Bactrocera latifrons (Solanum fruit fly)
Index
- Pictures
- Identity
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- History of Introduction and Spread
- Risk of Introduction
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Growth Stages
- Symptoms
- List of Symptoms/Signs
- Biology and Ecology
- Natural enemies
- Notes on Natural Enemies
- Pathway Vectors
- Plant Trade
- Impact
- Detection and Inspection
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Bactrocera latifrons (Hendel)
Preferred Common Name
- Solanum fruit fly
Other Scientific Names
- Bactrocera (Bactrocera) latifrons (Hendel)
- Chaetodacus antennalis Shiraki, 1933
- Chaetodacus latifrons Hendel
- Dacus latifrons (Hendel)
- Dacus parvulus Hendel, 1912
International Common Names
- English: Malaysian fruit fly
EPPO code
- DACULA (Bactrocera latifrons)
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Metazoa
- Phylum: Arthropoda
- Subphylum: Uniramia
- Class: Insecta
- Order: Diptera
- Family: Tephritidae
- Genus: Bactrocera
- Species: Bactrocera latifrons
Notes on Taxonomy and Nomenclature
Top of pageIn the USA this fly is also known as the Malaysian fruit fly. However, Malaysian entomologists have objected to their country being 'blamed' for the presence of this widespread Asian fly in Hawaii, particularly as Malaysia is unlikely to be the origin of the introduction.
Description
Top of pageAdult
Adult description derived from computer-generated description from White and Hancock (1997). Larval description from White and Elson-Harris (1994).
Head: Pedicel+1st flagellomere not longer than ptilinal suture. Face with a dark spot in each antenna.
Thorax: Predominant colour of scutum black. Postpronotal (=humeral) lobe entirely pale (yellow or orange). Notopleuron yellow. Scutum with lateral postsutural vittae (yellow/orange stripes); without a medial vitta. Scutellum entirely pale. Anepisternal stripe almost to postpronotal lobe. Yellow marking on both anatergite and katatergite. Postpronotal lobe (=humerus) without a seta. Notopleuron with anterior seta. Scutum with anterior supra-alar and prescutellar acrostichal setae. Scutellum without basal as well as apical setae.
Wing: Length 4.4-6.1 mm. With a complete costal band which does not extend below R2+3; expanded into a spot at apex. Wing with an anal streak. Cells bc and c colourless. No transverse markings. Cell bc and c without extensive covering of microtrichia. Cell br (narrowed part) with extensive covering of microtrichia.
Legs: Femora vary from entirely pale, to pale with a pre-apical dark spot, to darkened (either red-brown or black) in entire apical 1/3=1/2.
Abdomen: Predominant colour of abdomen orange-brown to fuscous. Tergites not fused. Abdomen not wasp waisted. Pattern on abdomen lacking or diffuse; if marked, then tergite 3 with a basal transverse dark band and sometimes with a medial stripe down T3-5.
Terminalia and secondary sexual characters: Male wing without a bulla. Male tergite 3 with a pecten (setal comb) on each side. Male sternite 5 V-shaped posteriorly. Surstylus (male) without a long posterior lobe. Wing (male) with a deep indent in posterior margin. Hind tibia (male) with a preapical pad. Aculeus apex with preapical steps and a pointed apex.
Egg
The egg of B. olae was described in detail by Margaritis (1985) and that of other species are probably very similar. Size, 0.8 mm long, 0.2 mm wide, with the micropyle protruding slightly at the anterior end. The chorion is reticulate (requires scanning electron microscope examination). White to yellow-white in colour.
Larva
Third instar larva: Larvae medium-sized, length 7.0-8.5 mm; width 1.2-1.5 mm. Head: Stomal sensory organ with 3-4 small, peg-like sensilla on a protuberant base surrounded by 5-6 large preoral lobes, some with small serrations; oral ridges with 9-14 rows of moderately long, tapering, bluntly rounded teeth; accessory plates with 6-10 small, serrated plates along the outer edge; mouthhooks moderately sclerotized, with slender, curved apical teeth. Thoracic and abdominal segments: A broad, encircling, anterior band of discontinuous rows of small spinules surrounding each thoracic segment. T1 with 6-10 rows of small, sharply pointed spinules; T2 and T3 with 3-7 rows of small spinules decreasing laterally. Creeping welts with stout spinules, 1 posterior row slightly larger. A8 with intermediate areas large and sensilla well developed. Anterior spiracles: 13-18 tubules. Posterior spiracles: Each spiracular slit about 3 times as long as broad, with a thick rima. Spiracular hairs broad, flat; dorsal and ventral bundles of 16-22 hairs branched in apical third to a quarter; lateral bundles of 6-11 hairs. Anal area: Lobes large, protuberant, surrounded by 3-6 rows of small, sharply pointed spinules, becoming more concentrated and stouter below anal opening.
Puparium
Barrel-shaped with most larval features unrecognizable, the exception being the anterior and posterior spiracles which are little changed by pupariation. White to yellow-brown in colour. Usually about 60-80% length of larva.
Distribution
Top of page
The distribution map includes records based on specimens of B. latifrons from the collection in the Natural History Museum (London, UK): dates of collection are noted in the Table (NHM, London, UK).
B. latifrons has a predominantly south and south-east Asian distribution. Waterhouse (1993) records this species from Indonesia, although no area is specified. Given that this species has been found in Sabah and West Malaysia it may at least be expected in Kalimantan and Sumatra.
In Africa, B. latifrons has only been recorded from Tanzania and Kenya. Its occurance in other parts of Africa is currently unknown (Meyer et al., 2007).
This species was recently introduced to Hawaii and was first discovered there in 1983 (Liquido et al., 1994).
A distribution map has been produced by IIE (1996).
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 12 May 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Burundi | Present, Widespread | ||||||
Congo, Democratic Republic of the | Present | ||||||
Kenya | Present | ||||||
Tanzania | Present | ||||||
Asia |
|||||||
Bangladesh | Present | ||||||
Brunei | Present | ||||||
Cambodia | Absent, Unconfirmed presence record(s) | ||||||
China | Present | ||||||
-Fujian | Present | ||||||
-Guangdong | Present | ||||||
-Guangxi | Present | ||||||
-Hainan | Present | ||||||
-Yunnan | Present | ||||||
Hong Kong | Present | ||||||
India | Present | ||||||
-Bihar | Present | ||||||
-Himachal Pradesh | Present | ||||||
-Karnataka | Present | ||||||
-Kerala | Present | ||||||
-Mizoram | Present | ||||||
-Tamil Nadu | Present | ||||||
-Tripura | Present | ||||||
-West Bengal | Present | ||||||
Indonesia | Present | Original citation: Waterhouse (1993) | |||||
-Sulawesi | Present | ||||||
-Sumatra | Present | ||||||
Japan | Present, Localized | ||||||
-Ryukyu Islands | Present | 1984 | only on Yonaguni island; Original citation: Ishida et al. (2005) | ||||
Jordan | Absent, Unconfirmed presence record(s) | ||||||
Laos | Present | ||||||
Malaysia | Present, Localized | ||||||
-Peninsular Malaysia | Present | ||||||
-Sabah | Present | ||||||
-Sarawak | Present | ||||||
Myanmar | Present | ||||||
Pakistan | Present | ||||||
Singapore | Present | ||||||
Sri Lanka | Present | ||||||
Taiwan | Present | ||||||
Thailand | Present | ||||||
Vietnam | Present | ||||||
Europe |
|||||||
Italy | Absent, Intercepted only | ||||||
North America |
|||||||
United States | Present, Localized | ||||||
-California | Absent, Eradicated | ||||||
-Hawaii | Present | Introduced | 1983 | ||||
Oceania |
|||||||
Timor-Leste | Present |
History of Introduction and Spread
Top of pageTaken from Meyer et al. (2007):
B. latifrons is Asian in origin. It was only very recently detected in Africa. The first specimens were trapped early in 2006 in Morogoro, Tanzania (Mwatawala et al., 2010). Surveys have shown that this species is widely distributed in Tanzania although not present in large numbers because of its limited host range (Mwatawala et al., 2010). In 2007, it was also found in Kenya near the border with Tanzania (Ekesi, unpublished records). So far, the species has not been reported from any other African countries.
B. latrifons was found in the Hawaiian Islands around 1983 (Vargas and Nishida, 1985).
Risk of Introduction
Top of pageHosts/Species Affected
Top of pageHost Plants and Other Plants Affected
Top of pageSymptoms
Top of pageList of Symptoms/Signs
Top of pageSign | Life Stages | Type |
---|---|---|
Fruit / internal feeding | ||
Fruit / lesions: black or brown | ||
Fruit / premature drop |
Biology and Ecology
Top of pageEggs (9-587 eggs) are laid below the skin of the host fruit. These hatch within a few days (mean 2.3) and the larvae feed for about a week (mean 8.5 days). Pupariation is in the soil under the host plant for little over a week (mean 10.2 days). Adults occur throughout the year and females begin oviposition after 6-17 days, and continue laying eggs for 6-117 days; data from Vargas and Nishida (1985). Adult flight and the transport of infected fruit are the major means of movement and dispersal of Bactrocera spp. to previously uninfected areas. A pre-adult life-table for B. latifrons was produced by Vargas and Nishida (1985) and further ecological studies were carried out by Liquido et al. (1994) who showed that B. latifrons outcompeted B. dorsalis, B. cucurbitae and Ceratitis capitata in its Solanaceous hosts but not in its non-Solanaceous hosts. For further information on the biology and ecology of B. latifrons, see Sunil Kumar and Agarwal (2003), Peck and McQuate (2004) and Ishida et al. (2005).
[Erratum: In previous versions of this datasheet, it was stated that “many Bactrocera spp. can fly 50-100 km (Fletcher, 1989)” but a review of Fletcher (1989a) and Fletcher (1989b) by Hicks et al. (2019) found no evidence to support this statement and it has been removed. Fletcher (1989b) provides dispersal data for only 11 of 651 species of Bactrocera, many of the case studies lack the necessary numerical data, and the study did not discern between active flight and passive wind-assisted dispersal. There are differences among fruit fly species and further studies are required to determine dispersal distances for individual species. For further information on trapping Bactrocera species to monitor movement, see Weldon et al. (2014).]
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Biosteres arisanus | Parasite | Eggs; Arthropods|Larvae | ||||
Biosteres longicaudatus | Parasite | Arthropods|Larvae | ||||
Biosteres persulcatus | Parasite | Arthropods|Larvae | ||||
Biosteres vandenboschi | Parasite | Arthropods|Larvae | ||||
Fopius arisanus | Parasite | Eggs; Arthropods|Larvae | ||||
Fopius persulcatus | Parasite | Arthropods|Larvae | ||||
Fopius vandenboschi | Parasite | Arthropods|Larvae | ||||
Opius incisi | Parasite | India; Karnataka | Solanum viarum | |||
Psyttalia incisi | Parasite | Arthropods|Larvae | ||||
Tetrastichus | Parasite | Arthropods|Larvae | ||||
Tetrastichus giffardianus | Parasite |
Notes on Natural Enemies
Top of pagePathway Vectors
Top of pageVector | Notes | Long Distance | Local | References |
---|---|---|---|---|
Clothing, footwear and possessions | Fruit in case or handbag. | Yes | ||
Containers and packaging - wood | Of fruit cargo. | Yes | ||
Land vehicles | Aeroplanes and boats, with fruit cargo. | Yes | ||
Fruit in post. | Yes | |||
Soil, sand and gravel | Risk of puparia in soil. | Yes |
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Fruits (inc. pods) | arthropods/eggs; arthropods/larvae | Yes | Pest or symptoms usually visible to the naked eye | |
Growing medium accompanying plants | arthropods/pupae | Yes | Pest or symptoms usually visible to the naked eye |
Plant parts not known to carry the pest in trade/transport |
---|
Bark |
Bulbs/Tubers/Corms/Rhizomes |
Flowers/Inflorescences/Cones/Calyx |
Leaves |
Roots |
Seedlings/Micropropagated plants |
Stems (above ground)/Shoots/Trunks/Branches |
True seeds (inc. grain) |
Wood |
Detection and Inspection
Top of pageFruits (locally grown or samples of fruit imports) should be inspected for puncture marks and any associated necrosis. Suspect fruits should be cut open and checked for larvae. Larval identification is difficult, so if time allows, mature larvae should be transferred to saw dust (or similar dry medium) to allow pupariation. The use of cuticular hydrocarbons for larval identification has been investigated (Sutton et al., 1996) but in most circumstances many more species will need to be compared before this can be applied. Upon emergence, adult flies must be fed with sugar and water for several days to allow hardening and full colour to develop, before they can be identified.
Adult B. latifrons have a yellow strip on the side of the thorax and a mostly red-brown abdomen. Females have a pair of preapical ‘shoulders’ on the aculeus (Meyer et al., 2007). For further information see Invasive Fruit Fly Pests in Africa (Meyer et al., 2007).
B. latifrons was one of six Bactrocera species identified by a PCR-DGGE method based on the gene analysis of mtDNA CO II and 16S rDNA (Zhan et al., 2007). The method was shown to be a rapid and specific technique for identifying pest species in plant quarantine.
Similarities to Other Species/Conditions
Top of pageMinimum characters to differentiate from most other Bactrocera and Dacus spp. (White and Hancock, 1997): Face with a dark spot in each antennal furrow. Scutum predominantly black; with lateral vittae; without medial vitta; with prescutellar acrostichal setae. Scutellum entirely yellow (except for narrow basal line). Anepisternal stripe almost reaching postpronotal (=humeral) lobe. Cell bc colourless. Costal band expanded into a spot at apex. Tergite 4 without any lateral markings. Aculeus apex trilobed.
B. latifrons was included in a pictorial key to Sri Lankan species (also largely applicable to southern India) by Tsuruta (1998).
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Regulatory Control
Many countries, such as the mainland USA, forbid the import of susceptible fruit without strict post-harvest treatment having been applied by the exporter. This may involve fumigation, heat treatment (hot vapour or hot water), cold treatments, insecticidal dipping, or irradiation (Armstrong and Couey, 1989). However, recent research has indicated that B. latifrons is more heat tolerant than other species (Jang et al., 1999). Irradiation is not accepted in most countries and many have now banned methyl bromide fumigation. Heat treatment tends to reduce the shelf life of most fruits and so the most effective method of regulatory control is to preferentially restrict imports of a given fruit to areas free of fruit fly attack.
Cultural Control and Sanitary Methods
One of the most effective control techniques against fruit flies in general is to wrap fruit, either in newspaper, a paper bag, or in the case of long/thin fruits, a polythene sleeve. This is a simple physical barrier to oviposition but it has to be applied well before the fruit is attacked. Little information is available on the attack time for most fruits but few Bactrocera spp. attack prior to ripening.
Chemical Control
Although cover sprays of entire crops are sometimes used, the use of bait sprays is both more economical and more environmentally acceptable. A bait spray consists of a suitable insecticide (e.g. malathion) mixed with a protein bait. Both males and females of fruit flies are attracted to protein sources emanating ammonia, and so insecticides can be applied to just a few spots in an orchard and the flies will be attracted to these spots. The protein most widely used is hydrolysed protein, but some supplies of this are acid hydrolysed and so highly phytotoxic. Smith and Nannan (1988) have developed a system using autolysed protein. In Malaysia this has been developed into a very effective commercial product derived from brewery waste.
Field Monitoring
This species is not attracted to either cue lure or methyl eugenol. Field monitoring is by sampling susceptible fruits for larvae. In Hawaii a new lure chemical is being developed (see White and Liquido, 1995).
References
Top of pageArmstrong JW, Couey HM, 1989. Control; fruit disinfestation; fumigation, heat and cold. In: Robinson AS, Hooper G, eds. Fruit Flies; their Biology, Natural Enemies and Control. World Crop Pests. Amsterdam, Netherlands: Elsevier, 3(B):411-424
Baker RT, Cowley JM, 1991. A New Zealand view of quarantine security with special reference to fruit flies, In: Vijaysegaran S, Ibrahim AG, eds. First International Symposium on Fruit Flies in the Tropics, Kuala Lumpur, 1988. Kuala Lumpur, Malaysia: Malaysian Agricultural Research and Development Institute, 396-408
Bateman MA, 1982. III. Chemical methods for suppression or eradication of fruit fly populations, In: Drew RAI, Hooper GHS, Bateman MA eds. Economic Fruit Flies of the South Pacific Region. 2nd edn. Brisbane, Australia: Queensland Department of Primary Industries, 115-128
EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm
Fletcher BS, 1987. The biology of dacine fruit flies. Annual Review of Entomology, 32:115-144
Fletcher BS, 1989. Ecology; life history strategies of tephritid fruit flies, In: Robinson AS, Hooper G, eds. Fruit Flies; their Biology, Natural Enemies and Control. World Crop Pests. Amsterdam, Holland: Elsevier, 3(B):195-208
Fletcher, B. S., 1989. Movements of tephritid fruit flies. In: Fruit Flies; their Biology, Natural Enemies and Control. World Crop Pests [ed. by Robinson, A. S., Hooper, G.]. Amsterdam, The Netherlands: Elsevier Science Publishers, 209-219
Foote RH, Blanc FL, Norrbom AL, 1993. Handbook of the Fruit Flies (Diptera: Tephritidae) of America North of Mexico. Ithaca, USA: Comstock
Hardy DE, 1973. The fruit flies (Tephritidae - Diptera) of Thailand and bordering countries. Pacific Insects Monograph, 31:1-353
Hardy DE, 1977. Tephritidae (Trypetidae, Trupaneidae), In: Delfinado MD, Hardy DE, eds. A Catalog of the Diptera of the Oriental Region, Vol. III. Honolulu, USA: University Press of Hawaii, 44-134
Hicks, C. B., Bloem, K., Pallipparambil, G. R., Hartzog, H. M., 2019. Reported Long-Distance Flight of the Invasive Oriental Fruit Fly and Its Trade Implications. In: Area-Wide Management of Fruit Fly Pests, [ed. by Perez-Staples, D., Diaz-Fleischer, F., Montoya, P., Vera, M. T.]. Boca Raton, USA: CRC Press. 9-25. https://www.taylorfrancis.com/books/9780429355738/chapters/10.1201/9780429355738-2
IIE, 1996. Distribution Maps of Pests. Map No. 566. Wallingford, UK: CAB International
IPPC, 2016. Bactrocera latifrons (Malaysian Fruit Fly) - Establishment of Regulated Area in in Westchester, Los Angeles County, California. IPPC Official Pest Report, No. USA-70/1. Rome, Italy: FAO. https://www.ippc.int/en/
Ishida T, Nakahara S, Minoura K, Dohino T, 2005. Development and reproductive ability of Bactrocera latifrons (Hendel) (Diptera: Tephritidae) on Yonaguni Island. Research Bulletin of the Plant Protection Service, Japan, 41:39-42
NAPPO, 2016. Phytosanitary Alert System: Bactrocera latifrons (Malaysian Fruit Fly) - Removal of the Quarantine in the Westchester Area of Los Angeles County, California. NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=677
Sutton BD, Steck GJ, Mathis WN (ed. ), Grogan WL Jr., 1997. Discrimination of fruit-fly larvae (Diptera: Tephritidae) by cuticular hydrocarbon analysis: Bactrocera Macquart species established in the New World and Hawaii. Contributions on Diptera dedicated to Willis W. Wirth. Memoirs of the Entomological Society of Washington, No. 18:243-253
Tsuruta K, 1998. Pictorial key to dacine fruit flies associated with economic plants in Sri Lanka. Research Bulletin of the Plant Protection Service, Japan, No. 34:23-35
Wharton RH, 1989. Control; classical biological control of fruit-infesting Tephritidae, In: Robinson AS, Hooper G, eds. Fruit Flies; their Biology, Natural Enemies and Control. World Crop Pests 3(B). Amsterdam, Netherlands: Elsevier, 303-313
White IM, Liquido NJ, 1995. Case 2967; Chaetodacus latifrons Hendel, 1915 (currently Bactrocera latifrons; Insecta, Diptera): proposed precedence of the specific name over that of Dacus parvulus Hendel, 1912. Bulletin of Zoological Nomenclature, 52:250-252
Distribution References
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Hardy DE, 1973. The fruit flies (Tephritidae - Diptera) of Thailand and bordering countries. In: Pacific Insects Monograph, 31 1-353.
Hardy DE, 1977. Tephritidae (Trypetidae, Trupaneidae). In: A Catalog of the Diptera of the Oriental Region, III [ed. by Delfinado MD, Hardy DE]. Honolulu, USA: University Press of Hawaii. 44-134.
IPPC, 2016. Bactrocera latifrons (Malaysian Fruit Fly) - Establishment of Regulated Area in in Westchester, Los Angeles County, California. In: IPPC Official Pest Report, No. USA-70/1, Rome, Italy: FAO. https://www.ippc.int/en/
NAPPO, 2016. Phytosanitary Alert System: Bactrocera latifrons (Malaysian Fruit Fly) - Removal of the Quarantine in the Westchester Area of Los Angeles County, California., NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=677
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/