Banana streak disease
Index
- Pictures
- Identity
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- Risk of Introduction
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Growth Stages
- Symptoms
- List of Symptoms/Signs
- Biology and Ecology
- Means of Movement and Dispersal
- Seedborne Aspects
- Vectors and Intermediate Hosts
- Impact
- Diagnosis
- Detection and Inspection
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Banana streak disease
Other Scientific Names
- banana streak badnavirus
- Banana streak GF virus
- Banana streak Mysore virus
- Banana streak OL virus
International Common Names
- French: mosaïque en tirets du bananier
English acronym
- BSGFV
- BSMyV
- BSOLV
EPPO code
- BSV000 (Banana streak badnavirus)
Taxonomic Tree
Top of page- Domain: Virus
- Group: "DNA and RNA reverse transcribing viruses"
- Family: Caulimoviridae
- Genus: Badnavirus
- Species: Banana streak disease
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageDistribution
Top of pageBanana Streak Disease (BSD) has a very wide geographical distribution; its cause was for long unrecognized as its symptoms were often mistaken for those of Cucumber mosaic virus and the causal viruses were not recognized until the first was purified and characterized by Lockhart (1986). As banana has long been cultivated in all countries in which BSD occurs, and the disease has probably occurred for much longer than 50 years (Wardlaw, 1961), the causal viruses are now probably best considered as native to these countries.
In Taiwan, Su (1997) first reported the disease on cv. Mysore in the greenhouse of the Taiwan Banana Research Institute. The disease had spread in the nearby area and The Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ) responded by eradicating infected plants between 1997 and 1999. The disease has not been found in banana plantations in Taiwan since the eradication through a monitoring programme conducted by Dr Su.
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 12 May 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Benin | Present | Native | Invasive | ||||
Cabo Verde | Present | Native | Invasive | ||||
Cameroon | Present | Native | Invasive | ||||
Côte d'Ivoire | Present, Widespread | Native | Invasive | ||||
Egypt | Present, Localized | ||||||
Ghana | Present | Native | Invasive | ||||
Guinea | Present | Native | Invasive | ||||
Kenya | Present | Native | Invasive | ||||
Madagascar | Present | Native | Invasive | ||||
Malawi | Present | Native | Invasive | ||||
Mauritius | Present | Native | Invasive | ||||
Morocco | Present, Widespread | Native | Invasive | ||||
Nigeria | Present | Native | Invasive | ||||
Rwanda | Present, Widespread | Native | Invasive | ||||
South Africa | Present | Native | Invasive | ||||
Tanzania | Present, Localized | Native | Invasive | ||||
-Zanzibar Island | Present, Localized | ||||||
Uganda | Present | Native | Invasive | ||||
Asia |
|||||||
China | Present | Native | Invasive | ||||
India | Present | Native | Invasive | ||||
-Karnataka | Present | ||||||
-Kerala | Present | ||||||
Indonesia | Present | ||||||
Jordan | Present, Widespread | ||||||
Malaysia | Present | Native | Invasive | ||||
Philippines | Present | Native | Invasive | ||||
Sri Lanka | Present | Native | Invasive | ||||
Taiwan | Absent, Eradicated | ||||||
Thailand | Present | Native | Invasive | ||||
Europe |
|||||||
Portugal | Present | Present based on regional distribution. | |||||
-Madeira | Present | Native | Invasive | ||||
Spain | Absent, Unconfirmed presence record(s) | ||||||
-Canary Islands | Absent, Unconfirmed presence record(s) | ||||||
North America |
|||||||
Costa Rica | Present | Native | Invasive | ||||
Cuba | Present | Native | Invasive | ||||
Grenada | Present | Native | Invasive | ||||
Guadeloupe | Present | Native | Invasive | ||||
Haiti | Present | Native | Invasive | ||||
Honduras | Present | Native | Invasive | ||||
Jamaica | Present | Native | Invasive | ||||
Nicaragua | Present | Native | Invasive | ||||
Puerto Rico | Present | Native | Invasive | ||||
Saint Lucia | Present | Native | Invasive | ||||
Trinidad and Tobago | Present | Native | Invasive | ||||
U.S. Virgin Islands | Present | Native | Invasive | ||||
United States | Present | Present based on regional distribution. | |||||
-Florida | Present | ||||||
-Georgia | Present | ||||||
Oceania |
|||||||
Australia | Present | Native | Invasive | ||||
New Caledonia | Present | Native | Invasive | ||||
Papua New Guinea | Present | Native | Invasive | ||||
Samoa | Present | Native | Invasive | ||||
Tonga | Present | ||||||
South America |
|||||||
Brazil | Present | Native | Invasive | ||||
Colombia | Present | Native | Invasive | ||||
Ecuador | Present | Native | Invasive | ||||
Peru | Present | ||||||
Venezuela | Present | Native | Invasive |
Risk of Introduction
Top of pageResearch is being conducted at the University of Gembloux in Belgium to find methods of eradicating virus from infected banana clones.
Hosts/Species Affected
Top of pageEnsete has been infected with BSV (Diekmann and Putter, 1996). A badnavirus causing streak symptoms in Ensete ventricosum (enset) in Ethiopia (Tessera and Quimio, 1999) is also probably a strain of BSV (Lockhart and Jones, 1999).
Host Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Heliconia | Heliconiaceae | Unknown | |
Musa (banana) | Musaceae | Main |
Symptoms
Top of pageA characteristic of infection is the periodicity of symptom expression in leaves. Plants may not show streak symptoms in all leaves and, for several months at a time, emerging leaves may be symptomless or show only slight symptoms. Symptom expression seems to be associated with the change of seasons and fluctuating temperatures may play a role (Dahal et al., 1998a, 2000a,b). The intensity of symptoms has been associated with the concentration of virus in the tissue; the higher the virus concentration, the more severe the symptoms (Dahal et al., 1998b). Plants with BSD may appear symptomless at some stage in their growth cycle as leaves with symptoms are shed and new leaves appear without symptoms due to factors discussed above. Some infected land races show no symptoms even under fluctuating environmental conditions (Dahal et al., 1998a).
Other symptoms associated with BSD are stunting, cigar leaf necrosis, internal necrosis of the pseudostem, a reduction in bunch size, incomplete emergence of bunches and bunches emerging through the side of the pseudostem. Occasionally, dark streak symptoms may be visible on the pseudostem and fingers may be distorted (Lockhart and Jones, 1999).
In Australia, broad yellow lines in the leaf lamina parallel to the midrib, leaf twisting, grooves in the base of the pseudostem and an abnormal arrangement of leaves similar to the traveller's palm (Ravenala madagascariensis) have also been associated with banana streak disease in 'Williams' (AAA, Cavendish subgroup) (Daniells et al., 1998).
Three phases of symptom expression have been recognized in commercial Cavendish plantations in Ecuador. The first is the appearance of chlorotic streaks in leaves, the second is the appearance of dark blotches on the pseudostem and midrib and the third is the splitting of the outer leaf sheaths of the pseudostem sometimes as far up as the petiole. This allows entry of a bacterium that cause a soft rot of the base of the pseudostem. If the plant produces a bunch, peel splitting and necrotic spot and streak symptoms can appear on fruit. Similar symptoms have been seen on 'Grand Nain' (AAA, Cavendish subgroup) in Costa Rica (Lockhart and Jones, 1999).
In the state of Tamil Nadu in India, leaf and aberrant bunch formation symptoms are common on 'Poovan' and seem to increase in severity with the number of crop cycles (DR Jones, Montpellier, France, 1995, personal communication; Thiribhuvanamala and Sabitha Doraisamy, 2001).
List of Symptoms/Signs
Top of pageSign | Life Stages | Type |
---|---|---|
Fruit / abnormal shape | ||
Fruit / discoloration | ||
Fruit / lesions: black or brown | ||
Fruit / reduced size | ||
Leaves / abnormal colours | ||
Leaves / abnormal forms | ||
Leaves / necrotic areas | ||
Stems / dieback | ||
Stems / internal discoloration | ||
Whole plant / dwarfing |
Biology and Ecology
Top of pageIt has been shown that genomic sequences are integrated into the genomic DNA of Musa and Ensete. Virus-related sequences have been found in more than 400 Musa genotypes by PCR amplification (LaFleur et al., 1996; Geering et al., 2001; Harper et al., 2002). While all Musa genotypes appear to contain integrated viral sequences, the nature of these sequences is variable. Of two such integrated sequences that have been characterized, one is incapable of giving rise to episomal BSV infection. There is good evidence, however, that a second integrated sequence is the source of de novo episomal BSV infection in banana including a significant number of tetraploid hybrids which have been bred for improved yield and disease resistance. The development of episomal infection from integrated viral sequences is linked to in vitro propagation and possibly other stress factors (Krikorian et al., 1999; Ndowora et al., 1999).
Expressible virus integrants have been found in Musa balbisiana and some AAB, ABB and AAAB clones. However, they were not been found in AA or AAA clones tested indicating that de novo synthesis may only occur in cultivars/bred hybrids with the B genome (BEL Lockhart, Minnesota, USA, 1999, personal communication). A distinct virus or strain which was first isolated and characterized from an IITA plantain hybrid ('TMPx 4698') bred in Nigeria (Harper and Hull, 1998), is believed to be the product of these expressible virus integrants (BEL Lockhart, Minnesota, USA, 1999, personal communication).
Means of Movement and Dispersal
Top of pageAttempts to transmit the causal viruses by mechanical inoculation using abrasives have been unsuccessful. The virus, therefore, is unlikely to be transmitted on cutting tools or during cultural operations. It is also not soil-borne (Lockhart and Jones, 1999).
However, like some other badnaviruses, those causing BSD are transmitted from infected to healthy plants by mealybugs (Hemiptera; Pseudococcidae). The virus is transmitted in a semi-persistent manner from banana to banana by the citrus mealybug (Planococcus citri) and an unidentified Pseudococcus sp. (Lockhart and Jones, 1999), and, in screenhouse experiments, by the pineapple mealybug (Dysmicoccus brevipes) and the pink sugarcane mealybug (Saccharicoccus sacchari) (Kubiriba et al., 2001 a,b). The virus does not multiply in the insect vectors and is not transmitted transovarially. Banana and plantain are hosts of a range of mealybug species (Watson and Kubiriba, 2005). Although all possible vectors have not yet been determined, 20 species and 14 genera of mealybugs infest banana and plantain in Africa and probably elsewhere (Watson and Kubiriba, 2005); it is possible that other mealybug species, such as Planococcus musae in Nigeria and Pseudococcus comstocki in Ecuador may also be vectors. The pink sugarcane mealybug, S. sacchari, transmits Sugarcane bacilliform virus from sugarcane to banana (Lockhart and Autry, 1991). In many tropical areas, such as Tamil Nadu in India, sugarcane is grown in close proximity to banana and transmission from the former to the latter may occasionally occur in nature. The pattern of field spread of BSD in Uganda has been reported by Kuririba et al. (2001b).
Observations in many countries suggest that the spread of the causal virus from plant to plant by mealybug vectors may be limited in occurrence. However, mealybugs are common on banana in some locations, such as in Ecuador where the high incidence of infection in commercial plantations may be a result of vector dissemination (Lockhart and Jones, 1999).
Seedborne spread
Studies in Australia with Banana streak Mysore virus have shown that the virus is seedborne (Daniells et al., 1995). Other viruses that induce BSD may also be so transmitted.
Long distance dissemination
The principal means of long-distance dissemination is in vegetative planting material, such as suckers or tissue cultures. Viruses inducing BSD cause systemic infection. All tissue cultures derived from meristems excised from diseased plants have been found to carry BSV (Lockhart and Jones, 1999).
Seedborne Aspects
Top of pageStudies in Australia with Banana streak Mysore virus (BSMyV) have shown that the virus is seedborne (Daniells et al., 1995). Interestingly, leaf striping in plants of the subgroup Mysore was originally thought to be a genetic trait because the symptom was transferred to progeny in breeding experiments in Trinidad (Wardlaw, 1961). However, it is now known that many clones in the Mysore subgroup are infected with BSMyV because stripe symptoms typical of the virus are often seen in this cultivar. Therefore, the most logical explanation for the above report is that the virus was carried through seed to the progeny.
Vectors and Intermediate Hosts
Top of pageVector | Source | Reference | Group | Distribution |
---|---|---|---|---|
Planococcus citri | Insect |
Impact
Top of pageIn Nigeria and Rwanda, internal necrosis results in plant death. BSD symptoms have been seen on plants in just over half the villages surveyed in southern Nigeria and southern Cameroon with incidence ranging from 0.5 to 17% (Gauhl et al., 1999a, b).
In India, yield losses from infected 'Poovan' (AAB, syn. 'Mysore') are thought to be very high in the third crop cycle when bunches can 'choke' on emergence or emerge through the side of the pseudostem. As a consequence, 'Poovan' plantations need to be replanted every 3 years.
In plantations of Cavendish cultivars in Costa Rica and Ecuador, BSD results in severe symptoms on fruit, which makes them unmarketable. In addition, the virus causes the pseudostem to split resulting in a bacterial infection that eventually kills the plant. Drastic methods, which can include the destruction of all plants in a 50 m², are sometimes taken in an effort to control the disease in export plantations in Ecuador (Lockhart and Jones, 1999).
Actual yield losses in some banana and plantain cultvars will be difficult to assess because clones seem to be universally affected. Symptoms of BSD can be seen at some time on almost all 'Mysore' and 'Cuerno' (AAB, Plantain subgroup) plants. Most accessions of plantain in the in vitro germplasm collection at the INIBAP Transit Centre at Leuven, Belgium, have indexed positive for a virus causing BSD (I Van den Houwe, Leuven, Belgium, 1999, personal communication). This may reflect the widespread occurrence of BSV in plantain cultivars. In Australia, infection can result in an 18 day delay in harvest and a 6% loss of yield annually (Daniells et al., 2001).
Diagnosis
Top of pageThe ability of several viruses to cause BSD, has posed the most serious obstacle to the reliable detection of the virus in infected tissue. Serological heterogeneity has made it difficult to develop routine virus indexing protocols capable of detecting the complete range of virus isolates (Lockhart and Olszewski, 1993). A significant improvement in detection by ELISA was achieved by developing assay protocols using polyclonal antibodies produced in two different animal species (Ndowora, 1998), or using monoclonal antibodies in assays (Agindotan et al., 2003). In spite of marked improvements in the reliability of virus detection by ELISA, there remain isolates or viruses that are detected weakly or not at all if heterologous antisera are used. However, these and all other strains or viruses can be detected by immunosorbent electron microscopy (ISEM) using partially purified leaf-tissue extracts (Bouhida et al., 1993; Ndowora and Lockhart, 2000; Garrido et al., 2005). Unfortunately, this is expensive and laborious and requires specialised equipment and skills (Lockhart and Jones, 1999).
Genome-based methods of virus detection (EG nucleic acid hybridization, PCR amplification), which are potentially highly sensitive, are seriously compromised by both genomic heterogeneity among viruses inducing BSD and the occurrence of integrated virus sequences in the Musa genome (LaFleur et al., 1996; Ndowora et al., 1999). However, the use of IC-PCR (Thottapilly et al., 1997; Harper et al., 1999, 2002b; Cherian et al., 2004; Garrido et al., 2005; Rao et al., 2005) avoids false positives due to integrated viral sequences and is a potential tool in diagnosing infection.
Detection and Inspection
Top of pagePlants may be symptomless (see Symptoms) and tests need to be undertaken to determine if the virus is present or absent (see Diagnostic Methods).
Similarities to Other Species/Conditions
Top of pageMany isolates of BSV and Sugarcane bacilliform virus are serologically related (Lockhart and Olszewski, 1993).
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Infected plants should be destroyed and replaced with virus-tested plants. Although such plants are usually obtained by meristem tip culture (e.g., Helliot et al., 2001; Hernandez et al., 2002; Rao et al., 2005), they are also obtainable by using cryopreservation (Helliot et al., 2002) or by treating micro-plants with acyclic nucleoside phosphonate analogues such as adefovir or tenovir (Helliot et al., 2003a). Only tissue cultures derived from meristems from virus-tested plants should move internationally and be mass multiplied. Even then, care must be taken because of the possible de novo synthesis of the virus in tissue culture.Mealybug vectors should be controlled if virus incidence is high and the disease appears to be spreading from plant to plant. The virus is unlikely to be spread on cutting tools or by mechanical means.
In Ecuador, where banana streak is a serious problem in some commercial Cavendish plantations, plants with symptoms are quickly destroyed after spraying with insecticide in an effort to contain the outbreak. If 10 plants with symptoms are seen in a 50 m² area, then all plants in that area are destroyed. However, these practices have failed to stop spread and more drastic action is being considered (Lockhart and Jones, 1999).
References
Top of pageAgindotan BO; Thottappilly G; Uwaifo A; Winter S, 2003. Production of monoclonal and polyclonal antibodies against a Nigerian isolate of banana streak virus. African Journal of Biotechnology, 2(7): 171-178.
Cherian AK; Baranwal VK; Malathi VG; Pant RP; Ahlawat YS, 2004. Banana streak virus from India and its detection by polymerase chain reaction. Indian Journal of Biotechnology, 3(3): 409-413.
Daniells J; Geering A; Thomas J, 1998. Bananstreak virus investigations in Australia. Infomusa, 7(2):20-21.
EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm
Garrido MJ; Ordosgoitti A; Lockhart BEL, 2004. Presence of banana streak virus ol in dessert bananas in Maracay, Venezuela. Journal of Plant Pathology, 86(3): 263.
Garrido MJ; Ordosgoitti A; Lockhart BEL, 2005. Occurrence of banana streak virus in Venezuela. Interciencia, 30(2): 97-101.
Gauhl F; Pasberg-Gauhl C; Lockhart BEL; Hughes J d'A; Dahal G, 1999. Incidence and distribution of banana streak badnavirus in the plantain production region of southern Nigeria. International Journal of Pest Management, 44:167-171.
Geering A DW; Olszewski NE; Harper G; Lockhart BEL; Hull R; Thomas JE, 2005. Banana contains a diverse array of endogenous badnaviruses. Journal of General Virology, 86(2): 511-520.
Harper G; Hart D; Moult S; Hull R, 2004. Banana streak virus is very diverse in Uganda. Virus Research, 100(1): 51-56.
Harper G; Hart D; Moult S; Hull R; Geering A; Thomas J, 2005. The diversity of banana streak virus isolates in Uganda. Archives of Virology, 150: 2407-2420.
Harper G; Hull R; Lockhart B; Olszewski N, 2002. Viral sequences integrated into plant genomes. Annual Review of Phytopathology, 40: 119-136.
Helliot B; Panis B; Frison E; Clercq Ede; Swennen R; Lepoivre P; Neyts J, 2003. The acyclic nucleoside phosphonate analogues, adefovir, tenofovir and PMEDAP, efficiently eliminate banana streak virus from banana (Musa spp.). Antiviral Research, 59(2): 121-126.
Hernandez R; Bertrand H; Lepoivre P; Gonzalez JE; Rojas X; Pairol A; Gonzalez Y; Gonzalez G; Cortes C, 2002. Diagnosis and elimination of banana streak virus (BSV) in Musa spp. Centro Agricola, 29(2): 42-47.
LaFleur DA; Lockhart BEL; Olszewski NE, 1996. Portions of the banana streak badnavirus genome are integrated in the genome of its host Musa spp. Phytopathology, 86:11: S100.
LassoudiFre A, 1974. La mosaique dite 'a tirets' du bananier 'Poyo' en Cote d'Ivoire. Fruits, 29:349-357.
Lockhart BEL; Autrey LJC, 1991. Mealybug transmission of sugarcane bacilliform and sugarcane clostero-like viruses. Abstracts: 3rd Sugarcane Pathology Workshop of the International Society of Sugarcane Technologists, Mauritius, 22-26 July 1991, :17.
Lockhart BEL; Jones DR, 1999. Banana streak virus. In: Jones DR, ed. Diseases of Banana, Abacá and Enset. Wallingford, UK: CAB Publishing, 263-274.
Lockhart BEL; Olszewski NE, 1993. Serological and genomic heterogeneity of banana streak badnavirus; implications for virus detection in Musa germplasm. In: Ganry J, ed. Breeding Banana and Plantain for Resistance to Diseases and Pests, Proceedings of the International Symposium on Genetic Improvement of Bananas to Diseases and Pests organized by CIRAD-FLHOR, Montpellier, France, 7-9 September 1992. CIRAD, Montpellier, France, 105-113.
Ndowora TCR, 1998. Banana streak virus: development of an immunoenzymatic assay for detection and characterization of sequences that are integrated in the genome of the host. PhD thesis, University of Minnesota, 90 pp.
Pasberg-Gauhl C; Lockhart BE, 2000. First outbreak of banana streak badnavirus infection in commercial export bananas in Costa Rica. Plant Disease, 84(10):1152; 2 ref.
Rao XQ; Zhang SG; Gao QW, 2005. Detecting viruses in banana differentiated shoots from tissue culture. Journal of South China Agricultural University, 26(1): 64-66. Guangzhou, China: South China Agricultural University.
Sebasigari K; Stover RH, 1988. Banana Diseases and Pests in East Africa. Report of a Survey in November 1987. Montpellier, France: INIBAP.
Tessera M; Quimio; AJ, 1999. Enset streak. In: Jones DR, (ed) Diseases of Banana, Abacá and Enset. Wallingford, UK: CAB Publishing, 283.
Thomas JE; McMichael LA; Dietzgen RG; Searle C; Matalevea S; Osasa A, 1994. Banana strak virus in Australia, Western Samoa and Tonga. In: International Society of Sugar Cane Technologists, 4th Sugar Cane Pathology Workshop, Brisbane, Australia, Abstracts p. 40.
Thottappilly G; Dahal G; Harper G; Hull R; Lockhart BEL, 1997. Banana streak badnavirus: development of diagnostics by ELISA and PCR. Phytopathology, 87, S97.
Wardlaw CW, 1961. Banana Diseases including Plantains and Abaca. London, UK: Longmans, Green and Co. Ltd.
Watson GW; Kubiriba J, 2005. Identification of mealybugs (Hemiptera: Pseudococcidae) on banana and plantain in Africa. African Entomology; 13(1): 35-47.
Distribution References
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Lockhart BEL, Jones DR, 1999. Banana streak virus. In: Diseases of Banana, Abacá and Enset, [ed. by Jones DR]. Wallingford, UK: CAB Publishing. 263-274.
Sebasigari K, Stover RH, 1988. Banana Diseases and Pests in East Africa. In: Report of a Survey in November 1987, Montpellier, France: INIBAP.
Thomas JE, McMichael LA, Dietzgen RG, Searle C, Matalevea S, Osasa A, 1994. Banana strak virus in Australia, Western Samoa and Tonga. In: International Society of Sugar Cane Technologists, 4th Sugar Cane Pathology Workshop, Brisbane, Australia, 40.
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/