Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Pomoxis annularis
(white crappie)



Pomoxis annularis (white crappie)


  • Last modified
  • 25 September 2018
  • Datasheet Type(s)
  • Invasive Species
  • Host Animal
  • Preferred Scientific Name
  • Pomoxis annularis
  • Preferred Common Name
  • white crappie
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Chordata
  •       Subphylum: Vertebrata
  •         Class: Actinopterygii
  • Summary of Invasiveness
  • The popular game fish, P. annularis, commonly known as white crappie, has been introduced throughout the USA, southern Canada, Mexico, Morocco and Panama, largely for aquaculture and fishery purposes. Although...

  • Principal Source
  • Draft datasheet under review

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Pomoxis annularis (white crappie); adult. Artwork of adult fish.
CaptionPomoxis annularis (white crappie); adult. Artwork of adult fish.
CopyrightReleased into the Public Domain by the U.S. Fish & Wildlife Service/National Digital Library - Original artwork by Duane Raver Jr.
Pomoxis annularis (white crappie); adult. Artwork of adult fish.
AdultPomoxis annularis (white crappie); adult. Artwork of adult fish.Released into the Public Domain by the U.S. Fish & Wildlife Service/National Digital Library - Original artwork by Duane Raver Jr.
Pomoxis annularis (white crappie); adult. Captive specimen.
CaptionPomoxis annularis (white crappie); adult. Captive specimen.
CopyrightPublic Domain/released by the U.S. Army Corps of Engineers/via wikipedia
Pomoxis annularis (white crappie); adult. Captive specimen.
AdultPomoxis annularis (white crappie); adult. Captive specimen.Public Domain/released by the U.S. Army Corps of Engineers/via wikipedia


Top of page

Preferred Scientific Name

  • Pomoxis annularis Rafinesque

Preferred Common Name

  • white crappie

Other Scientific Names

  • Cichla storeria Kirtland
  • Pomoxis nitidus Girard
  • Pomoxys brevicauda Gill
  • Pomoxys intermedius Gill
  • Pomoxys protacanthus Gill

International Common Names

  • English: barfish; calicos bass; campbellite; crappie; crappie, white; newlight; papermouth; silver perch; slab; tinmouth
  • Spanish: crapet
  • French: crapet calicot; sac-a-lait
  • Russian: pomoksis

Local Common Names

  • Denmark: hvid crappie
  • Estonia: kirju krappi
  • Finland: hopea-ahven; hopea-aurinkoahven
  • France: crapet calicot
  • Russian Federation: pomoksis
  • UK: calicos bass
  • USA: bridge perch; gold ring; John Demon; speckled perch; timber crappie; white perch

Summary of Invasiveness

Top of page

The popular game fish, P. annularis, commonly known as white crappie, has been introduced throughout the USA, southern Canada, Mexico, Morocco and Panama, largely for aquaculture and fishery purposes. Although not many documents exist on the impacts of white crappie, it has been reported to prey on threatened and endangered juvenile salmon fishes that occur in rivers of the Northwest USA. Habitat alteration may have allowed persistence of introduced white crappie at the expense of salmonids, however the magnitudes of these impacts are poorly known. Similarly, several native fish species reduced in abundance and diversity after non-native piscivorous fishes, including white crappie, had been introduced to several Pacific northwest rivers. This is true for endemic Warner sucker, Catostomus warnerensis in Hart and Crump lakes in the USA. 

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Chordata
  •             Subphylum: Vertebrata
  •                 Class: Actinopterygii
  •                     Order: Perciformes
  •                         Suborder: Percoidei
  •                             Family: Centrarchidae
  •                                 Genus: Pomoxis
  •                                     Species: Pomoxis annularis

Notes on Taxonomy and Nomenclature

Top of page

Pomoxis annularis was first described by Rafinesque in 1818 and had several synonyms in the nineteenth century namelyPomoxys brevicaudaPomoxys intermediusPomoxis nitidus, PomoxysprotacanthusCichla storeria.


Top of page

The white crappie is silvery in colour, ranging from silvery-white on the belly to a silvery-green or even dark green on the back, deep-bodied with a flattened shape. Its mouth is located in terminal with many small conical teeth, proportional to body size. There are 5-10 (usually 7-9) vertical bars along their body with dorsal fin having a maximum of six spines and 14 dorsal rays that are more flexible and six anal spines and 16 to 18 anal rays. Scales are ctenoid and silvery-olive with rows of black spots running across their sides. Breeding males have darker faces and backs than females and may develop dark colouration in the throat region during the spring spawning season. They have recognizable depressions in the forehead and a slope-shaped nasal structure; with the forward part of the back deeply concave (Mathur, 1972; Sternberg and Ignizio, 1996; Wallus and Simon, 2008; Rohde et al., 2009).


Top of page

White crappie occurs in the freshwaters of North America. It is native to the Great Lakes and Mississippi basins, Gulf Slope drainages, from Mobile Bay, Georgia and Alabama, to the Neuces River, Texas and in the Red River tributary to Hudson Bay (Page and Burr, 1991). Non-native distribution includes Panama, Mexico and Morocco where it was not established in the latter (Froese and Pauly, 2016) as well as all US states except in the upper Texas parts of the Rio Grande and Pecos basins (Hubbs et al., 1991) and southern Canada (Stauffer et al., 1995; Sternberg and Ignizio, 1996).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


MoroccoAbsent, formerly presentIntroduced1961 Not invasive Welcomme, 1988

North America

CanadaPresentNativeCoker et al., 2001
MexicoPresentIntroduced1950sWelcomme, 1988
USAPresentNativePage and Burr, 1991
-AlabamaPresentIntroducedLee et al., 1980; USGS, 2016
-ArizonaPresentIntroducedMiller and Lowe, 1967; USGS, 2016
-CaliforniaPresentIntroducedMoyle, 1976; USGS, 2016
-ColoradoPresentIntroducedRasmussen, 1998; USGS, 2016
-ConnecticutPresentIntroducedSchmidt, 1986; USGS, 2016
-DelawarePresentIntroducedRaasch and Altemus, 1991; USGS, 2016
-FloridaPresentIntroducedLee et al., 1980; USGS, 2016
-GeorgiaPresentIntroducedYerger, 1977; USGS, 2016
-IdahoPresentIntroducedLinder, 1963; USGS, 2016
-KansasPresentIntroducedCross, 1967; USGS, 2016
-KentuckyPresentIntroducedBurr and Warren, 1986; USGS, 2016
-MarylandPresentIntroducedLee et al., 1980; USGS, 2016
-MassachusettsPresentIntroducedHartel, 1992; USGS, 2016
-MinnesotaPresentIntroducedUSGS, 2016
-MontanaPresentIntroducedHolton, 1990; USGS, 2016
-NebraskaPresentIntroducedLee et al., 1980; USGS, 2016
-NevadaPresentIntroducedDeacon and Williams, 1984; USGS, 2016
-New JerseyPresentIntroducedLee et al., 1980; USGS, 2016
-New MexicoPresentIntroducedTyus et al., 1982; USGS, 2016
-New YorkPresentIntroducedLee et al., 1980; USGS, 2016
-North CarolinaPresentIntroducedHocutt et al., 1986; USGS, 2016
-North DakotaPresentIntroducedLee et al., 1980; USGS, 2016
-OhioPresentIntroducedTrautman, 1981; USGS, 2016
-OklahomaPresentIntroducedMiller and Robison, 1973; USGS, 2016
-OregonPresentIntroducedLampman, 1946; USGS, 2016
-PennsylvaniaPresentIntroducedHocutt et al., 1986; USGS, 2016
-South CarolinaPresentIntroducedLee et al., 1980; USGS, 2016
-South DakotaPresentIntroducedBailey and Allum, 1962; USGS, 2016
-TexasPresentIntroducedMoyle and Randall, 1999; USGS, 2016
-UtahPresentIntroducedSigler and Miller, 1963; USGS, 2016
-VermontPresentIntroducedUSGS, 2016
-VirginiaPresentIntroducedLee et al., 1980; USGS, 2016
-WashingtonPresentIntroducedUSGS, 2016
-West VirginiaPresentIntroducedStauffer et al., 1995; USGS, 2016
-WisconsinPresentIntroducedLee et al., 1980; USGS, 2016
-WyomingPresentIntroducedBaxter and Simon, 1970; USGS, 2016

Central America and Caribbean

PanamaPresentIntroduced Not invasive Welcomme, 1988

History of Introduction and Spread

Top of page

White crappie is a very popular game fish and its intentional stocking for sport fishing is highly common. For this reason, it has been widely translocated into freshwater resources across the USA and southern Canada (Schultz, 2004; Rohde et al., 2009). In the 1950s it was introduced to Mexico from the USA and to Morocco for fisheries in 1961 (Welcomme, 1988). It was also introduced to Panama from the USA for aquaculture.   


Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
Mexico USA 1950s Aquaculture (pathway cause) Yes No Welcomme (1988)
Morocco USA 1961 Stocking (pathway cause) No No Welcomme (1988)
Panama USA unknown Aquaculture (pathway cause) Yes No Welcomme (1988)
USA USA Hunting, angling, sport or racing (pathway cause) No No Translocation within the country to many states outside its native range

Risk of Introduction

Top of page

White crappie has been introduced into lakes, streams and reservoirs mostly deliberately for recreational purposes, however given that there have been only a few reports on impacts to native or endemic freshwater fish species and habitat structure, colonization of new waters beyond the point of release or escape should be a major concern. Introduction of this species due to fisheries and aquaculture can also cause serious environmental risks and should be considered (Sanderson et al., 2009; US Fish and Wildlife Service, 2010; Hughes and Herlihy, 2012).  


Top of page

P. annularis can be found in low-velocity areas of large rivers, various sizes of lakes and reservoirs with the exception of high-altitude streams and are usually abundant in large impoundments and backwaters. White crappie are tolerant of turbid waters and can be found mostly in warm waters no deeper than the thermocline. They tend to aggregate around submerged boulders in still water of 2-4 m during the day. Young and foraging adults occupy shallow zones of stagnant waters. They prefer waters with neutral pH that varies between 6.5 and 8.5, and can survive in low oxygen levels (down to 3.3 mg/L). To avoid predators, they gather around underwater rocks, woody debris and submerged plants (Lee, 1980; Schorr and Miranda, 1995; Schultz, 2004; Wallus and Simon, 2008; Rohde et al., 2009).

Habitat List

Top of page
Irrigation channels Secondary/tolerated habitat Natural
Irrigation channels Secondary/tolerated habitat Productive/non-natural
Lakes Principal habitat Harmful (pest or invasive)
Lakes Principal habitat Natural
Lakes Principal habitat Productive/non-natural
Reservoirs Principal habitat Harmful (pest or invasive)
Reservoirs Principal habitat Natural
Reservoirs Principal habitat Productive/non-natural
Rivers / streams Secondary/tolerated habitat Natural
Rivers / streams Secondary/tolerated habitat Productive/non-natural
Ponds Secondary/tolerated habitat Natural
Ponds Secondary/tolerated habitat Productive/non-natural

Biology and Ecology

Top of page


White crappie have a diploid (2n) chromosome number of 48 and haploid/gametic (n) of 24 (Klinkhardt et al., 1995). It is known to naturally hybridize with black crappie and has been artificially crossed with other genera (Schwartz, 1972; Travnichek et al., 1996).

Reproductive Biology

White crappie are nest builders and spawn between May and June when water temperatures reach 13°C, however, spawning generally takes place around 18-21°C. Males first construct nests in relatively large beds usually in water less than 1.5 m deep and guard them until the fry leave the nests. Hatching takes three to five days and fry remain in the nests for a few more days. Females usually produce 3000-15,000 eggs per spawn but larger females may produce up to 150,000 eggs. Eggs are approximately 0.9 mm in diameter (Siefert, 1968; McGinnis, 2006; Wallus and Simon, 2008; Cooke and Phillip, 2009; Michaletz, 2013). The nest is usually found near or in beds of vegetation or plant debris, occasionally nearby or under overhanging bushes (Simon, 1999). White crappies reach maturity at two to three years old (Hansen, 1951) although Carlander (1977) reported first year of maturity from Texas, USA.

Physiology and Phenology

White crappie are active year-round but relatively less so in winter and during the day (Moyle, 1976). In summer, their feeding activity peaks in the early morning, late afternoon and early evening (Sublette et al., 1990).


They can live up to 8-10 years (Muoneke et al., 1992).

Activity Patterns

Their activity slows during the winter months (Moyle, 1976).


Adult white crappie feed on other fish, planktonic crustaceans and aquatic insects, while young individuals are filter feeders and eats invertebrates such as water fleas. Their feeding changes depending on ontogenetic growth as they develop, i.e. their feeding regime changes from zooplankton to crustaceans and small fish and insects when they reach their second year of life. Adults prefer small fish such as minnows and young individuals of American shad (Alosa sapidissima), threadfin shad (Dorosoma petenense), gizzard shad (Dorosoma cepedianum), common carp (Cyprinus carpio), yellow perch (Perca flavescens), bluegill (Lepomis macrochirus) and other white crappies. Feeding varies depending on the location but they feed largely on mayflies in the summer (Marcy, 1954; Greene and Murphy, 1971; Mathur, 1972; Stauffer et al., 1995; McGinnis, 2006).

Environmental Requirements

It is a tolerant species, generally found in large reservoirs, lakes, small parts of big rivers and water courses, and able to withstand a variety of environmental conditions, including a wide range of temperatures, although it prefers cool, moderately turbid waters (i.e., <50 JTU) and pH (6.5-8.5). It can accommodate salinity values up to 10 ppt and withstand low oxygen levels e.g. as low as 3.3 mg/l (Schorr and Miranda, 1995; Schultz, 2004; Wallus and Simon, 2008; Rohde et al., 2009).

Natural Food Sources

Top of page
Food SourceFood Source DatasheetLife StageContribution to Total Food Intake (%)Details
Aplodinotus grunniens 6.31
Copepoda 13.24
CopepodaAdult 0.13
CorixidaeAdult 0.06
Diptera larvae 1.83
Diptera larvae Adult 0.17
Dorosoma cepedianum 34.01
Dorosoma cepedianumAdult 72.93
Ephemeroptera nymphs Adult 5.98
Ephemeroptera nymphs 24.85
Lepomis macrochirusAdult 5.01
Menidia beryllina Adult 8.20
Menidia beryllina 8.76
Unidentifiable fish tissue 1.22
Unidentifiable fish tissue Adult 6.4
Unidentifiable insects 9.78
Unidentifiable insects Adult 1.12


Top of page
Cf - Warm temperate climate, wet all year Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Tolerated Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)
Df - Continental climate, wet all year Tolerated Continental climate, wet all year (Warm average temp. > 10°C, coldest month < 0°C, wet all year)
Ds - Continental climate with dry summer Tolerated Continental climate with dry summer (Warm average temp. > 10°C, coldest month < 0°C, dry summers)
Dw - Continental climate with dry winter Tolerated Continental climate with dry winter (Warm average temp. > 10°C, coldest month < 0°C, dry winters)

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)

Air Temperature

Top of page
Parameter Lower limit Upper limit
Mean annual temperature (ºC) 31

Water Tolerances

Top of page
ParameterMinimum ValueMaximum ValueTypical ValueStatusLife StageNotes
Ammonia [unionised] (mg/l) 0.09 Optimum
Depth (m b.s.l.) 0.5-1.0 Optimum
Dissolved oxygen (mg/l) 5.7 Optimum
Dissolved oxygen (mg/l) 3.3 Harmful
Salinity (part per thousand) 10 Harmful
Turbidity (JTU turbidity) 50 Optimum
Velocity (cm/h) 10 Optimum
Water pH (pH) 7.1 Optimum
Water pH (pH) 5.0-9.0 Harmful
Water temperature (ºC temperature) 27.6 Optimum
Water temperature (ºC temperature) 31 Harmful

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Esox lucius Predator All Stages to species N
Esox masquinongy Predator All Stages to species N
Micropterus salmoides Predator All Stages to species N
Sander vitreus Predator All Stages to species N

Notes on Natural Enemies

Top of page

Several natural enemies are reported including, northern pike (Esox lucius) and muskellunge (Esox masquinongy), walleye (Sander vitreus) and largemouth bass (Micropterus salmoides) in the USA (Wahl and Stein, 1991).

White crappie have been reported to be infected with the fish parasite Gyrodactylus goerani (Harris et al., 2004), and host some parasitic worms (Acanthocephala), flatworms (Cestoda and Trematoda), nematodes (Nemata) and crustaceans (Copepoda) (Mayberry et al., 2000). In some reservoirs, a parasitic juvenile fluke Posthodiplostomum minimum can be found in the species. Leeches such as Actinobdella inequiannulata and Myzobdella lugubris may attach themselves to the gills. 

Means of Movement and Dispersal

Top of page

Intentional Introduction

White crappie have been intentionally introduced for recreational stocking, aquaculture and fisheries enhancement (Welcomme, 1988; Schultz, 2004; Rohde et al., 2009).

Impact Summary

Top of page
Economic/livelihood Positive
Environment (generally) Negative

Economic Impact

Top of page

White crappie is important to aquaculture, fisheries and is widely fished recreationally. They may increase tourism and have positive local impacts (Schoonover and Thompson,1954; Dorr et al., 2002). 

Environmental Impact

Top of page

Impact on Habitats

White crappie presence was reported to be associated with habitat alteration resulting in salmon fish decline, however the magnitude of these impacts are poorly known (Sanderson et al., 2009).

Impact on Biodiversity

White crappie are thought to have negatively affected the abundance and diversity of salmon fishes in rivers in the northwestern USA, preying on juveniles and altering their habitat (Sanderson et al., 2009).

Similarly, several native fish species reduced in abundance and diversity after non-native piscivorous fishes, including white crappie, had been introduced into several Pacific Northwest rivers (Hughes and Herlihy, 2012). This is true for the endemic warner suckers (Catostomus warnerensis) in Hart and Crump lakes in USA (US Fish and Wildlife Service, 2010).

Threatened Species

Top of page
Threatened SpeciesConservation StatusWhere ThreatenedMechanismReferencesNotes
Catostomus warnerensis (Warner sucker)EN (IUCN red list: Endangered) EN (IUCN red list: Endangered); USA ESA listing as threatened species USA ESA listing as threatened speciesOregonPredationUS Fish and Wildlife Service, 2010

Social Impact

Top of page

This species is an important fish species for recreational fishing and may have positive impacts on tourism (Rohde et al., 2009). 

Risk and Impact Factors

Top of page Invasiveness
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Capable of securing and ingesting a wide range of food
  • Benefits from human association (i.e. it is a human commensal)
  • Has high reproductive potential
Impact outcomes
  • Ecosystem change/ habitat alteration
  • Reduced native biodiversity
  • Threat to/ loss of endangered species
  • Threat to/ loss of native species
Impact mechanisms
  • Hybridization
  • Predation
Likelihood of entry/control
  • Highly likely to be transported internationally deliberately


Top of page

Economic Value

It is an economically important recreational and sporting fish and is often considered in fisheries management plans. They are commonly fished in lakes and impoundments and may increase tourism income (enhanced sales of fishing equipment, food, accommodation, transportation and other tourism activities) (Schoonover and Thompson, 1954; Dorr et al., 2002).

Social Benefit

As white crappie is a very popular game fish, it is of high importance recreationally and commercially. Its positive impacts on tourism may create a demand not only for food, accommodation and transportation, but also for related recreational activities such as camping, boating, etc. All of these activities may generate or improve economic incomes. 

Similarities to Other Species/Conditions

Top of page

White crappie can be separated from all other sunfishes by having less than 10 dorsal spines but it is very similar to the black crappie (Pomoxis nigromaculatus). The main differences between the two species is that the white crappie has a silver body with vertical bands down the sides, has 5-6 rather than 7-8 dorsal spines, a shorter dorsal fin base, more distinct bands on the sides and a shallower body (Ross, 2001).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.


Public Awareness

Due to its popularity as a game fish there is a lack of awareness on its impacts.


Little is known with regards to the potential control of this species using chemicals, physical or cultural control methods.

Biological Control

There is no evidence of biological control for this species but natural enemies from its native area could be used (e.g. Esox lucius, Esox masquinongy, Sander vitreus, Micropterus salmoides) (Wahl and Stein, 1991).

Monitoring and Surveillance (Incl. Remote Sensing)

Both telemetry and radio telemetry could be used.

Gaps in Knowledge/Research Needs

Top of page

Although impacts of the species have been recorded and it has been widely spread by humans, there is little information or awareness of the species’ invasiveness. Further studies should therefore be conducted to look at the magnitude of impact of the white crappie on other native species and the ecosystem structure. Appropriate prevention and control measures should then be planned and implemented following this further study.


Top of page

Bailey RM, Allum MO, 1962. Fishes of South Dakota. Miscellaneous Publications, Museum of Zoology, University of Michigan, 119:1-131.

Baxter GT, Simon JR, 1970. Wyoming fishes. Bulletin No. 4, 4.

Burr BM, Warren Jr ML, 1986. A distributional atlas of Kentucky fishes. Scientific and Technical Series No. 4, 4. Kentucky, USA: Kentucky State Nature Preserves Commission.

Carlander KD, 1977. Handbook of freshwater fishery biology, 2. Arkansas, USA: Iowa State University Press, 431 pp.

Coker GA, Portt CB, Minns CK, 2001. Morphological and ecological characteristics of Canadian freshwater fishes. Can. Manuscr. Rep. Fish. Aquat. Sci, No. 2554:89 pp.

Cooke S, Phillip D, 2009. Centrarchid fishes: diversity, biology and conservation. Chichester, West Sussex, UK: Blackwell Publishing Ltd, 560 pp.

Cross FB, 1967. Handbook of fishes of Kansas. State Biological Survey and University of Kansas Museum of Natural History Misc Publ No 45, 45. Kansas, USA: State Biological Survey and University of Kansas Museum of Natural History.

Deacon JE, Williams JE, 1984. Annotated list of the fishes of Nevada. Proceedings of the Biological Society of Washington, 97(1):103-118.

Dorr B, Munn IA, Meals KO, 2002. A Socioeconomic and biological evaluation of current and hypothetical crappie regulations in Sardis Lake, Mississippi: an integrated approach. North American Journal of Fisheries Management, 22(4):1376-1384.

Froese R, Pauly D, 2004. FishBase DVD. Penang, Malaysia: Worldfish Center. Online at

Froese R, Pauly D, 2016. FishBase.

Greene DS, Murphy CE, 1971. Food and feeding habits of the white crappie (Pomoxis annularis Rafinesque) in Benbrook Lake, Tarant County, Texas. Tex. Acad. Sci, 25:35-51.

Hansen DF, 1951. Biology of the white crappie in Illinois. Ill. Nat. Hist. Surv. Bull, 25:211-265.

Harris PD, Shinn AP, Cable J, Bakke TA, 2004. Nominal species of the genus Gyrodactylus von Nordmann 1832 (Monogenea: Gyrodactylidae), with a list of principal host species. Systematic Parasitology, 59(1):1-27.

Hartel K, 1992. Non-native fishes known from Massachusetts freshwaters. Occasional Reports of the MCZ Fish Department, 2:1-9.

Hocutt, CH, Jenkins RE, Stauffer Jr JR, 1986. Zoogeography of the fishes of the central Appalachians and central Atlantic Coastal Plain. In: The zoogeography of North American freshwater fishes [ed. by Hocutt, C. H. \Wiley, E. O.]. New York, USA: John Wiley and Sons, 161-212.

Holton GD, 1990. A field guide to Montana fishes. Montana, USA: Department of Fish, Wildlife and Parks, 103 pp.

Hubbs C, Edwards RJ, Garrett GP, 1991. An annotated checklist to the freshwater fishes of Texas, with keys to identification of species. The Texas Journal of Science, Supplement, 43(4):1-56.

Hughes RM, Herlihy AT, 2012. Patterns in catch per unit effort of native prey fish and alien piscivorous fish in 7 Pacific Northwest USA rivers. Fisheries (Bethesda), 37(5):201-211.

Klinkhardt M, Tesche M, Greven H, 1995. Database of fish chromosomes. Westarp Wissenschaften.

Lampman BH, 1946. The Coming of the Pond Fishes. Oregon, USA: Binfords and Mort, 177 pp.

Lee DS, 1980. Pomoxis annularis (Rafinesque), White crappie. In: Atlas of North American Freshwater Fishes. State Mus. Nat. Hist, 611.

Lee DS, Gilbert CR, Hocutt CH, Jenkins RE, McAllister DE, Stauffer JRJr, 1980. Atlas of North American freshwater fishes. Raleigh, NC, RC: North Carolina State Museum of Natural History,.

Linder AD, 1963. Idaho's alien fishes. TEBIWA, 6:12-15.

Marcy D, 1954. The food and growth of the white crappie, Pomoxis annularis, in Pymatuning Lake, Pennsylvania and Ohio. Copeia, 3:236-239.

Mathur D, 1972. Seasonal food habits of adult white crappie, Pomoxis annularis Rafinesque, in Conowingo. American Midland Naturalist, 87(1):236-241.

Mayberry LF, Canaris AG, Bristol JR, 2000. Bibliography of parasites and vertebrate host in Arizona, New Mexico, and Texas (1893-1984). Nebraska, USA: University of Nebraska Harold W. Manter Laboratory of Parasitology, 101 pp.

McGinnis S, 2006. Field guide to freshwater fishes of California: Revised Edition. Berkeley and Los Angeles, California, USA: University of California Press, 550 pp.

Michaletz P, 2013. Contrasting population demographics and reproductive investment of white crappie in three eutrophic reservoirs. Fisheries Management and Ecology, 20(1):1-9.

Miller RJ, Robison HW, 1973. The Fishes of Oklahoma. Oklahoma, USA: Oklahoma State University Press, 450 pp.

Miller RR, Lowe CH, 1967. Part 2. Fishes of Arizona. In: The Vertebrates of Arizona [ed. by Lowe, C. H.]. Arizona, USA: University of Arizona Press, 133-151.

Moyle PB, 1976. Inland fishes of California. Berkeley, CA, USA: University of California Press.

Moyle PB, Randall J, 1999. Distribution maps of fishes in California. California, USA: University of California.

Muoneke MI, Henry CC, Maughan OE, 1992. Population structure and food habits of white crappie Pomoxis annularis Rafinesque in a turbid Oklahoma reservoir. Journal of Fish Biology, 41:647-654.

Page LM, Burr BM, 1991. A field guide to freshwater fishes of North America north of Mexico. Boston, USA: Houghton Mifflin Company, 432 pp.

Raasch MS, Altemus Sr VL, 1991. Delaware's freshwater and brackish water fishes - a popular account. California, USA: University of California, 174 pp.

Rasmussen JL, 1998. Aquatic nuisance species of the Mississippi river basin. In: 60th Midwest Fish and Wildlife Conference, Aquatic Nuisance Species Symposium, Dec. 7, 1998, Cincinnati, OH. unpaginated.

Rohde FC, Arndt RG, Foltz JW, Quattro JM, 2009. Freshwater fishes of South Carolina. Columbia, South Carolina, USA: University of South Carolina Press, 430 pp.

Ross ST, 2001. The Inland Fishes of Mississippi. University Press of Mississippi, Jackson, 624 pp.

Sanderson BL, Barnas KA, Rub AMW, 2009. Nonindigenous species of the Pacific Northwest: an overlooked risk to endangered salmon? BioScience, 59(3):245-256.

Schmidt RE, 1986. Zoogeography of the northern Appalachians. In: The zoogeography of North American freshwater fishes [ed. by Hocutt, C. H. \Wiley, E. O.]. New York, USA: John Wiley and Sons, 137-160.

Schoonover R, Thompson W, 1954. A post-impoundment study of the fisheries resources of Fall River Reservoir, Kansas. Transactions of the Kansas Academy of Science, 157(2):172-179.

Schorr M, Miranda L, 1995. Proceedings of the Annual Conference- Southeastern Association of Fish and Wildlife Agencies, 49. 205-215.

Schultz K, 2004. Ken Schultz's field guide to freshwater fish. Hoboken, New Jersey, USA: Jon Wiley and Sons, Inc, 272 pp.

Schwartz FJ, 1972. World literature to fish hybrids with an analysis by family, species, and hybrid. Publications of the Gulf Coast Research Laboratory Museum, No. 3, 328 pp.

Siefert R, 1968. Reproductive behavior, incubation and mortality of eggs, and postlarval food selection in the white crappie. Transactions of the American Fisheries Society, 97(3):252-259.

Sigler WF, Miller RR, 1963. Fishes of Utah. Utah, USA: Utah Department of Fish and Game, 375 pp.

Simon TP, 1999. Assessment of Balon's reproductive guilds with application to Midwestern North American Freshwater Fishes. In: Assessing the sustainability and biological integrity of water resources using fish communities [ed. by Simon, T. L.]. Florida, USA: CRC Press, 97-121.

Stauffer JR, Boltz JM, White LR, 1995. The fishes of West Virginia. The Proceedings of the Academy of Natural Sciences of Philadelphia, 146:1-389.

Sternberg D, Ignizio B, 1996. Panfish. Minnesota, USA: Creative Publishing international, Inc, 160 pp.

Sublette JE, Hatch MD, Sublette M, 1990. The fishes of New Mexic. Albuquerque, New Mexico, USA: University New Mexico Press, 393 pp.

Trautman MB, 1981. The fishes of Ohio. Columbus, OH, USA: Ohio State University Press.

Travnichek VH, Maceina MJ, Smith SM, Dunham RA, 1996. Natural hybridization between black and white crappies (Pomoxis) in 10 Alabama reservoirs. American Midland Naturalist, 135(2):310-316.

Tyus HM, Burdick BD, Valdez RA, Haynes CM, Lytle TA, Berry CR, 1982. Fishes of the upper Colorado basin: distribution, abundance, and status. In: Fishes of the upper Colorado River system: present and future [ed. by Miller, W. H. \Tyus, H. M. \Carlson, C. A.]. Bethesda, Maryland, USA: Western Division, American Fisheries Society, 12-70.

US Fish and Wildlife Service, 2010. Warner sucker (Catostomus warnerensis). 5-Year Review: Summary and Evaluation. Washington DC, USA: USFWS.

USGS NAS, 2016. USGS Nonindigenous Aquatic Species Database. Gainesville, Florida, USA: USGS.

Wahl DH, Stein RA, 1991. Food consumption and growth of three esocids: field tests of a bioenergetic model. Trans. Am. Fish. Soc, 120(2):230-246.

Wallus R, Simon T, 2008. Reproductive biology and early life history of fishes in the Ohio River Drainage, Vol. 6: Elassomatidae and Centrarchidae. Boca Raton, Florida, USA: CRC Press, 472 pp.

Welcomme RL, 1988. International introductions of inland aquatic species. FAO Fisheries Technical Paper 294. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).

Yerger RW, 1977. Fishes of the Apalachicola River. Florida Marine Research Publications, 26:22-33.

Links to Websites

Top of page
Non Indigenous Aquatic Species (NAS)

Principal Source

Top of page

Draft datasheet under review


Top of page

13/05/16 Original text by: 

Ali Serhan Tarkan, Mugla Sitki Koçman University, Turkey

Distribution Maps

Top of page
You can pan and zoom the map
Save map