Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


brucellosis (Brucella melitensis)



brucellosis (Brucella melitensis)


  • Last modified
  • 27 June 2018
  • Datasheet Type(s)
  • Animal Disease
  • Preferred Scientific Name
  • brucellosis (Brucella melitensis)
  • Overview
  • Before Brucella melitensis was recognized as the cause of Malta fever in man, a disease causing the same symptoms in countries bordering the Mediterranean was known as Fibris andulans. David Bruce, a British mi...

  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    CAB International
    OX10 8DE
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page


Top of page

Preferred Scientific Name

  • brucellosis (Brucella melitensis)

International Common Names

  • English: brucellosis in sheep; contagious abortion; Malta fever (in man); seminal vesiculitis, adenitis, in large animals


Top of page

Before Brucella melitensis was recognized as the cause of Malta fever in man, a disease causing the same symptoms in countries bordering the Mediterranean was known as Fibris andulans. David Bruce, a British military medical officer stationed in Malta described the aetiology of the disease in man in 1884. The bacteriologist Zammit Themistocles, a member of the Mediterranean Fever Commission, isolated B. melitensis in 1897 from the milk of goats that had aborted. Zammit also discovered that drinking milk from these goats was the reason for outbreaks of Malta fever amongst British soldiers stationed in Malta. It soon became apparent that the disease is prevalent in Russia, the Balkans, Asia, Africa and other European countries, and that the organism also infects sheep.

Brucella melitensis primarily affects the reproductive tract of sheep and goats, and B. melitensis infection is characterized by abortion, retained placenta and, to a lesser extent, impaired fertility. Although B. melitensis infects mainly sheep and goats it is a zoonose that plays a significant role in the national economy and the public health of many developing countries.

This disease is on the list of diseases notifiable to the World Organisation for Animal Health (OIE). The distribution section contains data from OIE's WAHID database on disease occurrence. For further information on this disease from OIE, see the website:

Host Animals

Top of page
Animal nameContextLife stageSystem
Bos indicus (zebu)Domesticated hostCattle & Buffaloes: Heifer|Cattle & Buffaloes/Cow|Cattle & Buffaloes/Bull
Bos taurus (cattle)Domesticated hostCattle & Buffaloes: Heifer|Cattle & Buffaloes/Cow|Cattle & Buffaloes/Bull
Camelus dromedarius (dromedary camel)Domesticated host
CanisDomesticated host, Wild host
Capra hircus (goats)Domesticated hostSheep & Goats: All Stages|Sheep & Goats/Gimmer|Sheep & Goats/Mature female|Sheep & Goats/Breeding male
Homo sapiensDomesticated host
Lama glama (llamas)Domesticated host
Lama pacos (alpacas)Domesticated host
Ovis aries (sheep)Domesticated hostSheep & Goats: All Stages|Sheep & Goats/Gimmer|Sheep & Goats/Mature female|Sheep & Goats/Breeding male
Sus scrofa (pigs)

Hosts/Species Affected

Top of page

Brucellae have definite host preferences. Secondary hosts play only a very small part if any in the maintenance or spread of a particular Brucella species. Brucella melitensis mainly infects sheep and goats, and in areas where B. melitensis is enzootic it is the major cause of abortion in those animals and very often also in cattle (Luchsinger and Anderson, 1967; Zowghi and Ebadi, 1985; Zowghi and Ebadi, 1988).

Systems Affected

Top of page mammary gland diseases of large ruminants
mammary gland diseases of small ruminants
reproductive diseases of large ruminants
reproductive diseases of small ruminants


Top of page

Most Mediterranean countries have large numbers of flocks of sheep and goats infected with B. melitensis (Yantzis, 1984). Brucella melitensis is also prevalent in developing countries of South-West Asia, parts of Latin America and Africa where it constitutes a serious human health hazard.

In countries with organized brucellosis control some areas may be free from B. melitensis while other areas are still infected. This is because the geographic context and the methods of farming influence the spread of the infection. In mountainous areas grouping of flocks in valleys is common, as in the villages. This allows maintenance of brucellosis that may become enzootic. However, mountainous areas may also isolate infected from non-infected flocks and sporadic outbreaks of brucellosis may not spread to other areas. The data given in the geographic distribution table dates back 10-15 years and may reflect a situation resulting from geographical conditions. Most of the data is based on sero-epidemiological studies although it is generally accepted that only the isolation of Brucella confirms the presence of brucellosis. Therefore, the data must be looked upon as an indication for the presence of B. melitensis in an area or a country and not to what extend the area is infected.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


AfghanistanNo information availableOIE, 2009
ArmeniaPresentOIE, 2009
AzerbaijanPresentOIE, 2009
BahrainDisease never reportedOIE, 2009
BangladeshDisease not reportedOIE, 2009
BhutanNo information availableOIE, 2009
Brunei DarussalamDisease not reportedOIE Handistatus, 2005
CambodiaNo information availableOIE, 2009
ChinaRestricted distributionOIE, 2009
-Hong KongNo information availableOIE, 2009
Georgia (Republic of)Last reported1991OIE Handistatus, 2005
IndiaNo information availableOIE, 2009
-Andhra PradeshPresentMrunalini and Ramasastry, 1999
-Himachal PradeshPresentNagal et al., 1991
-Indian PunjabPresentPrahlad et al., 1997
-Jammu and KashmirPresentBandey et al., 1989
-RajasthanPresentPrahlad et al., 1997
-Uttar PradeshPresentPrahlad et al., 1997
IndonesiaDisease not reportedOIE, 2009
IranPresentOIE, 2009
IraqPresentNULLHadad and Al-Azawy, 1991; OIE, 2009
IsraelPresentNULLDafni and Hoyda, 1989; OIE, 2009
JapanDisease not reportedOIE, 2009
JordanPresentOIE, 2009
KazakhstanDisease not reportedOIE, 2009
Korea, DPRDisease not reportedOIE Handistatus, 2005
Korea, Republic ofNo information availableOIE, 2009
KuwaitPresentNULLScharp et al., 1999; OIE, 2009
KyrgyzstanRestricted distributionOIE, 2009
LaosNo information availableOIE, 2009
LebanonPresentOIE, 2009
MalaysiaPresentOIE, 2009
-Peninsular MalaysiaDisease not reportedOIE Handistatus, 2005
-SabahDisease never reportedOIE Handistatus, 2005
-SarawakSerological evidence and/or isolation of the agentOIE Handistatus, 2005
MongoliaPresentOIE, 2009
MyanmarDisease never reportedOIE, 2009
NepalNo information availableNULLJha et al., 1993; OIE, 2009
OmanPresentOIE, 2009
PakistanRestricted distributionNULLMirza and Razzak, 2000; OIE, 2009
PhilippinesNo information availableOIE, 2009
QatarPresentOIE, 2009
Saudi ArabiaPresentNULLCooper, 1992; OIE, 2009
SingaporeDisease never reportedOIE, 2009
Sri LankaDisease not reportedOIE, 2009
SyriaPresentOIE, 2009
TaiwanDisease never reportedOIE Handistatus, 2005
TajikistanPresentOIE, 2009
ThailandPresentOIE, 2009
TurkeyPresentNULLKiran et al., 1997; OIE, 2009
TurkmenistanLast reported2003OIE Handistatus, 2005
United Arab EmiratesDisease not reportedOIE, 2009
UzbekistanReported present or known to be presentOIE Handistatus, 2005
VietnamNo information availableOIE, 2009
YemenPresentOIE, 2009


AlgeriaPresentOIE, 2012
AngolaNo information availableOIE, 2012
BeninDisease not reportedOIE, 2012
BotswanaDisease not reportedOIE, 2012
Burkina FasoNo information availableOIE, 2012
BurundiReported present or known to be presentOIE, 2012
CameroonNo information availableOIE, 2012
Cape VerdeReported present or known to be presentOIE, 2012
Central African RepublicDisease not reportedOIE, 2012
ChadNo information availableOIE, 2012
ComorosDisease not reportedOIE, 2012
CongoNo information availableOIE, 2012
Congo Democratic RepublicDisease not reportedOIE, 2012
Côte d'IvoireNo information availableOIE, 2012
DjiboutiDisease not reportedOIE, 2012
EgyptPresentEl-Gohary and Hattab, 1992; OIE, 2012
Equatorial GuineaNo information availableOIE, 2012
EritreaPresentOIE, 2012
EthiopiaDisease not reportedBekele and Kasali, 1990; OIE, 2012
GabonNo information availableOIE, 2012
GambiaNo information availableOIE, 2012
GhanaDisease not reportedOIE, 2012
GuineaNo information availableOIE, 2012
Guinea-BissauNo information availableOIE, 2012
KenyaNo information availableKadohira et al., 1997; OIE, 2012
LesothoDisease never reportedOIE, 2012
LibyaReported present or known to be presentBoargob and Muhammed, 1989; OIE, 2012
MadagascarDisease never reportedOIE, 2012
MalawiNo information availableOIE, 2012
MaliNo information availableOIE, 2012
MauritiusDisease never reportedOIE, 2012
MoroccoLast reported2011OIE, 2012
MozambiqueDisease not reportedOIE, 2012
NamibiaPresentOIE, 2012
NigeriaNo information availableAmin and Silsmore, 1993; OIE, 2012
RéunionDisease not reportedOIE, 2012
RwandaNo information availableOIE, 2012
Sao Tome and PrincipeNo information availableOIE, 2012
SenegalNo information availableOIE, 2012
SeychellesDisease not reportedOIE, 2012
SomaliaPresentOstanello et al., 1999; OIE, 2012
South AfricaLast reported2010Ribeiro et al., 1990; OIE, 2012
SudanDisease never reportedOIE, 2012
SwazilandPresentOIE, 2012
TanzaniaDisease not reportedOIE, 2012
TogoNo information availableOIE, 2012
TunisiaPresentOIE, 2012
UgandaPresentOloffs et al., 1998; OIE, 2012
ZambiaNo information availableOIE, 2012
ZimbabweDisease not reportedOIE, 2012

North America

BermudaDisease not reportedOIE Handistatus, 2005
CanadaDisease never reportedOIE, 2009
GreenlandDisease never reportedOIE, 2009
MexicoPresentNULLQuezada et al., 1997; OIE, 2009
USADisease not reportedOIE, 2009

Central America and Caribbean

BarbadosDisease never reportedOIE Handistatus, 2005
BelizeDisease not reportedOIE, 2009
British Virgin IslandsDisease never reportedOIE Handistatus, 2005
Cayman IslandsDisease not reportedOIE Handistatus, 2005
Costa RicaNo information availableOIE, 2009
CubaDisease never reportedOIE, 2009
CuraçaoDisease not reportedOIE Handistatus, 2005
DominicaDisease not reportedOIE Handistatus, 2005
Dominican RepublicNo information availableOIE, 2009
El SalvadorNo information availableOIE, 2009
GuadeloupeNo information availableOIE, 2009
GuatemalaDisease not reportedOIE, 2009
HaitiNo information availableOIE, 2009
HondurasNo information availableOIE, 2009
JamaicaDisease never reportedOIE, 2009
MartiniqueDisease not reportedOIE, 2009
NicaraguaNo information availableOIE, 2009
PanamaNo information availableOIE, 2009
Saint Kitts and NevisNo information availableOIE Handistatus, 2005
Saint Vincent and the GrenadinesNo information availableOIE Handistatus, 2005
Trinidad and TobagoDisease never reportedOIE Handistatus, 2005
United States Virgin IslandsPresentAhl et al., 1993

South America

ArgentinaPresentNULLRusso and Monzón, 1998; OIE, 2009
BoliviaAbsent, reported but not confirmedOIE, 2009
BrazilDisease never reportedOIE, 2009
-Sao PauloPresentGouvêa et al., 1989
ChileDisease not reportedOIE, 2009
ColombiaDisease never reportedOIE, 2009
EcuadorNo information availableOIE, 2009
Falkland IslandsDisease never reportedOIE Handistatus, 2005
French GuianaDisease not reportedOIE, 2009
GuyanaDisease not reportedOIE Handistatus, 2005
ParaguayNo information availableOIE Handistatus, 2005
PeruRestricted distributionOIE, 2009
UruguayDisease never reportedOIE, 2009
VenezuelaDisease never reportedOIE, 2009


AlbaniaPresentOIE, 2009
AndorraSerological evidence and/or isolation of the agentOIE Handistatus, 2005
AustriaDisease not reportedOIE, 2009
BelarusDisease not reportedOIE, 2009
BelgiumDisease not reportedOIE, 2009
Bosnia-HercegovinaReported present or known to be presentOIE Handistatus, 2005
BulgariaPresentOIE, 2009
CroatiaPresentOIE, 2009
CyprusPresentOIE, 2009
Czech RepublicDisease never reportedOIE, 2009
DenmarkDisease never reportedOIE, 2009
EstoniaDisease never reportedOIE, 2009
FinlandDisease never reportedOIE, 2009
FranceDisease not reported200306Garin-Bastuji et al., 1994; OIE, 2009
GermanyDisease not reported200606Hellmann et al., 1993; OIE, 2009
GibraltarPresentYantzis, 1984
GreecePresentOIE, 2009
HungaryDisease never reportedOIE, 2009
IcelandDisease never reportedOIE, 2009
IrelandDisease never reportedOIE, 2009
Isle of Man (UK)Disease never reportedOIE Handistatus, 2005
ItalyRestricted distributionNULLCapuano et al., 1996; OIE, 2009
JerseyDisease never reportedOIE Handistatus, 2005
LatviaDisease never reportedOIE, 2009
LiechtensteinDisease not reportedOIE, 2009
LithuaniaDisease never reportedOIE, 2009
LuxembourgDisease never reportedOIE, 2009
MacedoniaPresentOIE, 2009
MaltaPresentNULLAbela, 1999; OIE, 2009
MoldovaLast reported1985OIE Handistatus, 2005
MontenegroDisease not reportedOIE, 2009
NetherlandsDisease never reportedOIE, 2009
NorwayDisease never reportedOIE, 2009
PolandDisease not reportedOIE, 2009
PortugalPresentOIE, 2009
RomaniaDisease never reportedOIE, 2009
Russian FederationPresentOIE, 2009
SerbiaPresentOIE, 2009
SlovakiaDisease not reportedOIE, 2009
SloveniaDisease never reportedOIE, 2009
SpainPresentNULLReviriego et al., 2000; OIE, 2009
SwedenDisease not reportedOIE, 2009
SwitzerlandDisease not reportedOIE, 2009
UKDisease not reportedOIE, 2009
-Northern IrelandDisease never reportedOIE Handistatus, 2005
UkraineDisease not reportedOIE, 2009
Yugoslavia (former)Last reported2003OIE Handistatus, 2005
Yugoslavia (Serbia and Montenegro)Reported present or known to be presentOIE Handistatus, 2005


AustraliaDisease never reportedOIE, 2009
French PolynesiaDisease never reportedOIE, 2009
New CaledoniaDisease never reportedOIE, 2009
New ZealandDisease never reportedOIE, 2009
SamoaDisease never reportedOIE Handistatus, 2005
VanuatuDisease never reportedOIE Handistatus, 2005
Wallis and Futuna IslandsNo information availableOIE Handistatus, 2005


Top of page

Bacteriological examination of aborted material is time consuming, laborious, costly, and cannot routinely be used as a diagnostic procedure in developed or developing countries. Nevertheless, B. melitensis can be isolated from the lungs, liver, kidney, stomach contents abomasum and brain of aborted animals (Ribeiro et al., 1990). The counterimmuno-electrophoresis method, which detects Brucella antigens in suspect aborted material (Mahajan and Kulshreshtha, 1986) cannot be used everywhere, as it requires specialized laboratory equipment.

As abortion is the only symptom that indicates B. melitensis infection, serological tests are used to confirm brucellosis in suspect animals. Some countries have eradicated brucellosis from small ruminants with the aid of serological tests and the slaughter of positively reacting animals. However, many other countries are still trying to control brucellosis.

Control or eradication of brucellosis would not be a problem if an easy, rapid, sensitive and highly specific serological test existed. However, because each serological test has its advantages and disadvantages, no single test, or even a combination of tests, conclusively detects all infected animals in a flock. The commonly used tests are the Rose Bengal plate test (RBPT), serum agglutination test (SAT), complement fixation test (CFT), Coombs test, enzyme-linked immunosorbent assay (ELISA), Rivanol test, skin delayed-type hypersensitivity (SDTH) test and the Milk ring test (MRT).

The use of the RBPT which is easy to perform and is considered a valuable screening test (Farina, 1985) is less effective than the CFT at detecting brucellosis in individual sheep and goats (FAO/WHO, 1986). Furthermore, its efficacy is influenced by the cell concentration and the standardization procedure of the antigen (Hosie et al., 1985; Blasco et al., 1994a). The less frequently used Rivanol test has a specificity and sensitivity that equals that of the SAT and RBPT (Coker et al., 1990).

The SAT is relatively easy to perform and adequately detects acute infection. However, it may fail to agglutinate with Brucella antibodies present in sheep or goats sera and may give reactions with marked prozone-phenomenon (Renoux, et al., 1956; Goguer, 1965; Le Pennec, 1967). The Coombs test is highly sensitive and detects both IgG1 and IgG2 antibodies. Therefore, it is suggested to use the Coombs test when suspected animals test negative with the SAT or, when SAT and CFT give ambivalent serological test results (Farina, 1985; Acharya and Panda, 1985).

The CFT is considered to be the most effective test for diagnozing brucellosis in small ruminants (FAO/WHO, 1986) but has no particular advantage over the SAT performed in a hypertonic environment of 5-20% NaCl (Levchenco and Drozhzhin, 1958). Furthermore, sera from small ruminants may show anti-complementary activity in the CFT. Although the anti-complementary activity can be eliminated when the sera are inactivated for 55 minutes at 60° C (Bercovich, unpublished data) the test remains tedious to perform. Moreover, acutely or chronically infected animals as well as latent carriers may elude detection with the CFT (Karmann and Schloz, 1956; Farina, 1985; Blasco et al., 1994b). However, numerous studies demonstrate its specificity and its value for the detection of brucellosis, especially when used in combination with the SDTH test (Ebadi and Zowghi, 1983; Ebadi, 1984; Loquerie and Durand, 1984).

Since neither a single serological test nor a combined use of several serological tests detects all infected animals in a flock, detection of brucellosis remains a major problem in areas of low prevalence of brucellosis. Therefore, studies were conducted to choose a reliable diagnostic procedure by comparing serological tests with various ELISA procedures with or without the SDTH test. Most studies agree that the ELISA is as specific as the CFT but it is more sensitive. Yet, for a reliable diagnosis of infected animals studies suggest using the ELISA in combination with other tests (Bercovich et al., 1998; Jacques et al., 1998; Mikolon et al., 1998b). Other studies consider the ELISA suitable for screening flocks of sheep and goats for brucellosis (Biancifiori et al., 1996; Sting and Ortmann, 2000). Nevertheless, small ruminants should be tested with the ELISA, CFT and SDTH tests to prevent the spread of brucellosis after an outbreak of the disease in an area with low prevalence of brucellosis or in an area free from brucellosis (Bercovich et al., 1998).

The milk ring test that is widely used to detect brucellosis in dairy cattle is not sensitive enough to detect brucellosis in sheep (Shimi and Tabatabayi, 1981). However, because the test is simple and easy to perform it might be useful to detect Brucella antibodies in milk from dairy sheep and goats kept for cheese production. The MRT using 8-ml milk (Bercovich and Lagendijk, 1978) or the MRT performed on three parts sheep milk supplemented with one part pooled cow’s milk, which tests negative for Brucella with the MRT, strongly increases the sensitivity of the test.

List of Symptoms/Signs

Top of page
SignLife StagesType
Digestive Signs / Anorexia, loss or decreased appetite, not nursing, off feed Sign
Digestive Signs / Rumen hypomotility or atony, decreased rate, motility, strength Sign
General Signs / Fever, pyrexia, hyperthermia Sign
General Signs / Generalized lameness or stiffness, limping Sheep & Goats:Gimmer,Sheep & Goats:Mature female,Sheep & Goats:Breeding male Sign
General Signs / Internal abdominal mass, swellings, adhesions abdomen Sign
General Signs / Kyphosis, arched back Sign
General Signs / Lymphadenopathy, swelling, mass or enlarged lymph nodes Sign
General Signs / Reluctant to move, refusal to move Sign
General Signs / Swelling mass penis, prepuce, testes, scrotum Cattle & Buffaloes:Bull Sign
General Signs / Tenesmus, straining, dyschezia Sign
Pain / Discomfort Signs / Pain, seminal vesicles Sign
Reproductive Signs / Abnormal size testes / scrotum Sheep & Goats:Breeding male Sign
Reproductive Signs / Abortion or weak newborns, stillbirth Sheep & Goats:Mature female Sign
Reproductive Signs / Foul smelling discharge, vulvar, vaginal Sheep & Goats:Mature female Sign
Reproductive Signs / Haemospermia, blood, red semen Sign
Reproductive Signs / Lack of libido or erection Sign
Reproductive Signs / Male infertility Sign
Reproductive Signs / Mastitis, abnormal milk Sheep & Goats:Mature female Sign
Reproductive Signs / Purulent discharge, vulvar, vaginal Sheep & Goats:Mature female Sign
Reproductive Signs / Retained placenta, fetal membranes Sheep & Goats:Mature female Sign
Respiratory Signs / Coughing, coughs Sheep & Goats:Gimmer,Sheep & Goats:Mature female,Sheep & Goats:Breeding male Sign
Urinary Signs / Dysuria, difficult urination, stranguria Sign

Disease Course

Top of page

The course of the disease is usually shorter in sheep than it is in cattle and goats. Sheep and goats are usually infected via the naso-pharynx route or subcutaneously. Invading Brucella usually localize the lymph nodes draining the invasion site, resulting in hyperplasia of the lymphoid and reticuloendothelial tissue and the infiltration of inflammatory cells. In susceptible animals Brucellae multiply in macrophages and eventually escape into the blood stream. Depending on the infection dose, abortion, mastitis, pyrexia, toxaemia or sudden death can occur in goats at the acute stage of the infection while sheep usually only abort (Enright 1990).

Pathologically B. melitensis infection in sheep and goats is very similar to B. abortus in cattle (FAO/WHO, 1986). Almost all organs can be infected including the brain, lungs, bones and muscles. In pregnant animals the bacteria will invade the uterus, multiplying in the placenta and the foetus. This usually leads to abortion or to the birth of infected lambs or kids and shedding of Brucellae into the environment. Excretion of Brucellae in uterine and vaginal discharges as well as in milk and urine is greatest in the first few days after abortion. Excretion in vaginal fluid and urine may last 4-6 months. Sheep may excrete Brucellae in milk for 1-3 weeks after abortion but in some cases it may also continue for up to 6 months. Goats may excrete Brucellae into the milk for a year or longer. In non-pregnant female animals chronic infection of the reticuloendothelial system results in latent carriers of B. melitensis, and causes orchitis in males (Stableforth and Galloway, 1959; Alton, 1985; Enright 1990).


Top of page

Brucellosis in sheep and goats is usually caused by B. melitensis. Infection with B. abortus is rare. The source of infection is an aborting animal. As in cattle, the surroundings where lambs are born to infected ewes or where abortion takes place become greatly contaminated. Animals may contract brucellosis by oral or cutaneous routes, or at birth. Infection by inhalation is also possible when healthy and aborting animals are kept in overcrowded pens with poor sanitary measures. Transmission of B. melitensis from flock to flock usually follows the movement of infected pregnant females. However it can also occur via an infected male. Wild animals and dogs may transmit parts of aborted foetuses to other areas (Alton, 1985; Mikolon et al., 1998a).

The incubation period after infection varies from 15 days to several months depending on the invasion site and the infecting dose. Therefore, it takes some time for signs of infection to occur. In naturally infected sheep the only symptom noted is abortion. In infected goats abortion and sometimes also mastitis can be observed. Infected goats that do not abort give less milk than uninfected goats. Abortion usually occurs at 3-4 months into pregnancy, and in a susceptible flock it may reach epidemic proportions. Goats that have aborted once are not likely to abort a second time. Sheep may abort a second time, as they can recover from the first infection. Both sheep and goats may shed Brucella with any subsequent parturition. Retention of the placenta may or may not occur. It is also possible that infected pregnant goats that have been born into an infected flock may give birth at the normal time (Stableforth and Galloway, 1959). Therefore, brucellosis in chronically infected flocks often becomes evident only through infected people who have been in contact with infected animals or consumed their milk or cheese.

Both sheep and goats may show signs of lameness, hygroma, and cough but the predilection sites of B. melitensis are the uterus, udder and the mammary lymph nodes in females and the testicles in males. Strangely enough, interference with fertility caused by orchitis seems to be limited. Infected sheep and goats may excrete Brucella in the milk for years but sheep may also cease excretion during one or more lactation periods (Alton, 1985; Stableforth and Galloway, 1959).

Resistance to infection

Resistance to infection resembles B. abortus infection in cattle. Age, sex and natural resistance to Brucella may influence the progression of infection. Sexually immature animals may show some resistance to infection whereas sexually mature animals are susceptible to infection, which in pregnant animals may result in abortion. Males are less susceptible to infection than females. There is very little difference between goat breeds in their susceptibility to the B.melitensis, whereas breeds of sheep differ in their susceptibility. Milking breeds of sheep seem to be more susceptible to B. melitensis infection than sheep kept for meat production (Alton, 1985).

Survival of Brucella in the environment

Temperature, humidity and pH of the environment influence the survival of B. melitensis as well as that of B. abortus. Brucellae are sensitive to direct sunlight, disinfectant and pasteurization. In dry conditions they survive only if embedded in protein. In optimal conditions Brucellae survive in tap water, damp soil, urine, aborted foetuses, uterine exudate and in frozen tissues (Davies and Casey, 1973: Wray 1975).

Impact: Economic

Top of page

There is no doubt that outbreaks of B. melitensis infection cause significant economic losses. Although the financial loss expressed in any currency may vary from one country to another, a few denominators are the same everywhere. The farmer suffers loss of income due to abortion, the consequent loss of milk production and a prolonged fattening time of lambs (meat production) due to birth of premature animals and low fertility rates. Human brucellosis causes physical and psychological suffering due to infection, hospitalization, the cost of drugs and the loss of work or income due to illness. The country incurs costs generated by prophylactic activities taken to control brucellosis, i.e. vaccination by the veterinarians and their assistants, vaccine costs and compensation paid to the farmers for sanitary slaughter of infected animals. Consequently, control and eradication of B. melitensis eventually pays off.

Zoonoses and Food Safety

Top of page

Brucella melitensis is a zoonotic disease causing a debilitating illness in human. Symptoms of acute brucellosis caused by Brucella melitensis are ‘flu-like’ and highly non-specific. Chronic brucellosis is an insidious disease with vague symptoms that might be confused with other diseases affecting various organ systems (Serter et al., 1991). Humans usually acquire brucellosis by consumption of raw milk or milk products (Thapar and Young, 1986). Brucellosis is also recognized as an occupational hazard for farmers, veterinarians, and workers in the meat industry in areas with enzootic B. melitensis. Humans working in the meat industry may contract brucellosis percutaneously, conjunctivally or by nasal mucous membrane infection. Veterinarians may become infected with brucellosis when handling aborted foetuses or apparently healthy calves born to infected cows, performing gynaecological and obstetric manipulations, or when handling Rev 1 vaccine (Glosser, 1972; Schnurrenberger et al., 1975; Dekeijzer, 1981; Peelman and Dekeyser, 1987).

Prevention and Control

Top of page

Effective control of brucellosis largely depends on the co-operation of the flock owner. Treatment of infected sheep and goats with antibiotics is not done because the antibiotics may appear in the human food chain and this would be disastrous for the cheese production industry. Instead, efforts are directed towards controlling and eradicating brucellosis from small ruminants. Serological testing and slaughter of the animals that react positively with Brucella antigens successfully eradicated brucellosis in several countries. This procedure, however, is not easy to apply in developing countries where usually animals are not tagged.

In areas with endemic brucellosis only vaccination against B. melitensis may reduce the number of infected flocks and eventually permit brucellosis control. Currently two vaccines are in use: the H38 and Rev 1. The H38 vaccine is composed of killed, smooth, virulent cells of B. melitensis in adjuvant. The vaccine gives good protection and can be administered to pregnant or lactating animals. However, because it stimulates a long lasting immune response (that interferes with the serological diagnosis of brucellosis) and it induces a marked skin reaction on the injection site of the vaccine it is not used very often (Alton, 1985; Plommet, 1991).

The Rev 1 vaccine is composed of living attenuated cells of B. melitensis and is used in most countries that vaccinate small ruminants against B. melitensis. Although vaccination with 1-2 x 109 CFU (classical dose) at 4-6 months old, or of non-pregnant adults protects the animals for several years the vaccine also has some disadvantages. Since the vaccine consists of living B. melitensis cells it may cause abortion in pregnant sheep and goats and it is excreted in the milk. While a year after vaccination most CFT results are negative, the antibody response to the vaccination may last longer than 24 months. To limit the risk of abortion and excretion of brucellae following the vaccination the conjunctival vaccination with 5 x 104 CFU was introduced. Conjunctival vaccination, with a reduced dose, is not only safer but it is also easier to apply (Alton, 1985; Plommet, 1991). Rev 1 vaccine it is an attenuated Brucella strain that is dangerous for man.


Top of page

Abela B, 1999. Epidemiology and control of brucellosis in ruminants from 1986 to 1996 in Malta. Revue Scientifique et Technique - Office International des épizooties, 18(3):648-659; 20 ref.

Acharya BN, Panda SN, 1985. Role of blocking antibody and Coombs antiglobulin tests in the detection of brucellosis in sheep. Indian Journal of Animal Health, 24(2):123-126; 14 ref.

African Union-Interafrican Bureau for Animal Resources, 2011. Panafrican Animal Health Yearbook 2011. Pan African Animal Health Yearbook, 2011:xiii + 90 pp.

Ahl AS, Bartlett PC, Frerichs WM, 1993. Serological evidence for the presence of Brucella antibodies in sheep and goats on Saint Croix, U.S. Virgin Islands. Revue d'élevage et de Médecine Vétérinaire des Pays Tropicaux, 46(1/2):61-63; [Actes de la 2e Réunion Biennale de la Society for Tropical Veterinary Medicine, 2-6 février 1993, Saint FranÇois, Guadeloupe.]; 14 ref.

Alton GG, 1985. Rev. 1 and H38 Brucella melitensis vaccines. Brucella melitensis. CEC seminar, Brussels, November 1984, 215-227; [Current Topics in Veterinary Medicine and Animal Science volume 32]; 39 ref.

Amin JD, Silsmore AJ, 1993. A serological survey of some abortifacient diseases of sheep and goats in the Maiduguri area of Nigeria. Bulletin of Animal Health and Production in Africa, 41(2):123-128; 26 ref.

Bandey SD, Parvez S, Bandey S, 1989. Sero-epidemiological studies on brucellosis in exotic sheep in Kashmir valley. Indian Journal of Animal Sciences, 59(2):213-215; 16 ref.

Bekele T, Kasali OB, 1990. Brucellosis in sheep and goats in Central Ethiopia. Bulletin of Animal Health and Production in Africa, 38(1):23-25; 14 ref.

Bercovich Z, Güler L, Baysal T, Schreuder BEC, Zijderveld FGvan, 1998. Evaluation of the currently used diagnostic procedures for the detection of Brucella melitensis in sheep. Small Ruminant Research, 31(1):1-6; 27 ref.

Bercovich Z, Lagendijk W, 1978. A modified milk ring test for detecting Brucella agglutinins in bulk tank coolers. Tijdschrift voor Diergeneeskunde, 103:407-416.

Biancifiori F, Nannini D, Matteo Adi, Belfiore P, 1996. Assessment of an indirect ELISA in milk for the diagnosis of ovine brucellosis. Comparative Immunology, Microbiology and Infectious Diseases, 19(1):17-24; 13 ref.

Blasco JM, 1997. A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Preventive Veterinary Medicine, 31(3/4):275-283.

Blasco JM, Garin-Bastuji B, Marin CM, Gerbier G, Fanlo J, Jiménez de Bagués MP, Cau C, 1994. Efficacy of different Rose Bengal and complement fixation antigens for the diagnosis of Brucella melitensis infection in sheep and goats. Veterinary Record, 134(16):415-420; 26 ref.

Blasco JM, Marín C, Jiménez de Bagués M, Barberán M, Hernández A, Molina L, Velasco J, Díaz R, Moriyón I, 1994. Evaluation of allergic and serological tests for diagnosing Brucella melitensis infection in sheep. Journal of Clinical Microbiology, 32(8):1835-1840; 31 ref.

Boargob A, Muhammed SI, 1989. The prevalence of brucellosis in some sheep and goat flocks in the Western Mountains of Libya. Bulletin of Animal Health and Production in Africa, 37(1):9-12; 8 ref.

Capuano F, Bartoli M, Fenizia D, Landolfi MC, Pinto O, Zullo T, Ciabrelli M, Esposito A, Gallo A, Maddaluno F, Guzzo A, 1996. Health status of sheep and goat flocks in the Campania region: seroepidemiological survey. Veterinaria Italiana, 32(20):13-16; 11 ref.

Coker A, Mete K, Kaya O, 1990. Comparison of the results of the rivanol plate test with those of other serological tests on serum samples for Brucella melitensis infected sheep. Pendik Hayvan Hastaliklari Merkez Arastirma Enstitüsü Dergisi, 21(2):17-22; 17 ref.

Cooper CW, 1992. Risk factors in transmission of brucellosis from animals to humans in Saudi Arabia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 86(2):206-209; 16 ref.

Corbel MJ, Gill KPW, Thomas EL, 1978. Methods for the identification of Brucella. Tolcarne Drive, Pinner, Middlesex HA5 2DT, UK: Ministry of Agriculture, Fisheries and Food (Publications).

Cutler SJ, Whatmore AM, Commander NJ, 2005. Brucellosis - new aspects of an old disease. Journal of Applied Microbiology, 98(6):1270-1281.

Dafni I, Hoyda G, 1989. Eradication of bovine brucellosis in Israel, 1970-1987. Israel Journal of Veterinary Medicine, 45(4):233-240; 9 ref.

Davies G, Casey A, 1973. The survival of Brucella abortus in milk and milk products. British Veterinary Journal, 129:345-353.

Dekeijzer P, 1981. Brucella biotypen in België. Landbouwtijdschrift, 34:1513-1520.

Díaz-Aparicio E, Marin C, Alonso-Urmeneta B, Aragón V, Pérez-Ortiz S, Pardo M, Blasco JM, Díaz R, Moriyón I, 1994. Evaluation of serological tests for diagnosis of Brucella melitensis infection of goats. Journal of Clinical Microbiology, 32(5):1159-1165.

Ebadi A, 1984. Evaluation of the allergic test in diagnosis of brucellosis in sheep. Developments in Biological Standardization, 56:387-391; 6 ref.

Ebadi A, Zowghi E, 1983. The use of allergic test in the diagnosis of Brucella melitensis infection in sheep. British Veterinary Journal, 139(5):456-461; 11 ref.

El-Gohary AH, Hattab SA, 1992. Zoonotic importance of brucellosis at Behera Governorate in Egypt. Indian Journal of Animal Sciences, 62(11):1015-1017; 12 ref.

El-Idrissi AH, Benkirane A, El-Maadoudi M, Bouslikhane M, Berrada J, Zerouali A, 2001. Comparison of the efficacy of Brucella abortus strain RB51 and Brucella melitensis Rev. 1 live vaccines against experimental infection with Brucella melitensis in pregnant ewes. Revue Scientifique et Technique - Office International des Épizooties, 20(3):741-747.

Enright FM, 1990. The pathogenesis and pathobiology of Brucella infection in domestic animals. Animal brucellosis., 301-320; 55 ref.

FAO/WHO, 1986. Sixth report of the expert committee on brucellosis. Technical report series 740, Geneva, Switzerland: FAO/WHO.

Farina R, 1985. Current serological methods in Br. melitensis diagnosis. Brucella melitensis. CEC seminar, Brussels, November 1984, 139-146; [Current Topics in Veterinary Medicine and Animal Science volume 32]; 41 ref.

Garin-Bastuji B, Blasco JM, Grayon M, Verger JM, 1998. Brucella melitensis infection in sheep: present and future. Veterinary Research, 29(3/4):255-274.

Garin-Bastuji B, Gerbier G, Douzal Y, Vaucel D, Hummel N, Thiebaud M, Grayon M, Verger JM, 1994. Animal brucellosis in France in 1993. épidémiologie et Santé Animale, No. 26:103-130; 4 ref.

Glosser JW, 1972. Comments on abattoir-associated brucellosis. Journal of the American Veterinary Medical Association, 160:643-644.

Godfroid J, Cloeckaert A, Liautard JP, Kohler S, Fretin D, Walravens K, Garin-Bastuji B, Letesson JJ, 2005. From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Veterinary Research, 36(3):313-326.

Goguer M, 1965. Comparison of the plate and tube agglutination tests for brucellosis in sheep. Veterinary Bulletin, 35: abstract 3710.

Gouvêa G, Roxo E, Lima MABS, Homerich D, 1989. Occurrence of brucellosis in goats from Sao Paulo State. Arquivos do Instituto Biológico (Sao Paulo), 56(Supl.):60.

Hadad JJ, Al-Azawy ZSA, 1991. Incidence of brucellosis in sheep and goats in Ninevah province. Iraqi Journal of Veterinary Sciences, 4(1):27-33; 13 ref.

Hellmann E, 1982. Brucella melitensis. Brucella suis. In: Blobel H, Schliesser T (eds.). Handbuch der bakteriellen Infektionen bei Tieren, Band IV. Jena, Germany: VEB Gustav Fischer Verlag, 214-260.

Hellmann E, Matuschik M, Rippinger P, 1992. Data on the occurrence of bovine brucellosis in some parts of the German Federal Republic between 1980 and 1989. Tierärztliche Umschau, 47(12):891-894, 897-899; 10 ref.

Hosie BD, Al-Bakri OM, Futter RJ, 1985. Survey of brucellosis in goats and sheep in the Yemen Arab Republic: comparison of tests for Brucella melitensis infection in sheep. Tropical Animal Health and Production, 17(2):93-99; 13 ref.

Jacques I, Olivier-Bernardin V, Dubray G, 1998. Efficacy of ELISA compared to conventional tests (RBPT and CFT) for the diagnosis of Brucella melitensis infection in sheep. Veterinary Microbiology, 64(1):61-73; 29 ref.

Jha VC, Thakur RP, Yadav JN, 1993. Sero-prevalence of brucellosis in cattle and buffaloes in the Koshi Hills of Nepal. Veterinary Review (Kathmandu), 8(1):17-19; 7 ref.

Kadohira M, McDermott JJ, Shoukri MM, Kyule MN, 1997. Variations in the prevalence of antibody to brucella infection in cattle by farm, area and district in Kenya. Epidemiology and Infection, 118(1):35-41; 33 ref.

Karmann P, Schloz HD, 1956. Beitrag zur Bekämpfung des Maltafiebers der schafe in Lande Nordrhein-Westfalen. Mhonatsheft für Tierheilkunde, 8:127-134.

Kiran MM, Baysal T, Gözün H, Güler L, Gündüz K, Kuyucuoglu ö, Kücükayan U, 1997. Pathological, bacteriological and serological studies on ovine abortion in Konya province. Etlik Veteriner Mikrobiyoloji Dergisi, 9(2):109-128; 27 ref.

Le Pennec J, 1967. Serology of ovine brucellosis. Vaccination and infection antibodies negative to Wright's agglutination test but positive to the complement fixation test. Veterinary Bulletin, 37: abstract 3571.

Levchenco ID, Drozhzhin VN, 1958. Use in outbreaks of abortion in sheep of the agglutination test with 10% NaCl. Veterinary Bulletin, 28: abstract 1006.

Loquerie R, Durand MP, 1984. Clinical application of a skin test for delayed hypersensitivity, using a commercial allergen, for detecting brucellosis in sheep and goats. Developments in Biological Standardization, 56:407-410; 5 ref.

Luchsinger DW, Anderson RA, 1967. Epizootiology of Brucellosis in a flock of sheep. Journal of the American Veterinary Medical Association, 150:1017-1021.

Mahajan NK, Kulshreshtha RC, 1986. Counterimmunoelectrophoresis detection of brucella antigens in fetal stomachs of aborted sheep. Veterinary Record, 119(18):455-456; 12 ref.

Mikolon AB, Gardner IA, Anda JHde, Hietala SK, 1998a. Risk factors for brucellosis seropositivity of goat herds in the Mexicali Valley of Baja California, Mexico. Preventive Veterinary Medicine, 37(1/4):185-195; 13 ref.

Mikolon AB, Gardner IA, Hietala SK, Anda JHde, Pestana EC, Hennager SG, Edmondson AJ, 1998. Evaluation of North American antibody detection tests for diagnosis of brucellosis in goats. Journal of Clinical Microbiology, 36(6):1716-1722; 23 ref.

Mirza MA, Jalvi MA, Abdul Razzak, 1998. Screening of goat flocks for brucellosis using Rose Bengal plate test. Pakistan Veterinary Journal, 18(3):146-149; 12 ref.

Mrunalini N, Ramasastry P, 1999. Serological survey on the occurrence of brucellosis in domestic animals and man in Andhra Pradesh. Indian Veterinary Journal, 76(6):483-484; 3 ref.

Nagal KB, Katoch RC, Sambyal DS, Sharma M, 1991. Sero-prevalence of brucellosis in livestock of Kangra Valley in Himachal Pradesh. Asian Journal of Dairy Research, 10(1):15-18; 12 ref.

Nielsen K, Gall D, Smith P, Bermudez R, Moreno F, Renteria T, Ruiz A, Aparicio L, Vazquez S, Dajer A, Luna E, Samartino L, Halbert G, 2005. Evaluation of serological tests for detection of caprine antibody to Brucella melitensis. Small Ruminant Research, 56(1/3):253-258.

OIE Handistatus, 2002. World Animal Health Publication and Handistatus II (dataset for 2001). Paris, France: Office International des Epizooties.

OIE Handistatus, 2003. World Animal Health Publication and Handistatus II (dataset for 2002). Paris, France: Office International des Epizooties.

OIE Handistatus, 2004. World Animal Health Publication and Handistatus II (data set for 2003). Paris, France: Office International des Epizooties.

OIE Handistatus, 2005. World Animal Health Publication and Handistatus II (data set for 2004). Paris, France: Office International des Epizooties.

OIE, 2009. World Animal Health Information Database - Version: 1.4. World Animal Health Information Database. Paris, France: World Organisation for Animal Health.

OIE, 2012. World Animal Health Information Database. Version 2. World Animal Health Information Database. Paris, France: World Organisation for Animal Health.

Oloffs A, Baumann MPO, Afema J, Nakavuma J, 1998. Experiences with a strategy to investigate bovine brucellosis in a rural area in southwest Uganda. Revue d'élevage et de Médecine Vétérinaire des Pays Tropicaux, 51(2):101-105; 8 ref.

Ostanello F, Farina L, Turilli C, Serra P, Cagnolati V, Abdullahi M, Scagliarini A, Prosperi S, 1999. Reliability of results of the Rose Bengal test performed for export control in northern Somalia. Revue Scientifique et Technique - Office International des épizooties, 18(3):660-666; 13 ref.

Peelman J, Dekeyser P, 1987. De verspreiding van de Brucella infectie bij vlaamse werknemers professioneel in contact met runderen. Vlaams Diergeneeskundig Tijschrift, 56:314-23.

Plommet M, 1991. New animal vaccines. In: Emel Tümbay, Süleyha Hilmi, Özdem Ang, eds. Brucella and brucellosis in man and animals. Proceedings of a symposium held in Izmir, Turkey, on September 24-26, 77-85.

Prahlad Kumar, Singh DK, Barbuddhe SB, 1997. Serological evidence of brucellosis in sheep and goats. Indian Journal of Animal Sciences, 67(3):180-182; 15 ref.

Quezada FV, Andrade LH, Aparicio ED, 1997. Evaluation of the modified milk ring test for goat milk for diagnosis of Brucella melitensis and the effect of mastitis on the test results. Técnica Pecuaria en México, 35(1):52-55; 16 ref.

Renoux G, Alton G, Mahaffey LW, 1956. Etude sur la brucellose ovine et caprine:V. Réactions sérologiques dans le sang de brébis récemment par Brucella melitensis. Archives Institue Pasteur, Tunis, 33:33-41.

Reviriego FJ, Moreno Ma, Domingues L, 2000. Risk factors for brucellosis sero-prevalence of sheep and goat flocks in Spain. Preventive Veterinary Medicine, 44:167-173.

Ribeiro LMM, Herr S, Chaparro F, Vyver FHvan der, 1990. The isolation and serology of Brucella melitensis in a flock of goats in central RSA. Onderstepoort Journal of Veterinary Research, 57(2):143-145; 14 ref.

Russo AM, Monzón CM, 1998. Serological study of bovine and caprine brucellosis in the province of Formosa, Argentina. Veterinaria Argentina, 15(150):701-709; 11 ref.

Sauret JM, Vilissova N, 2002. Human brucellosis, 15., USA: Journal of the American Board of Family Practice, 401-406.

Scharp DW, Al-Khalaf SA, Al-Muhanna MW, Cheema RA, Godana W, 1999. Use of mass vaccination with a reduced dose of REV 1 vaccine for Brucella melitensis control in a population of small ruminants. Tropical Animal Health and Production, 31(3):135-141; 13 ref.

Schnurrenberger PR, Walker JF, Martin RL, 1975. Brucella infections in Illinois Veterinarians. Journal of the American Veterinary Medical Association, 167:1084-1089.

Scrimgeour E, Mehta F, Suleiman A, 1999. Infectious and Tropical disease in Oman: a review. American Journal of Tropical Medicine and Hygiene, 61:920-925.

Serter D, Karakartal G et al. , 1991. Clinical picture in adult brucellosis - Typical and unusual. In: Emel Tümbay, Süleyha Hilmi, Özdem Ang, eds. Brucella and brucellosis in man and animals. Proceedings of a symposium held in Izmir, Turkey, on September 24-26, 101-107.

Shimi A, Tabatabayi AH, 1981. Pathological, bacteriological and serological responses of ewes experimentally infected with Brucella melitensis. Bulletin Office International des Epizooties, 93:1411-1422.

Stableforth AW, Galloway IA, 1959. Infectious diseases of animals: diseases due to bacteria. London, UK: Butterworths Scientific Publications, 1:109-119.

Sting R, Ortmann G, 2000. Experience with a simple ELISA for immunodiagnosis of Brucella in cattle, sheep and goats. Berliner und Münchener Tierärztliche Wochenschrift, 113(1):22-28; 32 ref.

Thapar MK, Young EJ, 1986. Urban outbreak of goat cheese brucellosis. Paediatric Infectious Diseases, Nov-Dec., 5:640-643.

Tibary A, Fite C, Anouassi A, Sghiri A, 2006. Infectious causes of reproductive loss in camelids. Theriogenology [Proceedings of the Annual Conference of the Society for Theriogenology, St. Paul, Minnesota, USA, 22-26 August, 2006.], 66(3):633-647.

Wray C, 1975. Survival and spread of pathogenic bacteria of veterinary importance within the environment. Veterinary Bulletin, 45:Abstract 546.

Yantzis D, 1985. Brucella melitensis in Greece: current situation report. Brucella melitensis. CEC seminar, Brussels, November 1984, 43-46; [Current Topics in Veterinary Medicine and Animal Science volume 32]; 12 ref.

Zowghi E, Ebadi A, 1985. Naturally occurring Brucella melitensis infection in cattle in Iran. Revue Scientifique et Technique, Office International des épizooties, 4(4):811-814; 8 ref.

Zowghi E, Ebadi A, 1988. Abortion due to Brucella abortus in sheep in Iran. Revue Scientifique et Technique, Office International des épizooties, 7(2):379-382; 11 ref.

Links to Websites

Top of page
Brucellosis [melitensis] – CFSPH Fast factsheet
Brucellosis [melitensis] – CFSPH Technical factsheet
Brucellosis [melitensis] – in Eurasia and Middle East FAO Report
Brucellosis [melitensis] – OIE Code
Brucellosis [melitensis] – OIE Manual
Brucellosis in animals and man - COAT Action 845 initiative for cooperation between scientists in the investigation of brucellosis.
CFSPH: Animal Disease Information"Animal Disease Information" provides links to various information sources, including fact sheets and images, on over 150 animal diseases of international significance.
OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Terrestrial Manual) aims to facilitate international trade in animals and animal products and to contribute to the improvement of animal health services world-wide. The principal target readership is laboratories carrying out veterinary diagnostic tests and surveillance, plus vaccine manufacturers and regulatory authorities in Member Countries. The objective is to provide internationally agreed diagnostic laboratory methods and requirements for the production and control of vaccines and other biological products.

Distribution Maps

Top of page
You can pan and zoom the map
Save map