds in MS and MT. Symposium on herbicides and weeds, Dourados, MS, Brazil, 23-25 September 1997. Documentos -EMBRAPA-Centro-de-Pesquisa-Agropecuaria-do-Oeste, No. 13, 160-161

Sankaran, K. V., Suresh, T. A., 2013. RAP Publication, Bangkok, Thailand: FAO Regional Office for Asia and the Pacific (No.2013/06), 213 pp. http://www.fao.org/asiapacific/rap/publications/pub-rap-results/en/

Sarker SD, Bartholomew B, Nash RJ, Robinson N, 2000. 5-O-methylhoslundin: an unusual flavonoid from Bidens pilosa (Asteraceae). Biochemical Systematics and Ecology, 28(6):591-593; 21 ref

Seaver AL, 2000. Crop profile for papaya in Northen Mariana Islands. [http://pestdata.ncsu.edu/cropprofiles/docs/mppapaya.html]

Shanley B, Lewis O, 1969. The protein nutritional value of wild plants used as dietary supplements in Natal. Plant Foods for Human Nutrition 1:253-258

Sherff EE, 1937. The genus Bidens. Part 1. Field Museum of Natural History, Botany Series 16:1-346

Singh R, Hazarika UK, 1996. Allelopathic effects of Galinsoga parviflora Car. and Bidens pilosa L. on germination and seedling growth of soybean and groundnut. Allelopathy Journal, 3(1):89-92; 4 ref

Singh R, Patel CS, Singh R, 1992. Crop weed competition in groundnut under mid altitudes of Meghalaya. Journal of Hill Farming, 5:89-83

Singh SC, 2010. Bidens pilosa: a potential medicinal pantropic weed extends its distribution to Lucknow, UP, India. Journal of Medicinal and Aromatic Plant Sciences, 32(4):483-486. http://www.cimap.res.in/publication_jmaps.html

Souza IFde, 1996. Allelopathic effects of rye in the Alto Paranaiba region, Minais Gerais. Cie^circumflex~ncia e Agrotecnologia, 20(2):245-248; 10 ref

Stevens GA, Tang CS, 1987. Inhibition of crop seedling growth by hydrophobic root exudates of the weed Bidens pilosa. Journal of Tropical Ecology, 3(1):91-94

Sudha T, Nanjappa HV, Ramachandrappa BK, Mudalagiriyappa, Mallikarjuna GB, 1998. Effect of soil solarization on weed control and seedling production in tobacco seedbeds. Tobacco Research, 24(1):53-56; 8 ref

Syamsuardi, N, Yuranti, W, Yulianti, W, Usman S, 2016. Floristic analysis of alien invasive plant species at some conservation areas in tropical forest of West Sumatra. Der Pharmacia Lettre, 8(19), 237-245.

Tang CS, 1986. Continuous trapping techniques for the study of allelochemicals from higher plants. The science of allelopathy [edited by Putnam, A.R.; Tang, C.S.] New York, USA; John Wiley & Sons Inc., 113-131

Taylor L, 1998. Herbal secrets of the rainforets: Over 50 powerful herbs and their medicinal uses. Sacramento, California: Prima Publishing

The Plant List, 2013. The Plant List: a working list of all plant species. Version 1.1. In: The Plant List: a working list of all plant species. Version 1.1 Richmond, London, UK: Royal Botanic Gardens, Kew.http://www.theplantlist.org

Tjitrosemito S, 1987. Threshold level of weed control in soybean crop for small farmers. Proceedings, 11th Asian Pacfic Weed Science Society Conference Taipei, Taiwan; Asian Pacific Weed Science Society, No. 1:247-258

Torres R, 1986. Orobanche ramosa, phanerogamous parasite. Host plant species. Ciencia y Tecnica en la Agricultura, Tabaco, 9(1):7-17

Traore H, Maillet J, 1998. Weeds in cereal crops in Burkina Faso. Agriculture et Developpement 20:47-59

US Fish and Wildlife Service, 2010. Scaevola coriacea (dwarf naupaka). 5-Year Review: Summary and Evaluation. In: Scaevola coriacea (dwarf naupaka). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.19 pp.

US Fish and Wildlife Service, 2010. Schiedea spergulina var. leiopoda (no common name). 5-Year Review: Summary and Evaluation. In: Schiedea spergulina var. leiopoda (no common name). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.11 pp.

US Fish and Wildlife Service, 2011. Panicum fauriei var. carteri (no common name). 5-Year Review: Summary and Evaluation. In: Panicum fauriei var. carteri (no common name). 5-Year Review: Summary and Evaluation : US Fish and Wildlife Service.17 pp.

USDA Forest Service, 2000. Institute of Pacific Islands Forestry, Pacific Island Ecosystems at Risk (PIER) Invasive plant species: Bidens pilosa L., Asteraceae [http://www.hear.org/pier/bipil.htm]

USDA, 1970. Selected Weeds of the United States. Agriculture Handbook No. 366. Washington DC, USA: United States Department of Agriculture, 324-325

USDA-ARS, 2018. Germplasm Resources Information Network (GRIN). Online Database. In: Germplasm Resources Information Network (GRIN). Online Database Beltsville, Maryland, USA: National Germplasm Resources Laboratory.https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx

USDA-NRCS, 2001. The PLANTS Database, Version 3.1 (http://plants.usda.gov). National Plant Data Center, Baton Rouge, LA 70874-4490 USA

Valarini PJ, Frighetto RTS, Spadotto CA, 1996. Potential of the medicinal herbage Cymbopogon citratus for the control of pathogens and weeds in irrigated bean crop. Científica (Jaboticabal), 24(1):199-214; 14 ref

Valio IFM, Kirszenzaft SL, Rocha RF, 1972. Germination of achenes of Bidens pilosa L. I. Effect of light of different wavelengths. New Phytologist 71:677-682

Valladares G, 1992. Contribution to the knowledge of leaf-miners from the genus Calycomyza Hendel (Diptera: Agromyzidae), in Argentina. II. Revista de la Sociedad Entomologica Argentina, 50(1-4):179-200

Vanegas Ch JA, 1986. Plant density, row spacing and fertilizer effects in weeded and unweeded stands of common beans, Phaseolus vulgaris L. Rapport Institutionen for vaxtodling, Sveriges Lantbruksuniversitet, No. 160:45pp

Vibrans, H., 2018. Weeds of Mexico. (Malezas de México). In: Malezas de México . http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm

Vieira DJ, Beltrao NE de M, Nobrega LB da, Azevedo DMP de, Oliveira JN de, 1998. Chemical control of weeds in sesame crop. Comunicado Tecnico Embrapa Algodao, No. 72

Vieira DJ, Nobrega LB da, Azevedo DMP de, Beltrao NE de M, 1998. Effect of dose and mixture of herbicides on the control of weeds in herbaceous cotton. Comunicado Tecnico Embrapa Algodao, No. 94

Wagner WL, Herbst DR, Sohmer SH, 1999. Manual of the Flowering Plants of Hawaii, Revised ed. Honolulu, USA: University of Hawaii Press

Waterhouse DF(Editor), 1994. Biological control of weeds: Southeast Asian prospects. Canberra, Australia; Australian Centre for International Agricultural Research (ACIAR), v + 302 pp

Waterhouse DF, 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. ACIAR Monograph No. 21. Canberra, Australia: Australian Centre for International Agricultural Research, 141 pp

Waterhouse DF, 1997. The major invertebrate pests and weeds of agriculture and plantation forestry in the southern and western Pacific. Canberra, Australia: Australian Centre for International Agricultural Research. 93 pp. [ACIAR Monograph No. 44]

Waterhouse DF, Norris KR, 1987. Biological control: Pacific prospects. viii + 454pp

Wetter MA, Cochrane TS, Black MR, Iltis HH, Berry PE, 2001. Checklist of the vascular plants of Wisconsin. Wisconsin State Herbarium: University of Wisconsin - Madison. [http://wiscinfo.doit.wisc.edu/herbarium/index.html]

Whistler AW, 1992. Polynesian herbal medicine. Hong Kong, China: Everbest Printing Co

Willers P, 1997. First record of Meloidogyne mayaguensis Rammah and Hirschmann, 1988: Heteroderidae on commercial crops in the Mpumalanga province, South Africa. Inligtingsbulletin - Instituut vir Tropiese en Subtropiese Gewasse, No. 294:19-20; 2 ref

Yang WenChin, 2014. Botanical, pharmacological, phytochemical, and toxicological aspects of the antidiabetic plant Bidens pilosa L. Evidence-based Complementary and Alternative Medicine, 2014, Article ID 698617. http://www.hindawi.com/journals/ecam/2014/698617/

Zelaya IA, Owen MDK, Pitty A, 1997. Germination characteristics of eight weed species from the dry tropics. CEIBA, 38(2):137-149; 3 pp. of ref

Zeng RenSen, Luo ShiMing, 1996. The allelopathic effects of root exudates of Cymbopogon citratus, Ageratum conyzoides and Bidens pilosa. Journal of South China Agricultural University, 17(2):119-120; 4 ref

Zobolo AM, Staden Jvan, 1999. The effects of deflowering and defruiting on growth and senescence of Bidens pilosa L. South African Journal of Botany, 65(1):86-88; 13 ref

Zulueta MCA, Tada M, Ragasa CY, 1995. A diterpene from Bidens pilosa. Phytochemistry, 38(6):1449-1450; 8 ref

Distribution References

Acevedo-Rodríguez P, Strong M T, 2012. Catalogue of the Seed Plants of the West Indies. Washington, DC, USA: Smithsonian Institution. 1192 pp. http://botany.si.edu/Antilles/WestIndies/catalog.htm

Agriculture Western Australia, 2000. Weed Science, Invasive garden plants list., Perth, Australia: http://www.agric.wa.gov.au/progserv/plants/weeds/weedsci4.htm

Andrade C A de B, Constantin J, Scapim C A, Lucca e Braccini A de, Angelotti F, 1999. Effect of weed competition in different spacing upon yield of three common bean (Phaseolus vulgaris L.) cultivars. (Efeito da competição com plantas daninhas em diferentes espaçamentos sobre o rendimento de três cultivares de feijão (Phaseolus vulgaris L.).). Ciência e Agrotecnologia. 23 (3), 529-539.

Bazan LC, Ochea RG, 1974. Determination of the period of weed competition in tomatoes (Lycopersicon esculentum var. Marglobe) in Lambayeque., Lambayeque, Peru: Univ. Nac. Pedro Ruiz Gallo, Ocho de Octubre 637. 2 pp.

Benson D, McDougall L, 1994. Ecology of Sydney plant species: Part 2 - Dicotyledon families Asteraceae to Buddlejaceae. In: Cunninghamia, 3 789-1004.

Bethune S, Griffin M, Joubert D F, 2004. National Review of Invasive Alien Species, Namibia. Windhoek, Namibia: Ministry of Environment and Tourism.

BioNET-EAFRINET, 2016. Invasive plants key and fact sheets. In: Invasive plants key and fact sheets. http://keys.lucidcentral.org/keys/v3/eafrinet/index.htm

Broome R, Sabir K, Carrington S, 2007. Plants of the Eastern Caribbean. Online database. In: Plants of the Eastern Caribbean. Online database. Barbados: University of the West Indies. http://ecflora.cavehill.uwi.edu/index.html

CABI, 2020. CABI Distribution Database: Status as determined by CABI editor. Wallingford, UK: CABI

CABI, Undated. Compendium record. Wallingford, UK: CABI

CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI

CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

Cerna L, Valdéz V, 1987. The influence of populations of the weeds Sorghum halepense (L.) Pers. and Bidens pilosa L. on the yield of beans (Phaseolus vulgaris L.) 'Pirata 2'. (Influencia de las poblaciones de las malezas Sorghum halepense (L.) Pers. y Bidens pilosa L. sobre el rendimiento de frijol (Phaseolus vulgaris L.) 'Pirata 2'.). Turrialba. 37 (4), 303-309.

Chandra S K, 2012. Invasive alien plants of Indian Himalayan Region - diversity and implication. American Journal of Plant Sciences. 177-184.

Chhabra S C, Mahunnah R L A, Mshiu E N, 1993. Plants used in traditional medicine in Eastern Tanzania. VI. Angiosperms (Sapotaceae to Zingiberaceae). Journal of Ethnopharmacology. 39 (2), 83-103. DOI:10.1016/0378-8741(93)90024-Y

Chong K Y, Tan H T W, Corlett R T, 2009. A checklist of the total vascular plant flora of Singapore: native, naturalised and cultivated species. Singapore: Raffles Museum of Biodiversity Research, National University of Singapore. 273 pp. https://lkcnhm.nus.edu.sg/app/uploads/2017/04/flora_of_singapore_tc.pdf

DAISIE, 2018. Delivering Alien Invasive Species Inventories for Europe. In: Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/

Fleck N G, Mengarda I P, Pinto J J O, 1989. Weed interference in sunflower. Competition in space. (Interferência de plantas daninhas na cultura do girassol competição no espaço.). Pesquisa Agropecuária Brasileira. 24 (9), 1131-1137.

Flora do Brasil, 2018. Brazilian flora 2020. In: Brazilian flora 2020. Rio de Janeiro, Brazil: Rio de Janeiro Botanic Garden. http://floradobrasil.jbrj.gov.br

Flora of China Editorial Committee, 2018. Flora of China. In: Flora of China. St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria. http://www.efloras.org/flora_page.aspx?flora_id=2

Fonseca H S, Jaehn A, Silva M de F A, 1999. Association of Ditylenchus dipsaci with weeds harvested after the garlic crop. (Associação de Ditylenchus dipsaci com plantas daninhas colhidas após a cultura do alho.). Nematologia Brasileira. 23 (2), 100-102.

Forsyth C, Brown N A C, 1982. Germination of the dimorphic fruits of Bidens pilosa L. New Phytologist. 90 (1), 151-164. DOI:10.1111/j.1469-8137.1982.tb03248.x

Foxcroft C L, Richardson D M, Wilson J R U, 2008. Ornamental plants as Invasive Aliens: Problems and Solutions in Kruger National Park, South Africa. Environmental Management. 32-51.

Francescangeli N, Mitidieri A, 1990. (Identificación de las principales malezas de la soja de a República Argentina)., INTA San Pedro.

Funk V, Hollowell T, Berry P, Kelloff C, Alexander S N, 2007. Contributions from the United States National Herbarium, Washington, USA: Department of Systematic Biology - Botany, National Museum of Natural History, Smithsonian Institution. 55, 584 pp.

Green P, 1994. Flora of Australia Volume 49 - Oceanic Islands 1., Canberra, Australia: Australian Government Publishing Service.

GRIIS, 2018. Global Register of Introduced and Invasive Species., http://www.griis.org/

Guo Y X, Lin Z T, 1986. Review of the chemistry of natural products from Taiwan. National Science Council Monthly. 14 (10), 1223-1252.

Henderson C, 2000. Weed management in lettuce. In: DPI Note, Brisbane, Australia: Queensland Horticulture Institute, Department of Primary Industries. http://www2.dpi.qld.gov.au/dpinotes/hortic/vegetable/h00004.html

Holm L, Pancho J V, Herberger J P, Plucknett D L, 1979. A geographical atlas of world weeds. New York, Chichester (), Brisbane, Toronto, UK: John Wiley and Sons. xlix + 391 pp.

Hudson J B, Graham E A, Chan G, Finlayson A J, Towers G H N, 1986. Comparison of the antiviral effects of naturally occurring thiophenes and polyacetylenes. Planta Medica. 453-457. DOI:10.1055/s-2007-969252

Ishimine Y, Miyazato K, Matsumoto S, 1986. Physiological and ecological characteristics of weeds of sugarcane fields in the Ryukyu Islands. 7. Competition between sugarcane and Bidens pilosa L. var. radiata Scherff. at earlier stages of growth. Weed Research, Japan. 31 (4), 287-293.

ISSG, 2018. Global Invasive Species Database (GISD). In: Global Invasive Species Database (GISD). Invasive Species Specialist Group of the IUCN Species Survival Commission. http://www.issg.org/database/welcome/

Karikari S K, Bagai C, Segwagwe A, 2000. Allelopathic activity of five Botswana weed species on Bambara groundnut [Vigna subterranea (L.) Verdc] and sorghum [Sorghum bicolor (L.) Moench]. Crop Research (Hisar). 20 (3), 397-406.

Katende A B, 1983. Plant exploration in Uganda. In: Bothalia, 14 (3/4) 1016-1017.

Khanna K K, 2009. Invasive alien angiosperms of Uttar Pradesh. Biological Forum. 1 (2), 34-39. http://www.researchtrend.net

Mitich L W, 1994. Beggarticks. Weed Technology. 8 (1), 172-175.

Moody K, 1989. Weeds reported in rice in South and Southeast Asia., Los Banos, Philippines: IRRI. 442.

Mori S A, Brown J L, 1998. Epizoochorous dispersal by barbs, hooks, and spines in a lowland moist forest in central French Guiana. Brittonia. 50 (2), 165-173. DOI:10.2307/2807846

Naidu M T, Kumar O A, Venkaiah M, 2015. Invasive alien plant species in tropical forests of Eastern Ghats in northern Andhra Pradesh, India. Indian Forester. 141 (4), 428-432. http://indianforester.co.in

N'Dounga M, Balansard G, Babadjamian A, David P T, Gasquet M, Boudon G, 1983. A contribution to the study of Bidens pilosa L. Identification and antiparasitic activity of phenyl-1 heptatriene-1,3,5. (Contribution à l'étude de Bidens pilosa L. Identification et activité antiparasitaire de la phényl-1 heptatriyne-1,3,5.). Plantes Médicinales et Phytothérapie. 17 (2), 64-75.

Otabbong E, Izquierdo M M L, Talavera S F T, Geber U H, Ohlander L J R, 1991. Response to P fertilizer of Phaseolus vulgaris L. growing with or without weeds in a highly P-fixing mollic Andosol. Tropical Agriculture. 68 (4), 339-343.

Paraguay Checklist, 2020. Paraguay Checklist, Tropicos website. In: Paraguay Checklist, Tropicos website, St Louis, MO, USA: Missouri Botanical Garden. http://tropicos.org/Project/Paraguay

Paulo E M, Fujiwara M, Terra M M, Martins F P, Pires E J P, 1997. Chemical weed control in grapevine 'Niagara Rosada'. (Controle químico e cultural das plantas daninhas na videira 'Niagara Rosada'.). Bragantia. 56 (1), 135-143. DOI:10.1590/S0006-87051997000100014

PIER, 2018. Pacific Islands Ecosystems at Risk. In: Pacific Islands Ecosystems at Risk. Honolulu, Hawaii, USA: HEAR, University of Hawaii. http://www.hear.org/pier/index.html

Prado C E, Nitsche M J, 1989. Notes on two insects associated with weed species present in Chile: Protensina hyalipennis Hennig and Dioxyna chilensis (Macquart) (Diptera: Tephritidae). (Notas sobre dos insectos asociados a especies de malezas presentes en Chile: Protensina hyalipennis Hennig y Dioxyna chilensis (Macquart) (Diptera: Tephritidae).). Agricultura Técnica (Santiago). 49 (4), 370-372.

Queensland Government, 2018. Weeds of Australia, Biosecurity Queensland Edition. In: Weeds of Australia, Biosecurity Queensland Edition. Australia: Queensland Government. http://keyserver.lucidcentral.org/weeds/data/media/Html/search.html

Raj Singh, Patel C S, 1992. Crop weed competition in groundnut under mid altitudes of Meghalaya. Indian Journal of Hill Farming. 5 (2), 89-93.

Reddy K N, Singh M, 1992. Germination and emergence of hairy beggarticks (Bidens pilosa). Weed Science. 40 (2), 195-199.

Sahay G, Sarma B K, Gupta H S, Pathak K A, Prasad M S, 1999. Biotic stresses of pulses in North Eastern Hill region of India. Indian Journal of Hill Farming. 12 (1/2), 8-16.

Sahile G, Tanner D G, Zewdie L, 1992. A study of weed emergence patterns in the bread wheat producing agro-ecological zones of southeastern Ethiopia. In: The seventh regional wheat workshop for eastern, central and southern Africa. [The seventh regional wheat workshop for eastern, central and southern Africa.], [ed. by Tanner DG, Mwangi W]. Mexico: CIMMYT. 503-509.

Salomon E, 1990. Maize-bean intercrop system in Nicaragua. Effect of plant arrangements and population densities on the land equivalent ratio (LER), relative yield total (RYT) and weed abundance. In: Working Paper - International Rural Development Centre, Swedish University of Agricultural Sciences, 35 pp.

Sanchez W, Zandonade D, 1997. Problems and solutions on the control of weeds in MS and MT. (Problemas e soluções no controle de plantas daninhas no MS e MT.). In: Documentos - EMBRAPA Centro de Pesquisa Agropecuaria do Oeste [Symposium on herbicides and weeds, Dourados, MS, Brazil, 23-25 September 1997.], 160-161.

Seaver AL, 2000. Crop profile for papaya in Northen Mariana Islands., http://pestdata.ncsu.edu/cropprofiles/docs/mppapaya.html

Singh S C, 2010. Bidens pilosa: a potential medicinal pantropic weed extends its distribution to Lucknow, UP, India. Journal of Medicinal and Aromatic Plant Sciences. 32 (4), 483-486.

Sudha T, Nanjappa H V, Ramachandrappa B K, Mudalagiriyappa, Mallikarjuna G B, 1998. Effect of soil solarization on weed control and seedling production in tobacco seedbeds. Tobacco Research. 24 (1), 53-56.

Syamsuardi N, Yuranti W, Yulianti W, Usman S, 2016. Floristic analysis of alien invasive plant species at some conservation areas in tropical forest of West Sumatra. Der Pharmacia Lettre. 8 (19), 237-245.

Tjitrosemito S, 1987. Threshold level of weed control in soybean crop for small farmers. In: Proceedings, 11th Asian Pacfic Weed Science Society Conference. [Proceedings, 11th Asian Pacfic Weed Science Society Conference.], Taipei, Taiwan: Asian Pacific Weed Science Society. 247-258.

Traore H, Maillet J, 1998. Weeds in cereal crops in Burkina Faso. (Mauvaises herbes des cultures céréalières au Burkina Faso.). Agriculture et Développement. 47-59.

USDA Forest Service, 2000. Institute of Pacific Islands Forestry, Pacific Island Ecosystems at Risk (PIER) Invasive plant species: Bidens pilosa L., Asteraceae., http://www.hear.org/pier/bipil.htm

USDA-ARS, 2018. Germplasm Resources Information Network (GRIN). Online Database. In: Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx

USDA-NRCS, 2018. The PLANTS Database. In: The PLANTS Database. Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov

Vibrans H, 2018. Weeds of Mexico. (Malezas de México.). In: Malezas de México. http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm

Waterhouse D F, 1993. The major arthropod pests and weeds of agriculture in Southeast Asia. Canberra, Australia: ACIAR. v + 141 pp.

Waterhouse D F, 1997. The major invertebrate pests and weeds of agriculture and plantation forestry in the southern and western Pacific. In: The major invertebrate pests and weeds of agriculture and plantation forestry in the southern and western Pacific. Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR). vi + 93 pp.

Zulueta M C A, Tada M, Ragasa C Y, 1995. A diterpene from Bidens pilosa. Phytochemistry. 38 (6), 1449-1450. DOI:10.1016/0031-9422(94)00793-S

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.
Global register of Introduced and Invasive species (GRIIS)http://griis.org/Data source for updated system data added to species habitat list.

Contributors

Top of page

10/06/18 Updated by: 
Julissa Rojas-Sandoval, Department of Botany-Smithsonian NMNH, Washington DC, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map