Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Thaumatotibia leucotreta
(false codling moth (FCM))

Toolbox

Datasheet

Thaumatotibia leucotreta (false codling moth (FCM))

Summary

  • Last modified
  • 12 February 2021
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Thaumatotibia leucotreta
  • Preferred Common Name
  • false codling moth (FCM)
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • T. leucotreta is endemic to sub-Saharan Africa and has shown itself to be an ineffective invader. It has only successfully established in two regions where it is not indigenous; these are the Western Cape of South Africa (

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Thaumatotibia leucotreta (false codling moth); adult at rest, Stevenage, Hertfordshire, UK. August 2016.
TitleAdult
CaptionThaumatotibia leucotreta (false codling moth); adult at rest, Stevenage, Hertfordshire, UK. August 2016.
Copyright©Ben Sale/via wikipedia - CC BY 2.0
Thaumatotibia leucotreta (false codling moth); adult at rest, Stevenage, Hertfordshire, UK. August 2016.
AdultThaumatotibia leucotreta (false codling moth); adult at rest, Stevenage, Hertfordshire, UK. August 2016.©Ben Sale/via wikipedia - CC BY 2.0
Thaumatotibia leucotreta (false codling moth); Adult at rest. February 2012.
TitleAdult
CaptionThaumatotibia leucotreta (false codling moth); Adult at rest. February 2012.
Copyright©Peter Stephen - Citrus Research International
Thaumatotibia leucotreta (false codling moth); Adult at rest. February 2012.
AdultThaumatotibia leucotreta (false codling moth); Adult at rest. February 2012.©Peter Stephen - Citrus Research International
Thaumatotibia leucotreta (false codling moth) adult. Museum set specimen.
TitleAdult
CaptionThaumatotibia leucotreta (false codling moth) adult. Museum set specimen.
Copyright©Georg Goergen/IITA Insect Museum, Cotonou, Benin
Thaumatotibia leucotreta (false codling moth) adult. Museum set specimen.
AdultThaumatotibia leucotreta (false codling moth) adult. Museum set specimen.©Georg Goergen/IITA Insect Museum, Cotonou, Benin

Identity

Top of page

Preferred Scientific Name

  • Thaumatotibia leucotreta Meyrick

Preferred Common Name

  • false codling moth (FCM)

Other Scientific Names

  • Cryptophlebia leucotreta Meyrick
  • Cryptophlebia roerigii Zacher
  • Olethreutes leucotreta Meyrick
  • Thaumatotibia roerigii Zacher

International Common Names

  • English: citrus codling moth; orange codling moth; orange moth
  • Spanish: palomilla de la naranja
  • French: fausse carpocapse; teigne de l'oranger
  • German: falschen Apfelwickler

EPPO code

  • ARGPLE (Cryptophlebia leucotreta)

Summary of Invasiveness

Top of page

T. leucotreta is endemic to sub-Saharan Africa and has shown itself to be an ineffective invader. It has only successfully established in two regions where it is not indigenous; these are the Western Cape of South Africa (Giliomee and Riedl, 1998; Hofmeyr et al., 2015) and Israel (Wysoki, 1986). Further confirming its poor dispersal and colonisation ability is the fact that it has not spread further in the Middle East than Israel, despite being established there for about 35 years. Furthermore, generally being a solitary infestor of fruit (unlike fruit flies) (Grout and Moore, 2015; Hatting et al., 2019), with the possible exception of pomegranates, mate finding and the consequent probability of establishment in a new environment is dramatically reduced.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Lepidoptera
  •                         Family: Tortricidae
  •                             Genus: Thaumatotibia
  •                                 Species: Thaumatotibia leucotreta

Notes on Taxonomy and Nomenclature

Top of page

This species was for a long time known as Cryptophlebia leucotreta Meyrick, but Komai (1999) transferred the species to the genus Thaumatotibia.

Description

Top of page

Described in detail by Couilloud (1988), Williams (1953),  Komai (1999), Gilligan et al. (2011) and EPPO (2019).

Eggs

Flattened, oval, diameter 0.9 mm.

Larva

When young, creamy-white with brown to black head capsule. The full-grown larva is 15-20 mm long, bright red or pink, head prothoracic plate and pinacula yellow-brown. Can be differentiated from certain other closely related species by the presence of an anal comb; an enlarged, but unsclerotized, L group pinaculum on the first thoracic segment, extending below the spiracle; and the latter with 3 setae.

Pupa

Contained within a tough silken cocoon amongst debris or in the upper layer of soil.

Adult

Strongly dimorphic: Male wingspan 15-16 mm, female 19-20 mm. In both sexes the forewing pattern consists of a mixture of grey, brown, black and orange-brown markings, the most conspicuous being a triangular marking in the outer part of the wing, against the hind margin, and a crescent shaped marking above it. The male is distinguished from all other species by its specialised hindwing, which is slightly reduced and has a circular pocket of fine hair-like black scales overlaid with broad weakly shining whitish scales in the anal angle. It also has a heavily tufted hind tibia.

Timm et al. (2007, 2008), Rentel (2013) and EPPO (2019) provide morphological and molecular keys to aid in the identification of economically important Tortricidae in South Africa, including T. leucotreta.

Distribution

Top of page

T. leucotreta has occasionally been recorded in Europe. However, these have been isolated recordings, where it has been imported with produce from Africa, rather than from established populations (Bradley et al., 1979; Karvonen, 1983; Knill-Jones, 1994; Langmaid, 1996; Huisman and Koster, 2000; Svensson, 2002). In 2009, an incursion of T. leucotreta was detected in the Netherlands on glasshouse Capsicum chinense, but was subsequently eradicated (EPPO, 2010; Potting and van der Straten, 2011).

Following the detection of a single adult male in a trap in Ventura County, California, USA, in 2008 (Gilligan et al., 2011), APHIS and the California Department of Food and Agriculture (CDFA) conducted extensive surveys for T. leucotreta throughout the state. There have been no further detections of the pest in California, and the 2008 detection is considered an isolated regulatory incident. T. leucotreta is listed as a quarantine pest in the USA (NAPPO, 2016), the EU (European Union, 2017) and several other countries.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 17 Feb 2021
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

AngolaPresentNative
BeninPresentNative
Burkina FasoPresentNative
BurundiPresentNative
Cabo VerdePresentNative
CameroonPresentNative
Central African RepublicPresentNative
ChadPresentNative
Congo, Democratic Republic of thePresent
Côte d'IvoirePresentNative
EritreaPresentNative
EswatiniPresentNative
EthiopiaPresentNative
GambiaPresentNative
GhanaPresentNative
KenyaPresent, WidespreadNative
MadagascarPresentNative
MalawiPresentNative
MaliPresentNative
MauritiusPresentNative
MozambiquePresentNative
NigerPresentNative
NigeriaPresentNative
RéunionPresentNative
RwandaPresentNative
Saint HelenaPresentNative
SenegalPresentNative
Sierra LeonePresent
SomaliaPresentNative
South AfricaPresentNative
SudanPresentNative
TanzaniaPresentNative
TogoPresentNative
UgandaPresentNative
ZambiaPresentNative
ZimbabwePresentNative

Asia

IsraelPresent, LocalizedIntroduced1986Invasive

Europe

BelgiumAbsent, Intercepted only
DenmarkAbsent, Intercepted only
FinlandAbsent, Intercepted only19741965Two infested oranges
GermanyAbsent, Eradicated2018One male moth caught in a trap in a glasshouse producing Capsicum annuum fruits.
ItalyAbsent, Intercepted only20142014
LithuaniaAbsent, Confirmed absent by survey
NetherlandsAbsent, Eradicated20091998
SloveniaAbsent, Confirmed absent by survey
SpainAbsent, Intercepted only
SwedenAbsent, Intercepted only20012001
SwitzerlandPresent, Only in captivity/cultivation2008
United KingdomAbsent, Intercepted onlyMoths caught in traps

North America

United StatesAbsent, Confirmed absent by survey
-CaliforniaAbsent, Confirmed absent by survey

Hosts/Species Affected

Top of page

T. leucotreta is extremely polyphagous, there being in excess of 70 food plants recorded. However, the validity of many of the listed host plants has been questioned or even refuted (EPPO, 2013; Moore et al., 2015b).

Schwartz (1981) used 10 references, dating from 1901 to 1976 in compiling a list of 35 host plants, of which 21 were cultivated. Venette et al. (2003) used 15 references dating from 1972 to 2003 in compiling their list of 70 host plants of T. leucotreta. EPPO (2013) used some of the same and several other references, dating from 1958 to 2010 in compiling a list of 107 previously listed hosts. However, they questioned the validity of several of these and even outright refuted 36 of the listed host species (Moore et al., 2015b). This was based on a thorough investigation of the literature and the conclusion that reporting was often ambiguous or there was no original source of substantiating data. Most recently, Brown et al. (2014) has significantly added to the list of hosts, particularly wild indigenous and naturalised hosts in East Africa (Kenya), including some which are cultivated. It should also be noted that there are differences in host status of certain crops in different regions. For example, maize is recorded as an important host in West Africa (Schulthess et al., 1991), cotton as a notable host in East Africa (Reed, 1974) and Ricinus as a conspicuous host in Israel, whereas in southern Africa, infestation on all of these hosts is considered as extremely rare.

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContextReferences
Acca sellowianaMyrtaceaeOther
  • Grové et al. (2019)
Afrocarpus falcata (smooth-barked yellow wood)PodocarpaceaeOther
Afrocarpus graciliorUnknown
Agelaea pentagynaWild host
albucaAsparagaceaeOther
Annona muricata (soursop)AnnonaceaeMain
    Annona senegalensis (wild custard apple)AnnonaceaeOther
    Aristolochia albidaWild host
    Asparagus crassicladusLiliaceaeOther
    Averrhoa carambola (carambola)OxalidaceaeMain
    Blighia unijugataSapindaceaeOther
    Bridelia catharticaEuphorbiaceaeWild host
    Bridelia micranthaEuphorbiaceaeOther
    Capsicum (peppers)SolanaceaeMain
    Chaetacme aristataUlmaceaeWild host
    Chrysophyllum albidumSapotaceaeOther
    Chrysophyllum cainito (caimito)SapotaceaeOther
    Chrysophyllum viridifoliumOther
    Citrus sinensis (navel orange)RutaceaeMain
    Citrus x paradisi (grapefruit)RutaceaeMain
    Coffea arabica (arabica coffee)RubiaceaeMain
    Cola minorWild host
    Combretum apiculatum (red bushwillow)CombretaceaeUnknown
    Combretum zeyheriCombretaceaeUnknown
    Crassula ovata (jade plant)CrassulaceaeOther
    Croton sylvaticusEuphorbiaceaeWild host
    Deinbollia borbonicaSapindaceaeOther
    Diospyros kaki (persimmon)EbenaceaeOther
    Diospyros mespiliformis (ebony diospiros)EbenaceaeOther
    Diospyros pallensEbenaceaeUnknown
    Drypetes natalensis var. leiogynaEuphorbiaceaeWild host
    Englerophytum magalismontanumSapotaceaeUnknown
    Eriobotrya japonica (loquat)RosaceaeOther
    Eugenia uniflora (Surinam cherry)MyrtaceaeOther
    • Grové et al. (2019)
    Flagellaria guineensisOther
    Gossypium (cotton)MalvaceaeMain
    Gossypium hirsutum (Bourbon cotton)MalvaceaeUnknown
    Grewia tephrodermisWild host
    Guettarda speciosaRubiaceaeOther
    Haplocoelum trigonocarpumSapindaceaeWild host
    Harpephyllum caffrumAnacardiaceaeOther
    Hirtella zanzibaricaOther
    Hirtella zanzibaricaOther
    Juglans (walnuts)JuglandaceaeUnknown
    LandolphiaApocynaceaeOther
    Lepisanthes senegalensisSapindaceaeOther
    Lettowianthus stellatusAnnonaceaeWild host
    Litchi chinensis (lichi)SapindaceaeMain
    Macadamia integrifolia (macadamia nut)ProteaceaeMain
    • Chambers et al. (1995)
    Macadamia ternifolia (Queensland nut)ProteaceaeUnknown
    Mangifera indica (mango)AnacardiaceaeOther
    Mimusops bagshaweiSapotaceaeOther
    Mimusops obtusifoliaSapotaceaeOther
    Monodora grandidieriAnnonaceaeOther
    Ochna atropurpureaOchnaceaeUnknown
    Ochna mossambicensisOchnaceaeWild host
    Opuntia ficus-indica (prickly pear)CactaceaeOther
    Pappea capensisOther
    Passiflora (passionflower)PassifloraceaeWild host
    Persea americana (avocado)LauraceaeOther
    Plinia caulifloraOther
    • Grové et al. (2019)
    Prunus (stone fruit)RosaceaeUnknown
    Prunus armeniaca (apricot)RosaceaeUnknown
    Prunus domestica (plum)RosaceaeMain
    Prunus persica (peach)RosaceaeMain
    Prunus salicina (Japanese plum)RosaceaeUnknown
    Psidium (guava)MyrtaceaeUnknown
    Psidium cattleianum (strawberry guava)MyrtaceaeOther
    • Grové et al. (2019)
    Psidium friedrichsthalianum (wild guava)MyrtaceaeWild host
    • Grové et al. (2019)
    Psidium guajava (guava)MyrtaceaeMain
    PunicaPunicaceaeUnknown
    Punica granatum (pomegranate)PunicaceaeMain
    Quercus (oaks)FagaceaeMain
    Ricinus communis (castor bean)EuphorbiaceaeMain
    Rosa (roses)RosaceaeMain
    Rourea minorConnaraceaeOther
    Salacia elegansSalaciaWild host
    Salacia leptocladaOther
    Schotia afraFabaceaeWild host
    Sclerocarya birrea (marula)AnacardiaceaeUnknown
    Solanum melongena (aubergine)SolanaceaeOther
    Solanum tomentosumSolanaceaeWild host
    SorghumPoaceaeUnknown
    Sorghum bicolor (sorghum)PoaceaeOther
    Stephania abyssinicaOther
    Syzygium cordatumMyrtaceaeOther
    Syzygium guineense (woodland waterberry)MyrtaceaeOther
    Syzygium jambos (rose apple)MyrtaceaeUnknown
    • Grové et al. (2019)
    Syzygium paniculatum (australian brush-cherry)MyrtaceaeOther
    • Grové et al. (2019)
    Syzygium samarangense (water apple)MyrtaceaeOther
    • Grové et al. (2019)
    Uvaria acuminataAnnonaceaeWild host
    Uvaria scheffleriWild host
    Uvariodendron anisatumAnnonaceaeWild host
    Vangueria infausta (African medlar)RubiaceaeUnknown
    Vepris fadeniiWild host
    Vepris nobilisOther
    Vitis vinifera (grapevine)VitaceaeOther
    Ximenia americana (hog plum)OlacaceaeOther
    Ximenia caffraOlacaceaeOther
    Xylopia parvifloraWild host
    Zanha golungensisWild host
    Zea mays (maize)PoaceaeOther
    Ziziphus abyssinicaRhamnaceaeUnknown
    Ziziphus mauritiana (jujube)RhamnaceaeOther
    Ziziphus mucronataRhamnaceaeOther
    Ziziphus pubescensRhamnaceaeWild host

    Growth Stages

    Top of page
    Fruiting stage

    Symptoms

    Top of page
    Symptoms vary according to host. On oranges there is sometimes a scar on the fruit surface, on most other crops, the habit of internal feeding leaves few symptoms.

    List of Symptoms/Signs

    Top of page
    SignLife StagesType
    Fruit / frass visible
    Fruit / internal feeding
    Inflorescence / external feeding
    Inflorescence / frass visible
    Leaves / internal feeding
    Seeds / frass visible
    Seeds / internal feeding

    Biology and Ecology

    Top of page

    The female moth lays 100-400 or even more eggs at night, usually singly on the bolls, fruit or nuts of the plant. On citrus the young larva mines just beneath the surface, or bores into the pith causing premature ripening of the fruit. On cotton it first mines the boll wall, but later transfers to the seeds.

    When full grown the larva descends to the ground on a silken thread and spins a tough silken cocoon in the top few millimetres of soil or amongst debris (Love et al., 2019). The development time for each stage varies considerably with temperature; details are given by Daiber (1980) who states that in South Africa five generations per year could be achieved by the moth. There is no diapause (Terblanche et al., 2014).

    The adult is nocturnal and although found to be attracted to light in a laboratory set up, this has not been the case in the field (Gunn, 1921; Catling and Aschenborn, 1978). The mating behaviour is highly developed and relates to three androconial areas on the male (Zagatti and Castel, 1987).

    Natural enemies

    Top of page
    Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
    Actia cuthbertsoni Parasite Larvae Reed (1974) Uganda cotton
    Agathis (Hymenoptera) Parasite Larvae Ullyett (1939) Zimbabwe Citrus
    Alloplitis typhon Parasite Larvae Reed (1974) Zimbabwe cotton
    Anoplolepis custodiens Predator Pupae Brown et al. (2014) South Africa Citrus
    Apanteles leucotretae Parasite Larvae Ford (1934) Zimbabwe Citrus
    Apophua leucotretae Parasite Larvae Ford (1934) Zimbabwe Citrus
    Ascogaster Parasite Larvae Uganda cotton
    Aspergillus alliaceus Pathogen Larvae Moore et al. (2002) South Africa Citrus
    Bassus Parasite Larvae Thompson (1946) Zimbabwe
    Bassus bishopi Parasite Larvae Ullyett (1939); Zimba et al. (2016) South Africa Citrus
    Beauveria bassiana Pathogen Larvae/Pupae Begemann (1989); Begemann (2008) South Africa Citrus
    Chelonus Parasite Eggs/Larvae Bredo (1933); Pomeroy (1925) Democratic Republic of the Congo, Nigeria cotton
    Chelonus curvimaculatus Parasite Eggs/Larvae Searle (1964) South Africa Citrus
    Cryptophlebia leucotreta cypovirus Pathogen Larvae CIBC (1984)
    Cryptophlebia leucotreta granulovirus Pathogen Larvae Angelini et al. (1965); Mück (1985); Moore et al. (2011) South Africa, Ivory Coast, Cape Verde Citrus
    Cryptophlebia peltastica nucleopolyhedrovirus Pathogen Larvae Jukes et al. (2017)
    Elasmus johnstoni Parasite Larvae Le Pelley (1959) Uganda cotton
    Granulosis virus Pathogen Larvae
    Heterorhabditis zealandica Pathogen Pupae Manrakhan et al. (2014) South Africa Citrus
    Lonchaea aristella Parasite Larvae/Pupae Moore (2002) South Africa Citrus
    Orius Predator Eggs Newton (1998) South Africa Citrus
    Orius insidiosus Predator Eggs Nyiira (1970) Uganda cotton
    Oxycoryphe edax Parasite Larvae Newton (1998) South Africa Citrus
    Phanerotoma curvicarinata Parasite Larvae Ullyett (1939) South Africa
    Pheidole megacephala Predator Pupae Brown et al. (2014) South Africa Citrus
    Pristomerus Parasite Larvae Thompson (1946) Somalia
    Rhynocoris albopunctatus Predator Larvae Nyiira (1970) South Africa Citrus, cotton
    Trichogramma Parasite Eggs Reed (1974) South Africa
    Trichogrammatoidea cryptophlebiae Parasite Eggs Catling and Aschenborn (1974) South Africa Citrus
    Trichogrammatoidea fulva Parasite Eggs Mauritius Litchi chinensis

    Plant Trade

    Top of page
    Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
    Flowers/Inflorescences/Cones/Calyx larvae Yes Pest or symptoms usually visible to the naked eye
    Fruits (inc. pods) larvae Yes Pest or symptoms usually visible to the naked eye
    Plant parts not known to carry the pest in trade/transport
    Bark
    Bulbs/Tubers/Corms/Rhizomes
    Growing medium accompanying plants
    Leaves
    Roots
    Seedlings/Micropropagated plants
    Stems (above ground)/Shoots/Trunks/Branches
    Wood

    Impact

    Top of page

    This moth has the potential to be a serious economic pest of some citrus types and pomegranates in southern Africa, peppers and flowers particularly in East Africa, and of cotton in many parts of Africa. It also affects maize in West Africa. Historically, citrus crop losses of 10-20% were reported in South Africa (Glas, 1991). However, pest status varies considerably across citrus cultivars and production regions (EPPO, 2013; Moore et al., 2017). Reed (1974) described losses of between 42 and 90% in late crops of cotton in Uganda. It also used to be a significant pest of macadamia in Israel (Wysoki, 1986); however, macadamia is no longer grown commercially in this country (EPPO, 2013). Blomefield (1989) reported losses of up to 28% in a late peach crop in South Africa. Begemann and Schoeman (1999) calculated citrus crop loss in South Africa specifically due to T. leucotreta was 1.6% in Navels and 0.3% in Valencias. Currently, where high populations occur on preferred hosts, and where these are uncontrolled or the effective natural enemy complex is disrupted, T. leucotreta can still reduce crop yields (Newton, 1998; Moore, 2002). However, T. leucotreta is now very effectively controlled in citrus orchards in southern Africa, using an integrated suite of control options (Moore and Hattingh, 2012, 2016; Barnes et al., 2015; Moore et al., 2015a; Moore et al., 2017). Reduction in infestation of between 95 and 97% has been reported with currently available pre-harvest control options (Moore and Hattingh, 2012; Moore et al., 2015a). The sterile insect technique (SIT) has been used for control of T. leucotreta in several regions in South Africa since 2007 and is proving extremely effective, having reduced moth catches by 98% and fruit infestation by 99% since the inception of the programme (Barnes et al., 2015). Consequently, the pest status of T. leucotreta is now chiefly phytosanitary in nature, due to its endemism to southern Africa and regulations imposed by importing markets (Grout and Moore, 2015; South African Department of Agriculture Forestry and Fisheries, 2015; Moore et al., 2017).

    Detection and Inspection

    Top of page

    These will vary according to the crop affected. On oranges look for a yellow patch on the skin of green fruit and a brown patch on the skin, usually with evidence of a hole bored in the centre, sometimes with dark brown frass exuding.

    Similarities to Other Species/Conditions

    Top of page

    In West Africa, T. leucotreta is often found in conjunction with the pyralid moth Mussidia nigrevenella. Differences between the larvae are given by Silvie (1990) and Moyal and Tran (1989).

    In citrus in southern Africa, the only lepidopteran larva with which T. leucotreta could be confused is the carob moth, Ectomyelois ceratoniae, but fairly straightforward diagnostic criteria (e.g. Timm et al. (2007, 2008) and Rentel (2013)) enable accurate differentiation. In macadamias, pecans and litchis, other species, such as Cryptophlebia peltastica, Thaumatotibia batrachopa and E. ceratoniae can occur, but can be differentiated according to Timm et al. (2007, 2008) and Rentel (2013).

    Prevention and Control

    Top of page

    Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

    Introduction

    There is currently a wide range of effective control options available (Moore and Hattingh, 2016; Malan et al., 2018). However, as T. leucotreta is indigenous wherever it occurs, with the exception of Israel, the occurrence of alternative wild hosts can lead to reinfestation, if growing in close proximity to the crop. However, T. leucotreta is a poor disperser and coloniser (Newton, 1998; Stotter et al., 2014) so this reinfestation would be a slow process.  Additionally, a plethora of natural enemies would maintain suppression of the pest, if undisrupted within an IPM approach.

    Monitoring

    T. leucotreta is monitored using a combination of pheromone traps and fruit infestation (Moore et al., 2008). Amongst others, Newton et al. (1993) identified the female pheromone and Hofmeyr and Burger (1995) developed the original pheromone dispenser. However, due to the phytosanitary status of T. leucotreta for many export markets, traps are no longer used to determine whether intervention is necessary, but rather to assist with accurate timing and prioritisation of treatments (Moore et al., 2008).

    Cultural Control

    Reed (1974) and Byaruhanga and De Lima (1977) showed that late-sown crops of cotton in Uganda were worst affected, but the difference was not great. As T. leucotreta is primarily a fruit feeder, it is suggested by Glas (1991) that crops of cotton grown close to fruit trees may be less affected. Ullyett and Bishop (1938) found that weekly sanitation in citrus orchards (picking up and destruction of fallen fruit) reduced fruit loss from 6.1 to 3.3%. Stofberg (1954) found that a programme of regular sanitation could save between 24 and 60 fruit per tree from T. leucotreta infestation. He concluded that at that time, the cost of twice-weekly sanitation would be justified if T. leucotreta infestation was reduced by half. Moore and Kirkman (2008) showed that weekly orchard sanitation from December to June removed an average of 75% of T. leucotreta larvae infesting fruit. Orchard sanitation is considered as the backbone for effective control of T. leucotreta.

    Biological Control

    Parasitoids of T. leucotreta have been identified, and mass release of Trichogrammoide acryptophlebiae has been shown to be effective (Newton and Odendaal, 1990). Parasitoids are currently commercially available for augmentation (Malan et al., 2018) and have been shown to reduce T. leucotreta infestation by up to 60% (Newton and Odendaal, 1990; Moore and Hattingh, 2016).

    Cryptophlebia leucotreta granulovirus (CrleGV) has been used commercially for more than 15 years, reducing T. leucotreta by up to more than 90%, with a residual efficacy from one spray of up to 17 weeks (Moore et al., 2015a). Currently, there are three commercially available CrleGV products on the market (Hatting et al., 2019).

    Entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, isolated from citrus orchards (Goble et al., 2010, 2011; Coombes et al., 2013, 2015) reduced T. leucotreta infestation of citrus fruit by over 80% during a full season, from a single spring application to the soil (Moore et al., 2013; Coombes et al., 2016). However, these isolates are still to be commercially developed, and currently, the only EPF registered for control of T. leucotreta in southern Africa are applied to the tree for control of the egg and neonate larval stages.

    An EPN product, with its active ingredient Heterorhabditis bacteriophora, is registered for use against the soil-dwelling life stage of T. leucotreta in South Africa (Malan et al., 2018). Application of H. bacteriophora to a citrus orchard floor, reduced T. leucotreta infestation of fruit by up to 81% (Moore et al., 2013).

    Sterile Insect Technique

    The Sterile Insect Technique (SIT), as a stand-alone treatment in a semi-commercial trial, reduced T. leucotreta infestation in 35 ha of Navel orange orchards by 95.2%, relative to an untreated control orchard (Hofmeyr et al., 2016a). These initial findings led to commercial implementation for control of T. leucotreta within an integrated programme in citrus, since 2007. The programme is proving extremely effective (Hofmeyr et al., 2015), having reduced moth catches by 99%, fruit infestation by 96% and export rejections by 89% since the inception of the programme (Barnes et al., 2015). After orchard sanitation, area-wide techniques, such as SIT and mating disruption, are considered as the most important control tactics for T. leucotreta.

    Chemical Control

    Chemical control of T. leucotreta has been shown to be effective. In field trials two synthetic pyrethroids, applied 2-3 months before harvest, reduced fruit drop by an average of 90% (Moore and Hattingh, 2016). Field trials conducted by Newton (1987) showed that a single application of the insect growth regulators, triflumuron or teflubenzuron, reduced fruit loss by up to 86%. Although T. leucotreta insecticide resistance has been reported for the older chemical control options (Hofmeyr and Pringle, 1998), Moore et al. (2015a) showed that the more recently registered chemicals, such as methoxyfenozide and spinetoram are also effective in controlling T. leucotreta infestation. Although chemical control is effective and important, there are sufficient effective non-chemical treatments available in order to not be reliant upon chemical control for T. leucotreta management.

    Pheromonal Control

    Field trials conducted with mating disruption in Navel orange orchards, reduced T. leucotreta infestation by 55 to 75% (Hofmeyr and Hofmeyr, 2002; Moore and Hattingh, 2012). More importantly, these reductions were 86 and 95%, respectively, in later evaluations shortly before harvest. Currently, there are four mating disruption products and one attract and kill product that are commercially available for use against T. leucotreta (Malan et al., 2018).

    Postharvest Control

    Cottier (1952) demonstrated the efficacy of T. leucotreta postharvest cold treatment by shipping infested fruit from South Africa to New Zealand at a pulp temperature of -0.55°C for 21 days, with no survival of any larvae and eggs. Myburgh (1963, 1965), conducted further trials and concluded that 21 to 22 days at -0.55°C would provide at least a Probit 9 level of control. More recently, Moore et al. (2017) demonstrated that the following treatments caused mortality at or in excess of the probit 9 level: 16 d at or below -0.1°C, 18 d at or below -0.3°C, 20 d at or below -0.3°C and 19 d at or below 1.2°C. Ware and du Toit (2011, 2016, 2018), respectively, demonstrated Probit 9 efficacy in grapes at 2°C for 22 days; demonstrated Probit 8.7 efficacy in avocadoes at -0.6°C for 18 d and at 0.8°C for 20 d; and recorded only one survivor out of 28,380 larvae treated in avocadoes at 2°C pulp temperature for 20 days. Some countries to which South Africa exports fruit require a disinfestation cold treatment as a phytosanitary risk mitigation measure for T. leucotreta (South African Department of Agriculture Forestry and Fisheries, 2015).

    Ionizing radiation with 100 Gy, as a postharvest phytosanitary disinfestation treatment for T. leucotreta larvae and eggs, was effective at the Probit 9 level (Hofmeyr et al., 2016b, 2016c). A combination of 60 Gy followed by 16 days at 2.5°C was also effective at the Probit 9 level (Hofmeyr et al., 2016d, 2016e).

    Systems Approach Control

    Moore et al. (2016) and Hattingh et al. (2020) developed a systems approach consisting of three measures: 1) preharvest controls and measurements and postpicking sampling, inspection, and packinghouse procedures; 2) postpacking sampling and inspection; and 3) shipping conditions. They demonstrated that the maximum potential proportion of fruit that may be infested with live T. leucotreta after application of the systems approach is no greater than the proportion of fruit that may be infested after application of a Probit 9 efficacy postharvest disinfestation treatment to fruit with a 2% pretreatment infestation. This system has been used for export of citrus from South Africa to the EU, as an alternative to a stand-alone cold treatment.

    References

    Top of page

    Angelini, A., Amargier, A., Vandamme, P., Duthoit, J. L., 1965. [English Title not available]. (Une virose à granules chez le Lépidoptère Argyroploce leucotreta). Coton et Fibres Tropicales, 20(2), 277-282 pp.

    Barnes, B. N., Hofmeyr, J. H., Groenewald, S., Conlong, D. E., Wohlfarter, M., 2015. The sterile insect technique in agricultural crops in South Africa: a metamorphosis .... but will it fly?. African Entomology, 23(1), 1-18. doi: 10.4001/003.023.0103

    Begemann GJ, 1989. (Die isolering en massakultuur van die entomopatogeneniese swam Beauveria bassiana (Balsamo)). Citrus Journal , 645, 18-19.

    Begemann GJ, Schoeman AS, 1999. The phenology of Helicoverpa armigera (Hnbner) (Lepidoptera: Noctuidae), Tortrix capensana (Walker) and Cryptophlebia leucotreta (Meyrick) (Lepidoptera: Tortricidae) on citrus at Zebediela, South Africa. African Entomology, 7(1):131-148; 33 ref

    Begemann, G. J., 2008. The mortality of Thaumatotibia leucotreta (Meyrick) final instar larvae exposed to the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin. African Entomology, 16(2), 306-308. doi: 10.4001/1021-3589-16.2.306

    Blomefield TL, 1989. Economic importance of false codling moth, Cryptophlebia leucotreta, and codling moth, Cydia pomonella, on peaches, nectarines and plums. Phytophylactica, 21(4):435-436

    Bownes, A., Moore, S. D., Villet, M. H., 2014. My enemy's enemies: recruiting hemipteran-tending generalist ants for biological control in citrus orchards by spatial partitioning of foraging webs. African Entomology, 22(3), 519-529. http://www.bioone.org/doi/full/10.4001/003.022.0303

    Bradley JD, Tremewan WG, Smith A, 1979. British tortricoid moths. Tortricidae: Olethreutinae. British tortricoid moths. Tortricidae: Olethreutinae. London, UK: The Ray Society, 336

    Bredo, H. J. , 1933. Note sur Argyroploce leucotreta Meyr. Bulletin agricole du Congo belge, 24(2), 150-156 pp.

    Brown, J. W., Copeland, R. S., Aarvik, L., Miller, S. E., Rosati, M. E., Luke, Q., 2014. Host records for fruit-feeding Afrotropical Tortricidae (Lepidoptera). African Entomology, 22(2), 343-376. doi: 10.4001/003.022.0225

    Byaruhanga EK, 1977. Manipulation of sowing dates of cotton for the control of Cryptophlebia leucotreta (Meyrick). In: Lima CPFDe, ed. De Lima, C. P. F. : Advances in medical, veterinary and agricultural entomology in eastern Africa. Proceedings of the 1st E.A. Conference on Entomology and Pest Control, December 6-10, 1976, Nairobi, Kenya. East African Literature Bureau. Nairobi Kenya, 73-75

    CABI/EPPO, 2002. Thaumatotibia leucotreta. [Distribution map]. In: Distribution Maps of Plant Pests , (December (1st revision)) Wallingford, UK: CAB International.Map 352.

    Carpenter J, Bloem S, Hofmeyr H, 2007. Area-wide control tactics for the false codling moth Thaumatotibia leucotreta in South Africa: a potential invasive species. In: Area-wide control of insect pests: from research to field implementation [ed. by Vreysen MJB, Robinson AS, Hendrichs J] Dordrecht, Netherlands: Springer SBM, 351-359

    Catling HD, 1969. Citrus pest control: recommendations for Swaziland. In: Bulletin of the Swaziland Ministry of Agriculture,( No.26) . 1-13.

    Catling HD, Aschenborn H, 1974. Population studies of the false codling moth, Cryptophlebia leucotreta Meyrick, on citrus in the Transvaal. Phytophylactica, 6, 31-38.

    Catling, HD, Aschenborn, H, 1978. False codling moth, Cryptophlebia leucotreta (Meyrick). In: Citrus Pests in the Republic of South Africa, [ed. by Bedford, ECG, Van den Berg, MA, De Villiers, EA]. Nelspruit, South Africa: ARC-Institute for Tropical and Subtropical Crops. 165-170.

    CIE, 1976. Distribution maps of pests, No. 352. Wallingford, UK: CAB International

    Commonwealth Institute of Biological Control, 1984. Possibilities for the biological control of the false codling moth, Cryptophlebia leucotreta (Lep., Tortricidae). Biocontrol News and Information, 5(3), 217-220.

    Coombes, C. A., Hill, M. P., Moore, S. D., Dames, J. F., 2016. Entomopathogenic fungi as control agents of Thaumatotibia leucotreta in citrus orchards: field efficacy and persistence. BioControl, 61(6), 729-739. doi: 10.1007/s10526-016-9756-x

    Coombes, C. A., Hill, M. P., Moore, S. D., Dames, J. F., Fullard, T., 2013. Persistence and virulence of promising entomopathogenic fungal isolates for use in citrus orchards in South Africa. Biocontrol Science and Technology, 23(9), 1053-1066. doi: 10.1080/09583157.2013.819489

    Cottier W, 1952. The cold sterilization of oranges from South Africa. In: N. Z. Sci. Rev , (July 1952) . 99.

    Couilloud R, 1988. Cryptophlebia (=Argyroploce) leucotreta (Meyrick) (Lepidoptera, Tortricidae, Olethreutinp). Coton et Fibres Tropicales, 63(4):319-351

    Daiber CC, 1980. A study of the biology of the false codling moth Cryptophlebia leucotreta (Meyr.): the adult and generations during the year. Phytophylactica, 12(4):187-193

    De Lima CPF, 1977. Advances in medical, veterinary and agricultural entomology in eastern Africa. Proceedings of the 1st E.A. Conference on Entomology and Pest Control, December 6-10, 1976, Nairobi, Kenya. In: Advances in medical, veterinary and agricultural entomology in eastern Africa. Proceedings of the 1st E.A. Conference on Entomology and Pest Control, December 6-10, 1976, Nairobi, Kenya [Advances in medical, veterinary and agricultural entomology in eastern Africa. Proceedings of the 1st E.A. Conference on Entomology and Pest Control, December 6-10, 1976, Nairobi, Kenya], Nairobi, Kenya: East African Literature Bureau. [10+] 180 pp.

    Diakonoff A, 1974. Exotic Tortricoidea, with description of new species (Lepidoptera). Annales de la Société Entomologique de France (N.S.), 10, 219-227.

    EPPO, 2010. Isolated finding of Thaumatotibia (Cryptophlebia) leucotreta on Capsicum chinensis in the Netherlands. In: EPPO Reporting Service , (2010/013) . http://archives.eppo.int/EPPOReporting/2010/Rse-1001.pdf

    EPPO, 2013. Pest risk analysis for Thaumatotibia leucotreta. Paris, France: EPPO.http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm

    EPPO, 2018. EPPO Global Database (available online). https://gd.eppo.int

    EPPO, 2019. PM 7/137 (1) Thaumatotibia leucotreta. Bulletin OEPP/EPPO Bulletin, 49(2), 248-258. doi: 10.1111/epp.12580

    European Union, 2017. Official Journal of the European Union. (L184) , Luxembourg: Publications Office of the European Union.

    Europhyt, 2019. Interceptions of commodities imported into the EU or Switzerland with harmful organism(s), January 2019. https://ec.europa.eu/food/sites/food/files/plant/docs/ph_biosec_europhyt-interceptions-2019-01.pdf

    Ford WK, 1934. Some observations on the bionomics of the false codling moth - Argyroploce leucotreta, Meyrick (Family Eucosmidae) - in Southern Rhodesia. Publications of the British South Africa Co, 3, 9-34.

    Fritsch E, 1988. Biological control of the false codling moth, Cryptophlebia leucotreta (Meyrick) (Lep., Tortricidae), with a granulosis virus. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 6(1-3):280-283

    Fuller C, 1901. The Natal codling moth, Carpocapsa sp. First report of government entomologist 1899-1900. In: Natal Department of Agriculture Report , South Africa: Natal Department of Agriculture.48-51.

    Giliomee, J. H., Riedl, H., 1998. A century of codling moth control in South Africa. I. Historical perspective. Journal of the Southern African Society for Horticultural Sciences, 8(2), 27-31.

    Gilligan TM, Epstein ME, Hoffman KM, 2011. Discovery of false codling moth, Thaumatotibia leucotreta (Meyrick), in California (Lepidoptera: Tortricidae). Proceedings of the Entomological Society of Washington, 113(4):426-435. http://apt.allenpress.com/aptonline/?request=get-archive&issn=0013-8797

    Glas M, 1991. Tortricids in miscellaneous crops. In: van der Geest, van Luis, eds. Tortricoid Pests, Their Biology, Natural Enemies and Control. World Crop Pests: 5. UK: Elsevier

    Goble, T. A., Dames, J. F., Hill, M. P., Moore, S. D., 2010. The effects of farming system, habitat type and bait type on the isolation of entomopathogenic fungi from citrus soils in the Eastern Cape Province, South Africa. BioControl, 55(3), 399-412. doi: 10.1007/s10526-009-9259-0

    Goble, T. A., Dames, J. F., Hill, M. P., Moore, S. D., 2011. Investigation of native isolates of entomopathogenic fungi for the biological control of three citrus pests. Biocontrol Science and Technology, 21(10), 1193-1211. doi: 10.1080/09583157.2011.608907

    Grout TG, Moore SD, 2015. Citrus. In: Insects of Cultivated Plants in southern Africa, [ed. by Prinsloo GL, Uys V]. Pretoria, South Africa: Entomological Society of Southern Africa. 447-501.

    Grové T, Steyn WP, de Beer MS, 2000. Host status of Hass avocado fruit for the false codling moth, Cryptophlebia leucotreta (Meyrick) (Lepidoptera: Tortricidae). In: South African Avocado Growers’ Association Yearbook 2000 , 23. 99-102.

    Grové T, Steyn WP, de Beer MS, 2004. Cryptophlebia species (Lepidoptera: Tortricidae). In: South African Litchi Growers' Association Yearbook, 2004 , 16. 52-59.

    Grové, T., Beer, M. S. de, Joubert, P. H., 2010. Developing a systems approach for Thaumatotibia leucotreta (Lepidoptera: Tortricidae) on 'Hass' avocado in South Africa. Journal of Economic Entomology, 103(4), 1112-1128. doi: 10.1603/EC09045

    Grové, T., Beer, M. S. de, Joubert, P. H., 2012. Host status of commercial mango cultivars to Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in South Africa. Journal of Economic Entomology, 105(6), 1954-1962. doi: 10.1603/EC12019

    Grové, T., de Jager, K., Theledi, M. L., 2019. Fruit flies (Diptera: Tephritidae) and Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) associated with fruit of the family Myrtaceae Juss. in South Africa. Crop Protection, 116, 24-32.

    Grové, T., Jager, K. de, Theledi, M. L., 2019. Fruit flies (Diptera: Tephritidae) and Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) associated with fruit of the family Myrtaceae Juss. in South Africa. Crop Protection, 116, 24-32. doi: 10.1016/j.cropro.2018.10.008

    Gunn, D. , 1921. The False Codling-Moth (Argyroploce leucotreta, Meyr.). Union S. African bept. Agric, 21, 28 pp.

    Hamburger M, Zarabi L, Weiss M, Argaman Q, Kuslitzky W, Klein K, 2001. False codling moth (Cryptophlebia leucotreta) in Israel. Phytoparasitica, 29(1), 84.

    Hargreaves H, 1922. Annual report of government entomologist for year ended December 1921. In: Report of the Department of Agriculture of Uganda , Uganda: Department of Agriculture of Uganda.1-87.

    Hatting, J. L., Moore, S. D., Malan, A. P., 2019. Microbial control of phytophagous invertebrate pests in South Africa: current status and future prospects. Journal of Invertebrate Pathology, 165, 54-66. doi: 10.1016/j.jip.2018.02.004

    Hattingh V, Moore SD, Kirkman W, Goddard M, Thackeray SR, Peyper M, Sharp G, Cronjé P, Pringle K, 2020. An improved systems approach as a phytosanitary measure for Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in export Citrus fruit from South Africa. J. Econ. Entomol, 113, 700-711.

    Hofmeyr H, Hattingh V, Hofmeyr M, Slabbert K, 2016. Postharvest phytosanitary disinfestation of Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in citrus fruit: Validation of an ionizing radiation treatment. Florida Entomologist, 99(2), 54-58.

    Hofmeyr H, Hofmeyr M, Slabbert K, 2016. Postharvest phytosanitary disinfestation of Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in citrus fruit: Tolerance of eggs and larvae to ionizing radiation. Florida Entomologist, 99(2), 48-53.

    Hofmeyr JH, Burger BV, 1995. Controlled-release pheromone dispenser for use in traps to monitor flight activity of false codling moth. Journal of Chemical Ecology, 21(3):355-363

    Hofmeyr JH, Hofmeyr M, 2002. (Evaluasie van die paringsontwrigter Isomate vir die kommersiële bestryding van valskoldingmot op nawelbome). In: Citrus Res. Int. Annu. Res. Rep , 1. 68-74.

    Hofmeyr, J. H., Carpenter, J. E., Bloem, S., Slabbert, J. P., Hofmeyr, M., Groenewald, S. S., 2015. Development of the sterile insect technique to suppress false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in citrus fruit: research to implementation (Part 1). African Entomology, 23(1), 180-186. doi: 10.4001/003.023.0112

    Hofmeyr, J. H., Hofmeyr, M., Carpenter, J. E., Bloem, S., Slabbert, J. P., 2016. Sterile insect releases for control of Thaumatotibia leucotreta (Lepidoptera: Tortricidae): an assessment on semi-commercial scale. African Entomology, 24(1), 80-89. doi: 10.4001/003.024.0080

    Hofmeyr, J. H., Hofmeyr, M., Hattingh, V., Slabbert, J. P., 2016. Postharvest phytosanitary disinfestation of Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in citrus fruit: determination of ionising radiation and cold treatment conditions for inclusion in a combination treatment. African Entomology, 24(1), 208-216. doi: 10.4001/003.024.0208

    Hofmeyr, J. H., Hofmeyr, M., Hattingh, V., Slabbert, J. P., 2016. Postharvest phytosanitary disinfestation of Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in citrus fruit: determination of ionising radiation and cold treatment conditions for inclusion in a combination treatment. African Entomology, 24(1), 208-216. doi: 10.4001/003.024.0208

    Hofmeyr, J. H., Pringle, K. L., 1998. Resistance of false codling moth, Cryptophlebia leucotreta (Meyrick) (Lepidoptera: Tortricidae), to the chitin synthesis inhibitor, triflumuron. African Entomology, 6(2), 373-375.

    Huisman, K. J., Koster, J. C., 2000. New and interesting Microlepidoptera from The Netherlands in particular from the years 1997 and 1998 (Lepidoptera). (Nieuwe en interessante Microlepidoptera uit Nederland in hoofdzaak van de jaren 1997 en 1998 (Lepidoptera)). Entomologische Berichten, 60(11), 193-216.

    IPPC, 2014. Finding of one larva and three adults of Thaumatotibia leucotreta in one fruit production greenhouse of Capsicum annuum (bell peppers). IPPC Official Pest Report, No. NLD-26/1. Rome, Italy: FAO. https://www.ippc.int/

    Jack RW, 1916. The citrus codling moth (Argyroploce leucotreta). Rhodesian Citrus Pests. In: Bulletin of the Department of Agriculture of Southern Rhodesia,(No.228) . 26-27.

    Jehle JA, Backhaus H, 1994. The granulin gene region of Cryptophlebia leucotreta granulosis virus: sequence analysis and phylogenetic considerations. Journal of General Virology, 75(12):3667-3671

    Jehle JA, Fritsch E, Huber J, Backhaus H, 2003. Intra-specific and inter-specific recombination of tortricid-specific granuloviruses during co-infection in insect larvae. Archives of Virology, 148: 1317-1333

    Jukes, M. D., Rabalski, L., Knox, C. M., Moore, S. D., Hill, M. P., Szewczyk, B., 2017. Baculovirus synergy: mixed Alphabaculovirus and Betabaculovirus infections for the control of Thaumatotibia leucotreta in South Africa. IOBC/WPRS Bulletin, 129, 170-174. https://www.iobc-wprs.org/members/shop_en.cfm?mod_Shop_detail_produkte=181

    Julius Kühn Institut, 2018. First finding of Thaumatotibia leucotreta in Germany (Saxony). https://pflanzengesundheit.julius-kuehn.de/dokumente/upload/Thaumatotibia-leucotreta_pr2018-08sn.pdf

    Karvonen J, 1983. Cryptophlebia leucotreta imported into Finland (Lepidoptera, Tortricidae). Notulp Entomologicp, 63(2):94

    Kessler P, Zingg D, 2008. New baculovirus products offer solutions for the biological control of Cydia pomonella and Cryptophlebia leucotreta. In: Proceedings of the 23rd International Congress of Entomology, Durban, 6-12 July 2008 . 24.

    Kirkman, W., Moore, S., 2007. A study of alternative hosts for the false codling moth, Thaumatotibia (=Cryptophlebia) leucotreta in the Eastern Cape. SA Fruit Journal, 6(2), 33-38.

    Knill-Jones SA, 1994. Two species of micro-lepidoptera new to the Isle of Wight. Entomologist's Record & Journal of Variation, 106(5-6), 114.

    Komai F, 1999. A taxonomic review of the genus Grapholita and allied genera (Lepidoptera: Tortricidae) in the Palaearctic region. Entomologica Scandanavica Supplement, 55, 1-226.

    Kroon DM, 1999. Lepidoptera of Southern Africa Host-plants and other Associations, Jukskei Park, South Africa: Lepidopterists’ Society of Africa.

    Langmaid JR, 1996. Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) and Cryptophlebia leucotreta (Meyrick) (Lepidoptera: Tortricidae) at m.v. light in Hampshire. Entomologist's Gazette, 47(1), 50.

    Love, C. N., Moore, S. D., Hill, M. P., 2019. The role of abiotic factors in the pupation of Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae) in the soil. Agricultural and Forest Entomology, 21(1), 38-49. https://onlinelibrary.wiley.com/journal/14619563

    Malan AP, Knoetze R, Moore SD, 2011. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology, 108(2):115-125. http://www.sciencedirect.com/science/article/pii/S0022201111001571

    Malan, A. P., Diest, J. I. von, Moore, S. D., Addison, P., 2018. Control options for false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), in South Africa, with emphasis on the potential use of entomopathogenic nematodes and fungi. African Entomology, 26(1), 14-29. doi: 10.4001/003.026.0014

    Manrakhan A, Daneel J-H, Moore SD, 2014. The impact of naturally occurring entomopathogenic nematodes on false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae), in citrus orchards. Biocontrol Science and Technology, 24(2), 241-245.

    Matthews GA, Tunstall JP(Editors), 1994. Insect pests of cotton. Wallingford, UK; CAB International, xii + 593 pp

    Mazza G, Strangi A, Marianelli L, Nista Ddel, Roversi PF, 2014. Thaumatotibia leucotreta (Meyrick) (Lepidoptera Tortricidae) intercepted for the first time in Italy. Redia, 97:147-149. http://www.redia.it

    Meyrick E, 1930. Microlepidoptera of Mauritius. Annals of the Transvaal Museum, 309-323.

    Moore S, Grout T, Hattingh V, Hofmeyr H, 2008. Thresholds and guidelines for intervention against citrus pests. South African Fruit Journal, 7, 77-81.

    Moore SD, 2002. The development and evaluation of Cryptophlebia leucotreta granulovirus (CrleGV) as a biological control agent for the management of false codling moth, Cryptophlebia leucotreta, on citrus. Grahamstown, South Africa: Rhodes University.

    Moore SD, Hattingh V, 2016. A review of control measures and risk mitigation options for false codling moth (FCM), Thaumatotibia leucotreta, and their efficacy. https://www.citrusres.com/system/files/documents/market-access/FCM%20risk%20mitigation%20and%20control%20review%20Dec%202016.pdf

    Moore, S. D., Hendry, D. A., Richards, G. I., 2011. Virulence of a South African isolate of the Cryptophlebia leucotreta granulovirus to Thaumatotibia leucotreta neonate larvae. BioControl, 56(3), 341-352. doi: 10.1007/s10526-010-9339-1

    Moore, S. D., Kirkman, W., Richards, G. I., Stephen, P. R., 2015. The Cryptophlebia leucotreta granulovirus - 10 years of commercial field use. Viruses, 7(3), 1284-1312. doi: 10.3390/v7031284

    Moore, S. D., Kirkman, W., Stephen, P. R., Albertyn, S., Love, C. N., Grout, T. G., Hattingh, V., 2017. Development of an improved postharvest cold treatment for Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae). Postharvest Biology and Technology, 125, 188-195. doi: 10.1016/j.postharvbio.2016.11.017

    Moore, S., Coombes, C., Manrakhan, A., Kirkman, W., Hill, M., Ehlers, R. U., Daneel, J. H., Waal, J. de, Dames, J., Malan, A., 2013. Subterranean control of an arboreal pest: EPNs and EPFs for FCM. IOBC/WPRS Bulletin, 90, 247-250. http://www.iobc-wprs.org/pub/bulletins/bulletin_2013_90_table_of_contents_abstracts.pdf

    Moore, S., Hattingh, V., 2012. A review of current pre-harvest control options for false codling moth in citrus in southern Africa. SA Fruit Journal, 11(4), 82-85.

    Moore, S., Kirkman, W., 2008. Citrus orchard sanitation with emphasis on false codling moth control. SA Fruit Journal, 7(6), 57-60.

    Moyal P, Tran M, 1989. Morphological study of the pre-imaginal instars of lepidopterous borers of maize in the savannah area of Ivory Coast. Annales de la Societe Entomologique de France, 25(4):461-472

    Myburgh AC, 1963. Low temperature sterilisation of false codling moth, Argyroploce leucotreta fruits. Stellenbosch, South Africa: Fruit and Food Technology Research Institute, Department of Agricultural Technical Services.

    Myburgh, A. C., 1965. Low temperature sterilization of false codling moth, Argyroploce leucotreta Meyr., in export citrus. Journal of the Entomological Society of Southern Africa, 28(2), 277-285 pp.

    Mück O, 1985. (Biologie, verhalten und wirtshcaftliche bedeutaung von parasite schädlicher Lepidopteren auf den Kapverden). Neue Entomologische Nachrichten, 18, 168.

    NAPPO, 2016. Phytosanitary Alert System: Corrected Status of 2008 Thaumatotibia leucotreta (False Codling Moth) detection in the United States. NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=681

    Ndemah, R., Schulthess, F., Poehling, M., Borgemeister, C., 2001. Spatial dynamics of lepidoperous pests on Zea mays (L.) and Pennisetum purpurpeum (moench) in the forest zone of Cameroon and their implication for sampling schemes. Journal of Applied Entomology, 125(44084), 507-514. doi: 10.1046/j.1439-0418.2001.00581.xCitations

    Newton PJ, 1987. Efficacy of chitin synthesis inhibitors and synthetic pyrethroids against Cryptophlebia leucotreta (Lepidoptera: Tortricidae) on citrus in South Africa. Phytophylactica, 19(1):95-97

    Newton PJ, 1998. Family Tortricidae. False codling moth Cryptophlebia leucotreta (Meyrick). Lepidoptera: Butterflies and moths. In: Citrus pests in the Republic of South Africa, [ed. by Bedford ECG, van den Berg MA, de Villiers EA]. Nelspruit, South Africa: Institute for Tropical and Subtropical Crops, ARC. 192-200.

    Newton PJ, Odendaal WJ, 1990. Commercial inundative releases of Trichogrammatoidea cryptophlebip (Hym: Trichogrammatidae) against Cryptophlebia leucotreta (Lep.: Tortricidae) in citrus. Entomophaga, 35(4):545-556

    Newton PJ, Thomas CD, Mastro VC, Schwalbe CP, 1993. Improved two-component blend of the synthetic female sex pheromone of Cryptophlebia leucotreta, and identification of an attractant for C. peltastica. Entomologia Experimentalis et Applicata, 66(1):75-82

    Nyiira, Z. M., 1970. A note on the natural enemies of Lepidopterous larvae in cotton bolls in Uganda. Annals of the Entomological Society of America, 63(5), 1461-1462 pp. doi: 10.1093/aesa/63.5.1461

    Pearson EO, 1958. The insect pests of cotton in tropical Africa, London, UK: Empire Cotton Growing Corporation and Commonwealth Institute of Entomology.355 pp.

    Pomeroy, A. W. J. , 1925. The Cotton Boll Worms of Southern Nigeria. In: 4th Annual Bulletin, Agricultural Department, Nigeria,(No. 4) . 89-108.

    Potting RPJ, van der Straten M, 2011. Pest Risk Analysis for Thaumatotibia leucotreta. (Version 5, February 2011) . 27 pp.

    Reed W, 1974. The false codling moth, Cryptophlebia leucotreta Meyr. (Lepidoptera: Olethreutidae) as a pest of cotton in Uganda. Cotton Growing Review, 51(3), 213-225.

    Rentel M, 2013. MSc Thesis: Morphology and taxonomy of tortricid moth pests attacking fruit crops in South Africa. South Africa: University of Stellenbosch.

    Schulthess F, Bosque-Perez NA, Gounou S, 1991. Sampling lepidopterous pests on maize in West Africa. Bulletin of Entomological Research, 81(3):297-301

    Schwartz A, 1981. (PhD thesis: ’n Bydrae tot die biologie en beheer van die valskodlingmot Cryptophlebia leucotreta (Meyr.) (Lepidoptera: Eucosmidae) op nawels). South Africa: University of Stellenbosch.

    Schwartz, A., 1977. A technique for mass rearing the egg parasite Trichogrammatoidea luteum Girault, on the eggs of the false codling moth. ('N tegniek vir die massateling van die eierparasiet Trichogrammatoidea luteum Girault, op die eiers van valskodlingmot). Citrus and Subtropical Fruit Journal, (No. 526), 5-7.

    Schwartz, A., Kok, I. B., 1976. Cold sterilization and fumigation for the control of false codling moth, Cryptophlebia leucotreta Meyr., and fruit flies, Ceratitis spp., in export citrus fruit. Journal of the Entomological Society of Southern Africa, 39(2), 261-266.

    Schwartz, A., Milne, D. L., 1972. Cold sterilisation and fumigation for control of false codling moth, Cryptophlebia leucotreta, in export Citrus fruit. Journal of the Entomological Society of Southern Africa, 35(1), 129-137.

    Searle, C. M. St. L., 1964. Tech. Commn. Dep. agric. tech. Serv. S. Afr, (30) . ii+18 pp.

    Sharkey, M. J., 1985. Notes on the genera Bassus Fabricius and Agathis Latreille, with a description of Bassus arthurellus n. sp. (Hymenoptera: Braconidae). Canadian Entomologist, 117(12), 1497-1502.

    Silvie P, 1990. Mussidia nigrivenella Ragonot (Pyralidae, Phycitinp): a little known cotton pest. Coton et Fibres Tropicales, 45(4):323-333

    Songa GM, 2001. Characterization and quantification of arthropods in two maize production environments in Kenya. [Seventh Eastern and Southern Africa Maize Conference, February 11 to 15, 2001], 38‐44.

    South African Department of Agriculture Forestry and Fisheries, 2015. Special export protocols/programmes/directives. http://www.daff. gov.za/daffweb3/Branches/Agricultural-Production-Health-Food-Safety/Plant-Health/Exporting-from-SA/Special-export-protocols

    Stofberg FJ, 1939. Bionomical notes on the false codling moth. [Proceedings of the Entomology Conference held at the Union Buildings, Pretoria], 50-53. (Mimeograph)

    Stofberg FJ, 1954. False codling moth of citrus. In: Farming in South Africa , (June 1954) . 273-276.

    Stotter RL, 2009. MSc thesis: Spatial and temporal distribution of false codling moth across landscapes in the Citrusdal area (Western Cape Province, South Africa). South Africa: University of Stellenbosh.

    Stotter RL, Samways MJ, Hattingh V, 2014. Spatial and temporal distribution of false codling moth across landscapes in the Citrusdal area (Western Cape Province, South Africa). Crop Protection, 60, 1-4.

    Svensson I, 2002. Remarkable records of Microlepidoptera in Sweden during 2001. Entomologisk Tidskrift, 123(1/2):1-11; 10 ref

    Sweeney, R. C. H. , 1962. Insect pests of cotton in Nyasaland. III. Lepidoptera (butterflies and moths). In: Bull. Dep. Agric. Nyasaland , (20) : Zomba.39 pp.

    Tejedo, V., Lloréns, J. M., Garcia-Marí, F., 2006. Citrus phytosanitary survey project in the Comunidad Valenciana. II: Packinghouses and commercial outbuildings. Bulletin OILB/SROP, 29(3), 161.

    Terblanche, J. S., Jager, Z. de, Boardman, L., Addison, P., 2014. Physiological traits suggest limited diapause response in false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Journal of Applied Entomology, 138(9), 683-691. doi: 10.1111/jen.12116

    Thompson, W. R. , 1946. A Catalogue of the Parasites and Predators of Insect Pests. Section I. Parasite Host Catalogue. Part 8. Parasites of the Lepidoptera (N-P), [ed. by Thompson, W. R. ]. Belleville, Ont., Imp. Parasite Serv.1+] 386-523 pp.

    Timm AE, Warnich L, Geertsema H, 2007. Morphological and molecular identification of economically important Tortricidae (Lepidoptera) on tropical and subtropical fruit in South Africa. African Entomology, 15(2):269-286. http://journals.sabinet.co.za/essa

    Timm AE, Warnich L, Geertsema H, 2008. Morphological and molecular identification of economically important Tortricidae (Lepidoptera) on deciduous fruit tree crops in South Africa. African Entomology, 16(2):209-219. http://journals.sabinet.co.za/essa

    Tounou, A. K., Agboka, K., Agbodzavu, K. M., Wegbe, K., 2013. Maize stemborers distribution, their natural enemies and farmers' perception on climate change and stemborers in southern Togo. Journal of Applied Biosciences, 64, 4773-4786. http://www.m.elewa.org/JABS/2013/64/2.pdf

    Ullyett GC, 1939. Parasites of the false codling moth (Argyroploce leucotreta) in South Africa. [Proceedings of the Entomology Conference, August 22-24 1939, Union Buildings, Pretoria], 54-55.

    Ullyett GC, Bishop HJ, 1938. Report on the false codling moth experiment carried out at Martindale, C.P. 1938. In: Unpublished report of the Parasite Laboratory, Division of Entomology, Pretoria . Pretoria, South Africa: Parasite Laboratory, Division of Entomology.23 pp.

    USDA-APHIS-PPQ, 2008. Confirmed the Identification of a Single Male False Codling Moth, Thaumatotibia leucotreta, in Ventura County, California. (August 7, 2008. DA–2008–43) , USA: USDA-APHIS-PPQ.

    USDA-APHIS-PPQ, 2010. New Pest Response Guidelines: False Codling Moth Thaumatotibia leucotreta. Riverdale, Maryland, USA: USDA-APHIS-PPQ.http://www.aphis.usda.gov/import_export/plants/manuals/online_manuals.shtml

    Venette RC, Davis EE, Da Costa M, Heisler H, Larson M, 2003. Mini risk assessment: false codling moth, Thaumatotibia (=Cryptophlebia) leucotreta (Meyrick) [Lepidoptera: Tortricidae]. In: University of Minnesota, Department of Entomology, CAPS PRA , USA: University of Minnesota.1-30. http://www.aphis. usda.gov/ppq/ep/pestdetection/pra/tleucotretapra

    Wakgari, W. M., Giliomee, J. H., 2004. Insect pests of astringent persimmon in the Western and Eastern Cape Provinces of South Africa. African Plant Protection, 10(1), 1-5.

    Willers P, 1979. Suitability of Harpephyllum caphrum (kaffir plum) as host for Mediterranean fruit fly and false codling moth. Citrus and Subtropical Fruit Journal, 543, 5-6.

    Williams JR, 1953. The larvae and pupae of some important Lepidoptera. Bulletin of Entomological Research, 43:691-701

    Wohlfarter, M., Giliomee, J. H., Venter, E., 2010. A survey of the arthropod pests associated with commercial pomegranates, Punica granatum (Lythraceae), in South Africa. African Entomology, 18(1), 192-199. http://journals.sabinet.co.za/essa

    Wysoki M, 1986. New records of Lepidopterous pests of macadamia in Israel. Phytoparasitica, 14(2):147

    Zagatti P, Castel Y, 1987. Courtship behaviour of the false codling moth, Cryptophlebia leucotreta (Meyrick): androconial display and mating success (Lepidoptera, Tortricidae). Annales de la Societe Entomologique de France, 23(2):113-123

    Zimba, K., Moore, S. D., Heshula, U., Hill, M. P., 2016. Agathis bishopi, a larval parasitoid of false codling moth Thaumatotibia leucotreta: laboratory rearing and effect of adult food on parasitism and longevity. African Entomology, 24(1), 153-161. doi: 10.4001/003.024.0153

    Distribution References

    Angelini A, Descoins C, Lhoste J, Trijau J P, Zagatti P, 1981. Testing of new formulations of synthetic attractants for the sexual entrapment of Cryptophlebia leucotreta Meyr. (Lepidoptera). (Essai de nouvelles formulaitons d'attractifs de synthese pour le piegeage sexuel de Cryptophlebia leucotreta Meyr. (Lepidoptera)). Coton et Fibres Tropicales. 259-264. https://agris.fao.org/agris-search/search.do?request_locale=en&recordID=FR2019171344&sourceQuery=&query=&sortField=&sortOrder=&agrovocString=&advQuery=¢erString=&enableField=

    Bourdouxhe L, 1982. Results of two years of sex trapping of Cryptophlebia leucotreta Meyr. in Senegal. (Resultats de deux annees de piegeage sexuel de Cryptophlebia leucotreta Meyr. au Senegal.). Plant Protection Bulletin, FAO. 30 (3/4), 125-129.

    Bredo H J, 1933. Note sur Argyroploce leucotreta Meyr. Bulletin agricole du Congo belge. 24 (2), 150-156 pp.

    Brown J W, Copeland R S, Aarvik L, Miller S E, Rosati M E, Luke Q, 2014. Host records for fruit-feeding Afrotropical Tortricidae (Lepidoptera). African Entomology. 22 (2), 343-376. DOI:10.4001/003.022.0225

    CABI, 2021. CABI Distribution Database: Status as determined by CABI editor. Wallingford, UK: CABI

    CABI, EPPO, 2002. Thaumatotibia leucotreta. [Distribution map]. In: Distribution Maps of Plant Pests, Wallingford, UK: CAB International. Map 352. DOI:10.1079/DMPP/20066600352

    CABI, Undated. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

    Catling HD, 1969. Citrus pest control: recommendations for Swaziland. In: Bulletin of the Swaziland Ministry of Agriculture. 1-13.

    Commonwealth Institute of Biological Control, 1984. Possibilities for the biological control of the false codling moth, Cryptophlebia leucotreta (Lep., Tortricidae). Biocontrol News and Information. 5 (3), 217-220.

    Croix E A S la, 1990. Studies on macadamia nut borer (Cryptophlebia spp.) in northern Malawi. Tropical Pest Management. 36 (2), 97-102.

    Croix E A S la, Thindwa H Z, Hall D R, 1985. Field studies with the synthetic female sex pheromones of Cryptophlebia batrachopa and C. leucotreta, pests of macadamia in Malawi. Tropical Pest Management. 31 (3), 189-191, 248, 252.

    Diakonoff A, 1974. Exotic Tortricoidea, with description of new species (Lepidoptera). Annales de la Société Entomologique de France (N.S.). 219-227.

    DUARTE A J, 1962. List of species of insects of economic importance (as pests of plants or as parasites or predators of pests) in Angola. 1st supplement. (Lista de espécies de insectos de interesse economico em Angola. 1. Aditamento.). Boletin del Instituto Nacional de Investigaciones Agronomicas. 7-19 pp.

    EPPO, 2013. Pest risk analysis for Thaumatotibia leucotreta, Appendix 5., Paris, France: EPPO. http://www.eppo.int/QUARANTINE/Pest_Risk_Analysis/PRA_intro.htm

    EPPO, 2020. EPPO Global database. In: EPPO Global database, Paris, France: EPPO. https://gd.eppo.int/

    Fuller C, 1901. The Natal codling moth, Carpocapsa sp. First report of government entomologist 1899-1900. In: Natal Department of Agriculture Report, 48-51.

    Gilligan T M, Epstein M E, Hoffman K M, 2011. Discovery of false codling moth, Thaumatotibia leucotreta (Meyrick), in California (Lepidoptera: Tortricidae). Proceedings of the Entomological Society of Washington. 113 (4), 426-435. DOI:10.4289/0013-8797.113.4.426

    Grové T, Beer M S de, Joubert P H, 2010. Developing a systems approach for Thaumatotibia leucotreta (Lepidoptera: Tortricidae) on 'Hass' avocado in South Africa. Journal of Economic Entomology. 103 (4), 1112-1128. DOI:10.1603/EC09045

    Grové T, Beer M S de, Joubert P H, 2012. Host status of commercial mango cultivars to Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in South Africa. Journal of Economic Entomology. 105 (6), 1954-1962. DOI:10.1603/EC12019

    Grové T, Jager K de, Theledi M L, 2019. Fruit flies (Diptera: Tephritidae) and Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) associated with fruit of the family Myrtaceae Juss. in South Africa. Crop Protection. 24-32. DOI:10.1016/j.cropro.2018.10.008

    Gunn D, 1921. The False Codling-Moth (Argyroploce leucotreta, Meyr.). Union S. African bept. Agric. 28 pp.

    Hargreaves H, 1922. Annual report of government entomologist for year ended December 1921. In: Report of the Department of Agriculture of Uganda, 1-87.

    Huisman K J, Koster J C, 2000. New and interesting Microlepidoptera from The Netherlands in particular from the years 1997 and 1998 (Lepidoptera). (Nieuwe en interessante Microlepidoptera uit Nederland in hoofdzaak van de jaren 1997 en 1998 (Lepidoptera).). Entomologische Berichten. 60 (11), 193-216.

    IPPC, 2014. Finding of one larva and three adults of Thaumatotibia leucotreta in one fruit production greenhouse of Capsicum annuum (bell peppers). Rome, Italy: FAO. https://www.ippc.int/

    Jack RW, 1916. The citrus codling moth (Argyroploce leucotreta). Rhodesian Citrus Pests. In: Bulletin of the Department of Agriculture of Southern Rhodesia. 26-27.

    JKI (Julius Kühn Institut), 2018. First finding of Thaumatotibia leucotreta in Germany (Saxony)., https://pflanzengesundheit.julius-kuehn.de/dokumente/upload/Thaumatotibia-leucotreta_pr2018-08sn.pdf

    Karvonen J, 1983. Cryptophlebia leucotreta imported into Finland (Lepidoptera, Tortricidae). Notulae Entomologicae. 63 (2), 94.

    Kessler P, Zingg D, 2008. New baculovirus products offer solutions for the biological control of Cydia pomonella and Cryptophlebia leucotreta. In: Proceedings of the 23rd International Congress of Entomology, Durban, 6-12 July 2008 [23rd International Congress of Entomology, Durban, 6-12 July 2008], 24.

    Knill-Jones SA, 1994. Two species of micro-lepidoptera new to the Isle of Wight. Entomologist's Record & Journal of Variation. 106 (5-6), 114.

    Langmaid JR, 1996. Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) and Cryptophlebia leucotreta (Meyrick) (Lepidoptera: Tortricidae) at m.v. light in Hampshire. Entomologist's Gazette. 47 (1), 50.

    Mazza G, Strangi A, Marianelli L, Nista D del, Roversi P F, 2014. Thaumatotibia leucotreta (Meyrick) (Lepidoptera Tortricidae) intercepted for the first time in Italy. Redia. 147-149. http://www.redia.it

    Meyrick E, 1930. Microlepidoptera of Mauritius. In: Annals of the Transvaal Museum, 309-323.

    Mück O, 1985. (Biologie, verhalten und wirtshcaftliche bedeutaung von parasite schädlicher Lepidopteren auf den Kapverden). Neue Entomologische Nachrichten. 168.

    NAPPO, 2016. Phytosanitary Alert System: Corrected Status of 2008 Thaumatotibia leucotreta (False Codling Moth) detection in the United States., NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=681

    Ndemah R, Schulthess F, Poehling M, Borgemeister C, 2001. Spatial dynamics of lepidopterous pests on Zea mays (L.) and Pennisetum purpureum (Moench) in the forest zone of Cameroon and their implications for sampling schemes. Journal of Applied Entomology. 125 (9/10), 507-514. DOI:10.1046/j.1439-0418.2001.00581.x

    Ndemah R, Schulthess F, Poehling M, Borgemeister C, 2001a. Spatial dynamics of lepidoperous pests on Zea mays (L.) and Pennisetum purpurpeum (moench) in the forest zone of Cameroon and their implication for sampling schemes. Journal of Applied Entomology. 125 (44084), 507-514. DOI:10.1046/j.1439-0418.2001.00581.xCitations

    PEARSON E O, 1958. The insect pests of cotton in tropical Africa. x + 355 pp.

    Potting RPJ , van der Straten M, 2011. Pest Risk Analysis for Thaumatotibia leucotreta. Version 5, Februar 2011., 27 pp.

    Reed W, 1974. The false codling moth, Cryptophlebia leucotreta Meyr. (Lepidoptera: Olethreutidae) as a pest of cotton in Uganda. Cotton Growing Review. 51 (3), 213-225.

    Schulthess F, Bosque-Pérez N A, Gounou S, 1991. Sampling lepidopterous pests on maize in West Africa. Bulletin of Entomological Research. 81 (3), 297-301. DOI:10.1017/S0007485300033575

    Sétamou M, Schulthes F, Bosque-Pérez N A, Thomas-Odjo A, 1995. The effect of stem and cob borers on maize subjected to different nitrogen treatments. Entomologia Experimentalis et Applicata. 77 (2), 205-210. DOI:10.1007/BF02383035

    Stofberg F J, 1954. False Codling Moth of Citrus. Farming in South Africa. 29 (339), 273-276 ; 294 pp.

    Svensson I, 2002. Remarkable records of Microlepidoptera in Sweden during 2001. (Anmärkningsvärda fynd av smǻfjärilar (Microlepidoptera) i Sverige 2001.). Entomologisk Tidskrift. 123 (1/2), 1-11.

    Sweeney R C H, 1962. Insect pests of cotton in Nyasaland. III. Lepidoptera (butterflies and moths). In: Bull. Dep. Agric. Nyasaland, Zomba. 39 pp.

    Tejedo V, Lloréns J M, Garcia-Marí F, 2006. Citrus phytosanitary survey project in the Comunidad Valenciana. II: Packinghouses and commercial outbuildings. Bulletin OILB/SROP. 29 (3), 161.

    Thompson W R, 1946. A Catalogue of the Parasites and Predators of Insect Pests. Section I. Parasite Host Catalogue. Part 8. Parasites of the Lepidoptera (N-P). [ed. by Thompson W R]. Belleville, Ont., Imp. Parasite Serv. 1+] 386-523 pp.

    Timm A E, Geertsema H, Warnich L, 2010. Population genetic structure of economically important Tortricidae (Lepidoptera) in South Africa: a comparative analysis. Bulletin of Entomological Research. 100 (4), 421-431. DOI:10.1017/S0007485309990435

    Tounou A K, Agboka K, Agbodzavu K M, Wegbe K, 2013. Maize stemborers distribution, their natural enemies and farmers' perception on climate change and stemborers in southern Togo. Journal of Applied Biosciences. 4773-4786. http://www.m.elewa.org/JABS/2013/64/2.pdf

    USDA–APHIS–PPQ, 2008. Confirmed the Identification of a Single Male False Codling Moth, Thaumatotibia leucotreta, in Ventura County, California. August 7, 2008.,

    Wysoki M, 1986. New records of Lepidopterous pests of macadamia in Israel. Phytoparasitica. 14 (2), 147.

    Links to Websites

    Top of page
    WebsiteURLComment
    GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.

    Contributors

    Top of page

    21/05/20 Review by:

    Elma Carstens, Citrus Research Institute, Nelspruit, South Africa

    Sean Moore, Citrus Research Institute, Nelspruit, South Africa

    Distribution Maps

    Top of page
    You can pan and zoom the map
    Save map
    Select a dataset
    Map Legends
    • CABI Summary Records
    Map Filters
    Extent
    Invasive
    Origin
    Third party data sources: