Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Arceuthobium abietinum
(fir dwarf mistletoe)



Arceuthobium abietinum (fir dwarf mistletoe)


  • Last modified
  • 21 November 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Arceuthobium abietinum
  • Preferred Common Name
  • fir dwarf mistletoe
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • Arceuthobium spp. do not spread rapidly and cannot be considered highly invasive. They do, however, constitute a serious threat as a result of their ability to build up gradually over the life of a forest and cause severe damaging effects on a number...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
A. minutissimum on host, Abies concolor, Lake Tahoe, California, USA.
CaptionA. minutissimum on host, Abies concolor, Lake Tahoe, California, USA.
Copyright©Chris Parker/Bristol, UK
A. minutissimum on host, Abies concolor, Lake Tahoe, California, USA.
HabitA. minutissimum on host, Abies concolor, Lake Tahoe, California, USA.©Chris Parker/Bristol, UK


Top of page

Preferred Scientific Name

  • Arceuthobium abietinum Munz

Preferred Common Name

  • fir dwarf mistletoe

Other Scientific Names

  • Arceuthobium douglasii var. abietinum Engelmann
  • Razoumofskya abietina (Engelmann) Tubeuf

International Common Names

  • English: red-fir dwarf mistletoe; white-fir dwarf mistletoe

EPPO code

  • AREAB (Arceuthobium abietinum)

Summary of Invasiveness

Top of page
Arceuthobium spp. do not spread rapidly and cannot be considered highly invasive. They do, however, constitute a serious threat as a result of their ability to build up gradually over the life of a forest and cause severe damaging effects on a number of important forest species.

Their potential to establish in other areas is limited by the need for the living parasite to survive on the pathway and reproduce after entry. Nevertheless, the risk of economic impact is considerable if host species are available. The conifers at greatest risk would be species, known to be hosts, planted as exotics in other continents, but there is also a certain possibility of spread to related species, not known to be hosts.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Santalales
  •                         Family: Viscaceae
  •                             Genus: Arceuthobium
  •                                 Species: Arceuthobium abietinum

Notes on Taxonomy and Nomenclature

Top of page
A detailed discussion of the taxonomy and taxonomic history of the genus Arceuthobium is provided by Hawksworth and Wiens (1996). The genus Arceuthobium is a member of the plant family Viscaceae and is a clearly defined group of small (generally less than 20 cm high), variously coloured flowering plants that are aerial parasites on conifers of the families Pinaceae and Cupressaceae. They are considered to be the most evolutionarily specialized genus of the family Viscaceae. Arceuthobium has been previously included in the subfamily Viscoideae of the family Loranthaceae, but the subfamilies Loranthoideae and Viscoideae are now generally considered to have family status (Loranthaceae and Viscaceae).

A. abietinum is a member of subgenus Vaginata, section Campylopoda, series Campylopoda.

Two "formae speciales" are recognized on the basis of host range: f.sp. concoloris Hawksworth and Wiens (white-fir dwarf mistletoe), on Abies concolor or Abies grandis; f.sp. magnificae Hawksworth and Wiens (red-fir dwarf mistletoe) on Abies magnifica or Abies procera.


Top of page
Like other Arceuthobium spp., A. abietinum is an obligate parasite with an endophytic 'root' system ramifying within the host branch. This endophyte expands within the cortex and becomes embedded in the xylem for some years before aerial shoots are produced, encircling the infected branch and growing along it. A. abietinum has shoots around 10 to 22 cm high (f. sp. concoloris) or 6 to 12 cm high (f.sp. magnificae). Plants are yellowish; flowering in summer or autumn; internodes 6-8 times as long as wide; staminate flowers not whorled, 2.5 mm in diameter, same colour as the subtending bracts; perianth 3-merous, sometimes 4-merous, apex acute. Mature fruit ca. 4 x 2 mm. Seeds 2.8 x 1.2 mm.

Plant Type

Top of page
Seed propagated


Top of page
A. abietinum is widely distributed from Washington through Oregon and California, to Chihuahua State in northern Mexico (f.sp. magnificae only in California and south-west Oregon). There are isolated records elsewhere in the western part of the USA.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 12 May 2022
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes



North America

MexicoPresent, Few occurrencesNativeInvasive
United StatesPresent, Localized
-New MexicoPresentNativeInvasive

Risk of Introduction

Top of page
The risk presented by Arceuthobium spp. introductions into other areas of the world is related to the availability of their hosts. The most obvious risk arises from the fact that several North American hosts (for example, Pinus contorta, P. ponderosa, Tsuga spp., and Pseudotsuga menziesii) have been more or less widely planted in other continents, in the absence of these mistletoes (curiously, Pinus radiata, one of the North American pines most widely planted around the world, is hardly reported as an Arceuthobium host, nor is Picea sitchensis, much planted in parts of Europe). Conversely, the European or Asian hosts of Arceuthobium have not been substantially planted outside their natural range. A secondary risk is that, although in their natural range Arceuthobium spp. occur rather rarely on species other than their main hosts, there is limited data suggesting that they may readily infect some exotic species. There is accordingly a certain risk that Arceuthobium spp. may spread to and affect such exotic hosts if they are introduced into other continents, e.g. P. sylvestris in Europe, Juniperus virginiana in North America.

The risk of accidental introduction is already well recognized and trade in conifer plants is correspondingly controlled in many countries. Exotic Arceuthobium species are also specifically listed as prohibited imports in the European Union, other European countries, Australia, New Zealand, Turkey, Tanzania and no doubt many others. North American countries similarly restrict import of conifers.


Top of page
A. abietinum is limited to forests in which its specific hosts are present in substantial numbers.

Habitat List

Top of page
Terrestrial ManagedManaged forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Terrestrial Natural / Semi-naturalNatural forests Present, no further details Harmful (pest or invasive)

Hosts/Species Affected

Top of page
When growing nearby parasitized Abies spp. other conifers will occasionally be attacked by A .abietinum, such as Picea breweriana and rarely, certain Pinus spp. (Pinus lambertiana, P. monticola and P. contorta).

Abies amabilis and A. procera have very rarely or never been recorded as hosts.

Host Plants and Other Plants Affected

Top of page

Growth Stages

Top of page
Vegetative growing stage

Biology and Ecology

Top of page

Chromosome number 2n = 28 (Hawksworth and Wiens, 1996)

Physiology and Phenology

Like other Arceuthobium spp., A. abietinum is an obligate parasite, depending on an endophytic system within the host branch to draw water and nutrients from their hosts. Germination usually occurs in the spring following autumn dispersal and is favoured by light. The seedling shows negative phototropism, causing it to bore directly into the host shoot, even from below. Seedlings of most Arceuthobium spp. can only penetrate young branches less than 5 years old. Most Arceuthobium spp. have no phloem tissue. Transfer of nutrients, including sugars, may depend on close association of host and parasite parenchyma cells, and apoplastic movement via the walls of these cells. Graniferous tracheary elements could also be involved (see Hawksworth and Wiens (1996), for detailed discussion on this topic).

Photosynthesis is apparently important in supporting the seedling as it germinates and attaches, but for the next 2-7 years (usually 3-4) of its life, the parasite persists only as the endophyte inside the host tissue without any aerial shoot. Even after emergence of the aerial shoots, the established parasite has a relatively low photosynthetic capacity, usually much less than 50% of 'normal'.

Once emerged, the parasite shoots produce fruits annually, for at least 2 years, and often for 5 years or more (Hawksworth and Wiens, 1996).

Reproductive Biology

Arceuthobium spp. are dioecious. Pollination appears to be predominantly due to insects (especially ants and flies) but may also occur by wind (Hawksworth and Wiens, 1996). In A. abietinum f.sp. concoloris, peak anthesis usually occurs from mid-July to mid-August, with extremes from early July to late September. Fruits usually mature in September or October, with extremes from late August to early November. In A. abietinum f.sp. magnificae, peak anthesis is usually from early August to mid-September, with extremes from mid-July to late September. Fruits mature from early September to late October. The maturation period for both f.sp. averages 13-14 months. No true seed is formed, as there is no testa, but the embryo is embedded in chlorophyllous endosperm, surrounded by viscin. This will be referred to as a seed for convenience. The embryo is green, a few millimetres long, and has a meristematic radicular apex without a root cap. Dispersal of the seed is exceptional, involving a hydrostatic, explosive process which expels the seed at least 10 m. Most dispersal occurs as temperatures rise and humidity declines in the morning. The viscin ensures that it is retained by any host shoot that is hit, but if this is a needle, it may slide down with gravity to the base of the needle and germinate there. Although this is the main means of dispersal over a short range, long-distance dispersal also occurs as a result of seeds sticking to birds or mammals. However, any seeds that are ingested by animals are destroyed. Seeds of Arceuthobium spp. do not generally show dormancy and germination normally occurs in the first season after dispersal, though seeds may retain dormancy for 1-4 years when stored in ideal conditions.

Environmental Requirements

The main environmental constraint on an Arceuthobium sp. is the presence of its host, which is in turn determined by multiple environmental requirements. The different North American species most obviously differ in the latitudinal limits of their range, from those that occur in Canada and northern US states, to those which are confined to Mexico, with all intermediates. Species also differ from those with an essentially coastal distribution to those with a continental distribution. The relevant factors further interact to determine an altitudinal range, reflecting the fact that conifers form a distinctive element of montane vegetation. Soil conditions have practically no importance.


Canker due to Cytospora abietis is common on firs parasitized by A. abietinum (Hawksworth and Wiens, 1996).

Air Temperature

Top of page
Parameter Lower limit Upper limit
Mean annual temperature (ºC) 2 15
Mean maximum temperature of hottest month (ºC) 26 32
Mean minimum temperature of coldest month (ºC) -22 -2


Top of page
ParameterLower limitUpper limitDescription
Dry season duration212number of consecutive months with <40 mm rainfall
Mean annual rainfall200600mm; lower/upper limits

Rainfall Regime

Top of page

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Caliciopsis arceuthobii Pathogen Plants|Whole plant
Glomerella cingulata Pathogen Plants|Whole plant

Notes on Natural Enemies

Top of page
Major fungal parasites of Arceuthobium spp. in North America that occur on A. abietinum are Caliciopsis arceuthobii and Colletotrichum gloeosporioides (Hawksworth and Wiens, 1996).

The brown felt blight fungus (Herpotrichia juniperi) has been found infecting A. abietinum as well as its Abies host. Its potential as a biological control agent with G. cingulata has been considered (Scharpf, 1986).

Means of Movement and Dispersal

Top of page
Natural Dispersal (Non-Biotic)

Natural dispersal is by the explosive fruits which can expel the seeds at speeds of 2.6 m/s up to a 15-m distance (Hinds and Hawksworth, 1965). In spite of this, the natural spread may not exceed about 1.5 m/annum (Hawksworth, 1958).

Vector Transmission (Biotic)

Seeds falling onto the plumage of birds, or the fur of animals, tend to stick and may be dispersed for long distances. About 7% of birds and mammals trapped carried seeds, this rose to 22% during the 2-week period of maximum seed release (Hawksworth and Johnson, 1989).

Agricultural Practices

Logging and movement of timber which has not been completely de-barked, can result in movement of complete plants of Arceuthobium and possible transfer of seeds and establishment of new infestations.

Accidental Introduction

Accidental introduction of Arceuthobium spp. into new areas or continents does not appear very likely. Seeds are short-lived, and unlikely to reach a host tree under circumstances in which they could develop. Conifer plants could carry living mistletoe plants, especially in the prolonged endophytic stage before the external plant develops, but young plants, as normally traded, are not very likely to be infected. Mistletoes could be carried on cut branches, including Christmas trees, and possibly on logs with bark (though mistletoes normally occur on the branches of trees, not on trunks). But it seems unlikely that mistletoes borne on cut, dead plants present any risk of transmission. Accordingly, introduction can be prevented relatively easily. The prohibition of import of plants for planting of the main host genera (as established, for example, in the phytosanitary regulations of the European Union) blocks the only really dangerous pathway.

Intentional Introduction

Intentional introduction would seem extremely unlikely, other than for research.

Plant Trade

Top of page
Plant parts not known to carry the pest in trade/transport
Fruits (inc. pods)
Growing medium accompanying plants
Seedlings/Micropropagated plants
Stems (above ground)/Shoots/Trunks/Branches
True seeds (inc. grain)

Impact Summary

Top of page
Animal/plant collections None
Animal/plant products None
Biodiversity (generally) None
Crop production None
Environment (generally) None
Fisheries / aquaculture None
Forestry production Negative
Human health None
Livestock production None
Native fauna None
Native flora None
Rare/protected species None
Tourism None
Trade/international relations Negative
Transport/travel None


Top of page
Arceuthobium species as a whole are regarded as some of the most serious of all pests/diseases of North American forests. Dwarf mistletoes are much more damaging to their hosts than the 'green' mistletoes in both Loranthaceae and Viscaceae. Having little photosynthetic capacity, they draw more heavily on host carbohydrate, and furthermore interfere with photosynthate translocation to the roots. The mistletoe has a girdling effect, resulting in an accumulation of photosynthate above the site of infection. Apparently carbohydrates are withheld from the roots in quantities sufficient to cause the characteristic decline of the tree (Rediske and Shea, 1961; Hawksworth and Wiens, 1996). There are also severe growth-regulatory effects resulting from cytokinin production at the point of infection and the redirection of host photosynthate into the resulting witches broom growths. These distort and suppress growth of branches and even the main trunk. Wood quality is further affected as a result of swellings, witches' brooms and knots, and structural weakening associated with shortened, distorted tracheids.

A. abietinum causes severe damage to Abies spp. in western North America.

Risk and Impact Factors

Top of page
  • Invasive in its native range
  • Highly mobile locally
  • Has high reproductive potential
Impact outcomes
  • Negatively impacts agriculture
Impact mechanisms
  • Competition - monopolizing resources
Likelihood of entry/control
  • Difficult/costly to control

Similarities to Other Species/Conditions

Top of page
A dwarf mistletoe on Abies is most likely to be A. abietinum. A. douglasii, A.laricis and A. tsugense (q.v.) occur on Abies, but are much smaller and are different in colour. In central Mexico, another species (A. abietis-religiosa) is larger, olive-green and occurs on A. religiosa.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Cultural Control

In the absence of any simple direct means of control of dwarf mistletoes, and the vast areas of forest involved, cultural management is virtually the only approach to the problem, the techniques varying according to the type of stand in which the problem occurs. Management options listed by Hawksworth and Johnson (1989) include:

- Survey

- Use RMYLD model to predict yields (Edminster, 1978; Hawksworth, 1978)

- Favour or plant resistant tree species

- Prune infected branches and witches' brooms

- Destroy the whole stand (including the use of fire) and regenerate

- Fell non-merchantable infected trees

- Sanitation thin

- Harvest and regenerate the stand

- Do nothing.

Hawksworth and Johnson (1989) also refer to mechanisms to help prevent infection, including the use of natural or man-made barriers (roads, streams, strips of non-susceptible forest) to reduce (re)invasion from adjacent infested stands; and removing infected trees before re-planting/regeneration.

Detailed surveys are an essential ingredient of successful control programmes and the 6-class rating system (Hawksworth, 1977) is widely accepted as a standard. This involves a 0-6 score based on 0, 1 or 2 for each third (lower, middle, upper) of the tree; 0 for no infection, 1 for light infection (less than half the branches affected) or 2 for heavy infection (more than half infected).

In recently harvested, regenerating stands, the emphasis is on the complete removal of any infected trees over 2 m, regardless of commercial value, both within the stand, and along borders to a distance of 18 m, before the regeneration is 1 m high.

In pre-commercial stands in which surveys show less than 40% infected trees, it should be economic to do selective thinning to remove all those infected. Above 40% this is unlikely to be economic. Severely infested stands may best be harvested early and regenerated, but decisions may require use of available models to help devise the most economic option. Some of the available models are described by Muir and Geils (2002).

Dwarf mistletoes may contribute in various ways to biodiversity - by creating openings in the forest following tree death, by providing nesting sites in the 'brooms' and by providing food for a range of vertebrates and invertebrates. There can therefore be some conflict between the requirements of forest exploitation, and environmental concerns.

Mechanical Control

Pruning may be appropriate as a means of reducing damage to individual trees, but more generally to reduce the source of infection for surrounding trees. The practicality, however, is that it will only be feasible in particular amenity and recreation areas.

Clear-felling (with or without fire) is appropriate where a stand is so severely infested that it needs to be abandoned and regenerated or re-planted.

Chemical Control

The only chemical approved for use against dwarf mistletoes is the ethylene-releasing growth regulator, ethephon, which can cause abscission of the shoots of some Arceuthobium spp. and delay fresh seeding for 2-4 years, but there is eventual re-growth from the endophyte. It is difficult to achieve good coverage in larger trees from the ground, while applications from the air fail to penetrate the canopy adequately. The treatment is therefore of interest mainly for high-value amenity trees. It is not clear whether ethephon is practical or effective for the control of A. abietinum.
Biological Control

Colletotrichum gloeosporioides [Glomerella cingulata] is being developed as a biocontrol agent for use on A. americanum and A. tsugense (Geils et al., 2002) and has shown promise in field trials. Work is also in progress on two other pathogens, Caliciopsis arceuthobii and Nectria neomacrospora.

Integrated Control

Hawksworth and Johnson (1989) emphasise the importance of integrating dwarf mistletoe control, with measures to reduce damage from the mountain pine beetle (Dendroctonus ponderosae).


Top of page

Edminster CB, 1978. RMYLD: computation of yield tables for even-aged and two-storied stands. Research Paper RM-199, Fort Collins, USA: United States Department of Agriculture Forest Service.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization.

Geils BW; Tovar JC; Moody B; (technical coordinators), 2002. Mistletoes of North American Conifers. General Technical Report RMRS-GTR-98. Ogden, USA: United States Department of Agriculture Forest Service.

Hawksworth FG, 1958. Rate of spread and intensification of dwarf mistletoe in young Lodgepole Pine stands. Journal of Forestry, 56:404-407.

Hawksworth FG, 1977. The 6-class dwarf mistletoe rating system. USDA Forest Service General Technical Report, Rocky Mountain Forest and Range Experiment Station, No. RM-48:7 pp.

Hawksworth FG, 1978. Intermediate cuttings in mistletoe-infested lodgepole pine and southwestern ponderosa pine stands. General Technical Report, Pacific Southwest Forest and Range Experiment Station, No. PSW-31:86-92

Hawksworth FG; Johnson DW, 1989. Biology and management of dwarf mistletoe in lodgepole pine in the Rocky Mountains. General Technical Report - Rocky Mountain Forest and Range Experiment Station, USDA Forest Service, No. RM-169:ii + 38 pp.

Hawksworth FG; Wiens D, 1996. Dwarf Mistletoes: Biology, Pathology, and Systematics. Agriculture Handbook 709. Washington DC, USA: United States Department of Agriculture Forest Service.

Hinds TE; Hawksworth FG, 1965. Seed dispersal velocity in four dwarf mistletoes. Science, 148:517-519.

Muir JA; Geils BW, 2002. Management strategies for dwarf mistletoe: silviculture. General Technical Report - Rocky Mountain Research Station, USDA Forest Service, No. RMRS-GTR-98:83-94.

Rediske JH; Shea KR, 1961. The production and translocation of photosynthate in dwarf mistletoe and Lodgepole Pine. American Journal of Botany, 48:447-452.

Scharpf RF, 1986. Dwarf mistletoe as a host for brown felt blight in California. Plant Disease, 70(8):798-799

Distribution References

CABI, Undated. Compendium record. Wallingford, UK: CABI

CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

EPPO, 2022. EPPO Global database. In: EPPO Global database, Paris, France: EPPO. 1 pp.

Hawksworth FG, Wiens D, 1996. Dwarf Mistletoes: Biology, Pathology, and Systematics. In: Agriculture Handbook 709, Washington DC, USA: United States Department of Agriculture Forest Service.

Distribution Maps

Top of page
You can pan and zoom the map
Save map
Select a dataset
Map Legends
  • CABI Summary Records
Map Filters
Third party data sources: