Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Datura ferox
(fierce thornapple)



Datura ferox (fierce thornapple)


  • Last modified
  • 21 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Preferred Scientific Name
  • Datura ferox
  • Preferred Common Name
  • fierce thornapple
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    CAB International
    OX10 8DE
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page

Preferred Scientific Name

  • Datura ferox L.

Preferred Common Name

  • fierce thornapple

Other Scientific Names

  • Datura laevis Bertol.
  • Datura quercifolia Kunth (1818)
  • Stramonium ferox Boccone

International Common Names

  • English: angel's-trumpet; Chinese thornapple; false castor-oil; fierce thornapple; long-spine thornapple

Local Common Names

  • : datura
  • Germany: Dorniger Stechapfel
  • South Africa: grootstinkblaar; large thornapple
  • Spain: chamico
  • Sweden: langtaggig spikklubba

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Solanales
  •                         Family: Solanaceae
  •                             Genus: Datura
  •                                 Species: Datura ferox

Notes on Taxonomy and Nomenclature

Top of page

The species name ferox means ‘strongly fortified’ and refers to the long spines on seed pods. The genus name Datura is from the Bengali name ‘dhatura’ for the plant. A number of sources including Missouri Botanical Garden (2013) and The Plant List (2014) still treat D. quercifolia as a distinct species, but others now regard the latter as a synonym of D. ferox and this is the basis for the distribution and other data presented here.


Top of page

D.ferox is an annual herb growing 50-150 cm tall. Stems are hairless or sparsely hairy with short and soft hairs, frequently branched and often purplish towards the base. Leaf shapes range from broadly ovate to rounded-triangular, 8-14 cm long and 6-16 cm wide; leaf margins are irregularly serrated or sinuate (with deep wavy margins). Flowers are white, often tinged with violet, 4-6 cm long, with five lobes, each lobe ending in a point of 1-2 mm length. Anthers are 3-4 mm long. Fruits are ellipsoid capsules up to 4 cm long. Each capsule bears up to 60 stout spines, the upper ones being longer than the lower ones. Seeds are black or grey and 4-5 mm long (George, 1982).


Top of page

A number of sources (e.g. Parsons and Cuthbertson, 2001; USDA-ARS, 2014) indicate that, unlike other Datura species, D. ferox is native to China. However, according to Flora Zambesiaca (2014) it is ‘native to southern North America (but for a long time said to be native to China based on an error from Linnaeus)’. It is not listed in Flora of China (2014). It is unlikely that D. ferox is native to Bolivia and other parts of South America, as indicated in some floras; the species of Datura occuring in South America might have been introduced in pre-Columbian times (Geeta and Gharaibeh, 2007). In Australia, D. ferox is much less frequent than D. stramonium (Parsons and Cuthbertson, 2001).

D. ferox has been widely spread by humans and is now present in Japan, India, Israel, south and east Africa, Europe, California, South America, Easter Island, Australia, New Zealand and New Caledonia.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


IndiaPresentIntroducedKhuroo et al., 2012
IsraelPresentIntroduced Not invasive Mito and Uesugi, 2004; Fufour-Dror, 2012
JapanPresentIntroduced Not invasive Mito and Uesugi, 2004
NepalPresentIntroducedGBIF, 2014
TurkeyPresentIntroducedGBIF, 2014


BotswanaPresentIntroducedPOSA, 2013
EthiopiaPresentIntroduced Invasive Witt and Luke, 2017
KenyaPresentIntroduced Invasive Lusweti et al., 2013
LesothoPresentIntroducedPOSA, 2013
MaliPresentIntroducedGBIF, 2014
NamibiaPresentIntroducedPOSA, 2013
South AfricaPresentIntroducedPOSA, 2013
TanzaniaPresentIntroduced Invasive Lusweti et al., 2013
UgandaPresentIntroduced Invasive Lusweti et al., 2013
ZimbabwePresentIntroducedMaroyi, 2012

North America

MexicoPresentNativeGBIF, 2014
USAPresentPresent based on regional distribution.
-ArizonaPresentNativeUSDA-NRCS, 2014
-ArkansasPresentNativeUSDA-NRCS, 2014
-CaliforniaLocalisedIntroduced Not invasive Calflora, 2013
-GeorgiaPresentNativeUSDA-NRCS, 2014
-KansasPresentNativeUSDA-NRCS, 2014
-LouisianaPresentNativeUSDA-NRCS, 2014
-MarylandPresentNativeUSDA-NRCS, 2014
-New MexicoPresentNativeUSDA-NRCS, 2014
-North CarolinaPresentNativeUSDA-NRCS, 2014
-OklahomaPresentNativeUSDA-NRCS, 2014
-PennsylvaniaPresentNativeUSDA-NRCS, 2014
-South CarolinaPresentNativeUSDA-NRCS, 2014
-TexasPresentNativeUSDA-NRCS, 2014

Central America and Caribbean

JamaicaPresentGBIF, 2014

South America

ArgentinaPresentIntroduced Invasive Torres et al., 2013a; Torres et al., 2013b
BoliviaPresentIntroduced Not invasive Missouri Botanical Garden, 20131000-2000 m
BrazilPresentPresent based on regional distribution.
-Rio Grande do SulPresentIntroducedSchneider, 2007
ChilePresentIntroducedFuentes et al., 2013
-Easter IslandPresentIntroduced Invasive Meyer, 2008
ColombiaPresentIntroduced Not invasive GBIF, 2014
EcuadorPresentIntroduced Not invasive GBIF, 2014
ParaguayPresentIntroducedMissouri Botanical Garden, 2013
PeruPresentIntroduced Not invasive GBIF, 2014
UruguayPresentIntroducedPlá et al., 2003


BelgiumPresent, few occurrencesIntroduced Not invasive Euro+Med, 2013
Czech RepublicPresentIntroduced Not invasive Pysek et al., 2012Since 1987
FinlandPresent Not invasive GBIF, 2014
FrancePresentIntroduced Not invasive Euro+Med, 2013
GermanyPresent, few occurrencesIntroduced Not invasive Seybold, 2009
GreecePresent, few occurrencesIntroduced Not invasive Arianoutsou et al., 2010
ItalyPresent, few occurrencesIntroduced Not invasive Euro+Med, 2013
NetherlandsPresentIntroduced Not invasive
SpainPresentIntroduced Invasive Dorado et al., 2009; Dorado et al., 2009
SwedenPresentIntroduced Not invasive GBIF, 2014
UKPresentIntroduced Not invasive GBIF, 2014


AustraliaPresentPresent based on regional distribution.
-Australian Northern TerritoryLocalisedIntroducedParsons and Cuthbertson, 2001
-New South WalesLocalisedIntroducedParsons and Cuthbertson, 2001
-QueenslandLocalisedIntroducedParsons and Cuthbertson, 2001
-South AustraliaLocalisedIntroducedParsons and Cuthbertson, 2001
-VictoriaLocalisedIntroducedParsons and Cuthbertson, 2001
-Western AustraliaLocalisedIntroducedParsons and Cuthbertson, 2001
New CaledoniaPresentIntroduced Invasive MacKee, 1994
New ZealandPresentIntroduced Not invasive Webb et al., 1988

History of Introduction and Spread

Top of page

The exact native range of the plant is unknown due to its widespread dispersal by man. Much less is known with regard to the introduction history of D. ferox compared to other weedy thornapples. The species of Datura (including D. ferox) occuring in South America might have been introduced in pre-Columbian times (Geeta and Gharaibeh, 2007).


Top of page

D. ferox occurs in warm-temperate and subtropical regions, mostly in open situations on fertile soils. It grows on disturbed sites such as roadsides, waste places, embankments, river flats and stock yards. It is a weed of summer crops in many parts of the world, particularly cotton, soybeans, peanuts, maize, sorghum, sunflower and vegetables.

Habitat List

Top of page
Terrestrial – ManagedCultivated / agricultural land Present, no further details Natural
Disturbed areas Present, no further details Natural
Rail / roadsides Present, no further details Natural
Urban / peri-urban areas Present, no further details Natural
Terrestrial ‑ Natural / Semi-naturalRiverbanks Present, no further details Natural

Hosts/Species Affected

Top of page

D. ferox is a weed in summer crops, including maize, soybean, peanuts, grain sorghum, potato, sunflower and Cucurbitaceae (Parsons and Cuthbertson, 2001; Torres et al., 2013a,b).

Biology and Ecology

Top of page


Chromosome number: 2n = 24 (Bergner and Blakeslee, 1932). Natural hybrids between D.ferox and D. stramonium have been reported from Australia (APNI, 2013). D. ferox is self-compatible and self-pollinating, although cross-pollination yields a higher number of seeds (Torres et al., 2013 a,b). The cytogenetics of the genus Datura is the subject of a volume edited by Avery et al. (1969).

Reproductive Biology

As an annual, reproduction of D.ferox is by seed only. No other plant parts have been observed to grow into new plants, but plants may remain alive if roots become partly destroyed (Parsons and Cuthbertson, 2001). Number of seeds per fruit ranged from 96 to 227 in plants from Argentina (Torres et al., 2013b).

Average number of emerged seedlings in a maize field in Central Spain was 288 and 188 plants m-2, respectively (Dorado et al., 2009).

Physiology and Phenology

D. ferox contains toxic alkaloids, including atropine, scopolamine and hyoscyamine (Vitale et al., 1995; Piva et al., 1997). The content of these compounds varies with availability of nitrogen, light intensity and temperature (Parsons and Cuthbertson, 2001). In South American D.ferox plants, scopolamine may constitute 98-100% of total alkaloids (Piva et al., 1997). Seeds also contain carbohydrate-binding proteins such as ß-Galactosidase (Plá et al., 2003).

Seeds may germinate throughout the year if soil moisture is high enough (Parsons and Cuthbertson, 2001). 10 mm of rain or irrigation water is sufficient to cause germination once seed dominancy is broken. Seeds require an after-ripening period of several months because a chemical inhibitor in the seedcoat must be leached out or broken down before germination takes place. Therefore, germination in the field is spread over several months, making control strategies difficult (Parsons and Cuthbertson, 2001). Germination rates vary with environmental conditions but may be low. Thus, germination rates of seeds collected from corn fields in Central Spain ranged from 2 ± 1.7 % to 11 ± 3.6 % (Dorado et al., 2009a).

According to Soriano et al. (1964) seeds need light and alternated temperatures to germinate. Martínez-Ghersa et al. (2006) emphasized that seedling emergence therefore takes place after soil cultivation in summer crops, or any other soil disturbances (Scopel et al., 1991).

Seedlings grow quickly if temperature and soil moisture are high enough. Growth rates of 2 cm per day have been recorded. Flowers may be produced at the age of 2-5 weeks. Flowering and fruiting continue throughout the summer.

The large and scented flowers open at night and are pollinated by hawkmoths, sphingids, coleopterans and Apis mellifera in soybean crop fields in Argentina (Torres et al., 2013a). D. ferox may have two flowering peaks in a year (Torres et al., 2013b).

Environmental Requirements

Seeds need light and alternating temperatures in order to germinate (Soriano et al., 1964). In summer crops, seedling emergence is thus promoted by cultivation (Ballaré et al., 1988).

Growth depends on density. In a common garden study, D. ferox plants were grown at 32, 100 and 240 plants m-2 (Ballaré et al., 1988). Seedlings responded rapidly to increased plant density by producing longer internodes and allocating more dry matter to the stem relative to leaves. The number of leaves did not change significantly (Ballaré et al., 1988).


Top of page
BS - Steppe climate Preferred > 430mm and < 860mm annual precipitation
BW - Desert climate Preferred < 430mm annual precipitation
Cf - Warm temperate climate, wet all year Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)

Means of Movement and Dispersal

Top of page

Natural Dispersal

D. ferox reproduces and spreads solely by seed, which it produces in large numbers. Both seed capsules and seeds float on water, providing an effective means of dispersal.

Accidental Introduction

Seeds are mainly spread by contamination of agricultural seeds, or by machinery and vehicles. In New Zealand, the plant is believed to have originated from imported birdseed (Webb et al., 1988).

Economic Impact

Top of page

Economic damage caused by D.ferox includes yield loss due to weed infestations and livestock poisoning. The plant's bitter taste usually deters grazing animals, but problems may occur if plants are included in hay. If thornapple seeds contaminate meal fed to poultry, poisoning may occur. About 1% thornapple seed in meal is the upper limit which can be tolerated by young broilers (Parsons and Cuthbertson, 2001). Datura intoxication (including D.stramonium) has been reported for cattle, swine, dogs, sheep, goats, poultry and horses (Binev et al., 2006).

In Argentina, the leaves are unpalatable and few cases of cattle intoxication have been reported (Torres et al., 2013b). However, seed ingestion occurs when seeds are accidentally mixed with edible seeds, such as sorghum (Sorghum sp.) or sunflower (Helianthus sp.). In Argentina, this causes mortality in pigs and poultry (Gallo, 1987). Thornapple seeds are difficult to separate from seeds of grain sorghum due to their similarity in size, shape and density, which may cause contamination (Parsons and Cuthbertson, 2001).

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Pioneering in disturbed areas
  • Fast growing
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
Impact outcomes
  • Negatively impacts agriculture
  • Negatively impacts animal health
Impact mechanisms
  • Competition - shading
  • Competition - smothering
  • Poisoning
  • Rapid growth
  • Produces spines, thorns or burrs
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect as a commodity contaminant
  • Difficult to identify/detect in the field

Detection and Inspection

Top of page

D. quercifolia can be distinguished from D. ferox by more purplish coloration in foliage; corolla and anthers, slightly downy versus glabrous; and spines somewhat less stout (Houmani et al., 1999).

Similarities to Other Species/Conditions

Top of page

A number of related species have a similar appearance and similar properties to D. ferox, and are also weeds in various places: common thornapple (Datura stramonium L.), downy thornapple (Datura inoxia Mill. = D. innoxia Mill.), hoary thornapple (Datura metel L.) and hairy thornapple (Datura wrightii Rogel).

Both common thornapple (D.stramonium) and D.ferox produce erect fruit capsules on straight stalks. Seeds of both species are black to greyish. In contrast, fruit capsules of other thornapples (Datura leichhardtii, D. metel, D. inoxia, D. wrightii) appear on curved stalks and their seeds are brown to yellow. Flowers of D.ferox are shorter (4-6 cm long) compared to flowers of D. stramonium (up to 10 cm long). A distinguishing feature of D.ferox is the long spines on the fruit capsules.

Datura species are annual, whereas members of the closely related genus Brugmansia are perennials.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Physical/Mechanical Control

With single plants it is best to hand pull or hoe them before fruit form (Parsons and Cuthbertson, 2001). Larger infestations are best controlled by cultivation, preferably at the seedling stage (Parsons and Cuthbertson, 2001). Repeated cultivation is necessary as seedlings emerge over a long period from the soil seed bank.

Chemical Control

Thornapples are susceptible to 2,4-D in the seedling stage and young growth stages but become resistant as they mature (Parsons and Cuthbertson, 2001). Other non-selective herbicides include atrazine, diquat, paraquat and glyphosate. The following herbicides are available for use in specific crops: acifluorfen in soybeans and peanuts; bentazone in soybeans, other beans and peanuts; 2,4-DB in certain varieties of peanuts; dicamba in grain sorghum and maize; metolachlor in maize, and picloram + 2,4-D in summer cereals (Parsons and Cuthbertson, 2001).


Top of page

Arana MV, Burgin MJ, Miguel LCde, Sánchez RA, 2007. The very-low-fluence and high-irradiance responses of the phytochromes have antagonistic effects on germination, mannan-degrading activities, and DfGA3ox transcript levels in Datura ferox seeds. Journal of Experimental Botany, 58(14):3997-4004.

Arianoutsou M, Bazos I, Delipetrou P, Kokkoris Y, 2010. The alien flora of Greece: taxonomy, life traits and habitat preferences. Biological Invasions, 12(10):3525-3549.

Australian Plant Name Index, 2013. Australian National Botanic Gardens, Canberra, Australia.

Avery AG, Satina S, Rietsema J, 1959. Blakeslee: the genus Datura. The Ronald Press Company, New York., xli + 289 pp

Ballaré CL, Sánchez RA, Scopel AL, Ghersa CM, 1988. Morphological responses of Datura ferox L. seedlings to the presence of neighbours. Their relationships with canopy microclimate. Oecologia, 76(2):288-293

Bergner AD, Blakeslee AF, 1932. Cytology of the ferox-quercifolia-stramonium triangle in Datura. Genetics, 18:151-159

Binev R, Valchev I, Nikolov J, 2006. Clinical and pathological studies on intoxication in horses from freshly cut Jimson weed (Datura stramonium)-contaminated maize intended for ensiling. Journal of the South African Veterinary Association, 77(4):215-219.

Botto JF, Sßnchez RA, Casal JJ, 1998. Burial conditions affect light responses of Datura ferox seeds. Seed Science Research, 8(4):423-429; 40 ref

Calflora, 2013. Calflora: Information on wild California plants for conservation, education, and appreciation.

Charles GW, Murison RD, Harden S, 1998. Competition of noogoora burr (Xanthium occidentale) and fierce thornapple (Datura ferox) with cotton (Gossypium hirsutum. Weed Science, 46(4):442-446

Dorado J, Fernández-Quintanilla C, Grundy AC, 2009. Germination patterns in naturally chilled and nonchilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Science, 57(2):155-162.

Dorado J, Sousa E, Calha IM, González-Andújar JL, Fernández-Quintanilla C, 2009. Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Research (Oxford), 49(3):251-260.

eFloras, 2013. Flora of China. St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria.

Euro+Med, 2013. Euro+Med PlantBase.

Flora Zambesiaca, 2013. Flora Zambesiaca, 10(4). Kew, UK: Kew Royal Botanic Gardens.

Fuentes N, Pauchard A, Sánchez P, Esquivel J, Marticorena A, 2013. A new comprehensive database of alien plant species in Chile based on herbarium records. Biological Invasions, 15(4):847-858.

Fufour-Dror JM, 2012. Alien Invasive Plants in Israel. Ahva, Jerusalem: The Middle East Nature Conservation Promotion Association

Gallo GG, 1987. Plants toxic to livestock in the cone of Southern of America (Plantas tóxicas para el ganado en el cono Sur de América). Buenos Aires, Argentina: Hemisferio Sur, 213 pp

GBIF, 2015. Global Biodiversity Information Facility.

Geeta R, Gharaibeh W, 2007. Historical evidence for a pre-Columbian presence of Datura in the Old World and implications for a first millennium transfer from the New World. Journal of Biosciences, 32(7):1227-1244.

George (ed) AS, 1982. Flora of Australia. Canberra, Australia: Australian Government Publishing Service

Gerber R, Naudé TW, Kock SSde, 2006. Confirmed Datura poisoning in a horse most probably due to D. ferox in contaminated tef hay. Journal of the South African Veterinary Association, 77(2):86-89.

Houmani Z, Cosson L, Houmani M, 1999. Datura ferox L. and D. quercifolia Kunth (Solanaceae) in Algeria. Flora Mediterranea, 9:57-60

Khuroo AA, Reshi ZA, Malik AH, Weber E, Rashid I, Dar GH, 2012. Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions, 14(1):99-113. lm77 gl6/

Kovatsis A, Kovatsis-Kovatsi VP, Nikolaidis E, Flaskos J, Tzika S, Tzotzas G, 1994. The influence of Datura ferox alkaloids on egg-laying hens. Veterinary and Human Toxicology, 36(2):89-92

Lusweti A, Wabuyele E, Ssegawa P, Mauremootoo J, 2013. Datura ferox (Fierce Thorn Apple). BioNET-EAFRINET Keys and factsheets (online). [accessed November 2013]

MacKee HS, 1994. Catalogue of introduced and cultivated plants in New Caledonia. (Catalogue des plantes introduites et cultivées en Nouvelle-Calédonie.) Paris, France: Muséum National d'Histoire Naturelle, unpaginated

Maroyi A, 2012. The casual, naturalised and invasive alien flora of Zimbabwe based on herbarium and literature records. Koedoe, 54(1):Article 1054.

Martínez-Ghersa MA, Ghersa CM, 2006. The relationship of propagule pressure to invasion potential in plants. Euphytica, 148(1/2):87-96

Meyer J-Y, 2008. Strategic action plan to control invasive alien plants on Rapa Nui (Easter Island). (Rapport de mission d'expertise a Rapa Nui du 02 au 11 Juin 2008: Plan d'action strategique pour lutter contre les plantes introduites envahissantes sur Rapa Nui (Ile de paques).) Unpublished report. Papeete, Tahiti: Government of French Polynesia, 62 pp

Missouri Botanical Garden, 2013. Tropicos database. St Louis, USA: Missouri Botanical Garden.

Mito T, Uesugi T, 2004. Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects. Global Environmental Research, 8:171-191

Parsons WT, Cuthbertson EG, 2001. Noxious Weeds of Australia. Collingwood, Australia: CSIRO Publishing, 698 pp

Piva G, Morlacchini M, Pietri A, Fusari A, Corradi A, Piva A, 1997. Toxicity of dietary scopolamine and hyoscyamine in pigs. Livestock Production Science, 51(1/3):29-39

Plá A, Alonso E, Batista-Viera F, Franco Fraguas L, 2003. Screening for carbohydrate-binding proteins in extracts of Uruguayan plants. Brazilian Journal of Medical and Biological Research, 36(7):851-860

POSA, 2013. Plants of Southern Africa. South Africa: South African National Biodiversity Institute.

Pysek P, Danihelka J, Sádlo J, Chrtek J Jr, Chytrý M, Jarosík V, Kaplan Z, Krahulec F, Moravcová L, Pergl J, Stajerová K, Tichý L, 2012. Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia, 84(2):155-255.

Sánchez RA, Miguel Lde, Lima C, Lederkremer RMde, 2002. Effect of low water potential on phytochrome-induced germination, endosperm softening and cell-wall mannan degradation in Datura ferox seeds. Seed Science Research, 12(3):155-163

Schneider AA, 2007. The naturalized flora of Rio Grande do Sul State, Brazil: subspontaneous herbaceous plants. (Flora naturalizada no estado do Rio Grande do Sul, Brasil: herbáceas subespontâneas.) Biociências, 15(2):257-268.

Scopel AL, Ballaré CL, Sánchez RA, 1991. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant, Cell and Environment, 14(5):501-508

Seybold S, 2009. Flora of Germany and adjacent countries (Flora von Deutschland und angrenzender Länder). Wiebelsheim, Germany: Quelle & Meyer

SORIANO A, SÂNCHEZ RA, EILBERG BADE, 1964. Factors and processes in the germination of Datura ferox L. Canadian Journal of Botany, 42(9):1189-1203

Torres C, Mimosa M, Ferreira MF, Galetto L, 2013. Reproductive strategies of Datura ferox, an abundant invasive weed in agro-ecosystems from central Argentina. Flora (Jena), 208(4):253-258.

Torres C, Mimosa M, Galetto L, 2013. Nectar ecology of Datura ferox (Solanaceae): an invasive weed with nocturnal flowers in agro-ecosystems from central Argentina. Plant Systematics and Evolution, 299(8):1433-1441.

USDA-ARS, 2014. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory.

USDA-NRCS, 2014. The PLANTS Database. Baton Rouge, USA: National Plant Data Center.

Vitale AA, Acher A, Pomilio AB, 1995. Alkaloids of Datura ferox from Argentina. Journal of Ethnopharmacology, 49(2):81-89

Webb CJ, Sykes WR, Garnock-Jones PJ, 1988. Flora of New Zealand, Volume IV: Naturalised pteridophytes, gymnosperms, dicotyledons. Christchurch, New Zealand: Botany Division, DSIR, 1365 pp

Witt, A., Luke, Q., 2017. Guide to the naturalized and invasive plants of Eastern Africa, [ed. by Witt, A., Luke, Q.]. Wallingford, UK: + 601 pp. doi:10.1079/9781786392145.0000

Links to Websites

Top of page
Bayer CropScience
Cornell University, Animal Science - Plants Poisonous to Livestock
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway source for updated system data added to species habitat list.
Global register of Introduced and Invasive species (GRIIS) source for updated system data added to species habitat list.
International Environmental Weed Foundation
The Vaults of Erowid


Top of page

16/12/13 Original text by:

Ewald Weber, Consultant, Switzerland

Distribution Maps

Top of page
You can pan and zoom the map
Save map