Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Mannheimia haemolytica infections

Toolbox

Datasheet

Mannheimia haemolytica infections

Summary

  • Last modified
  • 31 October 2018
  • Datasheet Type(s)
  • Animal Disease
  • Preferred Scientific Name
  • Mannheimia haemolytica infections
  • Overview
  • Mannheimia haemolytica (from Greek haima - blood, lyt – adverb form of verb lyo - dissolve, and adjectival suffix – ikos latinized in – ica) is a Gram-negative bacte...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Pasteurellosis, commonly known in North America as shipping fever, is perhaps the most important disease in which the practitioner will see fibrinous pneumonia. In Asia, haemorrhagic septicaemia is a more frequent result of Pasteurella infection.
TitleSymptoms - Animal with shipping fever, or pasteurellosis
CaptionPasteurellosis, commonly known in North America as shipping fever, is perhaps the most important disease in which the practitioner will see fibrinous pneumonia. In Asia, haemorrhagic septicaemia is a more frequent result of Pasteurella infection.
Copyright©Paul R. Greenough
Pasteurellosis, commonly known in North America as shipping fever, is perhaps the most important disease in which the practitioner will see fibrinous pneumonia. In Asia, haemorrhagic septicaemia is a more frequent result of Pasteurella infection.
Symptoms - Animal with shipping fever, or pasteurellosisPasteurellosis, commonly known in North America as shipping fever, is perhaps the most important disease in which the practitioner will see fibrinous pneumonia. In Asia, haemorrhagic septicaemia is a more frequent result of Pasteurella infection.©Paul R. Greenough
Bovine lung with fibrinous pneumonia caused by Pasteurella haemolytica and bovine parainfluenzavirus 3, affecting the cranial lobe, the middle lobe and the cranio-ventral portions of the caudal lobes of the lungs.
TitlePathology - fibrinous pneumonia
CaptionBovine lung with fibrinous pneumonia caused by Pasteurella haemolytica and bovine parainfluenzavirus 3, affecting the cranial lobe, the middle lobe and the cranio-ventral portions of the caudal lobes of the lungs.
Copyright©Paul R. Greenough
Bovine lung with fibrinous pneumonia caused by Pasteurella haemolytica and bovine parainfluenzavirus 3, affecting the cranial lobe, the middle lobe and the cranio-ventral portions of the caudal lobes of the lungs.
Pathology - fibrinous pneumoniaBovine lung with fibrinous pneumonia caused by Pasteurella haemolytica and bovine parainfluenzavirus 3, affecting the cranial lobe, the middle lobe and the cranio-ventral portions of the caudal lobes of the lungs.©Paul R. Greenough
Practitioners may encounter sudden death in cattle due to shipping fever. An estimate of the age of lung lesions is a useful in evaluating the quality of the supervision of the animals.
TitleSymptoms - Sudden death due to shipping fever
CaptionPractitioners may encounter sudden death in cattle due to shipping fever. An estimate of the age of lung lesions is a useful in evaluating the quality of the supervision of the animals.
Copyright©Paul R. Greenough
Practitioners may encounter sudden death in cattle due to shipping fever. An estimate of the age of lung lesions is a useful in evaluating the quality of the supervision of the animals.
Symptoms - Sudden death due to shipping feverPractitioners may encounter sudden death in cattle due to shipping fever. An estimate of the age of lung lesions is a useful in evaluating the quality of the supervision of the animals.©Paul R. Greenough
Pasteurellosis, commonly known in North America as shipping fever of a bovine lung affected M. haemolytica or Pasteurella multocida.
TitlePathology - Bovine lung with bronchopneumonia
CaptionPasteurellosis, commonly known in North America as shipping fever of a bovine lung affected M. haemolytica or Pasteurella multocida.
Copyright©Paul R. Greenough
Pasteurellosis, commonly known in North America as shipping fever of a bovine lung affected M. haemolytica or Pasteurella multocida.
Pathology - Bovine lung with bronchopneumoniaPasteurellosis, commonly known in North America as shipping fever of a bovine lung affected M. haemolytica or Pasteurella multocida. ©Paul R. Greenough
Older lesions and show massive amounts of fibrin and subsequent organization and fibrosis.
TitlePathology - Bovine fibrinous pneumonia - cardiac lobe
CaptionOlder lesions and show massive amounts of fibrin and subsequent organization and fibrosis.
Copyright©Paul R. Greenough
Older lesions and show massive amounts of fibrin and subsequent organization and fibrosis.
Pathology - Bovine fibrinous pneumonia - cardiac lobeOlder lesions and show massive amounts of fibrin and subsequent organization and fibrosis.©Paul R. Greenough
Infected cattle lungs produce large amounts of fibrin. However, in all species acute fibrinous adhesions and interlobular fibrin are replaced by fibrous tissue within 7 to 10 days.
TitlePathology - Bovine serofibrinous pneumonia
CaptionInfected cattle lungs produce large amounts of fibrin. However, in all species acute fibrinous adhesions and interlobular fibrin are replaced by fibrous tissue within 7 to 10 days.
Copyright©Paul R. Greenough
Infected cattle lungs produce large amounts of fibrin. However, in all species acute fibrinous adhesions and interlobular fibrin are replaced by fibrous tissue within 7 to 10 days.
Pathology - Bovine serofibrinous pneumoniaInfected cattle lungs produce large amounts of fibrin. However, in all species acute fibrinous adhesions and interlobular fibrin are replaced by fibrous tissue within 7 to 10 days.©Paul R. Greenough
As shipping fever progresses, the swelling decreases, the lungs become firm and grey, the exudates form obvious cores in the bronchi.
TitleA lesion in the lung the lung of a cow with shipping fever that has progressed from the acute stage
CaptionAs shipping fever progresses, the swelling decreases, the lungs become firm and grey, the exudates form obvious cores in the bronchi.
Copyright©Paul R. Greenough
As shipping fever progresses, the swelling decreases, the lungs become firm and grey, the exudates form obvious cores in the bronchi.
A lesion in the lung the lung of a cow with shipping fever that has progressed from the acute stageAs shipping fever progresses, the swelling decreases, the lungs become firm and grey, the exudates form obvious cores in the bronchi.©Paul R. Greenough
An acute lesion caused by shipping fever is characterized by swelling, redness and fluid exudate.
TitlePathology - An acute lung lesion caused by shipping fever
CaptionAn acute lesion caused by shipping fever is characterized by swelling, redness and fluid exudate.
Copyright©Paul R. Greenough
An acute lesion caused by shipping fever is characterized by swelling, redness and fluid exudate.
Pathology - An acute lung lesion caused by shipping feverAn acute lesion caused by shipping fever is characterized by swelling, redness and fluid exudate.©Paul R. Greenough

Identity

Top of page

Preferred Scientific Name

  • Mannheimia haemolytica infections

International Common Names

  • English: bovine pneumonic mannheimiosis; bovine respiratory disease; calf pneumonia; enzootic calf pneumonia; ewe mastitis; mannheimia haemolytica pneumonia, shipping fever, pasteurellosis; mannheimia haemolytica-like organism associated with diarrhea in swine; Mannheimia mastitis; mannheimia mastitis in goats; mannheimia mastitis in sheep; Mannheimia pleuritis; Mannheimia pneumonia; mannheimia pneumonia, shipping fever, pasteurellosis; mannheimia, pasteurella mastitis in cattle; mannheimia, pasteurella pneumonia of sheep and goats; mannheimia, pasteurella pneumonia, septicemia, of sheep and goats; mannheimiosis; mastitis; mastitis in ewes due to miscellaneous bacteria; necrotizing pleuropneumonia in pigs; otitis media, externa, interna, middle and inner ear infections; Pasteurella haemolytica infections; Pasteurella mastitis; Pasteurella pleuritis; pasteurella, mannheimia, pneumonia, pleuritis, in swine; pasteurellosis; pasteurellosis in cattle; pasteurellosis of sheep and goats; pasteurellosis of swine; pneumonic pasteurellosis; septicemic pasteurellosis; septicemic pasteurellosis of cattle; septicemic pasteurellosis of sheep; septicemic pasteurellosis of swine; shipping fever; shipping fever pneumonia; stockyard pneumonia; summer mastitis; summer mastitis in cattle; systemic pasteurellosis; transit fever
  • French: mannheimiose

Local Common Names

  • Italy: pasteurellosi

English acronym

  • BRD

Overview

Top of page

Mannheimia haemolytica (from Greek haima - blood, lyt – adverb form of verb lyo - dissolve, and adjectival suffix – ikos latinized in – ica) is a Gram-negative bacterium which produces a weak haemolytic phenotype on sheep blood agar plates. This microorganism corresponds to Pasteurella haemolytica biogroup 1 which in 1999 was renamed as Mannheimia, in tribute to Walter Mannheim, a German microbiologist who studied the taxonomy of the family Pasteurellaceae (Angen et al., 1999).

M. haemolytica is an important cause of bacterial respiratory mortality in cattle, sheep and goats; moreover, it is responsible for mastitis in ewes and camels, and rarely for abortion in cattle. It also causes a rare respiratory disease in pigs associated with Actinobacillus pleuropneumoniae, and it has been isolated from some wild and domesticated birds (Odugbo et al., 2004; Blackall et al., 2002; Christensen et al., 2003; Dewani et al., 2002; Frank, 1998; Martino, 2000; Oladele et al., 1999).

Healthy animals carry M. haemolytica as a nasal and nasopharyngeal commensal without developing clinical signs. However, when cattle (particularly younger animals) are stressed (for example in transportation from pastured herds to feedlots), and/or become infected with respiratory viruses, M. haemolytica replicates and is inhaled into the lower respiratory tract where it causes great damage. In addition, other opportunistic bacteria such as Pasteurella multocida, Histophilus somni, or Trueperella pyogenes (formerly Arcanobacterium pyogenes) can also take advantage of the damage done to the respiratory tissue. The interaction between the various pathogens can cause respiratory disease, which as a result is often referred to as bovine respiratory disease complex.

In particular, M. haemolytica is the principal microorganism responsible for bovine pneumonic pasteurellosis (older name) or mannheimiosis, also known as shipping fever. This respiratory disease is an economically significant disease in cattle, accounting for about 30% of total cattle deaths in the world; it is associated with an annual economic loss of over US $1 billion in North America alone (Miles, 2009; Frank, 1998).

There are several pathogenicity factors associated with M. haemolytica: fimbriae, capsule, lipopolysaccharide, leukotoxin, etc. It causes several clinical signs in domestic and wild animals: fever, cough, nasal discharge, weight loss, etc. (Alley, 2002; Kanwar et al., 1998; Alhendi, 2000; Ali and Youssef, 2003; Frank, 1998; Catry et al., 2002).

Antimicrobials such as tilmicosin, tildipirosin, danofloxacin, oxytetracycline, amoxicillin and clavulanic acid are used against the bacterium (Aslan et al., 2002; Christodoulopoulos et al., 2002; Frank et al., 2002; Hurd, 1999; Amrine et al., 2014; Lubbers and Turnidge, 2015) and vaccination to reduce the incidence of respiratory disease is widespread (Auad et al., 2001; Choe et al., 2000; Cusack, 2004; Hay et al., 2016).

Although M. haemolytica is not normally an important zoonotic agent, it can cause serious disease in human infants and immunocompromised adults; it has been demonstrated in septicaemia of infants and in adults with heart disease (Punpanich and Srijuntongsiri, 2012; Takeda et al., 2003).

There is a separate datasheet on the sheep disease atypical non-progressive proliferative pneumonia, to which M. haemolytica can be a contributory cause.

Host Animals

Top of page
Animal nameContextLife stageSystem
Anas (ducks)
Bos bison (American bison)
Bos grunniens (yaks)Domesticated host
Bos indicus (zebu)Domesticated host
Bos mutus (yaks, wild)
Bos taurus (cattle)Domesticated host
Bubalus bubalis (Asian water buffalo)Domesticated hostCattle & Buffaloes: All Stages
Camelus dromedarius (dromedary camel)Domesticated hostOther: Adult Female|Other/Adult Male
Capra hircus (goats)Domesticated hostSheep and Goats: All Stages
Equus asinus (donkeys)Domesticated host
Equus caballus (horses)Domesticated host
Gallus
Gallus gallus domesticus (chickens)Domesticated host
Lama glama (llamas)Domesticated host
Lama pacos (alpacas)Domesticated host
MeleagrisDomesticated host
Meleagris gallopavo (turkey)Domesticated host
Mus musculus (house mouse)Experimental settings
Oryctolagus cuniculus (rabbits)Experimental settings
Ovis aries (sheep)Domesticated hostSheep and Goats: All Stages
Ovis canadensisWild hostSheep and Goats: All Stages
Panthera oncaWild host
Struthio camelus (ostrich)Domesticated hostPoultry: All Stages
Sus scrofa (pigs)Domesticated host

Hosts/Species Affected

Top of page

In cattle, Mannheimia haemolytica is responsible for a severe respiratory syndrome, which is often a consequence of several stressors such as transportation (‘shipping fever’ or ‘shipping fever pneumonia’), the gathering of animals coming from different geographical areas, adverse climatic conditions (excessive cold, heat, rain, or wind) or pronounced food changes (Euzeby, 1999; Taylor, 1998; Martin et al., 1998; Martino, 2000; Frank, 1998; Taylor et al., 2010a). Respiratory infections due to viruses or Mycoplasma are also predisposing factors, because they may enhance the localized multiplication of M. haemolytica by altering the mechanisms of defence of the lower respiratory tract, including the lungs (Rice et al., 2007; Singh et al., 2011b).

In sheep and goats there are several factors that predispose to respiratory diseases, usually in adult animals: climatic changes, overcrowding, lack of adequate shelter, transport, viral infections, mycoplasmosis, bordetellosis, pasteurellosis due to Pasteurella multocida, anaplasmosis, trypanosomiasis (in Africa), and nutrient deficiencies (especially of copper). Infections due to M. haemolytica are generally observed all year round, but can be more often observed at the end of spring and at the beginning of summer (this form is also known as ‘summer pneumonia’), or during colder seasons in some African countries (Euzeby, 1999; Sisay and Zerihun, 2003; Berry, 1998; Dewani et al., 2002; Dziva and Mohan, 2000). Sheep mastitis due to M. haemolytica and Staphylococcus aureus causes substantial economic and disease losses to the sheep industry (Gelasakis et al., 2015).

In free ranging North American Bighorn sheep (Ovis canadensis), M. haemolytica (and also Bibersteinia trehalosi) cause severe pneumonia in all age groups (Besser et al., 2013). These bacteria have been largely responsible for the large decline in the Bighorn sheep population. Dall Sheep (Ovis dalli) have been infected in the laboratory (Foreyt et al., 1996).

In American bison (Bos bison), M. haemolytica is associated with disease in domestic livestock, but it is a potential pathogen for the bison themselves, particularly in animals that become stressed by management practices commonly used with cattle, such as herding, crowding and shipping (Taylor et al., 1996).

M. haemolytica has been isolated from ostriches with respiratory infection in Egypt (Ali and Youssef, 2003) and in some wild and domesticated birds (parrots, falcons, quails, peacocks, ostriches, pigeons, turkeys, guineafowl and ducks) in Nigeria. This last identification of M. haemolytica was only an occasional isolation during an epidemiological survey, but the bacterium has been reported in adult turkeys (Birbir et al., 1995; Christensen et al., 2003; Oladele et al., 1999; Ibrahim et al., 2000).

In camels, M. haemolytica is responsible for mastitis and respiratory diseases (Al Rawashdeh et al., 2000; Alhendi, 2000; Bekele and Molla, 2001).

M. haemolytica was reported to induce pericarditis in a jaguar (Kim et al., 2001), although this was in a mixed infection with heartworm.

Isolation of M. haemolytica has been reported from sea turtles found on beaches in Italy (Zizzo et al., 2003).

Experimental pasteurellosis has been induced in rabbits (Heng et al., 1996), and it is possible to reproduce the pulmonary infection in laboratory mice, particularly in SCID-beige or SCID-bo (reconstituted with bovine spleen cells) mice (Thorn et al., 2000) (Gatto et al., 2006). Bronchopneumonia was induced, with lesions similar to those that develop in the lungs of cattle infected with M. haemolytica; however, the lesions appear to be a result primarily of lipopolysaccharide and not leukotoxin -- SCID-bo mice had similar lesions whether wild or LKT deficient mutant M. haemolytica was used for the challenge.

Systems Affected

Top of page blood and circulatory system diseases of large ruminants
blood and circulatory system diseases of pigs
blood and circulatory system diseases of small ruminants
digestive diseases of pigs
mammary gland diseases of large ruminants
mammary gland diseases of pigs
mammary gland diseases of small ruminants
multisystemic diseases of large ruminants
multisystemic diseases of pigs
multisystemic diseases of poultry
multisystemic diseases of small ruminants
reproductive diseases of poultry
respiratory diseases of large ruminants
respiratory diseases of pigs
respiratory diseases of poultry
respiratory diseases of small ruminants

Distribution

Top of page

The geographical distribution of Mannheimia haemolytica is worldwide, although specific references for every country were not available for the Distribution table. The microorganism is reported most frequently in Asia and in countries where sheep or goat breeding is widespread, such as in Africa and North America. In Europe, pasteurellosis or mannheimiosis is also widespread and involves many countries where sheep and cattle are present, such as the Netherlands, Denmark, Germany, Italy and France (Topolko and Benic, 1997; Tefera and Smola, 2002a,b; Angen et al., 2002; Thomas et al., 2001; Ewers et al., 2004Fels-Klerx et al., 2002; Catana et al., 1997; Lyakh and Androsik, 1996; Harwood, 2004).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

IndiaPresentRajesh et al., 2000
-Himachal PradeshPresentRajesh et al., 2000
-RajasthanPresentMishra et al., 2000
IranPresentSasani et al., 2002
IraqPresentAl-Sultan, 1995
IsraelPresentYeruham et al., 1999
JapanPresentNakaya et al., 1998; Katsuda et al., 2003
JordanPresentAl-Tarazi, 2002
Korea, Republic ofPresentKang et al., 2001
MalaysiaPresentSabri et al., 2013; Chung et al., 2015
PakistanReported present or known to be presentNativeKhan and Khan, 1997
Saudi ArabiaPresentIsmail and Hatem, 1998
Sri LankaPresentJayaweera et al., 2014
SyriaPresentKasouha et al., 2009
TurkeyPresentYener et al., 2001
VietnamPresentLe and Pham, 1998

Africa

BeninPresentAdehan et al., 2006
CameroonPresentMartrenchar et al., 1995
EgyptPresentSeddek, 2002; Ali and Youssef, 2003
EthiopiaPresentWoubit et al., 2001; Sisay and Zerihun, 2003
NigeriaPresentOdugbo et al., 2004; Ekong et al., 2014
South AfricaPresentOdendaal and Henton, 1995
SudanPresentElsheikh and Hassan, 2012
ZimbabwePresentDziva and Mohan, 2000

North America

CanadaPresentBooker et al., 1999
-AlbertaPresentMartin et al., 1998
-ManitobaPresentWard et al., 1999
-OntarioPresentO'Connor et al., 2001
MexicoPresentPijoan and Chavez, 2003
USAReported present or known to be presentNativeFrank, 1998; Singer et al., 1998
-CaliforniaPresentSinger et al., 1998
-ColoradoPresentStevens et al., 1997
-IdahoPresentMiller et al., 2012
-IowaPresentAl-Ghamdi et al., 2000
-KansasPresentWard et al., 1999
-MichiganPresentAl-Ghamdi et al., 2000
-MinnesotaPresentWard et al., 1999
-MontanaPresentWard et al., 1999
-NebraskaPresentHarhay et al., 2013
-NevadaPresentWard et al., 1999
-New MexicoPresentFrank et al., 2002
-North DakotaPresentWard et al., 1999
-OklahomaPresentTaylor et al., 2015
-OregonPresentMiller et al., 2012
-South DakotaPresentDaniel et al., 2006
-TennesseePresentFrank et al., 2002
-TexasPresentPurdy et al., 2001
-WyomingPresentMiller et al., 2012

South America

ArgentinaPresentAuad et al., 2001
BrazilLocalisedPresent based on regional distribution.
-Minas GeraisPresentAraujo et al., 2009
-ParaibaPresentSilva et al., 2009
-Rio Grande do SulPresentFarias et al., 2013
PeruPresentRosadio et al., 2011

Europe

BelgiumPresentCatry et al., 2002
CroatiaPresentTopolko and Benic, 1997
Czech RepublicPresentTefera and Smola, 2002a
DenmarkPresentAngen et al., 2002
FrancePresentThomas et al., 2001
GermanyPresentEwers et al., 2004
GreecePresentFthenakis, 1994
HungaryPresentMiklós et al., 1999
ItalyPresentZizzo et al., 2003
NetherlandsPresentFels-Klerx et al., 2002
NorwayPresentStuen et al., 2007
RomaniaPresentCatana et al., 1997
Russian FederationPresentLyakh and Androsik, 1996
SpainPresentRedondo et al., 1994
SwedenPresentSchwan, 1998
UKPresentHarwood et al., 1995

Oceania

AustraliaPresentBlackall et al., 2002
-New South WalesPresentTaylor, 1998
-QueenslandPresentTaylor, 1998
New ZealandPresentAlley, 2002

Pathology

Top of page

In bovine mannheimiosis, the hallmark histopathological feature of the disease is alveoli filled with fibrin interspersed with neutrophils and macrophages.  Larger airways are often spared inflammatory changes unless there are complicating bacteria or viruses. Interlobular septa are expanded due to fibrin-rich edema with lymphatic thrombi and a mild leukocyte infiltrate. In addition, fibrin is present on the pleural surface, and the mesothelium is denuded or hypertrophied.  Lymphocytes, neutrophils and macrophages may infiltrate the subpleura.  Within a few days, thrombosis of vessels with coagulation necrosis of entire or nearly entire lobules is noted (Caswell and Williams, 2007).

Septicemic bovine mannheimiosis is rare and usually occurs terminally in cattle that have severe pneumonia (Mahu et al., 2015; Odendaal and Henton, 1995).  M. haemolytica septicemia has also been associated with dairy cattle with naturally occurring coliform mastitis (Wenz et al., 2001). In the case of sheep with septicemia, the older literature can be unclear in that many of the cases of Pasteurella haemolytica septicemia were likely what is now Bibersteinia trehalosi; however, M. haemolytica can cause septicemia in lambs that are <3 months old (Caswell and Williams, 2007; Mackie et al., 1995). M. haemolytica has also been demonstrated in septicemia of human infants or in people with heart disease (Punpanich and Srijuntongsiri, 2012; Takeda et al., 2003).

In the pathology of domestic and Bighorn sheep and goat lungs, lesions consist of large areas of cranioventral haemorrhagic to suppurative to fibrinosuppurative bronchopneumonia that may have fibrin on the pleural surface (Caswell and Williams, 2007). Septicaemia of lambs causes sero-haemorrhagic effusions, and haemorrhages in the serosal membranes, epicardium and lungs, particularly in the peripheric lobes. The abomasal space and some intestinal tracts show a catarrhal-haemorrhagic inflammation. There is also obvious serofibrinous pleuritis and pericarditis (Caswell and Williams, 2007).

In camels, the major postmortem lesions are hydrothorax, adhesion of the lung to the thorax, emphysema, hydropericardium and fibrinous pericarditis (Seddek, 2002).

Diagnosis

Top of page

Clinical Diagnosis

In calves, it is possible to observe general depression with fever (41°C), anorexia, substantial weight loss, cough, respiratory distress and nasal discharge; death may follow 24-48 h after onset (Frank, 1998; Munish Batra et al., 2002; Martino, 2000; Odendaal and Henton, 1995; Timsit et al., 2016).

In sheep and goats, initially moderate respiratory signs (cough, nasal discharge) are observed, and then worsen to pneumonia with fever (40.6–42.6°C). Animals may die in a few hours or show dyspnoea (Odendaal and Henton, 1995, Sasani et al., 2002, Ozbey and Muz, 2004, Zaitoun, 2001).

In ovine mastitis it is possible to observe a severe, usually unilateral, necrotizing inflammation of the mammary gland with other generic systemic signs (fever, anorexia, depression, inappetence). At the beginning, milk is clear and watery; it then becomes yellowish, viscous and clotted (Dewani et al., 2002, Fthenakis, 1994).

In camels, the major clinical signs observed are fever of 40-41.5°C, depression, cough, loss of appetite and a watery nasal discharge that becomes purulent at a later stage. Finally, the camel becomes recumbent and extends its neck along the ground (El Jakee, 1998; Bekele, 1999).

Laboratory Diagnosis

Tentative diagnosis is by clinical observation, but this should be confirmed by pathogen isolation. Clinical sampling methods include using nasal swabs (although M. haemolytica can be commensal in the nasal cavity), tracheo-bronchial lavage or broncho-alveolar lavage.  There is reasonable agreement regarding isolation of M. haemolytica or other respiratory pathogens between culture results using nasal swabs, transtracheal wash, guarded nasopharyngeal swab, or bronchoalveolar lavage fluid (Capik et al., 2017; Doyle et al., 2017).  At necropsy, sampling the pulmonary parenchyma, blood, spleen, liver and bronchial lymph nodes is recommended.  The bacteriological examination of milk allows differential diagnosis of mastitis due to M. haemolytica from mastitis with another aetiological agent.

The Cary-Blair medium, modified by the addition of horse blood serum, is the most effective medium for the transport of M. haemolytica strains (Tefera and Smola, 2002a).

Samples can be plated on various bacteriological media such as Columbia agar, Brain Heart Infusion agar, Trypticase soy agar, or blood agar with 5-10 % of bovine or sheep blood. The incubation is made in aerobic atmosphere or with an atmosphere enriched with CO2. After 24 h of incubation, the colonies are round with a diameter of 1-2 mm. The presence of haemolytic activity is not necessarily diagnostic as it is variable and depends on the type of erythrocyte used in the medium (bovine blood is generally better), nonhaemolytic strains of M. haemolytica have also been found associated with disease (Mahu et al., 2015).

Identification has usually been based on morphological and biochemical characteristics such as nitrate reduction, glucose fermentation, oxidase reaction, etc. However, molecular techniques and MALDI-TOF assays are rapidly replacing conventional bacteriologic techniques (Kumar et al., 2015; Puchalski et al., 2016). Polymerase chain reaction (PCR) can be used for identification of M. haemolytica from samples (Dutta et al., 2001, Katsuda et al., 2003).

It is possible to use the API System 20NE® (BioMerièux, France), a miniaturized biochemical system, for identification of M. haemolytica. The ENTERORapid 24 kit (BioMerièux, France) is the fastest kit for the identification of the bacterial strains (within 4 to 8 h), with a correct identification rate at the species level (Tefera and Smola, 2002b).

Serotyping is done in a reference laboratory, often using indirect hemagglutination or direct agglutination assays (Younan and Fodor, 1995; Christensen et al., 2003). Strain variations among M. haemolytica isolates can be separated using pulse-field gel electrophoresis (PFGE), ribotyping, random amplified polymorphic DNA (RAPD), and genome sequencing analysis for differentiation of the bacterial strains (Klima et al., 2014; Klima et al., 2016).

Differential Diagnosis

Differential diagnosis from Histophilus somni and Pasteurella multocida infections is required in bovine bronchopneumonia (Fulton et al., 2009; Panciera and Confer, 2010). In fact, M. haemolytica is frequently mixed with P. multocida or other bacteria in shipping fever or in respiratory disease of dairy calves. Differential diagnosis is based on the pathological features of the respiratory tract, besides the morphological aspects on agar plate and the biochemical profile. In general, besides a fibrinous bronchopneumonia, H. somni may induce fibrinous synovitis and/or multifocal myocarditis or myocardial infarction, whereas P. multocida pneumonia is more commonly a suppurative bronchopneumonia with little fibrinous pleuritis (Panciera and Confer, 2010).

List of Symptoms/Signs

Top of page
SignLife StagesType
Acoustic Signs / Deafness Sign
Acoustic Signs / Purulent, mucoid discharge, excess wax, foul odour, ears Sign
Acoustic Signs / Rubbing ears, scratching Sign
Cardiovascular Signs / Prolonged capillary refill time Sign
Cardiovascular Signs / Tachycardia, rapid pulse, high heart rate Sign
Cardiovascular Signs / Weak pulse, small pulse Sign
Digestive Signs / Anorexia, loss or decreased appetite, not nursing, off feed Sign
Digestive Signs / Bloody stools, faeces, haematochezia Sign
Digestive Signs / Diarrhoea Sign
Digestive Signs / Difficulty in prehending or chewing food Sign
Digestive Signs / Dysphagia, difficulty swallowing Sign
Digestive Signs / Excessive salivation, frothing at the mouth, ptyalism Sign
Digestive Signs / Vomiting or regurgitation, emesis Sign
General Signs / Ataxia, incoordination, staggering, falling Sign
General Signs / Cyanosis, blue skin or membranes Sign
General Signs / Dehydration Sign
General Signs / Dysmetria, hypermetria, hypometria Sign
General Signs / Exercise intolerance, tires easily Sign
General Signs / Fever, pyrexia, hyperthermia Sign
General Signs / Forelimb lameness, stiffness, limping fore leg Sign
General Signs / Generalized lameness or stiffness, limping Sign
General Signs / Generalized weakness, paresis, paralysis Sign
General Signs / Haemorrhage of any body part or clotting failure, bleeding Sign
General Signs / Head, face, ears, jaw weakness, droop, paresis, paralysis Sign
General Signs / Head, face, ears, jaw, nose, nasal, swelling, mass Sign
General Signs / Hindlimb lameness, stiffness, limping hind leg Sign
General Signs / Hypothermia, low temperature Sign
General Signs / Inability to stand, downer, prostration Sign
General Signs / Lack of growth or weight gain, retarded, stunted growth Sign
General Signs / Lymphadenopathy, swelling, mass or enlarged lymph nodes Sign
General Signs / Mammary gland swelling, mass, hypertrophy udder, gynecomastia Sign
General Signs / Opisthotonus Sign
General Signs / Petechiae or ecchymoses, bruises, ecchymosis Sign
General Signs / Reluctant to move, refusal to move Sign
General Signs / Stiffness or extended neck Sign
General Signs / Sudden death, found dead Sign
General Signs / Torticollis, twisted neck Sign
General Signs / Underweight, poor condition, thin, emaciated, unthriftiness, ill thrift Sign
General Signs / Weight loss Sign
Nervous Signs / Circling Sign
Nervous Signs / Dullness, depression, lethargy, depressed, lethargic, listless Sign
Nervous Signs / Head shaking, headshaking Sign
Nervous Signs / Head tilt Sign
Nervous Signs / Tremor Sign
Ophthalmology Signs / Chemosis, conjunctival, scleral edema, swelling Sign
Ophthalmology Signs / Conjunctival, scleral, injection, abnormal vasculature Sign
Ophthalmology Signs / Conjunctival, scleral, redness Sign
Ophthalmology Signs / Corneal edema, opacity Sign
Ophthalmology Signs / Corneal neovascularization, pannus Sign
Ophthalmology Signs / Corneal ulcer, erosion Sign
Ophthalmology Signs / Decreased or absent menace response but not blind Sign
Ophthalmology Signs / Decreased tearing, lacrimation Sign
Ophthalmology Signs / Hypopyon, lipid, or fibrin, flare, of anterior chamber Sign
Ophthalmology Signs / Lacrimation, tearing, serous ocular discharge, watery eyes Sign
Ophthalmology Signs / Miosis, meiosis, constricted pupil Sign
Ophthalmology Signs / Nystagmus Sign
Ophthalmology Signs / Photophobia Sign
Ophthalmology Signs / Ptosis, lid droop Sign
Ophthalmology Signs / Purulent discharge from eye Sign
Ophthalmology Signs / Strabismus Sign
Pain / Discomfort Signs / Ocular pain, eye Sign
Pain / Discomfort Signs / Pain mammary gland, udder Sign
Pain / Discomfort Signs / Pain, head, face, jaw, ears Sign
Pain / Discomfort Signs / Skin pain Sign
Reproductive Signs / Abortion or weak newborns, stillbirth Cattle & Buffaloes:Heifer,Cattle & Buffaloes:Cow Sign
Reproductive Signs / Agalactia, decreased, absent milk production Sign
Reproductive Signs / Bloody milk, red, pink, brown milk Sign
Reproductive Signs / Cold mammary gland, cool udder Sign
Reproductive Signs / Edema of mammary gland, udder Sign
Reproductive Signs / Firm mammary gland, hard udder Sign
Reproductive Signs / Mastitis, abnormal milk Sign
Reproductive Signs / Slough of mammary gland, udder Sign
Reproductive Signs / Warm mammary gland, hot, heat, udder Sign
Respiratory Signs / Abnormal breath odor, foul odor mouth Sign
Respiratory Signs / Abnormal breathing sounds of the upper airway, airflow obstruction, stertor, snoring Sign
Respiratory Signs / Abnormal lung or pleural sounds, rales, crackles, wheezes, friction rubs Sign
Respiratory Signs / Coughing, coughs Sign
Respiratory Signs / Decreased, muffled, lung sounds, absent respiratory sounds Sign
Respiratory Signs / Dull areas on percussion of chest, thorax Sign
Respiratory Signs / Dyspnea, difficult, open mouth breathing, grunt, gasping Sign
Respiratory Signs / Epistaxis, nosebleed, nasal haemorrhage, bleeding Sign
Respiratory Signs / Increased respiratory rate, polypnea, tachypnea, hyperpnea Sign
Respiratory Signs / Mucoid nasal discharge, serous, watery Sign
Respiratory Signs / Purulent nasal discharge Sign
Skin / Integumentary Signs / Cold skin, cool ears, extremities Sign
Skin / Integumentary Signs / Rough hair coat, dull, standing on end Sign
Skin / Integumentary Signs / Skin erythema, inflammation, redness Sign
Skin / Integumentary Signs / Skin necrosis, sloughing, gangrene Sign
Skin / Integumentary Signs / Subcutaneous crepitation, skin emphysema Sign
Skin / Integumentary Signs / Warm skin, hot, heat Sign

Disease Course

Top of page

The pathogenesis of infections by Mannheimia haemolytica is not well understood. After colonization of the upper respiratory tract, the microorganism colonizes the lower respiratory tract and finally enters the alveolar spaces (Singh et al., 2011b). At these sites, there is a strong influx of neutrophils, which is associated with alveolar epithelial damage and necrosis, which results in increased vascular permeability, leading to alveolar flooding and pulmonary dysfunction. M. haemolytica lipopolysaccharide is probably involved in the initial increased vascular permeability and activation of macrophages (Singh et al., 2011a; Singh et al., 2012; Whiteley et al., 1990).

Neutrophils cause lung damage by release of elastase, myeloperoxidase and reactive oxygen intermediates, which cause structural degradation of lung tissue (Malazdrewich et al., 2004). Lung damage due to release of neutrophil hydrolytic enzymes is enhanced by the membrane effects of leukotoxin on neutrophils (Czuprynski, 2009; Lo, 2001). In addition, neutrophils can secrete cytokines, which can amplify and sustain the inflammatory response in the lung, resulting in lung pathology associated with disease. The inflammatory cytokines tumor necrosis factor α (TNF-α ), IL-1β and IL-8 play a pivotal role in the initiation of the interactions between cytokines, leukocytes, vascular endothelium, cellular adhesion molecules and soluble chemotactic factors (Singh et al., 2011b). Studies indicate that bovine IL-8 is a chemoattractant for neutrophils and plays a key role in the genesis of lung injury associated with bovine pneumonic mannheimiosis (Malazdrewich et al., 2001; Caswell et al., 2001).

Pneumonic mannheimiosis is characterized in feedlot cattle by acute fibrinopurulent pleuropneumonia. Morbidity is due to substantial weight loss, obstruction of bronchioles due to fibrinous exudate, accumulation of macrophages and fibrin in the alveoli, and subsequent thrombosis and lymphatic vessel distention. The disease can rapidly progress to fatality (Apley, 2006) .

In ovine mastitis, the nursing lamb is suspected of both introducing the agent and providing the mechanical trauma needed for the development of clinical disease, which is characterized by severe, usually unilateral, necrotizing inflammation of the mammary gland (‘blue bag’) (Dewani et al., 2002, Scott and Jones, 1998). M. haemolytica adheres to mammary epithelial cells, which is considered critical for colonization. A study in vitro (Vilela et al., 2004) has demonstrated that adherence and internalization mechanisms may be present in the onset of mastitis caused by M. haemolytica. These mechanisms may be an important feature of the development of mastitis, allowing bacteria to survive and persist in the mammary gland.

Septicaemia of sheep due to M. haemolytica and the closely related Bibersteinia trehalosi takes two forms. M. haemolytica most often occurs in lambs less than 3 months old, involving severe pleuritis, synovitis, and pericarditis. B. trehalosi most often occurs in lambs of 5-12 months of age and is acute or peracute; outbreaks of disease often coincide with a change in diet or other stress. It is postulated that microorganisms already present in the tonsils multiply and invade the adjacent tissues of the alimentary tract. Microorganisms enter the bloodstream as emboli and lodge in the capillary beds of the lung, liver and spleen. Rapid multiplication of M. haemolytica in these tissues leads to death (Lopez and Martinson, 2017).

In adult camels, M. haemolytica has been isolated from pneumonic lungs and from cases of chronic, suppurative mastitis (Woubit et al., 2001; Alhendi, 2000; El Jakee, 1998). In addition, M. haemolytica has been isolated from laryngeal abscesses in alpaca crias (Dwan et al., 2008).

Epidemiology

Top of page

Mannheimia haemolytica is a commensal of the nasopharynx of cattle and sheep, but it can act as a primary pathogen in septicaemia of lambs or in bronchopneumonia of calves and cattle (Taylor et al., 2010a, b).

Many ruminant species carry M. haemolytica as a commensal in the nasopharynx and tonsils (cattle, sheep, goat, buffaloes, etc.), but it causes disease in only a few species. Sheep and goats are most often affected, followed by cattle and buffaloes, in which it is often possible to observe diseases associated with stress of transportation (shipping fever), sometimes associated with Pasteurella multocida, Mycoplasma bovis, and Histophilus somni infections and viral agents (such as parainfluenza-3 virus, bovine respiratory syncytial virus, bovine viral diarrhea virus, or bovine herpesvirus-1) (Taylor et al., 2010a). In other species, such as camelids, wild and domesticated birds, etc., the bacterium is isolated less frequently and is generally associated with viral and mycoplasmal infections, or mixed infections with other bacteria (Kanwar et al., 1998; Mackie et al., 1995; Martin et al., 1998; Khan and Khan, 1997; Martrenchar et al., 1995; O’Connor et al., 2001; Oladele et al., 1999; Ward et al., 1999). Some further information on predisposing factors in different species is provided in the 'Hosts/species affected' section.

Calves, lambs, and kids develop nasal colonization at a young age via direct transmission from the dam via nasal secretions or droplets, by transmission from one young animal to another, or through fomites. M. haemolytica and P. multocida have been isolated from the nasal passages of some dairy calves as early as 24-36 hours after birth (Step et al., 2005). Epidemiological studies in several states of the USA have attempted to identify risk factors for morbidity and mortality both at the individual calf and herd levels. Approximately 40-80% of all diseases of cattle in various countries involve the respiratory system, and bovine respiratory disease complex is the most important problem; it involves three clinical syndromes, of which shipping fever and pneumonic mannheimiosis are due to M. haemolytica (Hay et al., 2014; Hay et al., 2016; Murray et al., 2016; Murray et al., 2017; Sivula et al., 1996).

In Africa, especially in Ethiopia, bronchopneumonia, mainly attributed to M. haemolytica, causes both morbidity (18.6%) and mortality (10.6%) in sheep and goats. In this environment the highest percentage of bacterial isolation was recorded from September to November (Sisay and Zerihun, 2003).

In experiments, the survival of M. haemolytica was 1 h on a wooden plank and 24 h in straw maintained at 20°C. Nevertheless, relative humidity and cold weather increase its survival, which can reach 48 h at 4°C, 3 days in milk or in water at 20 °C, 7 days in water at 4°C and 8 days in milk at 4°C (Euzeby, 1999).

Impact: Economic

Top of page

In the USA, pneumonia caused by M. haemolytica is the main cause of economic losses in the breeding of calves. The same condition is also observed in Europe (Fels-Klerx et al., 2002). In addition, M. haemolytica is the second commonest agent causing mastitis in goats in Europe and is one of the main aetiological agents of this disease in USA. Gelasakis et al. (2015) report that sheep mastitis due to M. haemolytica and Staphylococcus aureus causes substantial economic and disease losses to the sheep industry

Financial losses that result from calf pneumonia occur due to death, treatment cost and decreased lifetime productivity (and possibly a lower grade of meat in cattle treated multiple times for the disease). Michigan dairy producers estimated that respiratory disease in calves cost them US $14.71 per calf/year (Kaneene and Hurd, 1990) while producers in California estimated that calf respiratory disease cost them US $9 per calf/year (Sischo et al., 1990). The economic loss is over US $1 billion in North American beef and dairy cattle (Miles, 2009) (Griffin, 1997).

A study in two dairies in Mexico (Pijoan and Chavez, 2003) evaluated direct and indirect costs of losses due to pneumonia. Direct costs included fatalities, discards and treatment. Indirect costs included vaccination and preventive treatment. The range varied from US $52.78 per calf to US $24.72 per calf.

Impact: Environmental

Top of page

In free ranging North American Bighorn sheep (Ovis canadensis), M. haemolytica (and also Bibersteinia trehalosi) cause severe pneumonia in all age groups (Besser et al., 2013). These bacteria have been largely responsible for the large decline in the Bighorn sheep population.

Impact: Social

Top of page

Because respiratory disease is the major cause of economic losses in the beef cattle industry and M. haemolytica is such a major cause of bovine pneumonia, antibiotics are used in large amounts to control the pneumonia (Rice et al., 2007).  This practice has led to concern that high antibiotic use in meat and dairy cattle can lead to antimicrobial resistance in human pathogens (Oliver et al., 2011).

Although M. haemolytica is not normally an important zoonotic agent, it can cause serious disease in human infants and immunocompromised adults; it has been demonstrated in septicaemia of infants and in adults with heart disease (Punpanich and Srijuntongsiri, 2012; Takeda et al., 2003).

Zoonoses and Food Safety

Top of page

Mannheimia haemolytica is not normally an important zoonotic agent, but it can cause serious disease in infants and immunocompromised adults; it has been demonstrated in septicaemia of infants and in adults with heart disease (Punpanich and Srijuntongsiri, 2012; Takeda et al., 2003).

Heat treatment of milk (pasteurization or ultra-high temperature treatment) allows elimination of M. haemolytica and assures milk safety. However, in countries where milk is consumed untreated and the microorganism is widely spread, risk of infection could be high.

Mass medication of livestock used in treatment and prevention of bovine respiratory disease increases the risk of unwanted drug residues in meat and milk intended for human consumption.

Disease Treatment

Top of page

At present, treatment of bovine pneumonic mannheimiosis is based almost exclusively on systemic antibiotic therapy. In fact, there are many antibiotics that are used for treatment, often both in calves and in lambs. Examples are oxytetracycline, danofloxacin, enrofloxacin, marbofloxacin, tilmicosin, tildipirosin, amoxicillin plus clavulanic acid, talaromycin and florfenicol, with a dosage ranging from 6 mg/kg to 20 mg/kg (Apley, 2006; Aslan et al., 2002; Christodoulopoulos et al., 2002; Cusack, 2004; Frank et al., 2002; Hurd, 1999; Rowan et al., 2004; Sarasola et al., 2002; Schwan, 1998; Thomas et al., 2001; Traeder and Grothues, 2004).

Furthermore, metaphylactic administration of long-acting antibiotics (such as oxytetracycline, tilmicosin, enrofloxacin, or tildipirosin) to calves on arrival at the feedlot has become a common preventive measure. This procedure reduces morbidity and mortality during the early feeding period in calves (Malazdrewich et al., 2004).

The bovine strains are more resistant than ovine strains to several antibiotics: ampicillin, streptomycin, neomycin, gentamicin, tetracycline, chloramphenicol, etc. (Euzeby, 1999, Singer et al., 1998).

The resistance to ampicillin is due to plasmids that code for a β-lactamase named ROB-1, the resistance to chloramphenicol is due to the synthesis of an acetyltransferase III coded by a plasmid that can also act on florfenicol. A chromosomal gene encodes for resistance to sulfonamides (Euzeby, 1999).

Current evidence indicates that widespread use of antibiotics may have contributed to the emergence of multiple antibiotic-resistant strains of M. haemolytica (Malazdrewich et al., 2004; Euzeby, 1999). Mass medication of cattle with antibiotics also promotes the transfer of antibiotic resistance genes from animal pathogens to human bacterial pathogens. Other approaches to bovine mannheimiosis, such as improved vaccines and immunostimulants, are therefore being researched as alternatives to antibiotic mass medication.

Prevention and Control

Top of page

Vaccination with formalized bacterins has been practised for almost 60 years with a questionable efficacy. Killed bacterins induce agglutinating antibodies in vaccinated cattle but with little or no antitoxic response and some evidence that bacterin-vaccinated cattle are more susceptible to disease (Rice et al., 2007). Better protection has been demonstrated after immunization with live organisms or component vaccines composed of soluble and surface antigens, including outer membrane proteins and leukotoxin (Shewen and Wilkie, 1988). Vaccination using these vaccines stimulates both antitoxic and opsonizing antibodies (Auad et al., 2001; Choe et al., 2000; Frank et al., 2002; Kerkhofs et al., 2004; Marchart et al., 2003; Stevens et al., 1997). Experimentally, commercial M. haemolytica vaccines can be enhanced by augmentation with recombinant surface or secreted proteins (Confer et al., 2003; Confer et al., 2006; Shewen et al., 2003).

Larson and Step (2012) carried out a systematic review of the effectiveness of vaccines against bacterial respiratory pathogens in feedlot cattle. They concluded that the published body of evidence does not provide a consistent estimate of the direction and magnitude of effectiveness of vaccination against Mannheimia haemolytica, Pasteurella multocida, or Histophilus somni.

Some of the many vaccines that have been developed for preventing M. haemolytica infections are listed below. Note that veterinary advice should always be taken before using vaccines or treatments mentioned in this Compendium.

LeukoTox (AAH)

Leukotox is a bacterin-toxoid that uses a combination of oil, water and other potentiators of the immune system. The product was designed to be used with re-vaccination 2 to 3 weeks apart so that the animals would have the maximum effect from the bacterin. It can be used for M. haemolytica and P. multocida; LeukoTox 1 (AHH) is a vaccine for M. haemolytica only.

Once PMH and Once PMH IN (Merck)

Must be used for vaccinating healthy cattle against respiratory disease caused by M. haemolytica and Pasteurella multocida. Aadminister 2 ml i.m., with annual revaccination. A single 2-ml dose is recommended.

One Shot (Zoetis)

This  is a bacterin-toxoid for vaccination of healthy cattle as an aid to the prevention of infection caused by M. haemolytica type A1. Inject 2 ml s.c. least 14 days before weaning, shipping or exposure to stress or infectious conditions. A booster is recommended whenever subsequent stress or exposure is likely.

A 21-day slaughter withdrawal is required.

Anaphylactic reactions may occur.

Pyramid 4 plus Presponse SQ (Boehringer Ingelheim)

Pyramid 4 is a modified-live vaccine for bovine herpes virus 1 (IBRV), bovine viral diarrhoea virus (BVDV), bovine parainfluenza virus 3 (PI3) and bovine respiratory syncytial virus (BRSV), and Presponse SQ is a preparation of M. haemolytica toxoid for vaccination of healthy dairy or beef cattle of 6 months of age or older. Inject 2 ml i.m. or s.c.; do not use in pregnant cows or calves nursed by pregnant cows.

21-day slaughter withdrawal period.

Anaphylactic reactions may occur.

Triangle 9+PH-K (Boehringer Ingelheim)

This is used for the vaccination of healthy cattle against IBR, BVDV, PI3, BRSV and infections caused by M. haemolytica and the 5 most common strains of Leptospira. Inject 5 ml i.m., and repeat in 14-28 days. Revaccinate calves at weaning, and then revaccinate annually.

21-day slaughter withdrawal.

Anaphylactic reactions may occur.

Presponse HM and Presponse SQ (Boehringer Ingelheim)

These vaccines provide cattle with protection against M. haemolytica and Pasteurella multocida.

Pulmo-guard PH-1 (AgriLabs)

This is a M. haemolytica bacterin toxoid containing leukotoxoids and antigens from chemically inactivated cultures of multiple isolates of the two bacteria in a triple adjuvant.

Inject 2 ml s.c. (ready to use, single dose) in front of shoulder and midway in the neck away from the suprascapular lymph node. A booster dose is recommended 21 days before subsequent stress. Annual revaccination is recommended.

Do not vaccinate within 60 days before slaughter.

Anaphylactic reactions may occur.

Pulmo-guard PH-M (AgriLabs)

This is a M. haemolytica and P. multocida bacterin-toxoid and contains leukotoxoids and antigens from chemically inactivated cultures of multiple isolates of the two bacteria in a double adjuvant.

Ready to use; single dose; inject 2 ml s.c. or i.m. in the middle of the neck. Repeat in 14 to 28 days. Annual revaccination is recommended.

Do not vaccinate within 60 days before slaughter.

Anaphylactic reactions may occur.

References

Top of page

Adehan RK, Ajuwape ATP, Adetosoye AI, 2006. The occurrence Mycoplasma species and other bacteria in pneumonic lungs of sheep and goats. Folia Veterinaria, 50(2):76-79

Al-Ghamdi GM, Ames TR, Baker JC, Walker R, Chase CCL, Frank GH, Maheswaran SK, 2000. Serotyping of Mannheimia (Pasteurella) haemolytica isolates from the upper Midwest United States. Journal of Veterinary Diagnostic Investigation, 12(6):576-578

Alhendi AAB, 2000. Clinical aspects of she camel mastitis (Camelus dromedarius) in Saudi Arabia. Assiut Veterinary Medical Journal, 42(84):112-119; 16 ref

Ali AR, Youssef AE, 2003. Bacteriological studies and biochemical parameters of respiratory infection in ostriches. Veterinary Medical Journal Giza, 51(2):189-203

Alley MR, 2002. Pneumonia in sheep in New Zealand: an overview. New Zealand Veterinary Journal, 50(3 Supplement):99-101; 39 ref

Al-Rawashdeh OF, Al-Ani FK, Sharrif LA, Al-Qudah KM, Al-Hami Y, Frank N, 2000. A survey of camel (Camelus dromedarius) diseases in Jordan. Journal of Zoo and Wildlife Medicine, 31(3):335-338; 21 ref

Al-Sultan II, 1995. Prevalence of Pasteurella haemolytica serotypes causing pneumonic pasteurellosis in Iraqi sheep. Iraqi Journal of Veterinary Sciences, 8(1):163-166; 15 ref

Al-Tarazi YHM, 2002. The efficacy of an experimental Pasteurella hemolytica vaccine as measured by seroconversion in Awassi lambs in Jordan. 1st International Conference on Sheep and Goat Diseases and Productivity, Irbid, Jordan, 23 25 October 1999. Small Ruminant Research, 45(2):201-208

Amrine, D. E., White, B. J., Larson, R. L., Mosier, D. A., 2014. Pulmonary lesions and clinical disease response to Mannheimia haemolytica challenge 10 days following administration of tildipirosin or tulathromycin. Journal of Animal Science, 92(1), 311-319. http://journalofanimalscience.org/content/92/1/311.abstract doi: 10.2527/jas.2013-6577

Angen O, Ahrens P, Bisgaard M, 2002. Phenotypic and genotypic characterization of Mannheimia (Pasteurella) haemolytica-like strains isolated from diseased animals in Denmark. Veterinary Microbiology, 84(1/2):103-114; 17 ref

Angen O, Mutters R, Caugant DA, Olsen JE, Bisgaard M, 1999. Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. International Journal of Systematic Bacteriology, 49(1):67-86; 69 ref

Apley, M., 2006. Bovine respiratory disease: pathogenesis, clinical signs, and treatment in lightweight calves. Veterinary Clinics of North America, Food Animal Practice, 22(2), 399-411. http://www.vetfood.theclinics.com doi: 10.1016/j.cvfa.2006.03.009

Araujo MR de, Costa MC, Ecco R, 2009. Occurrence of pneumonia associated to infection by Mannheimia haemolytica in sheep of Minas Gerais. (Ocorrência de pneumonia associada à infecção por Mannheimia haemolytica em ovinos de Minas Gerais.) Pesquisa Veterinária Brasileira, 29(9):719-724. http://www.scielo.br/pdf/pvb/v29n9/a07v29n9.pdf

Aslan V, Maden M, Erganis O, Birdane FM, Corlu M, 2002. Clinical efficacy of florfenicol in the treatment of calf respiratory tract infections. Veterinary Quarterly, 24(1):35-39; 36 ref

Auad J, Carbonero Martínez A, Victoria Maure MV, Daffner JF, Gleser HD, 2001. Inoculation trial and humoral response with an inactivated oily vaccine against the bovine respiratory complex (BRC) (Ensayo de inocuidad y respuesta humoral de una vacuna inactivada, tipo oleoso contra el complejo respiratorio bovino (CRB)). Veterinaria Argentina, 18(176):430-439; 8 ref

Bekele T, 1999. Studies on the respiratory disease, 'Sonbobe', in camels in the eastern lowlands of Ethiopia. Tropical Animal Health and Production, 31(6):333-345; 10 ref

Bekele T, Molla B, 2001. Mastitis in lactating camels (Camelus dromedarius) in Afar Region, north-eastern Ethiopia. Berliner und Münchener Tierärztliche Wochenschrift, 114(5/6):169-172; 18 ref

Berry E, 1998. Update on summer mastitis. Proceedings of the British Mastitis Conference 1998, 46-53; 17 ref

Besser, T. E., Cassirer, E. F., Highland, M. A., Wolff, P., Justice-Allen, A., Mansfield, K., Davis, M. A., Foreyt, W., 2013. Bighorn sheep pneumonia: sorting out the cause of a polymicrobial disease. Preventive Veterinary Medicine, 108(2/3), 85-93. http://www.sciencedirect.com/science/journal/01675877 doi: 10.1016/j.prevetmed.2012.11.018

Birbir M, Bowersock T, Ryker D, Ilgaz A, 1995. A comparison of the cytotoxicity of Pasteurella haemolytica A1 and Pasteurella haemolytica-like organisms for chickens. Türk Veterinerlik ve Hayvancilik Dergisi, 19(2):79-85; 29 ref

Blackall PJ, Bisgaard M, Stephens CP, 2002. Phenotypic characterization of Australian sheep and cattle isolates of Mannheimia haemolytica, Mannheimia granulomatis and Mannheimia varigena. Australian Veterinary Journal, 80(1/2):87-91; 27 ref

Booker CW, Guichon PT, Jim GK, Schunicht OC, Harland RJ, Morley PS, 1999. Seroepidemiology of undifferentiated fever in feedlot calves in western Canada. Canadian Veterinary Journal, 40(1):40-48; 44 ref

Capik, S. F., White, B. J., Lubbers, B. V., Apley, M. D., DeDonder, K. D., Larson, R. L., Harhay, G. P., Chitko-McKown, C. G., Harhay, D. M., Kalbfleisch, T. S., Schuller, G., Clawson, M. L., 2017. Comparison of the diagnostic performance of bacterial culture of nasopharyngeal swab and bronchoalveolar lavage fluid samples obtained from calves with bovine respiratory disease. American Journal of Veterinary Research, 78(3), 350-358. http://avmajournals.avma.org/doi/abs/10.2460/ajvr.78.3.350 doi: 10.2460/ajvr.78.3.350

Caswell JL, Middleton DM, Gordon JR, 2001. The importance of interleukin-8 as a neutrophil chemoattractant in the lungs of cattle with pneumonic pasteurellosis. Canadian Journal of Veterinary Research, 65(4):229-232; 25 ref

Caswell JL, Williams KJ, 2007. Respiratory System. In: Maxie G, ed. Pathology of Domestic Animals. Edinburgh, UK: Saunders, 523-653

Catana N, Necsulescu M, Lazau A, Herman V, Ramneantu M, Ciorba D, 1997. The prevalence of Pasteurella infections in calves with respiratory diseases (Prevalenta infectiei cu pasteurella la viteii cu afectiuni respiratorii). Al 22-lea simpozion, Cluj-Napoca, 1996. Actualitati în patologia animalelor domestice: lucrari stiintifice, 288-290; 11 ref

Catry B, Govaere JLJ, Devriese L, Laevens H, Haesebrouck F, Kruif A de, 2002. Bovine enzootic bronchopneumonia: prevalence of pathogens and its antimicrobial susceptibility. Vlaams Diergeneeskundig Tijdschrift, 71(5):348-354; 25 ref

Choe ChangYong, Lee MyeongSik, Na SeungHwan, Jung YoungHun, Yoon SoonSeek, Choe SangYong, Na KieJun, 2000. Vaccination and mass medication for preventing shipping fever in Korean native cattle. Korean Journal of Veterinary Clinical Medicine, 17(1):52-56; 19 ref

Christensen H, Bisgaard M, Bojesen AM, Mutters R, Olsen JE, 2003. Genetic relationships among avian isolates classified as Pasteurella haemolytica, ‘Actinobacillus salpingitidis’ or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov., comb. nov. and description of additional genomospecies within Gallibacterium gen. nov.. International Journal of Systematic and Evolutionary Microbiology, 53(1):275-287

Christodoulopoulos G, Warnick LD, Papaioannou N, Fthenakis GC, 2002. Tilmicosin administration to young lambs with respiratory infection: safety and efficacy considerations. Journal of Veterinary Pharmacology and Therapeutics, 25(5):393-397; 36 ref

Chung LimTeik [Chung LTE], Faez Firdaus JA, Abba Y, Tijjani A, Sadiq MA, Mohammed K, Abdinasir Yusuf Osman, Adamu L, Mohd Azmi ML, Abdul Wahid Haron, 2015. Clinical management of pneumonic pasteurellosis in Boer kids: a case report. International Journal of Livestock Research, 5(4):100-104. http://www.scopemed.org/fulltextpdf.php?mno=183834

Confer, A. W., Ayalew, S., Panciera, R. J., Montelongo, M., Whitworth, L. C., Hammer, J. D., 2003. Immunogenicity of recombinant Mannheimia haemolytica serotype 1 outer membrane protein PlpE and augmentation of a commercial vaccine. Vaccine, 21(21/22), 2821-2829. doi: 10.1016/S0264-410X(03)00213-5

Confer, A. W., Ayalew, S., Panciera, R. J., Montelongo, M., Wray, J. H., 2006. Recombinant Mannheimia haemolytica serotype 1 outer membrane protein PlpE enhances commercial M. haemolytica vaccine-induced resistance against serotype 6 challenge. Vaccine, 24(13), 2248-2255. http://www.sciencedirect.com/science/journal/0264410X doi: 10.1016/j.vaccine.2005.11.036

Cusack PMV, 2004. Effect of mass medication with antibiotics at feedlot entry on the health and growth rate of cattle destined for the Australian domestic market. Australian Veterinary Journal, 82(3):154-156

Czuprynski, C. J., 2009. Host response to bovine respiratory pathogens. Animal Health Research Reviews, 10(2), 141-143. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=6865212&next=true&jid=AHR&volumeId=10&issueId=02 doi: 10.1017/S1466252309990181

Daniel, J. A., Held, J. E., Brake, D. G., Wulf, D. M., Epperson, W. B., 2006. Evaluation of the prevalence and onset of lung lesions and their impact on growth of lambs. American Journal of Veterinary Research, 67(5), 890-894. doi: 10.2460/ajvr.67.5.890

Dewani P, Rind R, Bhutto B, 2002. Bacteriological studies on mastitis in ewes and goats. Journal of Animal and Veterinary Advances, 1(2):98-100; 17 ref

Doyle, D., Credille, B., Lehenbauer, T. W., Berghaus, R., Aly, S. S., Champagne, J., Blanchard, P., Crossley, B., Berghaus, L., Cochran, S., Woolums, A., 2017. Agreement among 4 sampling methods to identify respiratory pathogens in dairy calves with acute bovine respiratory disease. Journal of Veterinary Internal Medicine, 31(3), 954-959. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1939-1676 doi: 10.1111/jvim.14683

Dutta TK, Singh VP, Kumar AA, 2001. Rapid and specific diagnosis of haemorrhagic septicaemia by using PCR assay. Indian Journal of Animal Health, 40(2):101-107

Dwan, L. W., Thompson, H., Taylor, D. J., Philbey, A. W., 2008. Laryngeal abscessation due to Mannheimia haemolytica in an alpaca (Vicugna pacos) cria. Veterinary Record, 163(4), 124-125. http://veterinaryrecord.bvapublications.com/archive/

Dziva F, Mohan K, 2000. Pasteurellosis and Pasteurellae in Zimbabwe: an update. Zimbabwe Veterinary Journal, 31(1):1-10; 39 ref

Ekong PS, Akanbi BO, Odugbo MO, 2014. A case report of respiratory Mannheimiosis in sheep and goat complicated by Bordetella parapertussis. Nigerian Veterinary Journal, 35(2):968-974. http://www.ajol.info/index.php/nvj/article/view/112582/102334

El Jakee J, 1998. Microbiological studies on mammary glands of one humped she-camels in Egypt. Journal of Camel Practice and Research, 5(2):243-246

Elsheikh HM, Hassan SO, 2012. Pneumonia in goats in Sudan. International Journal of Animal and Veterinary Advances, 4(2):144-145. http://maxwellsci.com/print/ijava/v4-144-145.pdf

Euzeby JP, 1999. Mannheimia. Dictionnaire de Bactériologie Vétérinaire. On-line: http://www.bacterio.cict.fr/bacdico/mm/mannheimia.html

Ewers C, Lubke Becker A, Wieler LH, 2004. Mannheimia haemolytica and the pathogenesis of pneumonic pasteurellosis (Mannheimia haemolytica und die Pathogenese der Enzootischen Bronchopneumonie). Berliner und Munchener Tierarztliche Wochenschrift, 117(3-4):97-115

Farias LD, Leite FLL, Marchioro SB, Gasperin BG, Libardoni F, Masuda EK, Kommers GD, Irigoyen LF, Vargas AC de, 2013. Outbreak of ovine respiratory mannheimiosis in southern Brazil. (Surto de mannheimiose pneumônica em ovinos no sul do Brasil.) Veterinária e Zootecnia, 20(2):255-259

Fels-Klerx HJ van der, Martin SW, Nielen M, Huirne RBM, 2002. Effects on productivity and risk factors of Bovine Respiratory Disease in dairy heifers, a review for the Netherlands. Netherlands Journal of Agricultural Science, 50(1):27-45

Foreyt, W. J., Silflow, R. M., Lagerquist, J. E., 1996. Susceptibility of Dall sheep (Ovis dalli dalli) to pneumonia caused by Pasteurella haemolytica. Journal of Wildlife Diseases, 32(4), 586-593.

Frank GH, 1998. Pasteurella haemolytica and pneumonic pasteurellosis in transported cattle. Proceedings One Hundred and Second Annual Meeting of the United States Animal Health Association, Minneapolis, Minnesota, USA, 3-9 October, 1998., 348-355; 41 ref

Frank GH, Briggs RE, Duff GC, Loan RW, Purdy CW, 2002. Effects of vaccination prior to transit and administration of florfenicol at time of arrival in a feedlot on the health of transported calves and detection of Mannheimia haemolytica in nasal secretions. American Journal of Veterinary Research, 63(2):251-256; 23 ref

Fthenakis GC, 1994. Prevalence and aetiology of subclinical mastitis in ewes of Southern Greece. Small Ruminant Research, 13(3):293-300; 28 ref

Fulton, R. W., Blood, K. S., Panciera, R. J., Payton, M. E., Ridpath, J. F., Confer, A. W., Saliki, J. T., Burge, L. T., Welsh, R. D., Johnson, B. J., Reck, A., 2009. Lung pathology and infectious agents in fatal feedlot pneumonias and relationship with mortality, disease onset, and treatments. Journal of Veterinary Diagnostic Investigation, 21(4), 464-477. http://jvdi.org/archive/

Gatto, N. T., Confer, A. W., Estes, D. M., Whitworth, L. C., Murphy, G. L., 2006. Lung lesions in SCID-bo and SCID-bg mice after intratracheal inoculation with wild-type or leucotoxin-deficient mutant strains of Mannheimia haemolytica serotype 1. Journal of Comparative Pathology, 134(4), 355-365. doi: 10.1016/j.jcpa.2006.02.004

Gelasakis, A. I., Mavrogianni, V. S., Petridis, I. G., Vasileiou, N. G. C., Fthenakis, G. C., 2015. Mastitis in sheep - the last 10 years and the future of research. Veterinary Microbiology, 181(1/2), 136-146. http://www.sciencedirect.com/science/journal/03781135

Griffin D, 1997. Economic impact associated with respiratory disease in beef cattle. Veterinary Clinics of North America, Food Animal Practice, 13(3):367-377; 23 ref

Harhay, G. P., Koren, S., Phillippy, A. M., McVey, D. S., Kuszak, J., Clawson, M. L., Harhay, D. M., Heaton, M. P., Chitko-Mckown, C. G., Smith, T. P. L., 2013. Complete closed genome sequences of Mannheimia haemolytica serotypes A1 and A6, isolated from cattle. Genome Announcements, 1(3), e00188-13. http://genomea.asm.org/content/1/3/e00188-13.full

Harwood DG, Otter A, Gunning R, 1995. Peracute pleuropneumonia in adult cattle. Cattle Practice, 3(2):149-151

Harwood, D., 2004. Diseases of dairy goats. In Practice, 26(5), 248-259.

Hay, K. E., Barnes, T. S., Morton, J. M., Clements, A. C. A., Mahony, T. J., 2014. Risk factors for bovine respiratory disease in Australian feedlot cattle: use of a causal diagram-informed approach to estimate effects of animal mixing and movements before feedlot entry. Preventive Veterinary Medicine, 117(1), 160-169. http://www.sciencedirect.com/science/journal/01675877 doi: 10.1016/j.prevetmed.2014.07.001

Hay, K. E., Morton, J. M., Schibrowski, M. L., Clements, A. C. A., Mahony, T. J., Barnes, T. S., 2016. Associations between prior management of cattle and risk of bovine respiratory disease in feedlot cattle. Preventive Veterinary Medicine, 127, 37-43. http://www.sciencedirect.com/science/journal/01675877

Heng HG, Zamri-Saad M, Nor'Izah A, Sheikh-Omar AR, Rasedee A, 1996. The role of lipopolysaccharide of Pasteurella haemolytica in the development of experimental pasteurellosis in rabbits. Jurnal Veterinar Malaysia, 8(2):53-56; 20 ref

Hurd DR, 1999. Marbocyl [marbofloxacin] - an advanced fluoroquinolone for the treatment of bovine respiratory disease (BRD). Irish Veterinary Journal, 52(2):95, 97

Ibrahim RS, Sohair, Hussein Z, 2000. Bacterial agents associated with sinusitis in waterfowls and turkeys in Assiut and El-Minia Governorates. Assiut Veterinary Medical Journal, 44(87):185-195; 24 ref

Ismail TM, Hatem ME, 1998. Prevalence of subclinical mastitis in a dairy cattle herd in the Eastern region of Saudi Arabia. In: Shehab MM, El Tahlawy MR, Mahmoud MR, eds. Eighth Scientific Congress, Faculty of Veterinary Medicine, Assiut University, 15 17 November, 1998. Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt, 646-653

Jayaweera MDA, Ubeyratne JKH, Kasagala KHDT, 2014. Adverse stress combined Mannheimia (Pasteurella) haemolytica outbreak in a goat breeding center in Sri Lanka. Commonwealth Veterinary Journal, 30(2):8-10. http://commonwealthveterinaryjournal.com/pdf/July-2014.pdf

Kaneene JB, Hurd HS, 1990. The National Animal Health Monitoring System in Michigan. III. Cost estimates of selected dairy cattle diseases. Preventive Veterinary Medicine, 8(2-3):127-140; 38 ref

Kang HeeJung, Kim IkChun, Kim JinHoe, Son WonGeun, Lee DuSik, Kang HJ, Kim IC, Kim JH, Son WG, Lee DS, 2001. Identification and antimicrobial susceptibility of microorganisms isolated from bovine mastitic milk. Korean Journal of Veterinary Research, 41(4):511-521

Kanwar NS, Paliwal OP, Ram Kumar, Kumar AA, 1998. Pneumonic pasteurellosis in goats. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases, 19(2):99-101; 12 ref

Kasouha S, Allouz AK, Alomar Y, 2009. Epidemiological investigation on Pasterellosis in cattle in the middle region of Syria. Veterinary Medical Journal Giza [10th Scientific Conference on Current Challenges and Future Prospects of Veterinary Medicine, Hurghada, Egypt, 19-22 October 2009.], 57(4):587-598

Katsuda K, Kohmoto M, Kawashima K, Tsunemitsu H, Tsuboi T, Eguchi M, 2003. Molecular typing of Mannheimia (Pasteurella) haemolytica serotype A1 isolates from cattle in Japan. Epidemiology and Infection, 131(2):939-946

Kerkhofs P, Tignon M, Petry H, Mawhinney I, Sustronck B, 2004. Responses to bovine respiratory syncytial virus (BRSV) following use of an inactivated BRSV PI3 Mannheimia haemolytica vaccine and a modified live BRSV BVDV vaccine. Veterinary Journal, 167(2):208-210

Khan A, Khan MZ, 1997. Bacteria isolated from natural cases of buffalo and bovine neonatal calf diarrhoea, pneumonia and pneumoenteritis. Veterinarski Arhiv, 67(4):161-167; 24 ref

Kim JeongRae, Kim BangHyun, Yoo HanSang, Lee DeogYong, Kim KiGeun, Jean KyungSun, Hwang WooSuk, Lee ByungChun, Kim DaeYong, Kim JR, Kim BH, Yoo HS, Lee DY, Kim KG, Jean KS, Hwang WS, Lee BC, Kim DY, 2001. Concurrent infection with heartworm and Pasteurella haemolytica induced pericarditis in a jaguar (Panthera onca onca). Journal of Veterinary Clinics, 18(1):85-87

Klima, C. L., Alexander, T. W., Hendrick, S., McAllister, T. A., 2014. Characterization of Mannheimia haemolytica isolated from feedlot cattle that were healthy or treated for bovine respiratory disease. Canadian Journal of Veterinary Research, 78(1), 38-45. http://www.ingentaconnect.com/content/cvma/cjvr/2014/00000078/00000001/art00006

Klima, C. L., Cook, S. R., Zaheer, R., Laing, C., Gannon, V. P., Xu Yong, Rasmussen, J., Potter, A., Hendrick, S., Alexander, T. W., McAllister, T. A., 2016. Comparative genomic analysis of Mannheimia haemolytica from bovine sources. PLoS ONE, 11(2), e0149520. http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0149520

Kumar, J., Dixit, S. K., Kumar, R., 2015. Rapid detection of Mannheimia haemolytica in lung tissues of sheep and from bacterial culture. Veterinary World, 8(9), 1073-1077. http://www.veterinaryworld.org/Vol.8/September-2015/8.pdf doi: 10.14202/vetworld.2015.1073-1077

Larson RL, Step DL, 2012. Evidence-based effectiveness of vaccination against Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni in feedlot cattle for mitigating the incidence and effect of bovine respiratory disease complex. Veterinary Clinics of North America, Food Animal Practice, 28(1):97-106.e7. http://www.sciencedirect.com/science/article/pii/S074907201100079X

Le Van Tao, Pham Son Ho, 1998. Experimental reproduction of pasteurellosis in goats with Pasteurella isolated from goats in North Vietnam. Khoa Hoc Ky Thuat Thu Y, 5(2):46-52

Lo RYC, 2001. Genetic analysis of virulence factors of Mannheimia (Pasteurella) haemolytica A1. Veterinary Microbiology, 83(1):23-35; 39 ref

Lopez A, Martinson SA, 2017. Respiratory System, Mediastinum, and Pleurae. In: Zachary JF, ed. Pathologic Basis of Veterinary Disease, 6th ed. St. Louis, Missouri, USA: Elsevier, 471-560

Lubbers, B. V., Turnidge, J., 2015. Antimicrobial susceptibility testing for bovine respiratory disease: getting more from diagnostic results. Veterinary Journal, 203(2), 149-154. http://www.sciencedirect.com/science/journal/10900233 doi: 10.1016/j.tvjl.2014.12.009

Lyakh YuG, Androsik NN, 1996. Prevalence of pasteurellosis in cattle and pigs in Belarus. Veterinarnaya nauka - proizvodstvu, 136-140; 4 ref

Mackie JT, Barton M, Hindmarch M, Holsworth I, 1995. Pasteurella haemolytica septicaemia in sheep. Australian Veterinary Journal, 72(12):474; 13 ref

Mahu, M., Valgaeren, B., Pardon, B., Deprez, P., Haesebrouck, F., Boyen, F., 2015. Non-haemolytic Mannheimia haemolytica as a cause of pleuropneumonia and septicemia in a calf. Veterinary Microbiology, 180(1/2), 157-160. http://www.sciencedirect.com/science/journal/03781135

Malazdrewich C, Ames TR, Abrahamsen MS, Maheswaran SK, 2001. Pulmonary expression of tumor necrosis factor alpha, interleukin-1 beta, and interleukin-8 in the acute phase of bovine pneumonic pasteurellosis. Veterinary Pathology, 38(3):297-310; 46 ref

Malazdrewich C, Thumbikat P, Maheswaran SK, 2004. Protective effect of dexamethasone in experimental bovine pneumonic mannheimiosis. Microbial Pathogenesis, 36:227-236

Marchart J, Dropmann G, Lechleitner S, Schlapp T, Wanner G, Szostak MP, Lubitz W, 2003. Pasteurella multocida and Pasteurella haemolytica ghosts:new vaccine candidates. Vaccine, 21(25-26):3988-3997

Martin SW, Harland RJ, Bateman KG, Nagy E, 1998. The association of titers to Haemophilus somnus, and other putative pathogens, with the occurrence of bovine respiratory disease and weight gain in feedlot calves. Canadian Journal of Veterinary Research, 62(4):262-267; 14 ref

Martino PA, 2000. Microbiological studies on bovine respiratory disease, a review (Indagini microbiologiche in corso di BRD). Obiettivi e Documenti Veterinari, 21(10):29-32; 21 ref

Martrenchar A, Zoyem N, Ngangnou A, Bouchel D, Ngo Tama AC, Njoya A, 1995. Study of the main infectious agents involved in the aetiology of pulmonary diseases of small ruminants in Northern Cameroon (Etude des principaux agents infectieux intervenant dans l'étiologie des pneumopathies des petits ruminants au Nord-Cameroun). Revue d'élevage et de Médecine Vétérinaire des Pays Tropicaux, 48(2):133-137; 15 ref

Miklós R, Izadpanah R, László F, 1999. Aetiology of the respiratory disease complex on some intensive cattle and sheep farms in Hungary (Endémiás légzoszervi megbetegedések oktani vizsgálata egyes hazai szarvasmarha- és juhállományokban). Magyar állatorvosok Lapja, 121(5):255-259; 21 ref

Miles, D. G., 2009. Overview of the North American beef cattle industry and the incidence of bovine respiratory disease (BRD). Animal Health Research Reviews, 10(2), 101-103. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=6865116&fulltextType=RV&fileId=S1466252309990090 doi: 10.1017/S1466252309990090

Miller, D. S., Weiser, G. C., Ward, A. C. S., Drew, M. L., Chapman, P. L., 2012. Pasteurellaceae isolated from bighorn sheep (Ovis canadensis) from Idaho, Oregon, and Wyoming. American Journal of Veterinary Research, 73(7), 1024-1028. http://www.avma.org/journals/default.asp doi: 10.2460/ajvr.73.7.1024

Mishra N, Mishra S, Pawaiya RVS, Bhagwan PSK, 2000. Isolation and characterization of Pasteurella haemolytica from a field outbreak in sheep of Rajasthan. Indian Journal of Animal Sciences, 70(5):443-445; 15 ref

Munish Batra, Bhatia KC, Alok Sharma, Jitender Kumar, 2002. Clinicohematological studies on experimental Mycoplasma mycoides subsp. mycoides (LC) pneumonia in lambs. Indian Journal of Animal Research, 36(1):7-11; 13 ref

Murray, G. M., Cassidy, J. P., Clegg, T. A., Tratalos, J. A., McClure, J., O'Neill, R. G., Sammin, D. J., Casey, M. J., McElroy, M., Earley, B., Bourke, N., More, S. J., 2016. A retrospective epidemiological analysis of risk factors for a primary necropsy diagnosis of bovine respiratory disease. Preventive Veterinary Medicine, 132, 49-56. http://www.sciencedirect.com/science/journal/01675877 doi: 10.1016/j.prevetmed.2016.08.009

Murray, G. M., More, S. J., Sammin, D., Casey, M. J., McElroy, M. C., O'Neill, R. G., Byrne, W. J., Earley, B., Clegg, T. A., Ball, H., Bell, C. J., Cassidy, J. P., 2017. Pathogens, patterns of pneumonia, and epidemiologic risk factors associated with respiratory disease in recently weaned cattle in Ireland. Journal of Veterinary Diagnostic Investigation, 29(1), 20-34. http://journals.sagepub.com/doi/full/10.1177/1040638716674757 doi: 10.1177/1040638716674757

Nakaya I, Tomita K, Ikeuchi T, Torikai Y, 1998. Bacterial isolates from pneumonic lungs of slaughtered calves. Journal of the Japan Veterinary Medical Association, 51(3):136-140; 26 ref

O'Connor A, Martin SW, Nagy É, Menzies P, Harland R, 2001. The relationship between the occurrence of undifferentiated bovine respiratory disease and titer changes to Haemophilus somnus and Mannheimia haemolytica at 3 Ontario feedlots. Canadian Journal of Veterinary Research, 65(3):143-150; 13 ref

Odendaal MW, Henton MM, 1995. The distribution of Pasteurella haemolytica serotypes among cattle, sheep and goats in South Africa and their association with disease. Onderstepoort Journal of Veterinary Research, 62(4):223-226; 3 ref

Odugbo MO, Okpara JO, Abechi SA, Kumbish TI, 2004. An outbreak of pneumonic pasteurellosis in sheep due to Mannheimia (Pasteurella) haemolytica serotype 7. Veterinary Journal, 167(2):214-215

Oladele SB, Raji MT, Raji MA, 1999. Prevalence of bacterial and fungal microflora isolated from some wild and domesticated birds in Zaria, Nigeria. Bulletin of Animal Health and Production in Africa, 47(3):127-132

Oliver, S. P., Murinda, S. E., Jayarao, B. M., 2011. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review. Foodborne Pathogens and Disease, 8(3), 337-355. http://www.liebertonline.com/fpd doi: 10.1089/fpd.2010.0730

Ozbey G, Muz A, 2004. Isolation of aerobic bacterial agents from the lungs of sheep and goats with pneumonia and detection of Pasteurella multocida and Mannheimia haemolytica by polymerase chain reaction. Turk Veterinerlik ve Hayvancilik Dergisi, 28(1):209-216

Panciera, R. J., Confer, A. W., 2010. Pathogenesis and pathology of bovine pneumonia. Veterinary Clinics of North America, Food Animal Practice, 26(2), 191-214. http://www.vetfood.theclinics.com/article/S0749-0720(10)00007-1/abstract doi: 10.1016/j.cvfa.2010.04.001

Pijoan Aguade P, Chavez Duron JA, 2003. Cost of pneumonia in dairy calves lodged under two housing systems. Veterinaria Mexico, 34(4):333-342

Puchalski, A., Urban-Chmiel, R., Dec, M., Stegierska, D., Wernicki, A., 2016. The use of MALDI-TOF mass spectrometry for rapid identification of Mannheimia haemolytica. Journal of Veterinary Medical Science, 78(8), 1339-1342. http://www.jstage.jst.go.jp/browse/jvms/-char/en doi: 10.1292/jvms.16-0087

Punpanich, W., Srijuntongsiri, S., 2012. Pasteurella (Mannheimia) haemolytica septicemia in an infant: a case report. Journal of Infection in Developing Countries, 6(7), 584-587. http://www.jidc.org/index.php/journal/article/view/22842946 doi: 10.3855/jidc.1998

Purdy CW, Straus DC, Harp JA, Mock R, 2001. Microbial pathogen survival study in a high plains feedyard playa. Texas Journal of Science, 53 (3):247-266

Rajesh Chahota, Katoch RC, Arvind Mahajan, Subhash Verma, 2000. Association of Pasteurella haemolytica with bovine abortion - a case report. Indian Veterinary Journal, 77(9):807-808; 4 ref

Redondo E, Masot AJ, Martinez S, Jimenez A, Gazquez A, 1994. Spontaneous bovine respiratory syncytial virus infection in goats: pathological findings. Journal of Veterinary Medicine. Series B, 41(1):27-34; 21 ref

Rice, J. A., Carrasco-Medina, L., Hodgins, D. C., Shewen, P. E., 2007. Mannheimia haemolytica and bovine respiratory disease. Animal Health Research Reviews, 8(2), 117-128. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1660924&fulltextType=RV&fileId=S1466252307001375 doi: 10.1017/S1466252307001375

Rosadio R, Cirilo E, Manchego A, Rivera H, 2011. Respiratory syncytial and parainfluenza type 3 viruses coexisting with Pasteurella multocida and Mannheimia hemolytica in acute pneumonias of neonatal alpacas. Small Ruminant Research, 97(1/3):110-116. http://www.sciencedirect.com/science/journal/09214488

Rowan TG, Sarasola P, Sunderland SJ, Giles CJ, Smith DG, 2004. Efficacy of danofloxacin in the treatment of respiratory disease in European cattle. Veterinary Record, 154(19):585-589

Sabri MY, Shahrom-Salisi M, Emikpe BO, 2013. Comparison prior and post vaccination of inactivated recombinant vaccine against Mannheimiosis in Boer goats farm in Sabah. Journal of Vaccines and Vaccination, 4(1):1000173. http://www.omicsonline.org/comparison-prior-and-post-vaccination-of-inactivated-recombinant-vaccine-against-mannheimiosis-in-boer-goats-farm-in-sabah-2157-7560.1000173.php?aid=11332

Sarasola P, Lees P, AliAbadi FS, McKellar QA, Donachie W, Marr KA, Sunderland SJ, Rowan TG, 2002. Pharmacokinetic and pharmacodynamic profiles of danofloxacin administered by two dosing regimens in calves infected with Mannheimia (Pasteurella) haemolytica. Antimicrobial Agents and Chemotherapy, 46(9):3013-3019; 20 ref

Sasani F, Atyabi N, Dehaghi MR, 2002. Pneumonic pasteurellosis (Fibrinous bronchopneumonia) in lamb due to pasteurella hemolytica (Biotype T). Journal of the Faculty of Veterinary Medicine, University of Tehran, 57(3):73-74

Schwan O, 1998. Trial with long-acting oxytetracycline in a sheep flock with pasteurellosis (Behandlingsförsök med långtidsverkande oxytetracyklin i en fårbensättning med pasteurellos). Svensk Veterinärtidning, 50(4):137-140; 5 ref

Scott MJ, Jones JET, 1998. The carriage of Pasteurella haemolytica in sheep and its transfer between ewes and lambs in relation to mastitis. Journal of Comparative Pathology, 118(4):359-363; 10 ref

Seddek SR, 2002. Bacterial causes of lung affections in slaughtered camels in Assiut Governorate. Assiut Veterinary Medical Journal, 46(92):169-177; 19 ref

Shewen PE, Wilkie BN, 1988. Vaccination of calves with leukotoxic culture supernatant from Pasteurella haemolytica. Canadian Journal of Veterinary Research 52, 30-36

Shewen, P. E., Lee, C. W., Perets, A., Hodgins, D. C., Baldwin, K., Lo, R. Y. C., 2003. Efficacy of recombinant sialoglycoprotease in protection of cattle against pneumonic challenge with Mannheimia (Pasteurella) haemolytica A1. Vaccine, 21(17/18), 1901-1906. doi: 10.1016/S0264-410X(03)00002-1

Silva TR da, Melo DB de, Garino Junior F, Portela R, Carvalho A, Dantas AFM, Almeida FC de, Riet-Correa F, 2009. Mannheimiosis in sheep in the semiarid region of Paraíba: case report. (Manheimiose em ovelha no semiárido Paraibano: relato de caso.) Ciência Animal Brasileira [VIII Congresso Brasileiro de Buiatria, Minas Gerais, Brazil, Outubro de 2009.], 10(Supplement 1):569-573. http://www.revistas.ufg.br/index.php/vet/article/view/7860/5676

Singer RS, Case JT, Carpenter TE, Walker RL, Hirsh DC, 1998. Assessment of spatial and temporal clustering of ampicillin- and tetracycline-resistant strains of Pasteurella multocida and P. haemolytica isolated from cattle in California. Journal of the American Veterinary Medical Association, 212(7):1001-1005; 20 ref

Singh, K., Confer, A. W., Hope, J. C., Rizzi, T., Wyckoff, J. H., III, Weng, H. Y., Ritchey, J. W., 2011. Cytotoxicity and cytokine production by bovine alveolar macrophages challenged with wild type and leukotoxin-deficient Mannheimia haemolytica. Veterinary Journal, 188(2), 221-227. http://www.sciencedirect.com/science/journal/10900233 doi: 10.1016/j.tvjl.2010.05.015

Singh, K., Confer, A. W., Step, D. L., Rizzi, T., Wyckoff, J. H., III, Weng, H. Y., Ritchey, J. W., 2012. Cytokine expression by pulmonary leukocytes from calves challenged with wild-type and leukotoxin-deficient Mannheimia haemolytica. Veterinary Journal, 192(1), 112-119. http://www.sciencedirect.com/science/journal/10900233 doi: 10.1016/j.tvjl.2011.05.015

Singh, K., Ritchey, J. W., Confer, A. W., 2011. Mannheimia haemolytica: bacterial-host interactions in bovine pneumonia. Veterinary Pathology, 48(2), 338-348. http://vet.sagepub.com/ doi: 10.1177/0300985810377182

Sisay T, Zerihun A, 2003. Diversity of Mannheimia haemolytica and Pasteurella trehalosi serotypes from apparently healthy sheep and abattoir specimens in the highlands of Wollo, North East Ethiopia. Veterinary Research Communications, 27(1):3-14

Sischo WM, Hird DW, Gardner IA, Utterback WW, Christiansen KH, Carpenter TE, Danaye-Elmi C, Heron BR, 1990. Economics of disease occurrence and prevention on California dairy farms: a report and evaluation of data collected for the National Animal Health Monitoring system, 1986-87. Preventive Veterinary Medicine, 8(2-3):141-156; 14 ref

Sivula NJ, Ames TR, Marsh WE, Werdin RE, 1996. Descriptive epidemiology of morbidity and mortality in Minnesota dairy heifer calves. Preventive Veterinary Medicine, 27(3/4):155-171; 23 ref

Step, D. L., Confer, A. W., Kirkpatrick, J. G., Richards, J. B., Fulton, R. W., Payton, M. E., 2005. Respiratory tract infections in dairy calves from birth to breeding age: detection by laboratory isolation and antibody responses. Bovine Practitioner, 39(1), 44-53.

Stevens RD, Dinsmore RP, Ellis RP, Katsampas M, 1997. Morbidity and mortality in young Holstein heifer calves vaccinated with a P. haemolytica leukotoxoid. Large Animal Practice, 18(6):23...29; 21 ref

Stuen S, Poulsen LL, Reinert TM, Sand RL, Schønheit J, Haugum M, Josefsen TD, 2007. Pasteurellosis in sheep in Norway - a review based on data from diagnostic laboratories. (Pasteurellose hos sau i Norge - en oversikt basert pa data fra laboratorie-diagnostikk.) Norsk Veterinærtidsskrift, 119(5):311-317. www.vetnett.no

Takeda, S., Arashima, Y., Kato, K., Ogawa, M., Kono, K., Watanabe, K., Saito, T., 2003. A case of Pasteurella haemolytica sepsis in a patient with mitral valve disease who developed a splenic abscess. Scandinavian Journal of Infectious Diseases, 35(10), 764-765. doi: 10.1080/00365540310016385

Taylor LF, 1998. Outbreak of fibrinous pneumonia in recently weaned beef calves in southern Queensland. Australian Veterinary Journal, 76(1):21-24; 14 ref

Taylor SK, Ward ACS, Hunter DL, Gunther K, Kortge L, 1996. Isolation of Pasteurella spp. from free-ranging American bison (Bison bison). Journal of Wildlife Diseases, 32(2):322-325; 26 ref

Taylor, J. D., Fulton, R. W., Lehenbauer, T. W., Step, D. L., Confer, A. W., 2010. The epidemiology of bovine respiratory disease: what is the evidence for predisposing factors?. Canadian Veterinary Journal, 51(10), 1095-1102. http://www.canadianveterinarians.net

Taylor, J. D., Fulton, R. W., Lehenbauer, T. W., Step, D. L., Confer, A. W., 2010. The epidemiology of bovine respiratory disease: what is the evidence for preventive measures?. Canadian Veterinary Journal, 51(12), 1351-1359. http://www.canadianveterinarians.net

Taylor, J. D., Holland, B. P., Step, D. L., Payton, M. E., Confer, A. W., 2015. Nasal isolation of Mannheimia haemolytica and Pasteurella multocida as predictors of respiratory disease in shipped calves. Research in Veterinary Science, 99, 41-45. http://www.sciencedirect.com/science/journal/00345288 doi: 10.1016/j.rvsc.2014.12.015

Tefera G, Smola J, 2002. Modification of Cary Blair transport medium for Pasteurella multocida and Mannheimia haemolytica. Acta Veterinaria Brno, 71(2):229-233

Tefera G, Smola J, 2002. The utility of the ENTERORapid 24 kit for the identification of Pasteurella multocida and Mannheimia haemolytica. Veterinární Medicína, 47(4):99-103; 5 ref

Thomas E, Caldow GL, Borell D, Davot JL, 2001. A field comparison of the efficacy and tolerance of marbofloxacin in the treatment of bovine respiratory disease. Journal of Veterinary Pharmacology and Therapeutics, 24(5):353-358; 15 ref

Thorn CE, Papp JR, Shewen PE, Stirtzinger T, 2000. Experimentally induced pneumonia in scid/beige mice, using a bovine isolate of Pasteurella haemolytica. Comparative Medicine, 50(2):153-159; 64 ref

Timsit, E., Dendukuri, N., Schiller, I., Buczinski, S., 2016. Diagnostic accuracy of clinical illness for bovine respiratory disease (BRD) diagnosis in beef cattle placed in feedlots: a systematic literature review and hierarchical Bayesian latent-class meta-analysis. Preventive Veterinary Medicine, 135, 67-73. http://www.sciencedirect.com/science/journal/01675877 doi: 10.1016/j.prevetmed.2016.11.006

Topolko S, Benic M, 1997. Problems and epidemiology of subclinical mastitis in small-farm milk production (Aktualni problem i epizootiološko stanje subklinickih mastitisa u minifarmskoj proizvodnji mlijeka). Praxis Veterinaria (Zagreb), 45(1/2):69-76; 9 ref

Traeder W, Grothues M, 2004. Pharmacological characteristics and efficacy of Tulathromycin, the first representative of the Triamilide antibiotics. Tierarztliche Umschau, 59(2):102-113

Vilela CL, Fitzpatrick J, Morgan K, 2004. In vitro adherence and invasion of ovine mammary epithelium by Mannheimia (Pasteurella) haemolytica. Veterinary Journal, 167(2):211-213

Ward ACS, Dyer NW, Fenwick BW, 1999. Pasteurellaceae isolated from tonsillar samples of commercially-reared American bison (Bison bison). Canadian Journal of Veterinary Research, 63(3):161-165; 36 ref

Wenz, J. R., Barrington, G. M., Garry, F. B., McSweeney, K. D., Dinsmore, R. P., Goodell, G., Callan, R. J., 2001. Bacteremia associated with naturally occurring acute coliform mastitis in dairy cows. Journal of the American Veterinary Medical Association, 219(7), 976-981. doi: 10.2460/javma.2001.219.976

Whiteley, L. O., Maheswaran, S. K., Weiss, D. J., Ames, T. R., 1990. Immunohistochemical localization of Pasteurella haemolytica A1-derived endotoxin, leukotoxin, and capsular polysaccharide in experimental bovine pasteurella pneumonia. Veterinary Pathology, 27(3), 150-161. doi: 10.1177/030098589002700302

Woubit S, Bayleyegn M, Bonnet P, Jean-Baptiste S, 2001. Camel (Camelus dromedarius) mastitis in Borena lowland pastoral area, Southwestern Ethiopia. Revue d'Élevage et de Médecine Vétérinaire des Pays Tropicaux, 54(3/4):207-212; 22 ref

Yener Z, Gürtürk K, Gülbahar Y, Solmaz H, 2001. Pathological and bacteriological studies on pneumonia in goats slaughtered at Bitlis slaughterhouse. Veteriner Bilimleri Dergisi, 17(1):13-20; 30 ref

Yeruham I, Elad D, Liberboim M, 1999. Clinical and microbiological study of an otitis media outbreak in calves in a dairy herd. Journal of Veterinary Medicine. Series B, 46(3):145-150; 14 ref

Younan M, Fodor L, 1995. Characterisation of a new Pasteurella haemolytica serotype (A17). Research in Veterinary Science, 58(1):98; 10 ref

Zaitoun AM, 2001. Clinical study of pneumonic mycoplasmosis and pasteurellosis (concurrent infection) in a commercial sheep-flock. Assiut Veterinary Medical Journal, 45(89):162-180; 21 ref

Zizzo N, Normanno G, Perillo A, Marzano G, 2003. Bacteriological and anatomic-histopatologic investigations on sea turtles beached in Peninsula Salentina coast (Indagini batteriologiche e anatomo-istopatologiche su tartarughe marine spiaggiate nella penisola salentina). Summa, 20(4):29-34

Links to Websites

Top of page
WebsiteURLComment
Pneumonic Pasteurellosis – Iowa State Universityhttps://vetmed.iastate.edu/vdpam/FSVD/swine/index-diseases/pneumonic-pasteurellosis

Contributors

Top of page

30/04/2017 Revised for Invasive Species Compendium by:

Anthonw W. Confer, Oklahoma State University, Stillwater, Oklahoma, USA

30/11/2004 Original text by:

Piera Martino, University of Milan, Italy.

Distribution Maps

Top of page
You can pan and zoom the map
Save map