Apis mellifera scutellata (africanized bee)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- History of Introduction and Spread
- Introductions
- Risk of Introduction
- Habitat
- Habitat List
- Biology and Ecology
- Climate
- Latitude/Altitude Ranges
- Rainfall Regime
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Causes
- Economic Impact
- Environmental Impact
- Threatened Species
- Social Impact
- Risk and Impact Factors
- Uses List
- Detection and Inspection
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Contributors
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Apis mellifera scutellata Lepeletier
Preferred Common Name
- africanized bee
International Common Names
- English: African bee; african honey bee; African honeybee; Africanized bee; Africanized honeybee; Brazilian bee; killer bee
- Spanish: abeja africanizada; abeja de miel africana
- French: abeille africaine; abeille africanisée
Summary of Invasiveness
Top of pageA. mellifera scutellata was imported from Africa to Brazil in 1956 to increase honey production, and 26 swarms accidentally escaped into the countryside where the queens mated with drones of the European honey bees. The subsequent poly-hybrid bees were named ‘Africanized honey bees’, and over a period of 50 years, they colonized most of South America and all of Central America. In 1990, they entered the USA through Texas, and they are now established throughout the south-western states and southern California.
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Metazoa
- Phylum: Arthropoda
- Subphylum: Uniramia
- Class: Insecta
- Order: Hymenoptera
- Family: Apidae
- Genus: Apis
- Species: Apis mellifera scutellata
Notes on Taxonomy and Nomenclature
Top of pageApis mellifera scutellata Lepeletier (Hymenoptera: Apidae) is one of a number of subspecies of A. mellifera (Western honey bee). The subspecies can be divided by their native continents as follows. Those originating in Europe include: carnica, caucasica, cecropia, cypria, iberiensis, ligustica, mellifera, remipes, ruttneri and sicula. Those originating in Africa include: adansonii, bandasii, capensis, intermissa, lamarcki, jemenitica, litoria, major, monticola, nubica, sahariensis, scutellata, unicolor and woyi-gambell. Those originating in the Middle East and Asia include: adamii, armeniaca, anatolica, macedonica, meda, pomonella and syriaca.
This datasheet includes data on pure Apis mellifera scutellata from its native range, but mostly on the invasive polyhybrid between A. mellifera scutellata and European honey bees (Apis mellifera) (Piereira and Chaud-Netto, 2005), commonly known as Africanized honey bees (AHB) or ‘killer bees’.
Description
Top of pageA. mellifera scutellata is ca. 10-20 mm long, and brown with black stripes; workers are 10-15 mm long, drones 15-17 mm, and queens 18-20 mm.
Distribution
Top of pageA. mellifera scutellata is native to eastern and southern Africa, from Ethiopia to South Africa. In Ethiopia, A. mellifera scutellata occupies the west, south and southwest humid midlands. Other morphoclusters in Ethiopia included A. mellifera jemenitica in the northwest and eastern arid and semi-arid lowlands; A. mellifera bandasii in the central moist highlands; A. mellifera monticola from the northern mountainous highlands; and A. mellifera woyi-gambell in south western semi-arid to sub-humid lowland parts of the country (Amssalu et al., 2004). Honey bees of Uganda represented an important biogeographical gap, defining the population structure of A. mellifera scutellata; however, morphometric analysis of worker honey bees has resolved this issue. At lower altitudes <200 m), honey bees formed one distinct morphocluster typical of A. mellifera scutellata throughout the continent. In comparison, those at higher altitudes (>2000 m) formed a separate distinct cluster of large, dark bees as mountain ecotypes (Radloff and Hepburn, 2001). The distribution of honey bee subspecies, including A. mellifera scutellata, in Taita Taveta District, Kenya, also appears to be related to altitude, with A. mellifera monticola found to be most widespread in the highlands and A. mellifera litorea was most common in lowland areas (Oden, 2001).
A. mellifera scutellata was introduced to Brazil in 1956 and from there it and its hybrids with European honey bees have spread to much of South America, to Central America and to the southern parts of North America.
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 27 Jun 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Botswana | Present | Native | |||||
Ethiopia | Present | Native | West, south & southwest humid midlands | ||||
Kenya | Present | Native | Taita Taveta District | ||||
Mozambique | Present | ||||||
Namibia | Present | ||||||
South Africa | Present | Native | |||||
Tanzania | Present | Native | |||||
Uganda | Present | Native | |||||
Zimbabwe | Present | Native | |||||
North America |
|||||||
Belize | Present | ||||||
Costa Rica | Present | Introduced | 1983 | Original citation: Tarpy (undated) | |||
El Salvador | Present | Introduced | 1985 | Original citation: Tarpy (undated) | |||
Guatemala | Present | ||||||
Honduras | Present | ||||||
Mexico | Present | Introduced | 1986 | Invasive | Yucatan (Quintana Roo) | ||
Nicaragua | Present | ||||||
Panama | Present | Introduced | 1982 | Invasive | forests | ||
Puerto Rico | Present | Introduced | 1994 | Invasive | |||
Trinidad and Tobago | Present | Introduced | 1979 | Not Tobago; Original citation: Tarpy (undated) | |||
United States | Present | Present based on regional distribution. | |||||
-Arizona | Present | Introduced | |||||
-Arkansas | Present, Localized | Introduced | Invasive | ||||
-California | Present | Introduced | 1994 | ||||
-Florida | Present | Introduced | Invasive | ||||
-Louisiana | Present, Localized | Introduced | Invasive | ||||
-Nevada | Present | Introduced | 1998 | Clark County. Swarms in Las Vegas in July 1998. | |||
-New Mexico | Present | Introduced | |||||
-Oklahoma | Present | Introduced | Invasive | ||||
-Texas | Present | Introduced | Invasive | ||||
-Utah | Present, Localized | Introduced | Invasive | ||||
Oceania |
|||||||
Australia | Absent | ||||||
New Zealand | Present | Introduced | Invasive | Rangitoto Island | |||
South America |
|||||||
Argentina | Present | Introduced | 1969 | Original citation: Tarpy (undated) | |||
Bolivia | Present | Introduced | 1967 | Original citation: Tarpy (undated) | |||
Brazil | Present | Present based on regional distribution. | |||||
-Amazonas | Present | Introduced | |||||
-Parana | Present | Introduced | Mandirituba | ||||
-Pernambuco | Present | ||||||
-Rio Grande do Sul | Present | Introduced | temperate | ||||
-Sao Paulo | Present | Introduced | 1956 | Invasive | Ribeirao Preto; Near Rio Claro | ||
Colombia | Present | Introduced | 1979 | Original citation: Tarpy (undated) | |||
Ecuador | Present | Introduced | 1981 | Original citation: Tarpy (undated) | |||
French Guiana | Present | Introduced | 1974 | Original citation: Tarpy (undated) | |||
Guyana | Present | Introduced | 1975 | Original citation: Tarpy (undated) | |||
Paraguay | Present | Introduced | 1965 | Original citation: Tarpy (undated) | |||
Peru | Present | Introduced | 1977 | Original citation: Tarpy (undated) | |||
Uruguay | Present | Introduced | 1971 | ||||
Venezuela | Present | Introduced | 1977 | Original citation: Tarpy (undated) |
History of Introduction and Spread
Top of pageA. mellifera scutellata was introduced into Brazil in 1956 by Warwick Estevam Kerr from South Africa and Tanzania, to assist the honey industry there because this species was better adapted to conditions in South America than various European subspecies of A. mellifera that he was using. The accidental release of queens and workers in 26 swarms into the Brazilian countryside was followed by subsequent hybridization with local European honey bee colonies (Piereira and Chaud-Netto, 2005). A. mellifera scutellata and the hybrids have since spread rapidly from the point of the original introduction near Rio Claro, Sao Paulo, Brazil, to as far south as mid-Argentina and to the north of Texas, Arizona, New Mexico, California and Nevada, USA (Kim and Oguro, 1999; Piereira and Chaud-Netto, 2005). The first record in the USA was from Hidalgo, Texas in 1993 and the bees were reported to advance at 100-300 miles (160-480 km) per year by colonizing existing hives or forming new hives in the wild (Kim and Oguro, 1999).
Introductions
Top of pageIntroduced to | Introduced from | Year | Reason | Introduced by | Established in wild through | References | Notes | |
---|---|---|---|---|---|---|---|---|
Natural reproduction | Continuous restocking | |||||||
Sao Paulo | South Africa | 1956 | Yes | No | ||||
Sao Paulo | Tanzania | 1956 | Yes | No |
Risk of Introduction
Top of pageA. mellifera scutellata is an aggressive invader, and its spread is facilitated by a high adaptability to variable ecological conditions (Piereira and Chaud-Netto, 2005), indicating that further spread is likely. See Kaplan (2004) and Schneider et al. (2004) for a discussion of traits and behaviours that are responsible for making this species a successful invader.
Habitat
Top of pageA. mellifera scutellata form colonies in tree hollows, rotted logs and man-made structures, such as wood and rock piles. A list of known nesting places of Africanized honey bees in the USA includes: trees and shrubs; wood pike or trash piles; flower pots; old tyres; ground holes; chimneys; storage sheds; wall cavities; attics and crawl spaces; roof overlaps and building eaves; underground utilities; water meters and sprinkler control boxes; old mine shafts or rock crevices; and evaporative coolers (UDAF, 2008). They can be found wherever such sites are found, most commonly in urban areas, agricultural land, forests (natural and managed), but also in riparian areas, coastal areas and occasionally in many other habitat types.
According to Oliveira and Cunha (2005), Africanized honey bees in the Americas are limited to regions of low altitude and cool winters, and principally occur in urban areas, and open or disturbed vegetation in Brazil, as opposed to the interior of dense forest, such as the Amazon. It was observed that Africanized honey bee workers did not visit baits in continuous forest or forest fragments, but were observed in deforested or open areas. This indicates that there is no possibility of source competition between Africanized and native bees within the Amazon forest, and also that large-scale beekeeping is unlikely to succeed in the region because the forest is not explored by Africanized bees.
Habitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Cultivated / agricultural land | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Cultivated / agricultural land | Principal habitat | Natural |
Terrestrial | Managed | Cultivated / agricultural land | Principal habitat | Productive/non-natural |
Terrestrial | Managed | Protected agriculture (e.g. glasshouse production) | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Protected agriculture (e.g. glasshouse production) | Secondary/tolerated habitat | Productive/non-natural |
Terrestrial | Managed | Managed forests, plantations and orchards | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Managed grasslands (grazing systems) | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Managed grasslands (grazing systems) | Secondary/tolerated habitat | Natural |
Terrestrial | Managed | Disturbed areas | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Rail / roadsides | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Urban / peri-urban areas | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Managed | Buildings | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural forests | Principal habitat | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural forests | Principal habitat | Natural |
Terrestrial | Natural / Semi-natural | Natural forests | Principal habitat | Productive/non-natural |
Terrestrial | Natural / Semi-natural | Natural grasslands | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural grasslands | Secondary/tolerated habitat | Natural |
Terrestrial | Natural / Semi-natural | Natural grasslands | Secondary/tolerated habitat | Productive/non-natural |
Terrestrial | Natural / Semi-natural | Riverbanks | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Riverbanks | Secondary/tolerated habitat | Natural |
Terrestrial | Natural / Semi-natural | Scrub / shrublands | Secondary/tolerated habitat | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Scrub / shrublands | Secondary/tolerated habitat | Natural |
Littoral | Coastal dunes | Secondary/tolerated habitat | Harmful (pest or invasive) | |
Littoral | Coastal dunes | Secondary/tolerated habitat | Natural |
Biology and Ecology
Top of pageGenetics
The period from egg to adult is approximately 18.5 days for worker bees and 16 days for queens, and adult longevity is approximately 30 days for workers, 5-10 weeks for drones, and 1-3 years for queens. For more details on egg, larvae and pupae production in A. mellifera scutellata colonies in Mandirituba, Parana, Brazil, see Pegoraro et al. (2001). One queen can produce 1500 eggs a day, and when a queen mates with a drone, the fertilized egg becomes a female worker bee, whereas unfertilized eggs become male drones, and larvae develop into queens if they are fed large quantities of royal jelly, a very nutritious creamy white liquid consisting of hypopharyngeal and mandibular gland secretions. Colonies reproduce by frequent swarming, and one colony can result in 17 other colonies in a year.
Africanized honey bees are limited to hot tropical and warm sub-tropical habitats with separate wet and dry seasons, in comparison to hot and cold seasons in cooler temperate areas. Temperate climatic restrictions seem to be a natural limit to the expansion of Africanized honey bees at latitudes of approximately 35-40°. Radloff and Hepburn (1999) reported on A. mellifera worker bees in South Africa and described three morphoclusters: an unnamed population at >1500 m altitude; bees considered to be A. mellifera scutellata x A. m. capensis hybrids; and A. m. scutellata surrounding the mountains at <1500 m altitude. High humidity is necessary for honey bee brood development and honey bees are very efficient at regulating the biophysical parameters of their hive according to the needs of the colony. However, Human et al. (2006), studying A. mellifera scutellata, suggested that regulation of humidity is adjusted within sub-optimal limits.
Climate
Top of pageClimate | Status | Description | Remark |
---|---|---|---|
A - Tropical/Megathermal climate | Preferred | Average temp. of coolest month > 18°C, > 1500mm precipitation annually | |
B - Dry (arid and semi-arid) | Preferred | < 860mm precipitation annually | |
C - Temperate/Mesothermal climate | Tolerated | Average temp. of coldest month > 0°C and < 18°C, mean warmest month > 10°C |
Latitude/Altitude Ranges
Top of pageLatitude North (°N) | Latitude South (°S) | Altitude Lower (m) | Altitude Upper (m) |
---|---|---|---|
40 | 35 |
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Varroa destructor | Parasite | Other|Adult Female; Other|Adult Male | to genus |
Notes on Natural Enemies
Top of page
Small hive beetles (Aethina tumida) are pests of honey bees and can damage combs, stored honey and pollen. A study by Neumann and Hartel (2004) showed that A. mellifera scutellata remove unprotected eggs and larvae of the beetles and this behaviour plays an important role in the apparent resistance of African honey bees towards infestations by small hive beetles. They are also affected by the mite Varroa destructor in the same way as other bee subspecies
A number of bacteria are associated with honey bees and in a study of those associated with A. mellifera capensis and A. mellifera scutellata by Jeyaprakash et al. (2003), Lactobacillus and Bifidobacterium were found. These have also been reported from other honey bee subspecies; however, other sequences were found associated with honey bees for the first time, e.g. Bartonella, Gluconacetobacter; Simonsiella/Neisseria; and Serratia. Another bacterium, the parasitic microbe Wolbachia, is found in workers and drones of A. mellifera scutellata and hybrid workers of A. mellifera capensis and A. mellifera scutellata (Hoy et al., 2003).
Gene sequencing of a microsporidium from honey bees in Zimbabwe has found Nosema apis, a fungal parasite of honey bees, causing nosemosis or nosema (Fries, 2002; Fries et al., 2003).
Means of Movement and Dispersal
Top of pageNatural Dispersal (Non-Biotic)
Pathway Causes
Top of pageCause | Notes | Long Distance | Local | References |
---|---|---|---|---|
Breeding and propagation | From South Africa & Tanzania to Brazil | Yes | Yes | Piereira and Chaud-Netto (2005) |
Escape from confinement or garden escape | From South Africa & Tanzania to Brazil, then escaped into the Brazilian countryside | Yes | Piereira and Chaud-Netto (2005) | |
Intentional release | From South Africa & Tanzania to Brazil ,to aid honey bee production in Brazil | Yes | Piereira and Chaud-Netto (2005) | |
People sharing resources | Yes | Piereira and Chaud-Netto (2005) |
Economic Impact
Top of pageA. mellifera scutellata negatively affects the beekeeping industry because it competes with European honey bees (A. mellifera), invading nests and causing A. mellifera to produce less honey. Labour costs are high because harvesting of A. mellifera scutellata honey requires handling aggressive bees and frequently re-queening colonies. However, once these obstacles are overcome, beekeeping with A. mellifera scutellata is considered to be a good investment (Goncalves, 2004).
A possibly more significant negative economic impact is caused by livestock fatalities resulting from Africanized bee stings, of which there have been very many thousands, though the exact number and the actual economic cost have not been fully estimated.
Environmental Impact
Top of pageImpact on Habitat
In pristine and fragmented Amazonian rainforest, tropical rain forest trees characteristically occur in low population densities and rely on animals for cross-pollination. However, Dick et al. (2003) studied pollen dispersal and found that in highly disturbed habitats, A. mellifera may expand genetic neighbourhood areas and so link fragmented and continuous forest populations. For example, Dinizia excelsa was found to thrive in pastures and forest fragments in Manaus, Brazil even in the absence of native pollinators, and A. mellifera scutellata was the predominant floral visitor in fragmented habitats, also replacing native insects in isolated pasture trees. Gene flow over 3.4 km was reported in pasture indicating the significance of this bee in possibly altering the genetic structure of remnant populations via frequent, long-distance gene flow (Dick, 2001).
A. mellifera scutellata is spreading throughout tropical and subtropical America, hybridizing with and for the most part replacing European honey bees (mainly Apis mellifera mellifera and Apis mellifera ligustica).
Threatened Species
Top of pageThreatened Species | Conservation Status | Where Threatened | Mechanism | References | Notes |
---|---|---|---|---|---|
Apis mellifera ligustica | No details | USA | Competition; Hybridization | Martin and Kryger (2002) | |
Apis mellifera mellifera | No details | USA | Competition; Hybridization | Martin and Kryger (2002) |
Social Impact
Top of pageA. mellifera scutellata swarms were given the common name ‘killer bees’ after causing death in pets, livestock and humans. In Brazil, accidents caused by A. mellifera scutellata have been attributed to high swarming frequencies and the variety of shelters available to them in urban areas (Piereira and Chaud-Netto, 2005). Massive envenomations by honey bees can cause multiorgan dysfunction as a result of the direct toxic effects of the large venom load received, although the mechanisms behind this are not clearly understood (Betten et al., 2006). The Africanized honey bee is the most commonly implicated species in such attacks. Although reports of deaths vary, the first victim of Africanized honey bees was in 1991, with the first death in 1993, and to date they have apparently killed some 1000 humans in Brazil, with 175 deaths in Mexico since 1985, and seven deaths in the USA since 1993.
Risk and Impact Factors
Top of page- Invasive in its native range
- Proved invasive outside its native range
- Has a broad native range
- Abundant in its native range
- Highly adaptable to different environments
- Is a habitat generalist
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Pioneering in disturbed areas
- Capable of securing and ingesting a wide range of food
- Highly mobile locally
- Benefits from human association (i.e. it is a human commensal)
- Long lived
- Has high reproductive potential
- Gregarious
- Reproduces asexually
- Changed gene pool/ selective loss of genotypes
- Conflict
- Damaged ecosystem services
- Ecosystem change/ habitat alteration
- Negatively impacts human health
- Negatively impacts livelihoods
- Reduced amenity values
- Reduced native biodiversity
- Threat to/ loss of native species
- Allelopathic
- Causes allergic responses
- Competition - monopolizing resources
- Pest and disease transmission
- Hybridization
- Induces hypersensitivity
- Interaction with other invasive species
- Poisoning
- Highly likely to be transported internationally accidentally
- Difficult to identify/detect in the field
- Difficult/costly to control
Uses List
Top of pageEnvironmental
- Commercial pollinator
Human food and beverage
- Honey/honey flora
Medicinal, pharmaceutical
- Traditional/folklore
Detection and Inspection
Top of pageSimilarities to Other Species/Conditions
Top of pageA. mellifera is similar to A. mellifera scutellata, and it is very difficult for the layperson to positively distinguish Africanized honeybees from common European honeybees, as apart from genetic analysis, a comparison of up to as 20 different body measurements is the only way to distinguish subspecies with any certainty (Kaplan, 2004). Also, the Africanized honey bee is more defensive around its nests than the European bee and has a tendency to sting in large numbers. A. mellifera can withstand colder temperatures compared to A. mellifera scutellata. A. mellifera scutellata is slightly smaller than A. mellifera and less selective in habitat selection.
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Prevention
Early warning systems
Behavioural studies of A. mellifera scutellata have been undertaken with the aim of creating informed strategies for dealing with Africanized honey bees and educating the public (Mello et al., 2003). The removal of bee colonies and swarms in Sao Paulo, Brazil was positively correlated with average temperature and degree of insolation, and negatively correlated with relative humidity and rainfall, and it was shown to be likely that colonies nested in artificial constructions, whereas wandering swarms tended to nest in trees. Such results can be used to predict times of the year when people should be more alert for activity of the bees. State Agricultural Departments in the USA have been tracking and studying Africanized honey bees since their introduction, and in particular, the Utah Department of Agriculture and Food has been setting traps since 2003 as an early warning line (UDAF, 2008).
Public awareness
Public awareness facilitated by studies such as that by Mello et al. (2003) will hopefully lead to the removal of structures seen as potential nesting sites for the bees and avoidance of areas possibly harbouring swarms. Africanized bees are much more likely to attack to defend their colonies compared to European honey bees and attacks are provoked by vibration, noise or motion within 50 feet of the nest. Offending origins of such sounds include lawn mowers, leaf blowers and hedge trimmers, and the odour of freshly cut grass or citrus may also be a source of provocation. Animals and humans may be pursued for up to a quarter of a mile and bees remain agitated for up to 8 hours after disturbance (UDAF, 2008).
Control
Biological control
Chemical control
References
Top of pageCox B, 1994. AHB in Puerto Rico. American Bee Journal, 134(10):668-669.
Hepburn HR, 2001. The enigmatic Cape honey bee, Apis mellifera capensis. Bee World, 82(4):181-191.
ISSG (IUCN SSC Invasive Species Specialist Group), 2013. Global Invasive Species Database (GISD). IUCN SSC Invasive Species Specialist Group. http://www.issg.org/database/welcome/
USDA, 2011. Africanized Honey Bees. http://www.ars.usda.gov/Research/docs.htm?docid=11059
Distribution References
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Cox B, 1994. AHB in Puerto Rico. American Bee Journal. 134 (10), 668-669.
Schotman C Y L, 1989. Plant pests of quarantine importance to the Caribbean. In: RLAC-PROVEG, 80 pp.
USDA, 2011. Africanized Honey Bees., http://www.ars.usda.gov/Research/docs.htm?docid=11059
Walker K, 2022. East African lowland honey bee (Apis mellifera scutellata). https://www.padil.gov.au/pests-and-diseases/pest/main/135539
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
Africanized ‘killer’ bees: a problem for North Carolina? | http://www.ncagr.com/plantindustry/plant/apiary/ncahb_files/VersionForPublic.ppt | |
Africanized Honey Bees | http://www.ars.usda.gov/Research/docs.htm?docid=11059 |
Contributors
Top of page22/05/08 Original text by:
Claire Beverley, CABI, Nosworthy Way, Wallingford, Oxon OX10 8DE, UK
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/