Arceuthobium pusillum (eastern dwarf mistletoe)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Risk of Introduction
- Habitat
- Habitat List
- Host Plants and Other Plants Affected
- Biology and Ecology
- Latitude/Altitude Ranges
- Air Temperature
- Rainfall
- Rainfall Regime
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Plant Trade
- Impact Summary
- Impact
- Environmental Impact
- Impact: Biodiversity
- Social Impact
- Risk and Impact Factors
- Uses
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Arceuthobium pusillum Peck (1872)
Preferred Common Name
- eastern dwarf mistletoe
Other Scientific Names
- Arceuthobium abigenium Wood (1881)
- Arceuthobium minutum Engelmann (1871)
- Razoumofskya minuta (Engelm.) Kuntze (1891)
- Razoumofskya pusilla (Peck) Kuntze (1891)
EPPO code
- AREPU (Arceuthobium pusillum)
Summary of Invasiveness
Top of pageTaxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Santalales
- Family: Viscaceae
- Genus: Arceuthobium
- Species: Arceuthobium pusillum
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageDistribution
Top of pageDistribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 12 May 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Europe |
|||||||
Slovenia | Absent | ||||||
North America |
|||||||
Canada | Present, Localized | ||||||
-Manitoba | Present | Native | Invasive | ||||
-New Brunswick | Present | Native | Invasive | ||||
-Newfoundland and Labrador | Present | Native | Invasive | ||||
-Nova Scotia | Present | Native | Invasive | ||||
-Ontario | Present | Native | Invasive | ||||
-Prince Edward Island | Present | Native | Invasive | ||||
-Quebec | Present | Native | Invasive | ||||
-Saskatchewan | Present | Native | Invasive | ||||
United States | Present, Localized | ||||||
-Connecticut | Present | Native | Invasive | ||||
-Maine | Present | Native | Invasive | ||||
-Massachusetts | Present | Native | Invasive | ||||
-Michigan | Present | Native | Invasive | ||||
-Minnesota | Present | Native | Invasive | ||||
-New Hampshire | Present | Native | Invasive | ||||
-New Jersey | Present | Native | Invasive | ||||
-New York | Present | Native | Invasive | ||||
-Pennsylvania | Present | Native | Invasive | ||||
-Rhode Island | Present | Native | Invasive | ||||
-Vermont | Present | Native | Invasive | ||||
-Wisconsin | Present | Native | Invasive |
History of Introduction and Spread
Top of pageRisk of Introduction
Top of pageHabitat
Top of pageHabitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | Managed | Managed forests, plantations and orchards | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural forests | Present, no further details | Harmful (pest or invasive) |
Host Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Abies balsamea (balsam fir) | Pinaceae | Other | |
Larix laricina (American larch) | Pinaceae | Other | |
Picea abies (common spruce) | Pinaceae | Other | |
Picea glauca (white spruce) | Pinaceae | Main | |
Picea mariana (black spruce) | Pinaceae | Main | |
Picea pungens (blue spruce) | Pinaceae | Other | |
Picea rubens (red spruce) | Pinaceae | Main | |
Pinus banksiana (jack pine) | Pinaceae | Other | |
Pinus resinosa (red pine) | Pinaceae | Other | |
Pinus strobus (eastern white pine) | Pinaceae | Other |
Biology and Ecology
Top of pageChromosome number 2n = 28.
Physiology and Phenology
Arceuthobium spp. are obligate parasites, depending on an endophytic system within the host branch to draw water and nutrients from their hosts. Germination of A. pusillum occurs in early summer following autumn dispersal and is favoured by light, but the seedling shows negative phototropism, causing it to bore directly into the host shoot, even from below. The seedlings of most Arceuthobium spp. can only penetrate young branches less than 5 years old, developing a 'penetration wedge' after germination, which enters the cortex and then ramifies throughout the bark, developing sinkers into the xylem. These sinkers, however, do not necessarily contain xylem elements. Furthermore, there is no evidence for any direct symplastic connection with the host tissues, and most Arceuthobium spp. have no phloem tissue. Transfer of nutrients, including sugars, may depend on close association of host and parasite parenchyma cells, and apoplastic movement via the walls of these cells. Graniferous tracheary elements could also be involved (see Hawksworth and Wiens, 1996, for detailed discussion on this topic). Photosynthesis is apparently important in supporting the seedling as it germinates and attaches, but for the next 2-5 years (usually 3-4) of its life A. pusillum persists only as the endophyte inside the host tissue without any aerial shoot. Even after emergence of the aerial shoots, the established parasite has a relatively low photosynthetic capacity, usually much less than 50% of 'normal'.
After emergence from the endophyte, the shoots of A. pusillum produce flowers and fruits within a further 2 years and then die. A. pusillum is unusual in that the shoots are not perennial and do not normally flower a second time.
Reproductive Biology
Arceuthobium spp. are dioecious. In A. pusillum, female plants may predominate in a ratio of 3:2 but this is not consistent. Pollination in A. pusillum appears to be predominantly due to insects but may also occur by wind (Hawksworth and Wiens, 1996). Anthesis occurs between April and June. Following fertilization of the ovule, the fruit matures in September or October of the same year, more rapidly than almost any other Arceuthobium species. No true seed is formed, as there is no testa, but the embryo is embedded in chlorophyllous endosperm, surrounded by viscin. This will be referred to as a seed for convenience. The embryo is green, a few mm long, and has a meristematic radicular apex without a root cap. Dispersal of the seed is exceptional, involving a hydrostatic, explosive process which expels the seed, sometimes beyond 10 m. Most dispersal occurs as temperatures rise and humidity declines in the morning. The viscin ensures that it is retained by any host shoot that is hit, but if this is a needle, it may slide down with gravity to the base of the needle and germinate there. Although this is the main means of dispersal over a short range, long-distance dispersal also occurs as a result of seeds sticking to birds or mammals (see section on 'Movement and Dispersal'). However, any seeds that are ingested by animals are destroyed. Seeds of Arceuthobium spp. do not show dormancy and germination normally occurs in the first season after dispersal, though seeds may retain dormancy for 1-4 years when stored in ideal conditions. Germination of A. pusillum seeds may be quite low - a figure of 7% is quoted by Hawksworth and Wiens (1996).
Associations
The grey jay (Perisorius canadensis) uses the witches' brooms of A. pusillum as a preferred nesting site (Hawksworth and Wiens, 1996).
Latitude/Altitude Ranges
Top of pageLatitude North (°N) | Latitude South (°S) | Altitude Lower (m) | Altitude Upper (m) |
---|---|---|---|
0 | 0 | 0 | 0 |
Air Temperature
Top of pageParameter | Lower limit | Upper limit |
---|---|---|
Mean annual temperature (ºC) | 1 | 11 |
Mean maximum temperature of hottest month (ºC) | 18 | 28 |
Mean minimum temperature of coldest month (ºC) | -26 | -5 |
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Dry season duration | 0 | 8 | number of consecutive months with <40 mm rainfall |
Mean annual rainfall | 380 | 1150 | mm; lower/upper limits |
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Caliciopsis arceuthobii | Pathogen | Fruits|pods | ||||
Septogloeum gillii | Pathogen | Plants|Leaves; Plants|Stems |
Notes on Natural Enemies
Top of pageMeans of Movement and Dispersal
Top of pageNatural dispersal of Arceuthobium spp. is by the explosive fruits which, in the case of A. americanum, can expel the seeds at speeds of 2.6 m/second up to a 15 m distance (Hinds and Hawksworth, 1965). In spite of this, the natural spread of A. pusillum may not exceed about 1.5 m/annum (Baker and French, 1991).
Vector Transmission (Biotic)
Long-distance dispersal can occur as a result of seeds sticking to birds or mammals. The grey jay (Perisorius canadensis) is reported to be the most important long-distance vector in Newfoundland, Canada, while squirrels (Glaucomys sabrinus and Tamiasciurus hudsonicus) are known carriers in Minnesota, USA (Hawksworth and Wiens, 1996).
Silvicultural Practices
Logging and movement of timber which has not been completely de-barked, can result in movement of complete plants of Arceuthobium and possible transfer of seeds and establishment of new infestations.
Accidental Introduction
Accidental introduction of Arceuthobium spp. into new areas or continents does not appear very likely. Seeds are short-lived, and unlikely to reach a host tree under circumstances in which they could develop. Conifer plants could carry living mistletoe plants, especially in the prolonged endophytic stage before the external plant develops, but young plants, as normally traded, are not very likely to be infected. Mistletoes could be carried on cut branches, including Christmas trees, and possibly on logs with bark (though mistletoes normally occur on the branches of trees, not on trunks). But it seems unlikely that mistletoes borne on cut, dead plants present any risk of transmission. Accordingly, introduction can be prevented relatively easily. The prohibition of import of plants for planting of the main host genera (as established, for example, in the phytosanitary regulations of the European Union) blocks the only really dangerous pathway.
Intentional Introduction
Intentional introduction would seem extremely unlikely, other than for research.
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Bark | weeds/whole plants | |||
Stems (above ground)/Shoots/Trunks/Branches | weeds/whole plants |
Plant parts not known to carry the pest in trade/transport |
---|
Flowers/Inflorescences/Cones/Calyx |
Fruits (inc. pods) |
Growing medium accompanying plants |
Leaves |
Roots |
Seedlings/Micropropagated plants |
True seeds (inc. grain) |
Impact Summary
Top of pageCategory | Impact |
---|---|
Animal/plant collections | None |
Animal/plant products | None |
Biodiversity (generally) | Positive |
Crop production | None |
Environment (generally) | None |
Fisheries / aquaculture | None |
Forestry production | Negative |
Human health | None |
Livestock production | None |
Native fauna | Positive |
Native flora | None |
Rare/protected species | None |
Tourism | None |
Trade/international relations | Negative |
Transport/travel | None |
Impact
Top of pageIn spite of its small size, A. pusillum is a very damaging parasite. Mortality is severe in Picea mariana along the coast of Maine, USA, and it is considered the most serious disease agent of P. mariana in the Great Lakes region of the USA (Geils et al., 2002). In Manitoba, Canada, infection of Picea glauca by A. pusillum ranged from 25 to 100%. The presence of mistletoe reduced the annual radial increment from 0.67 cm to 0.04-0.14 cm over a period of 5 years. Seedlings suffered 20% mortality over a 2-year period and 25% of the survivors were infected. The annual height growth of infected seedlings was reduced by 40% (French et al., 1981). In New Hampshire, USA, P. pusillum causes growth reduction and mortality of Picea rubens. It also reduces timber quality by causing marked trunk swellings (Hawksworth and Shigo, 1980).
Impact: Biodiversity
Top of pageRisk and Impact Factors
Top of page- Invasive in its native range
- Highly mobile locally
- Has high reproductive potential
- Negatively impacts agriculture
- Competition - monopolizing resources
- Difficult/costly to control
Similarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Cultural ControlIn the absence of any simple direct means of control of dwarf mistletoes, and the vast areas of forest involved, cultural management is virtually the only approach for dealing with this species. The techniques vary according to the type of stand in which the problem occurs. Silvicultural treatments considered by Muir and Geils (2002) for cultural control of Arceuthobium species in general include:
- Harvest, retention, and regeneration by clear-felling (even-aged silviculture), or selective harvesting to establish and maintain uneven or all-aged stand stuctures
- Design and layout of harvest and treatment blocks
- Site preparation and vegetation management by brushing, prescribed burning, and other methods
- Planting or retaining residual and advanced regeneration
- Thinning and sanitation
- Pruning brooms and infected branches
Silvicultural guides with specific recommendations for control of A. pusillum in Picea mariana include Johnson (1977) and Ostry and Nicholls (1979).
Detailed surveys are an essential ingredient of successful control programmes and the 6-class rating system (Hawksworth, 1977) is widely accepted as a standard. This involves a 0-6 score based on 0, 1 or 2 for each third (lower, middle, upper) of the tree; 0 for no infection, 1 for light infection (less than half branches affected) or 2 for heavy infection (more than half infected).
The general aim of management is to reduce the risk of further spread of the mistletoe by removing sources of infection and/or creating barriers to its movement. In recently harvested, regenerating stands, the emphasis may be on the complete removal of any infected trees over 2 m, regardless of commercial value, both within the stand, and along borders to a distance of 18 m, before the regeneration is 1 m high.
In pre-commercial stands in which surveys show less than 40% infected trees, it should be economic to do selective thinning to remove all those infected. Above 40% this is unlikely to be economic. Severely infested stands may best be harvested early and regenerated, but decisions may require use of available models to help devise the most economic option. Some of the available models are described by Muir and Geils (2002).
In many cases the presence of dwarf mistletoe may pose no serious threat to productivity. Where wildlife objectives take precedence, retention of some dwarf mistletoe may even be desired. It may contribute in various ways to biodiversity - by creating openings in the forest following tree death, by providing nesting sites in the 'brooms' and by providing food for a range of vertebrates and invertebrates.
Mechanical Control
Pruning may be appropriate as a means of reducing damage to individual trees, but more generally to reduce the source of infection for surrounding trees. The practicality, however, is that it will only be feasible in particular amenity and recreation areas.
Clear-felling (with or without fire) is appropriate where a stand is so severely infested that it needs to be abandoned and regenerated or re-planted.
Chemical Control
The only chemical approved for use against dwarf mistletoes is the ethylene-releasing growth regulator, ethephon, which can cause abscission of the shoots of A. pusillum and delay fresh seeding for 2-4 years, but there is eventual re-growth from the endophyte. It is difficult to achieve good coverage in larger trees from the ground, while applications from the air fail to penetrate the canopy adequately. The treatment is therefore of interest mainly for high value amenity trees.
Biological Control
The use of the fungus Caliciopsis arceuthobii for biological control of A. pusillum has been considered, but potential is apparently limited by extreme variation in infection rates from one season to another.
References
Top of pageEPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm
Geils BW; Tovar JC; Moody B; (technical coordinators), 2002. Mistletoes of North American Conifers. General Technical Report RMRS-GTR-98. Ogden, USA: United States Department of Agriculture Forest Service.
Hawksworth FG; Wiens D, 1996. Dwarf Mistletoes: Biology, Pathology, and Systematics. Agriculture Handbook 709. Washington DC, USA: United States Department of Agriculture Forest Service.
Hinds TE; Hawksworth FG, 1965. Seed dispersal velocity in four dwarf mistletoes. Science, 148:517-519.
Johnson WF, 1977. Manager's handbook for black spruce in the North-Central States. General Technical Report NC-34. St Paul MN: US Department of Agriculture, Forest Service, North Central Forest Experiment Station.
Ostry ME; Nicholls TH, 1979. Eastern dwarf mistletoe on black spruce. Forest Insect and Disease Leaflet 158. Washington DC: US Department of Agriculture, Forest Service.
Rediske JH; Shea KR, 1961. The production and translocation of photosynthate in dwarf mistletoe and Lodgepole Pine. American Journal of Botany, 48:447-452.
Distribution References
CABI, Undated. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Hawksworth FG, Wiens D, 1996. Dwarf Mistletoes: Biology, Pathology, and Systematics. In: Agriculture Handbook 709, Washington DC, USA: United States Department of Agriculture Forest Service.
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/