Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide







  • Last modified
  • 14 July 2018
  • Datasheet Type(s)
  • Animal Disease
  • Preferred Scientific Name
  • neosporosis
  • Overview
  • Neosporosis affects livestock in many countries, particularly as an important cause of abortion in cattle, and was first seen as a neuromuscular disease of dogs in Norway (Bjerkås et a...

  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    CAB International
    OX10 8DE
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page

Preferred Scientific Name

  • neosporosis

International Common Names

  • English: neospora caninum abortion in cattle; neospora caninum associated lack of weight gain in calves; neospora-associated abortion; neospora-induced congenital myelitis and polyradiculoneuritis in calves; neuromuscular disease in calves


Top of page

Neosporosis affects livestock in many countries, particularly as an important cause of abortion in cattle, and was first seen as a neuromuscular disease of dogs in Norway (Bjerkås et al., 1984). Dubey et al. (1988) described the causal parasite Neospora caninum in a new genus, Neospora,of the family Sarcocystidae in the phylum Apicomplexa. Recently, Dubey et al. (2002) published a redescription of Neospora caninum. N. caninum is a coccidian parasite that is closely related phylogenetically to Toxoplasma and Hammondia species, but differs in its biology, epidemiology and its importance for different livestock. A second species of the genus, called Neospora hughesi, has been recognized in horses (Marsh et al., 1998).

The life-cycle of N. caninum is not fully understood. Several intermediate hosts have been identified parasitologically (cattle, goats, deer, horses and sheep) and serologically (camels and water buffaloes). The dog can act as both an intermediate and definitive host. Thilsted and Dubey (1989) were the first to report Neospora-like organisms in bovine foetal brains from herds with persistent abortions in New Mexico. By 1991, N. caninum was reported as a major cause of abortion in dairy herds in California (Anderson et al., 1991), but the infection has been found retrospectively in cattle from 1974 (Dubey et al., 1990a). In 1993, the parasite was isolated from bovine foetuses in California (Conrad et al., 1993)and diagnostic tests were developed. It is now known to be an important cause of infertility, particularly abortion, in dairy and beef cattle, and neuromuscular disease in neonatal calves.

Hosts/Species Affected

Top of page

N. caninum infection has been detected parasitologically in cattle, goats, horses, deer, dogs, and, on two occasions, in sheep. The dog has been shown experimentally to act as a definitive host. Serological evidence suggests a wider host range, including water buffaloes (Dubey et al., 1998; Huong et al., 1998), camels (Hilali et al., 1998), coyotes (Lindsay et al., 1996a) and red foxes (Buxton et al., 1997b). The presence of infection in different deer species is indicative of a sylvatic cycle of N. caninum (Woods et al., 1994; Dubey et al., 1999a). Sheep are probably rare natural hosts for N. caninum because infection has been found only in one lamb (Dubey et al., 1990b) and not in aborted ovine foetuses (Otter et al., 1997b) or in sheep co-grazing with infected cattle (McGarry et al., unpublished observations). A range of animals and birds, including sheep, rodents and pigeons, are susceptible to experimental N. caninum infection.

Dairy (Anderson et al., 1995; Davison et al., 1999a; Wouda et al., 1999a; Björkman et al., 2000) and beef (Waldner et al., 1998) cattle can be infected with N. caninum, and no breed differences in susceptibility have been reported. There are no reports of N. caninum in Bos indicus, but it is likely that these cattle are susceptible to infection. Cattle kept in both intensive and extensive systems can be infected. Seropositive cattle are 2 to 3.5 times more likely to abort than seronegative cattle (Paré et al., 1997; Moen et al., 1998; Davison et al., 1999c, Jensen et al., 1999), and seropositive heifers may have a higher risk of abortion (7.4 fold; Thurmond and Hietala, 1997b).

N. caninum-associated abortions can occur all year, although a seasonal effect was reported in The Netherlands (Bartels et al., 1999) and California (Thurmond et al., 1995). In endemic herds, commonly 5 to 10 % of cattle abort (Moen et al., 1998; Davison et al., 1999a), but more than 50% of cattle can abort (Wouda et al., 1999a). A greater risk of abortion has been associated with the presence of dogs on farms (Paré et al., 1998; Bartels et al., 1999). A higher seroprevalence was found in dogs kept on farms than dogs living in rural areas of Japan (Sawada et al., 1998) and in dogs on farms with a high seroprevalence in cattle (Wouda et al., 1999b). Calves were shown to become infected when orally dosed with oocysts from an experimentally-infected dog (Marez et al., 1999). Dogs may become infected by ingestion of infected bovine material; 51% of over 300 foxhounds, which had been fed raw bovine material, were seropositive (Trees and Williams, 2000). Some livestock management practices, for example selection of (infected) high genetic merit cattle or feeding pooled colostrum, might affect the prevalence in herds (French et al., 1999; Uggla et al., 1998). Transmission between cattle, either by consumption of infected colostrum/milk or placental tissues, does not appear to be important in the transmission of N. caninum from naturally-infected cattle (Davison et al., 2001).


Top of page

Evidence of N. caninum infection has been found in many countries worldwide. It is a common cause of bovine abortion in Australia (Reichel, 2000), Canada (Waldner et al., 1998), The Netherlands (Wouda et al., 1997; Wouda et al., 1999a), New Zealand (Reichel, 2000), Spain (Quintanilla-Gozalo et al., 1999), UK (Buxton et al., 1997a; Davison, et al., 1999a) and USA (Anderson et al., 1995). The parasite has been isolated from cattle in the USA (Conrad et al., 1993), Sweden (Stenlund et al., 1997), UK (Davison et al., 1999b) and Japan (Yamane et al., 1997). Serological evidence of N. caninum in livestock has been found recently in Russia (Conraths et al., 2000), Costa Rica (Perez et al., 1998) and Thailand (Suteeraparp et al., 1999), and it is likely that the infection is present in other developed and developing countries.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


IsraelPresentHarmelin et al., 1995
JapanPresentYamane et al., 1997
Korea, DPRPresentKim and Sohn, 2000
TaiwanPresentOoi et al., 2000
ThailandPresentSuteeraparp et al., 1999
TurkeyPresentCoskun et al., 2000
VietnamPresentHuong et al., 1998


EgyptPresentDubey et al., 1998
South AfricaPresentJardine and Dubey, 1992; Jardine and Last, 1993
TanzaniaPresentBarber et al., 1997
ZimbabwePresentJardine and Wells, 1995

North America

CanadaPresentPresent based on regional distribution.
-AlbertaPresentWaldner et al., 1998
-British ColumbiaPresentMcIntosh and Haines, 1994
-OntarioWidespreadDuivenvoorden, 1995
-Prince Edward IslandPresentBlidfell et al., 1994
-QuebecWidespreadParé et al., 1998
MexicoPresentMorales et al., 1998
USAPresentPresent based on regional distribution.
-AlabamaPresentCheadle and Lindsay, 2000
-CaliforniaWidespreadAnderson et al., 1995; Thurmond et al., 1997
-IllinoisPresentDubey et al., 1999a
-KansasPresentLindsay et al., 1990
-MarylandPresentDyer and Jenkins, 2000
-OklahomaPresentHelman et al., 1998
-PennsylvaniaPresentHattel et al., 1998
-South DakotaPresentYaeger et al., 1994
-TexasPresentLindsay et al., 1996a

Central America and Caribbean

Costa RicaPresentPerez et al., 1998

South America

ArgentinaPresentCampero et al., 1998; Venturini et al., 1999
BrazilPresentPresent based on regional distribution.
-BahiaPresentGondim et al., 1999
ChilePresentPatitucci et al., 1999
Falkland IslandsPresentBarber et al., 1997


AustriaPresentWeissenböck et al., 1997
BelgiumPresentKruif et al., 1997
Czech RepublicPresentKoudela et al., 1998
DenmarkWidespreadAgerholm and Barr, 1994; Agerholm et al., 1997
FranceWidespreadOuld-Amrouche et al., 1999; Chartier and Baudry, 2000
GermanyWidespreadSchares et al., 1997; Peters et al., 2000
HungaryPresentHornok et al., 1998
IrelandWidespreadMcNamee et al., 1996; Meleady et al., 2000
ItalyPresentPasquali et al., 1998
NetherlandsWidespreadWouda et al., 1999a; Wouda et al., 1997
NorwayPresentBjerkÅs and Dubey, 1991
PortugalPresentCabaj and Choromanski, 2000
Russian FederationPresentPresent based on regional distribution.
-Russia (Europe)PresentConraths and Schares, 2000
SpainWidespreadFondevila et al., 1998; Quintanilla-Gozalo et al., 1999
SwedenWidespreadStenlund et al., 1997
SwitzerlandWidespreadGottstein et al., 1998
UKWidespreadDavison et al., 1999a; Davison et al., 1999c; Davison et al., 1999d


AustraliaWidespreadEllis, 1997; Reichel, 2000
-New South WalesPresentBoulton et al., 1995
New ZealandWidespreadSchares et al., 1999; Reichel, 2000


Top of page Postmortem findings

Gross lesions are not common in N. caninum-aborted foetuses (Dubey and Lindsay, 1996) and none are pathognomonic. Foetuses may be autolysed or mummified with focal areas of necrosis in the brain, heart and skeletal muscle. In congenitally infected calves, there may be malacia and narrowing or deviation of the spinal cord (Dubey and Lindsay, 1996). Hydrocephalus and cerebellar hypoplasia have been reported in an aborted goat’s foetus (Dubey et al., 1996).


In affected cattle, there is a characteristic non-suppurative encephalomyelitis with multifocal infiltration (perivascular cuffs and gliosis) and necrosis (Dubey and Lindsay, 1996). Encephalitis, myocarditis and periportal hepatitis are frequently observed in aborted foetuses as well as adrenalitis, myositis, nephritis and pneumonitis (Wouda et al., 1997). Tissue cysts may be observed in sections, but tachyzoites are rarely seen unless stained with immunoperoxidase-labelled conjugates (immunohistochemistry). A non-suppurative inflammation of placental cotyledons may be present (Otter et al., 1995). Histopathological lesions are not always observed in congenitally infected calves.


Top of page Clinical diagnosis

N. caninum infection cannot be diagnosed solely based on clinical signs, because most infected animals are asymptomatic and the signs that do occur are non-specific. Abortion is the principle manifestation in adult cattle (and goats) and other signs of infertility can be observed. Neuromuscular disease in neonatal calves is uncommon, but typical signs of paresis and ataxia are suggestive of neosporosis.

Differential diagnosis

In cattle and other livestock, infectious and non-infectious causes of abortion must be included in the differential diagnosis. A definitive diagnosis of N. caninum as the causal agent of abortion in either individual cattle or a herd can be problematic because finding cattle infected with N. caninum might only reflect the underlying prevalence of congenital infection in cattle, which may abort for other reasons (Thurmond et al., 1999). Viral, bacterial, rickettsial, protozoal and fungal causes of abortion that are known to occur locally should be investigated, including Bovine viral diarrhoea virus (BVDV), infectious bovine rhinotracheitis (IBR), Brucella abortus, Campylobacter fetus, Chlamydia species, Leptospira species, Listeriamonocytogenes, Salmonella species, Trichomonas fetus, Anaplasma species and Babesia species. Nutritional and toxic causes of abortion should also be considered. In neonatal calves, other causes of neurological signs (for example: trauma, abscess in the central nervous system, inherited cerebellar hypoplasia, congenital BVDV, poisoning and listeriosis) should be included in the differential diagnosis.

In horses, a range of clinical signs associated with Neospora, including abortion, diarrhoea, weight loss and ataxia have been reported. Neospora species should be included with Sarcocystis neurona in the differential diagnosis of Equine Protozoal Myeloencephalitis in endemic areas.

Laboratory diagnosis

Maternal and foetal serology, histopathology and immuno-histochemistry are used to detect N. caninum infection, but require good laboratory facilities (Wouda, 2000). Isolation of the parasite is difficult (Conrad et al., 1993; Davison et al., 1999b) and not practicable for routine diagnosis. Serological investigations are useful, particularly at herd level.

Aborted foetuses have characteristic histopathological lesions in the brain, heart, and liver (Otter et al., 1995; Wouda et al., 1997). The brain is the most useful organ to examine, even if partially autolysed, but if it is not available the heart should be examined. Lesions of placental cotyledons are usually non-specific. The severity of foetal lesions may indicate whether N. caninum is likely to be the primary cause of the abortion, however, aborted foetuses from experimentally-infected cows can have minimal brain pathology. Immuno-histochemistry is useful to differentiate Toxoplasma gondii and Sarcocystis species (Otter et al., 1997a; Wouda et al., 1997), but is costly, relatively insensitive and requires special reagents. Polymerase chain reaction (PCR) and hybridisation techniques are used in research, but not for diagnostic purposes.

IgG antibodies can be detected using either an enzyme-linked immunosorbent assay (ELISA) (Paré et al., 1995a; Björkman et al., 1997; Williams et al., 1997) or an immunofluorescent antibody test (IFAT) (Paré et al., 1995b; Barber et al., 1997). ‘In-house’ tests are commonly used and few validated commercial tests are available (Mastazyme ELISA, Mast Diagnostics, Liverpool, UK, Williams et al., 1999; Biovet Inc, Québec, Canada). A non-commercial ELISA has been developed to detect antibodies in milk, and bulk milk was found to be positive if > 10 % lactating cows were seropositive (Björkman et al., 1997). The high cost of ELISAs and IFATs in terms of the reagents, equipment and technical expertise required precludes their use in many regions. A direct agglutination test can detect serum antibodies in different host species (Romand et al., 1998), and potentially would be a cheaper and more appropriate test in developing countries. An important feature of all N. caninum serological tests is that there should be no cross-reaction with antibodies against related protozoa (T. gondii, Hammondia species and Sarcocystis species). Foetal fluid serology is less useful, because a negative result may be obtained if the foetus was infected before immunocompetence in the fifth month of gestation. A positive result confirms that the foetus was exposed to the infection, but not that it caused foetal death.

A positive serological test result indicates previous exposure of the host to N. caninum. Seropositive animals are likely to also be infected, and it is not possible to distinguish between congenital and post-natal infections. Interpretation of serological results must consider the choice of test and cut-off threshold, and the age and reproductive status of animals tested. Antibody responses fluctuate over time and during gestation in cattle. For example, congenitally infected neonatal calves have very high responses, but 1 to 2 year-old infected cattle can have low, sometimes undetectable, responses (Dannatt, 1998; Davison et al., 1999a; Stenlund et al., 1999). High responses throughout gestation and increasing responses at mid-gestation have been associated with an increased risk of abortion (Paré et al., 1997), and probably reflect recrudescence of infection and parasitaemia. Antibody responses peak at the time of abortion and then decline, therefore a single sample at abortion is more useful than paired serology. One strategy to aid identification of infected adult cattle involves testing newborn calves and their dams because most infected dams infect their offspring, which have high, more easily detected responses. Potential recipient cows for embryos could be screened in this way–a negative result in both the cow and calf provides very strong evidence that the cow is not infected. For dam-calf sampling, calves should be tested prior to consumption of colostrum or milk from cattle other than their dams. A second strategy is to use a lower cut-off threshold, for example to screen stock prior to purchase or immature replacement heifers. Herd-based serology is useful to differentiate between N. caninum and other abortifacients in abortion outbreaks, in these cases sera from both cattle that have aborted (cases) and cattle that have not aborted (controls) are tested and the results compared.

In dogs, various IFATs with different cut-off thresholds are used and clinical cases of neosporosis typically have titres >1:800 (Barber and Trees, 1996). The identification of seropositive dogs on farms does not confirm that dogs are shedding oocysts. Finding oocysts in the faeces of definitive hosts is extremely difficult; there has only been one report in naturally infected canids (Basso et al., 2002), possibly due to the low numbers shed. N. caninum oocysts cannot be distinguished morphologically from H. heydorni oocysts, which are also found in canid faeces (Lindsay et al., 1999b).


The host immune response to N. caninum involves humoral and cell-mediated responses. The risk of abortion appears to be lower in adult cows compared with heifers, suggesting that infected cattle may develop partial protective immunity. Also, in a beef herd, cattle with evidence of previous exposure to N. caninum were less likely to abort than those with no exposure (McAllister et al., 2000). Cell-mediated immune responses (e.g., increased interferon gamma) are important because N. caninum is an intracellular parasite, and is likely to influence the outcome of infection. Experimental and field observations indicate that the host-parasite relationship is complex, for example, infection of the foetus early in gestation is usually fatal, but foetuses infected later in gestation often survive to be born alive and infected (Williams et al., 2000). Immune changes, which normally facilitate foetal survival, during gestation may allow multiplication of N. caninum and parasitaemia in the host.

List of Symptoms/Signs

Top of page
SignLife StagesType
General Signs / Abnormal proprioceptive positioning, knuckling Cattle & Buffaloes:Calf Diagnosis
General Signs / Ataxia, incoordination, staggering, falling Cattle & Buffaloes:Calf Diagnosis
General Signs / Dysmetria, hypermetria, hypometria Cattle & Buffaloes:Calf Diagnosis
General Signs / Forelimb lameness, stiffness, limping fore leg Cattle & Buffaloes:Calf Diagnosis
General Signs / Forelimb weakness, paresis, paralysis front leg Cattle & Buffaloes:Calf Diagnosis
General Signs / Generalized lameness or stiffness, limping Cattle & Buffaloes:Calf Diagnosis
General Signs / Generalized weakness, paresis, paralysis Cattle & Buffaloes:Calf Diagnosis
General Signs / Hindlimb lameness, stiffness, limping hind leg Cattle & Buffaloes:Calf Diagnosis
General Signs / Inability to stand, downer, prostration Cattle & Buffaloes:Calf Diagnosis
General Signs / Lack of growth or weight gain, retarded, stunted growth Cattle & Buffaloes:Calf Sign
General Signs / Paraparesis, weakness, paralysis both hind limbs Cattle & Buffaloes:Calf Diagnosis
General Signs / Tetraparesis, weakness, paralysis all four limbs Cattle & Buffaloes:Calf Diagnosis
General Signs / Underweight, poor condition, thin, emaciated, unthriftiness, ill thrift Sign
General Signs / Weakness of one hindlimb, paresis paralysis rear leg Cattle & Buffaloes:Calf Diagnosis
Musculoskeletal Signs / Contracture fore limb, leg Cattle & Buffaloes:Calf Diagnosis
Musculoskeletal Signs / Contracture hind limb, leg Cattle & Buffaloes:Calf Diagnosis
Nervous Signs / Abnormal forelimb reflexes, increased or decreased Cattle & Buffaloes:Calf Diagnosis
Nervous Signs / Abnormal hindlimb reflexes, increased or decreased Cattle & Buffaloes:Calf Diagnosis
Nervous Signs / Circling Sign
Nervous Signs / Dullness, depression, lethargy, depressed, lethargic, listless Sign
Nervous Signs / Propulsion, aimless wandering Sign
Ophthalmology Signs / Blindness Sign
Ophthalmology Signs / Exophthalmos, eyes protruding, proptosis Cattle & Buffaloes:Calf Sign
Reproductive Signs / Abortion or weak newborns, stillbirth Cattle & Buffaloes:Cow Sign
Reproductive Signs / Female infertility, repeat breeder Cattle & Buffaloes:Heifer,Cattle & Buffaloes:Cow Sign
Reproductive Signs / Mummy, mummified fetus Cattle & Buffaloes:Heifer,Cattle & Buffaloes:Cow Sign

Disease Course

Top of page

The majority of hosts infected with N. caninum show no clinical signs. Abortion is the most common sign in cattle and the pattern of abortion may be sporadic, endemic or epidemic within a herd (McAllister et al., 1996; Moen et al., 1998; Davison et al., 1999a). Abortions are usually from 3 months of gestation to full term, but early foetal resorption or mummification can occur. About 5 % of N. caninum-infected cattle abort in successive pregnancies, whereas repeated abortion is not a feature of Toxoplasma gondii infection in sheep. Most congenitally infected calves are born without clinical signs, but occasionally abnormalities, including low body weight, paresis, incoordination or paralysis of the forelimbs and/or hindlimbs, are observed in calves less than two months of age (Dubey, 1999). Limbs may be flexed or hyperextended, with reduced patellar reflexes, and there may be loss of conscious proprioception. Exophthalmia and an asymmetrical appearance of the eyes have been reported (Dubey and Lindsay, 1996). Clinical signs can develop in apparently healthy calves within a few weeks of birth.

N. caninum infection has been associated with abortion in goats (Barr et al., 1992; Dubey et al., 1996) and death in a 2 month-old California black-tailed deer (Odocoileus hemionus columbianus; Woods et al., 1994). However, the disease has not been fully described in either these or other hosts, such as camels and water buffaloes.

N. caninum and N. hughesi have been found in aborted foals, congenitally infected foals with neurological abnormalities and adult horses with a range of clinical signs including weight loss, diarrhoea, abnormal behaviour and ataxia. Neospora infections have been found with other diseases, for example in a 19-year old horse with Cushing’s disease and a 20-year old horse with a pituitary tumour showing severe ataxia (Daft et al., 1996; Hamir et al., 1998). In the USA, 23% of 296 horses tested prior to slaughter were seropositive for N. caninum (Dubey et al., 1999b).

Like other hosts, most infected dogs have no associated clinical signs. Clinical signs have been reported in congenitally infected puppies and older dogs, but abortion is not a common finding. Barber and Trees (1996) reviewed 27 clinical cases of neosporosis in dogs that were aged between 2 days and 7 years old. The most common signs observed were progressive hindlimb paresis or ataxia with muscle atrophy. Rigid hyperextension, forelimb ataxia, dyspnoea, dysphagia, head tremor, collapse and death can occur. An unusual presentation is ulcerative dermatitis associated with high numbers of tachyzoites (Perl et al., 1998).


Top of page

A diagram of the life cycle of N. caninum can be seen in Dubey (1999).

The life-cycle of N. caninum is typical of a coccidian parasite. Different intermediate hosts (e.g., cattle, goats, deer, horses, dogs), which can be infected with the two asexual parasite stages, tachyzoites and bradyzoites, have been identified (Dubey and Lindsay, 1996; Dubey, 1999). Tachyzoites divide rapidly and invade a range of tissues whereas bradyzoites divide slowly, and are found within cysts in neural tissue. Experimental studies have shown that dogs can also act as a definitive host and shed oocysts following ingestion of infected tissues (McAllister et al., 1998). However, no data are available yet on the frequency of oocyst shedding by naturally-infected dogs, survival of oocysts in the environment or whether other canids are definitive hosts. Little is known about the epidemiology of N. caninum in livestock other than cattle.

In cattle, epidemiological studies have shown that vertical transmission of N. caninum is very efficient with 72% to 100% of infected dams transmitting the infection to their offspring (Paré et al., 1996; Thurmond and Hietala, 1997b; Davison et al., 1999d). Recrudescence of existing infections during pregnancy results in reactivation of cysts and release of tachyzoites that cross the placenta and infect the foetus. Foetal survival may partially depend on the timing of parasitaemia during gestation, and therefore on the degree of foetal immunocompetence. Most congenitally infected calves are born alive, and apparently healthy, but remain infected for life so that successive generations can be infected (Björkman et al., 1996).

The infection is common in cattle in some countries, for example seropositive cattle were found in 78% of dairy herds in The Netherlands (Wouda et al., 1999a), and 55% of beef herds and 83% dairy herds in Spain (Quintanilla-Gozalo et al., 1999). The seroprevalence at the level of individual dairy cows was reported to be 2% in Sweden (Björkman et al., 2000), 3% in Northern Ireland (McNamee et al., 1996), 6% in the UK (Davison et al., 1999c), 14 % in The Netherlands (Wouda et al., 1999a) and 36% in Spain (Quintanilla-Gozalo et al., 1999). Within infected herds, 5% to 50% of cattle are typically seropositive, but higher within-herd prevalences have been reported (Paré et al., 1996; Thurmond et al., 1997; Waldner et al., 1998; Davison et al., 1999a; Jensen et al., 1999; Wouda et al., 1999a; Sanderson et al., 2000). In some herds there is no increasing prevalence with age (Paré et al., 1996; Davison et al., 1999a), suggesting that congenital infection is likely to be the major route of infection, and herds can be infected prior to abortion problems (Moen et al., 1998; Jensen et al., 1999). Recrudescence of existing congenital infections in a herd might be stimulated by immunosuppressive factors such as bovine viral diarrhoea virus (BVDV) (Björkman et al., 2000) or mycotoxins in mouldy feed (Bartels et al., 1999).

Little is known about the true extent of horizontal transmission of N. caninum either between cattle or to cattle from other hosts. Oocysts shed by a definitive host (McAllister et al., 1998; Marez et al., 1999; Lindsay et al., 1999a) or tachyzoites in colostrum, milk, foetal tissues or uterine fluids from infected cows are potential sources of post-natal infection (Uggla et al., 1998). N. caninum-associated abortion epidemics suggest that herds can be exposed to a point source of infection, for example oocyst-contaminated mixed feeds (McAllister et al., 2000). However, longitudinal studies of endemic herds found very low rates of post-natal seroconversion (indicative of horizontal transmission), for example out of several hundred heifers monitored from birth, only three (Davison et al., 1999d) or four (Hietala and Thurmond, 1999) heifers seroconverted. Nevertheless, even low rates of horizontal transmission might be important to allow persistence of infection (French et al., 1999) or the introduction of new infections into herds.

Impact: Economic

Top of page

The economic costs associated with N. caninum infections include both the direct costs of reproductive failure (e.g., abortion) and indirect costs (e.g., reduced value of breeding stock). No accurate data on these economic costs have been published. Several authors have attempted to estimate costs for cattle production, but not for other livestock. For example, annual losses of US$ 35 million to the dairy industry in California (Dubey, 1999) and losses to Australian industry amount to AUS$85 million for dairy and AUS$25 million for the beef industry (Ellis, 1997) have been suggested. Such estimates are based on the prevalence of N. caninum found in aborted foetuses and do not account for the presence of the parasite in foetuses that may have been aborted due to other abortifacients, and therefore may over-estimate the significance of N. caninum in abortions. By contrast, other effects of N. caninum were not included in the calculations.

Direct effects of N. caninum infection in cattle can include 1) abortion, 2) stillbirths and neonatal mortality, 3) early foetopathy, 4) increased culling, 5) reduced milk production and 6) reduced value of breeding stock (Trees et al., 1999). Case-control studies are necessary to correctly attribute N. caninum as the cause of these effects, and using this approach, the proportion of bovine abortions attributed to this infection is 12.5% in the UK (Davison et al., 1999c) and 15% to 20% in The Netherlands (Wouda et al., 1997). Early foetopathy can result in return to service, increased calving to conception and inter-calving intervals. The role of N. caninum in stillborn calves and neonatal mortality has not been clearly established. The majority of calves congenitally infected with N. caninum appear normal and have similar weight gain and survival rates as uninfected calves (Paré et al., 1996; Jensen et al., 1999). However, infected cows were found to be 1.6 times more likely to be culled, even taking account of culling for abortion (Thurmond and Hietala, 1996), and infected first lactation dairy cows had a 4% lower milk yield (Thurmond and Hietala, 1997a). Indirect costs to consider include veterinary charges, diagnostic tests, reduced value of breeding stock and costs of management changes for disease control (improved feed storage, embryo transfer etc.).

Zoonoses and Food Safety

Top of page

There is no conclusive evidence that humans have been infected with N. caninum. No serological evidence of infection was found in 199 blood donors, 48 agricultural workers (Graham et al., 1999) or in 76 women with a history of abortion (Petersen et al., 1999). However, Tranas et al. (1999) did find 6.7% of 1,029 blood donors to be seropositive using an IFAT with a cut-off threshold of 1:100. Pregnant Rhesus macaques are susceptible to experimental N. caninum infection and transmit the infection to their foetuses (Barr and Conrad, 1994). Humans may be exposed to N. caninum, for example 2% of muscle and brain abattoir samples from adult cows in Switzerland were PCR-positive (Wyss et al., 2000), and therefore the possibility that some (e.g. immunocompromised) individuals are susceptible and might be exposed to N. caninum cannot be ruled out. Research workers adhere to strict guidelines to minimize the risk of accidental inoculation with live N. caninum cultures or infected tissues.

Disease Treatment

Top of page

No treatment or prophylaxis is available for N. caninum infections in cattle. Several drugs are effective against tachyzoites in vitro, but none have been effective in vivo; for example, daily monensin treatment did not prevent abortion in N. caninum-infected heifers (Thurmond and Hietala, 1997b). Clinical signs in dogs improve after treatment with clindamycin, potentiated sulphonamides and/or pyrimethamine, but treated dogs can remain infected (Barber and Trees, 1996). No drugs are effective against tissue cysts, and therefore clearance of the infection is problematic.

Prevention and Control

Top of page Immunization and vaccines

Molecular studies are being conducted to identify genes that could be used in genetically-engineered vaccines. Currently there are no vaccines available for the control of N. caninum infections, except a vaccine (Bayer) based on killed tachyzoites that is on conditional licence in the USA; no efficacy data for this vaccine has been published. Future vaccination strategies must aim to prevent transplacental transmission of tachyzoites, oral infection in cattle, or oocyst shedding in dogs.

Husbandry Methods and Good Practice

Farm-level control strategies can be implemented in herds with N. caninum even though its epidemiology is not fully understood (Wouda, 2000). Vertical transmission is the major route of transmission in many herds and its impact can be minimized by culling seropositive cattle (if low numbers of cattle are infected), selecting uninfected heifer replacements and excluding congenitally infected calves. Seropositivity for N. caninum should be included with other criteria for decisions on culling. Embryo transfer has been attempted to utilize infected high genetic merit cows by implanting embryos into uninfected recipients. Purchased cattle should be serologically tested, preferably prior to purchase or on arrival. Good hygiene at calving should be practised, including the disposal of foetal membranes and placentae from all cattle to prevent ingestion by other cattle or dogs, and is prudent for control of other infectious diseases. Dogs and wild canids (e.g. foxes and coyotes) should not have access to placental material, aborted foetuses, dead calves, cattle feed or water supplies. Exposure of the herd to potential immunosuppressive factors, including mouldy feed (mycotoxins) and Bovine viral diarrhoea virus (BVDV), which may stimulate recrudescence of N. caninum infections, should be minimized.

Ethnoveterinary Practice

None known.

National and International Control Policy

There are currently no national or international guidelines for the control of N. caninum. However, there is increasing awareness of the economic costs associated with this infection in livestock (Trees et al., 1999), and in future, serological screening and certification of traded livestock could be implemented to reduce the risk of introducing infected animals.


Top of page

Agerholm JS; Barr BC, 1994. Bovine abortions associated with Neospora in Denmark. Acta Veterinaria Scandinavica, 35(4):461-464; 9 ref.

Agerholm JS; Willadsen CM; Nielsen TK; Giese SB; Holm E; Jensen L; Agger JF, 1997. Diagnostic studies of abortion in Danish dairy herds. Journal of Veterinary Medicine. Series A, 44(9/10):551-558; 16 ref.

Anderson ML; Blanchard PC; Barr BC; Dubey JP; Hoffman RL; Conrad PA, 1991. Neospora-like protozoan infection as a major cause of abortion in California dairy cattle. Journal of the American Veterinary Medical Association, 198(2):241-244; 15 ref.

Anderson ML; Palmer CW; Thurmond MC; Picanso JP; Blanchard PC; Breitmeyer RE; Layton AW; McAllister M; Daft B; Kinde H; Read DH; Dubey JP; Conrad PA; Barr BC, 1995. Evaluation of abortions in cattle attributable to neosporosis in selected dairy herds in California. Journal of the American Veterinary Medical Association, 207(9):1206-1210; 13 ref.

Barber JS; Gasser RB; Ellis J; Reichel MP; McMillan D; Trees AJ, 1997. Prevalence of antibodies to Neospora caninum in different canid populations. Journal of Parasitology, 83(6):1056-1058; 18 ref.

Barber JS; Trees AJ, 1996. Clinical aspects of 27 cases of neosporosis in dogs. Veterinary Record, 139(18):439-443; 32 ref.

Barr BC, Conrad PA et al. , 1994. Experimental fetal and transplacental neospora infection in the nonhuman primate. Laboratory Investigation, 71(2):236-242.

Barr BC; Anderson ML; Woods LW; Dubey JP; Conrad PA, 1992. Neospora-like protozoal infections associated with abortion in goats. Journal of Veterinary Diagnostic Investigation, 4(3):365-367; 18 ref.

Bartels CJM; Wouda W; Schukken YH, 1999. Risk factors for Neospora caninum-associated abortion storms in dairy herds in the Netherlands (1995 to 1997). Theriogenology, 52(2):247-257; 37 ref.

Basso W; Venturini MC; Hill DE; Kwok OCH; Shen SK; Dubey JP, 2001. First isolation of Neospora caninum from the faeces of a naturally infected dog. Journal of Parasitology, 87: 612-618.

Basso-W et al., 2001. First isolation of Neospora caninum from the feces of a naturally infected dog. Journal of Parasitology, 87(3): 612-618.

BjerkÅs I; Dubey JP, 1991. Evidence that Neospora caninum is identical to the Toxoplasma-like parasite of Norwegian dogs. Acta Veterinaria Scandinavica, 32(3):407-410; 15 ref.

BjerkÅs I; Mohn SF; Presthus J, 1984. Unidentified cyst-forming sporozoon causing encephalomyelitis and myositis in dogs. Zeitschrift für Parasitenkunde, 70(2):271-274; 9 ref.

Björkman C; Alenius S; Emanuelsson U; Uggla A, 2000. Neospora caninum and bovine virus diarrhoea virus infections in Swedish dairy cows in relation to abortion. Veterinary Journal, 159(2):201-206.

Björkman C; Holmdahl OJM; Uggla A, 1997. An indirect enzyme-linked immunoassay (ELISA) for demonstration of antibodies to Neospora caninum in serum and milk of cattle. Veterinary Parasitology, 68(3):251-260; 16 ref.

Björkman C; Johansson O; Stenlund S; Holmdahl OJM; Uggla A, 1996. Neospora species infection in a herd of dairy cattle. Journal of the American Veterinary Medical Association, 208(9):1441-1444; 22 ref.

Blidfell R; Davidson J; Dubey JP, 1994. Neospora-induced protozoal bovine abortion in Prince Edward Island. Canadian Veterinary Journal, 35(2):122; 3 ref.

Boulton JG; Gill PA; Cook RW; Fraser GC; Harper PAW; Dubey JP, 1995. Bovine Neospora abortion in north-eastern New South Wales. Australian Veterinary Journal, 72(3):119-120; 18 ref.

Buxton D; Caldow GL; Maley SW; Marks J; Innes EA, 1997. Neosporosis and bovine abortion in Scotland. Veterinary Record, 141(25):649-651; 17 ref.

Buxton D; Maley SW; Pastoret PP; Brochier B; Innes EA, 1997. Examination of red foxes (Vulpes vulpes) from Belgium for antibody to Neospora caninum and Toxoplasma gondii. Veterinary Record, 141(12):308-309; 15 ref.

Cabaj W, Choromanski L et al. , 2000. Neospora caninum infections in aborting dairy cows in Poland. Acta Parasitologica, 45(2):113-114.

Campero CM; Anderson ML; Conosciuto G; Odrozola H; Bretschneider G; Poso MA, 1998. Neospora caninum-associated abortion in a dairy herd in Argentina. Veterinary Record, 143(8):228-229; 26 ref.

Chartier C, Baudry C et al. , 2000. Neosporosis in goats: results of two serological surveys in Western France. Point Veterinaire, 31:65-69.

Cheadle MA, Lindsay DS et al. , 2000. Prevalence of antibodies to Neospora sp. in horses from Alabama and characterisation of an isolate recovered from a naturally infected horse. International Journal for Parasitology, 30(5):677-677.

Conrad PA; Barr BC; Sverlow KW; Anderson M; Daft B; Kinde H; Dubey JP; Munson L; Ardans A, 1993. In vitro isolation and characterization of a Neospora sp. from aborted bovine foetuses. Parasitology, 106(3):239-249; 43 ref.

Conraths FJ, Schares G et al. , 2000. Seroepidemiological evidence for bovine neosporosis and Neospora caninum-associated abortions in the Russian Federation. International Journal for Parasitology, 30:890-891.

Coskun SZ; Aydyn L; Bauer C, 2000. Seroprevalence of Neospora caninum infection in domestic dogs in Turkey. Veterinary Record, 146:649-649.

Daft BM; Barr BC; Collins N; Sverlow K, 1996. Neospora encephalomyelitis and polyradiculoneuritis in an aged mare with Cushing's disease. Equine Veterinary Journal, 29(3):240-243.

Dannatt L, 1998. Neospora caninum antibody levels in an endemically-infected dairy herd. Irish Veterinary Journal, 51(4):200-201.

Davison HC, Guy CS et al. , 2001. Experimental studies on the transmission of Neospora caninum between cattle. Research in Veterinary Science (in press).

Davison HC; French NP; Trees AJ, 1999. Herd-specific and age-specific seroprevalence of Neospora caninum in 14 British dairy herds. Veterinary Record, 144(20):547-550; 25 ref.

Davison HC; Guy F; Trees AJ; Ryce C; Ellis JT; Otter A; Jeffrey M; Simpson VR; Holt JJ, 1999. In vitro isolation of Neospora caninum from a stillborn calf in the UK. Research in Veterinary Science, 67(1):103-105; 19 ref.

Davison HC; Otter A; Trees AJ, 1999. Estimation of vertical and horizontal transmission parameters of Neospora caninum infections in dairy cattle. International Journal for Parasitology, 29(10):1683-1689; 28 ref.

Davison HC; Otter A; Trees AJ, 1999. Significance of Neospora caninum in British dairy cattle determined by estimation of seroprevalence in normally calving cattle and aborting cattle. International Journal for Parasitology, 29(8):1189-1194; 28 ref.

Dubey JP, 1999. Recent advances in Neospora and neosporosis. Veterinary Parasitology, 84(3/4):349-367; 8 pp. of ref.

Dubey JP; Barr BC; Barta JR; Bjerkås I; Björkman C; Blagburn BL; Bowman DD; Buxton D; Ellis JT; Gottstein B; Hemphill A; Hill DE; Howe DK; Jenkins MC; Kobayashi Y; Koudela B; Marsh AE; Mattsson JG; McAllister MM; Modry D; Omata Y; Sibley LD; Speer CA; Trees AJ; Uggla A; Upton SJ(et al), 2002. Redescription of Neospora caninum and its differentiation from related coccidia. International Journal for Parasitology, 32(8):929-946; many ref.

Dubey JP; Carpenter JL; Speer CA; Topper MJ; Uggla A, 1988. Newly recognized fatal protozoan disease of dogs. Journal of the American Veterinary Medical Association, 192(9):1269-1285; 15 ref.

Dubey JP; Hartley WJ; Lindsay DS, 1990. Congenital Neospora caninum infection in a calf with spinal cord anomaly. Journal of the American Veterinary Medical Association, 197(8):1043-1044; 8 ref.

Dubey JP; Hartley WJ; Lindsay DS; Topper MJ, 1990. Fatal congenital Neospora caninum infection in a lamb. Journal of Parasitology, 76(1):127-130; 8 ref.

Dubey JP; Hollis K; Romand S; Thulliez P; Kwok OCH; Hungerford L; Anchor C; Etter D, 1999. High prevalence of antibodies to Neospora caninum in white-tailed deer (Odocoileus virginianus). International Journal for Parasitology, 29(10):1709-1711; 8 ref.

Dubey JP; Lindsay DS, 1996. A review of Neospora caninum and neosporosis. Veterinary Parasitology, 67(1/2):1-59; 194 ref.

Dubey JP; Morales JA; Villaobos P; Lindsay DS; Blagburn BL; Topper MJ, 1996. Neosporosis-associated abortion in a dairy goat. Journal of the American Veterinary Medical Association, 208(2):263-265; 11 ref.

Dubey JP; Romand S; Hilali M; Kwok OCH; Thulliez P, 1998. Seroprevalence of antibodies to Neospora caninum and Toxoplasma gondii in water buffaloes (Bubalus bubalis) from Egypt. International Journal for Parasitology, 28(3):527-529; 9 ref.

Dubey JP; Romand S; Thulliez P; Kwok OCH; Shen SK; Gamble HR, 1999. Prevalence of antibodies to Neospora caninum in horses in North America. Journal of Parasitology, 85(5):968-969; 9 ref.

Duivenvoorden J, 1995. Neospora abortions in eastern Ontario dairy herds. Canadian Veterinary Journal, 36(10):623; 3 ref.

Dyer RM, Jenkins MC et al. , 2000. Serologic survey of Neospora caninum infection in a closed dairy cattle herd in Maryland: risk of serologic reactivity by production groups. Veterinary Parasitology, 90(3):171-181.

Ellis JT, 1997. Neospora caninum: prospects for diagnosis and control using molecular methods. In: Shirley MW, Tomley F M, Freeman B M, eds. Control of Coccidiosis into the Next Millenium. VII International Coccidiosis Conference European Union COST 820 Workshop. Compton, Berkshire, UK: Institute for Animal Health, 80-81.

Fondevila D; Anor S; Pumarola M; Dubey JP, 1998. Neospora caninum identification in an aborted bovine fetus in Spain. Veterinary Parasitology, 77(2/3):187-189; 7 ref.

French NP; Clancy D; Davison HC; Trees AJ, 1999. Mathematical models of Neospora caninum infection in dairy cattle: transmission and options for control. International Journal for Parasitology, 29(10):1691-1704; 20 ref.

Gondim LFP; Sartor IF; Hasegawa M; Yamane I, 1999. Seroprevalence of Neospora caninum in dairy cattle in Bahia, Brazil. Veterinary Parasitology, 86(1):71-75; 15 ref.

Gottstein B; Hentrich B; Wyss R; Thür B; Busato A; Stärk KDC; Müller N, 1998. Molecular and immunodiagnostic investigations on bovine neosporosis in Switzerland. International Journal for Parasitology, 28(4):679-691; 32 ref.

Graham DA; Calvert V; Whyte M; Marks J, 1999. Absence of serological evidence for human Neospora caninum infection. Veterinary Record, 144(24):672-673; 22 ref.

Guarino A, Fusco G et al. , 2000. Neosporosis in water buffalo (Bubalus bubalis) in southern Italy. Veterinary Parasitology, 91(1-2):15-21.

Hamir AN; Tornquist SJ; Gerros TC; Topper MJ; Dubey JP, 1998. Neospora caninum-associated equine protozoal myeloencephalitis. Veterinary Parasitology, 79(4):269-274; 12 ref.

Harmelin A; Perl S; Nyska A; Yakobson B; Shpigel N; Orgad U; Dubey JP, 1995. Neosporosis-associated bovine abortion in Israel. Veterinary Record, 136(3):80; 2 ref.

Hattel AL; Castro MD; Gummo JD; Weinstock D; Reed JA; Dubey JP, 1998. Neosporosis-associated bovine abortion in Pennsylvania. Veterinary Parasitology, 74(2/4):307-313; 14 ref.

Helman RG; Stair EL; Lehenbauer TW; Rodgers S; Saliki JT, 1998. Neosporal abortion in Oklahoma cattle with emphasis on the distribution of brain lesions in aborted fetuses. Journal of Veterinary Diagnostic Investigation, 10(3):292-295; 14 ref.

Hietala SK; Thurmond MC, 1999. Postnatal Neospora caninum transmission and transient serologic responses in two dairies. International Journal for Parasitology, 29(10):1669-1676; 25 ref.

Hilali M; Romand S; Thulliez P; Kwok OCH; Dubey JP, 1998. Prevalence of Neospora caninum and Toxoplasma gondii antibodies in sera from camels from Egypt. Veterinary Parasitology, 75(2/3):269-271; 9 ref.

Holmdahl J; Björkman C; Stenlund S; Uggla A; Dubey JP, 1997. Bovine Neospora and Neospora caninum: one and the same. Parasitology Today, 13(1):40-41; 9 ref.

Hornok S; Näslund K; Hajtós I; Tanyi J; Tekes L; Varga I; Uggla A; Björkman C, 1998. Detection of antibodies to Neospora caninum in bovine postabortion blood samples from Hungary. Acta Veterinaria Hungarica, 46(4):431-436; 18 ref.

Huong LTT; Ljungström BL; Uggla A; Björkman C, 1998. Prevalence of antibodies to Neospora caninum and Toxoplasma gondii in cattle and water buffaloes in southern Vietnam. Veterinary Parasitology, 75(1):53-57; 11 ref.

Jardine JE; Dubey JP, 1992. Canine neosporosis in South Africa. Veterinary Parasitology, 44(3/4):291-294; 4 ref.

Jardine JE; Last RD, 1993. Neospora caninum in aborted twin calves. Journal of the South African Veterinary Association, 64(2):101-102; 7 ref.

Jardine JE; Wells BH, 1995. Bovine neosporosis in Zimbabwe. Veterinary Record, 137(9):223; 4 ref.

Jensen AM; Björkman C; Kjeldsen AM; Wedderkopp A; Willadsen C; Uggla A; Lind P, 1999. Associations of Neospora caninum seropositivity with gestation number and pregnancy outcome in Danish dairy herds. Preventive Veterinary Medicine, 40(3/4):151-163; 31 ref.

Kim JH, Sohn HJ et al. , 2000. In vitro isolation and characterization of bovine Neospora caninum in Korea. Veterinary Parasitology, 90(1-2):147-154.

Koudela B; Svoboda M; Björkman C; Uggla A, 1998. First report of Neospora caninum infection in a dog in the Czech Republic. Veterinární Medicína, 43(2):51-54; 18 ref.

Kruif Ade; Opsomer G; Meulemeester Lde, 1997. Abortion in a Belgian dairy farm due to Neospora caninum. Vlaams Diergeneeskundig Tijdschrift, 66(4):179-182; 16 ref.

Lindsay DS; Dubey JP; Duncan RB, 1999. Confirmation that the dog is a definitive host for Neospora caninum. Veterinary Parasitology, 82(4):327-333; 14 ref.

Lindsay DS; Dubey JP; Upton SJ; Ridley RK, 1990. Serological prevalence of Neospora caninum and Toxoplasma gondii in dogs from Kansas. Journal of the Helminthological Society of Washington, 57(1):86-88; 15 ref.

Lindsay DS; Kelly EJ; McKown RD; Stein FJ; Plozer J; Herman J; Blagburn BL; Dubey JP, 1996. Prevalence of Neospora caninum and Toxoplasma gondii antibodies in coyotes (Canis latrans) and experimental infections of coyotes with Neospora caninum. Journal of Parasitology, 82(4):657-659; 22 ref.

Lindsay DS; Steinberg H; Dubielzig RR; Semrad SD; Konkle DM; Miller PE; Blagburn BL, 1996. Central nervous system neosporosis in a foal. Journal of Veterinary Diagnostic Investigation, 8(4):507-510; 22 ref.

Lindsay DS; Upton SJ; Dubey JP, 1999. A structural study of the Neospora caninum oocyst. International Journal for Parasitology, 29(10):1521-1523; 13 ref.

Marez Tde; Liddell S; Dubey JP; Jenkins MC; Gasbarre L, 1999. Oral infection of calves with Neospora caninum oocysts from dogs: humoral and cellular immune responses. International Journal for Parasitology, 29(10):1647-1657; 36 ref.

Marsh AE; Barr BC; Packham AE; Conrad PA, 1998. Description of a new Neospora species (Protozoa: Apicomplexa: Sarcocystidae). Journal of Parasitology, 84(5):983-991; 50 ref.

McAllister MM, Björkman C et al. , 2000. Evidence of a point-source exposure to Neospora canium and protective immunity in a herd of beef cows. Journal of the American Veterinary Medical Association, 217(6):881-887.

McAllister MM; Dubey JP; Lindsay DS; Jolley WR; Wills RA; McGuire AM, 1998. Dogs are definitive hosts of Neospora caninum. International Journal for Parasitology, 28(9):1473-1478; 24 ref.

McAllister MM; Huffman EM; Hietala SK; Conrad PA; Anderson ML; Salman MD, 1996. Evidence suggesting a point source exposure in an outbreak of bovine abortion due to neosporosis. Journal of Veterinary Diagnostic Investigation, 8(3):355-357; 21 ref.

McIntosh DW; Haines DM, 1994. Neospora infection in an aborted fetus in British Columbia. Canadian Veterinary Journal, 35(2):114-115; 6 ref.

McNamee PT; Trees AJ; Guy F; Moffett D; Kilpatrick D, 1996. Diagnosis and prevalence of neosporosis in cattle in Northern Ireland. Veterinary Record, 138(17):419-420; 9 ref.

Meleady E; Yearlsey D; O'Brien D; Egan J, 2000. Serum antibodies to Neospora caninum, Leptospira hardjo and Salmonella dublin in cows in the Republic of Ireland. Irish Veterinary Journal, 53(5):266; 3 ref.

Moen AR; Wouda W; Mul MF; Graat EAM; Werven Tvan, 1998. Increased risk of abortion following Neospora caninum abortion outbreaks: A retrospective and prospective cohort study in four dairy herds. Theriogenology, 49(7):1301-1309; 22 ref.

Morales SE; Ramírez LJ; Trigo TF; Ibarra VF; Puente CE; Santa Cruz M, 1997. Description of a case of abortion in Mexico, in a cow associated with Neospora infection. Veterinaria México, 28(4):353-357; 45 ref.

Ooi HK; Huang CC; Yang CH; Lee SH, 2000. Serological survey and first finding of Neospora caninum in Taiwan, and the detection of its antibodies in various body fluids of cattle. Veterinary Parasitology, 90(1-2):47-55.

Otter A; Jeffrey M; Griffiths IB; Dubey JP, 1995. A survey of the incidence of Neospora caninum infection in aborted and stillborn bovine fetuses in England and Wales. Veterinary Record, 136(24):602-606; 45 ref.

Otter A; Jeffrey M; Scholes SFE; Helmick B; Wilesmith JW; Trees AJ, 1997. Comparison of histology with maternal and fetal serology for the diagnosis of abortion due to bovine neosporosis. Veterinary Record, 141(19):487-489; 11 ref.

Otter A; Wilson BW; Scholes SFE; Jeffrey M; Helmick B; Trees AJ, 1997. Results of a survey to determine whether Neospora is a significant cause of ovine abortion in England and Wales. Veterinary Record, 140(7):175-177; 10 ref.

Ould-Amrouche A; Klein F; Osdoit C; Mohammed HO; Touratier A; Sanaa M; Mialot JP, 1999. Estimation of Neospora caninum seroprevalence in dairy cattle from Normandy, France. Veterinary Research, 30(5):531-538; 27 ref.

Paré J; Fecteau G; Fortin M; Marsolais G, 1998. Seroepidemiologic study of Neospora caninum in dairy herds. Journal of the American Veterinary Medical Association, 213(11):1595-1598; 19 ref.

Paré J; Hietala SK; Thurmond MC, 1995. An enzyme-linked immunosorbent assay (ELISA) for serological diagnosis of Neospora sp. infection in cattle. Journal of Veterinary Diagnostic Investigation, 7(3):352-359; 24 ref.

Paré J; Hietala SK; Thurmond MC, 1995. Interpretation of an indirect fluorescent antibody test for diagnosis of Neospora sp. infection in cattle. Journal of Veterinary Diagnostic Investigation, 7(2):273-275; 9 ref.

Paré J; Thurmond MC; Hietala SK, 1996. Congenital Neospora caninum infection in dairy cattle and associated calfhood mortality. Canadian Journal of Veterinary Research, 60(2):133-139; 36 ref.

Paré J; Thurmond MC; Hietala SK, 1997. Neospora caninum antibodies in cows during pregnancy as a predictor of congenital infection and abortion. Journal of Parasitology, 83(1):82-87; 29 ref.

Pasquali P; Mandara MT; Adamo F; Ricci G; Polidori GA; Dubey JP, 1998. Neosporosis in a dog in Italy. Veterinary Parasitology, 77(4):297-299; 6 ref.

Patitucci AN; Pérez MJ; Luders CF; Ratto MH; Dumont AG, 1999. Serological evidence of Neospora caninum infection in dairy cattle in Chile. Archivos de Medicina Veterinaria, 31(2):215-218; [15 ref,].

Perez E; Gonzalez O; Dolz G; Morales JA; Barr B; Conrad PA, 1998. First report of bovine neosporosis in dairy cattle in Costa Rica. Veterinary Record, 142(19):520-521; 15 ref.

Perl S; Harrus S; Satuchne C; Yakobson B; Haines D, 1998. Cutaneous neosporosis in a dog in Israel. Veterinary Parasitology, 79(3):257-261; 15 ref.

Peters M; Wagner F; Schares G, 2000. Canine neosporosis: clinical and pathological findings and first isolation of Neospora caninum in Germany. Parasitology Research, 86(1):1-7.

Petersen E; Lebech M; Jensen L; Lind P; Rask M; Bagger P; Björkman C; Uggla A, 1999. Neospora caninum infection and repeated abortions in humans. Emerging Infectious Diseases, 5(2):278-280; 15 ref.

Quintanilla-Gozalo A; Pereira-Bueno J; Tabarés E; Innes EA; González-Paniello R; Ortega-Mora LM, 1999. Seroprevalence of Neospora caninum infection in dairy and beef cattle in Spain. International Journal for Parasitology, 29(8):1201-1208; 34 ref.

Reichel MP, 2000. Neospora caninum infections in Australia and New Zealand. Australian Veterinary Journal, 78(4):258-261.

Romand S; Thulliez P; Dubey JP, 1998. Direct agglutination test for serologic diagnosis of Neospora caninum infection. Parasitology Research, 84(1):50-53; 14 ref.

Sanderson MW; Gay JM; Baszler TV, 2000. Neospora caninum seroprevalence and associated risk factors in beef cattle in the northwestern United States. Veterinary Parasitology, 90(1/2):15-24; 32 ref.

Sawada M; Park CH; Kondo H; Morita T; Shimada A; Yamane I; Umemura T, 1998. Serological survey of antibody to Neospora caninum in Japanese dogs. Journal of Veterinary Medical Science, 60(7):853-854; 8 ref.

Schares G; Conraths FJ; Reichel MP, 1999. Bovine neosporosis: comparison of serological methods using outbreak sera from a dairy herd in New Zealand. International Journal for Parasitology, 29(10):1659-1667; 20 ref.

Schares G; Peters M; Wurm R; Bärwald A; Conraths FJ, 1998. The efficiency of vertical transmission of Neospora caninum in dairy cattle analysed by serological techniques. Veterinary Parasitology, 80(2):87-98; 29 ref.

Schares G; Peters M; Wurm R; Tackmann K; Henning K; Conraths FJ, 1997. Abortions caused by Neospora caninum in a cattle herd in North Rhine-Westphalia. Deutsche Tierärztliche Wochenschrift, 104(6):208-212.

Stenlund S; Björkman C; Holmdahl OJM; Kindahl H; Uggla A, 1997. Characterization of a Swedish bovine isolate of Neospora caninum. Parasitology Research, 83(3):214-219; 30 ref.

Stenlund S; Kindahl H; Magnusson U; Uggla A; Björkman C, 1999. Serum antibody profile and reproductive performance during two consecutive pregnancies of cows naturally infected with Neospora caninum. Veterinary Parasitology, 85(4):227-234; 27 ref.

Suteeraparp P; Pholpark S; Pholpark M; Charoenchai A; Chompoochan T; Yamane I; Kashiwazaki Y, 1999. Seroprevalence of antibodies to Neospora caninum and associated abortion in dairy cattle from central Thailand. Veterinary Parasitology, 86(1):49-57; 25 ref.

Thilsted JP; Dubey JP, 1989. Neosporosis-like abortions in a herd of dairy cattle. Journal of Veterinary Diagnostic Investigation, 1(3):205-209; 18 ref.

Thurmond MC; Anderson ML; Blanchard PC, 1995. Secular and seasonal trends of Neospora abortion in California dairy cows. Journal of Parasitology, 81(3):364-367; 17 ref.

Thurmond MC; Hietala SK, 1996. Culling associated with Neospora caninum infection in dairy cows. American Journal of Veterinary Research, 57(11):1559-1562; 14 ref.

Thurmond MC; Hietala SK, 1997. Effect of congenitally acquired Neospora caninum infection on risk of abortion and subsequent abortions in dairy cattle. American Journal of Veterinary Research, 58(12):1381-1385; 27 ref.

Thurmond MC; Hietala SK, 1997. Effect of Neospora caninum infection on milk production in first-lactation dairy cows. Journal of the American Veterinary Medical Association, 210(5):672-674; 22 ref.

Thurmond MC; Hietala SK; Blanchard PC, 1997. Herd-based diagnosis of Neospora caninum-induced endemic and epidemic abortion in cows and evidence for congenital and postnatal transmission. Journal of Veterinary Diagnostic Investigation, 9(1):44-49; 25 ref.

Thurmond MC; Hietala SK; Blanchard PC, 1999. Predictive values of fetal histopathology and immunoperoxidase staining in diagnosing bovine abortion caused by Neospora caninum in a dairy herd. Journal of Veterinary Diagnostic Investigation, 11(1):90-94; 26 ref.

Tranas J; Heinzen RA; Weiss LM; McAllister MM, 1999. Serological evidence of human infection with the protozoan Neospora caninum. Clinical and Diagnostic Laboratory Immunology, 6(5):765-767; 14 ref.

Trees AJ; Davison HC; Innes EA; Wastling JM, 1999. Towards evaluating the economic impact of bovine neosporosis. International Journal for Parasitology, 29(8):1195-1200; 31 ref.

Trees AJ; Williams DJL, 2000. Neosporosis in the UK. International Journal for Parasitology, 30:891-893.

Uggla A; Stenlund S; Holmdahl OJM; Jakubek EB; Thebo P; Kindahl H; Björkman C, 1998. Oral Neospora caninum inoculation of neonatal calves. International Journal for Parasitology, 28(9):1467-1472; 22 ref.

Venturini MC; Venturini L; Bacigalupe D; Machuca M; Echaide I; Basso W; Unzaga JM; Lorenzo Cdi; Guglielmone A; Jenkins MC; Dubey JP, 1999. Neospora caninum infections in bovine foetuses and dairy cows with abortions in Argentina. International Journal for Parasitology, 29(10):1705-1708; 11 ref.

Waldner CL; Janzen ED; Ribble CS, 1998. Determination of the association between Neospora caninum infection and reproductive performance in beef herds. Journal of the American Veterinary Medical Association, 213(5):685-690; 37 ref.

Weissenböck H; Dubey JP; Suchy A; Sturm E, 1997. Neosporosis causing encephalomalacia and myocarditis in young dogs. Wiener Tierärztliche Monatsschrift, 84(8):233-237; 20 ref.

Williams DJL; Davison HC; Helmick B; McGarry J; Guy F; Otter A; Trees AJ, 1999. Evaluation of a commercial ELISA for detecting serum antibody to Neospora caninum in cattle. Veterinary Record, 145(20):571-575; 27 ref.

Williams DJL; Guy CS; McGarry JW; Guy F; Tasker L; Smith RF; MacEachern K; Cripps PJ; Kelly DF; Trees AJ, 2000. Neospora caninum-associated abortion in cattle: the time of experimentally-induced parasitaemia during gestation determines foetal survival. Parasitology, 121(4):347-358; 40 ref.

Williams DJL; McGarry J; Guy F; Barber J; Trees AJ, 1997. Novel ELISA for detection of Neospora-specific antibodies in cattle. Veterinary Record, 140(13):328-331; 26 ref.

Woods LW; Anderson ML; Swift PK; Sverlow KW, 1994. Systemic neosporosis in a California black-tailed deer (Odocoileus hemionus columbianus). Journal of Veterinary Diagnostic Investigation, 6(4):508-510; 19 ref.

Wouda W, 2000. Diagnosis and epidemiology of bovine neosporosis: A review. Veterinary Quarterly, 22(2):71-74.

Wouda W; Bartels CJM; Moen AR, 1999. Characteristics of Neospora caninum-associated abortion storms in dairy herds in the Netherlands (1995 to 1997). Theriogenology, 52(2):233-245; 29 ref.

Wouda W; Dijkstra T; Kramer AMH; Maanen Cvan; Brinkhof JMA, 1999. Seroepidemiological evidence for a relationship between Neospora caninum infections in dogs and cattle. International Journal for Parasitology, 29(10):1677-1682; 29 ref.

Wouda W; Moen AR; Visser IJR; Knapen Fvan, 1997. Bovine fetal neosporosis: a comparison of epizootic and sporadic abortion cases and different age classes with regard to lesion severity and immunohistochemical identification of organisms in brain, heart, and liver. Journal of Veterinary Diagnostic Investigation, 9(2):180-185; 29 ref.

Wyss R, Sager H et al. , 2000. Distribution of Toxoplasma gondii and Neospora caninum under aspects of meat hygiene. Schweizer Archiv fur Tierheilkunde, 142(3):95-108.

Yaeger MJ; Shawd-Wessels S; Leslie-Steen P, 1994. Neospora abortion storm in a midwestern dairy. Journal of Veterinary Diagnostic Investigation, 6(4):506-508; 7 ref.

Yamane I; Kokuho T; Shimura K; Eto M; Shibahara T; Haritani M; Ouchi Y; Sverlow K; Conrad PA, 1997. In vitro isolation and characterisation of a bovine Neospora species in Japan. Research in Veterinary Science, 63(1):77-80; 18 ref.

Links to Websites

Top of page
Elsevier Science Limited: International Journal for Parasitology. issues on Neospora

Distribution Maps

Top of page
You can pan and zoom the map
Save map