Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


turkey rhinotracheitis



turkey rhinotracheitis


  • Last modified
  • 14 July 2018
  • Datasheet Type(s)
  • Animal Disease
  • Preferred Scientific Name
  • turkey rhinotracheitis
  • Overview
  • Rhinotracheitis in turkeys is perhaps the most economically important disease caused by avian metapneumovirus (aMPV) amongst poultry species, although avian metapneumovirus represents a number of rel...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Turkey poult infected with avian metapneumovirus, showing swollen infra-orbital sinuses.
CaptionTurkey poult infected with avian metapneumovirus, showing swollen infra-orbital sinuses.
CopyrightDavid Cavanagh
Turkey poult infected with avian metapneumovirus, showing swollen infra-orbital sinuses.
SymptomsTurkey poult infected with avian metapneumovirus, showing swollen infra-orbital sinuses.David Cavanagh
Turkey poult infected with avian metapneumovirus, showing frothy eye.
CaptionTurkey poult infected with avian metapneumovirus, showing frothy eye.
CopyrightDavid Cavanagh
Turkey poult infected with avian metapneumovirus, showing frothy eye.
SymptomsTurkey poult infected with avian metapneumovirus, showing frothy eye.David Cavanagh
Domestic fowl infected with avian metapneumovirus, showing swollen head and nasal exudate.
CaptionDomestic fowl infected with avian metapneumovirus, showing swollen head and nasal exudate.
CopyrightDavid Cavanagh
Domestic fowl infected with avian metapneumovirus, showing swollen head and nasal exudate.
SymptomsDomestic fowl infected with avian metapneumovirus, showing swollen head and nasal exudate.David Cavanagh


Top of page

Preferred Scientific Name

  • turkey rhinotracheitis

International Common Names

  • English: APV infection; avian metapneumovirus infection; avian pneumovirus infection; avian rhinotracheitis; swollen head syndrome


Top of page

Rhinotracheitis in turkeys is perhaps the most economically important disease caused by avian metapneumovirus (aMPV) amongst poultry species, although avian metapneumovirus represents a number of related viruses that can replicate to a greater or lesser extent in other galliformes, including the domestic fowl, and also in wild birds (Gough and Jones, 2008). The virus belongs to the genus Metapneumovirus in the sub-family Pneumovirinae of the family Paramyxoviridae. aMPVs have been detected in poultry in Africa, Asia, Europe, North America and South America.

The first isolate of aMPV was the cause of rhinotracheitis in turkeys in South Africa in the late 1970s (Buys and du Preez, 1980; Buys et al., 1989a). Four subtypes of aMPV are recognised: A, B, C and D. Subtypes A and B have been detected in poultry in Asia, Europe and South America but not in North America, whereas subtype C was discovered in North America and later in Europe (Toquin et al., 1999; Toquin et al., 2006). Subtype D was isolated in France in 1985 (Bäyon-Auboyer et al., 1999, 2000). The subtypes differ substantially in their genome sequences, the genomes being a non-segmented, single-stranded, negative sense RNA of approximately 13 500 nucleotides.

In turkeys aMPVs may, depending on the country, be the most important of the viral respiratory pathogens, causing substantial economic loss. The aMPVs also cause disease in domestic fowl though the extent is variable, even within a region, other respiratory viruses also having an impact. Breeders, layers and meat-type turkeys and chickens are affected. The disease may be manifest more as a rhinitis than a tracheitis, and the virus can replicate in reproductive organs. In addition to general diminution of productivity the virus predisposes to secondary bacterial infection, which can be fatal. A number of live and killed vaccines are available to control infections by subtypes A and B.

aMPVs have been detected in many wild and semi-wild bird species on the same continents as aMPVs in poultry (see Hosts/species affected, below).

Hosts/Species Affected

Top of page

All types of turkeys are susceptible – commercial meat-type birds, parents and grandparents (Pattison, 1998). Generally, turkey poults are more likely to exhibit high mortality than juvenile and older birds – though mortality in these birds can be high if they have not been vaccinated or naturally infected whilst young. Significant mortality does not always occur, even in poults, as mortality is dependent in part by secondary bacterial infection. Environmental and management factors will affect the outcome, as is the case for other diseases.

Experimental studies have shown that clinical signs exhibited by domestic fowl after aMPV infection are generally of less severity than in turkeys (Catelli et al., 1998). As in turkeys, the virus can adversely affect the performance of young birds and adults.

All four subtypes of aMPV have been variously detected in wild and semi-wild bird species, including: pheasants (Gough et al., 1988; Lee et al., 2007); guinea fowl (Litjens et al., 1989); sea gulls, including herring gull, Larus argentus argentus (Heffels-Redmann et al., 1998) and ring-billed gulls (Bennett et al., 2004); Muscovy duck (Toquin et al., 1999); house sparrows (Bennett et al., 2004; Gharaibeh & Shamoun, 2012); snow geese (Bennett et al., 2004); wild birds in the orders Psittaciformes, Anseriformes and Craciformes, and the Anas and Dendrocygma genera (Anseriformes Order) in Brazil (Felippe et al., 2011); pigeons (Gharaibeh & Shamoun, 2012). Thus aMPVs have a wide host range, and many avian species possibly pose a disease security threat to poultry in respect of aMPVs.


Top of page

Following the discovery of aMPV in turkeys in South Africa in the late 1970s, the virus was isolated from domestic fowl in South Africa (reported by Buys et al., 1989b) and UK (Morely and Thomson, 1984) and then from turkeys and domestic fowl in many European countries in the mid to late 1980s (McDougall and Cook, 1986; Giraud et al., 1986; Wilding et al., 1986; Wyeth et al., 1987; Picault et al., 1987) and elsewhere in the 1990s, including North America (Cook et al., 1993a, 1999; Dani et al., 1999a,b; Panigrahy et al., 2000) and subsequently, including in Brazil (D’Arce et al., 2005; Chacón et al., 2011), Israel (Banet-Noach et al., 2005), Japan (Mase et al., 2003); Korea (Lee et al., 2007; Kwon et al., 2010); and Turkey (Ongor et al., 2010). It can be seen that aMPVs are widely distributed, both in poultry, game birds and in wild birds.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


AfghanistanNo information availableOIE, 2009
ArmeniaDisease never reportedOIE, 2009
AzerbaijanDisease not reportedOIE, 2009
BahrainDisease never reportedOIE, 2009
BangladeshDisease not reportedOIE, 2009
BhutanDisease never reportedOIE, 2009
CambodiaNo information availableOIE, 2009
ChinaNo information availableNULLWei Ping, 1995; OIE, 2009
-Hong KongNo information availableOIE, 2009
IndiaNo information availableOIE, 2009
IndonesiaNo information availableOIE, 2009
IranDisease not reportedOIE, 2009
IraqNo information availableOIE, 2009
IsraelPresentNULLPerelman et al., 1988; Bendheim and Samberg, 1990; OIE, 2009
JapanNo information availableNULLCAB ABSTRACTS Data Mining 2001; OIE, 2009
-HonshuWidespreadTanaka et al., 1995; Nakamura et al., 1997; Mase, 1998
JordanNo information availableOIE, 2009
KazakhstanNo information availableOIE, 2009
Korea, Republic ofNo information availableOIE, 2009
KuwaitDisease never reportedOIE, 2009
KyrgyzstanNo information availableOIE, 2009
LaosDisease not reportedOIE, 2009
LebanonDisease not reportedOIE, 2009
MalaysiaDisease not reportedOIE, 2009
MongoliaNo information availableOIE, 2009
MyanmarDisease never reportedOIE, 2009
NepalNo information availableOIE, 2009
OmanDisease never reportedOIE, 2009
PakistanNo information availableOIE, 2009
PhilippinesDisease never reportedOIE, 2009
QatarNo information availableOIE, 2009
Saudi ArabiaNo information availableOIE, 2009
SingaporeDisease never reportedOIE, 2009
Sri LankaDisease never reportedOIE, 2009
SyriaNo information availableOIE, 2009
TaiwanPresentLu et al., 1994
TajikistanDisease not reportedOIE, 2009
ThailandDisease never reportedOIE, 2009
TurkeyNo information availableNULLAydin and Gürbüz, 1996; OIE, 2009
United Arab EmiratesDisease never reportedOIE, 2009
VietnamNo information availableOIE, 2009
YemenNo information availableOIE, 2009


AlgeriaNo information availableOIE, 2009
AngolaNo information availableOIE, 2009
BeninNo information availableOIE, 2009
BotswanaDisease never reportedOIE, 2009
Burkina FasoNo information availableOIE, 2009
ChadNo information availableOIE, 2009
CongoNo information availableOIE, 2009
DjiboutiNo information availableOIE, 2009
EgyptNo information availableNULLYoussef and Ahmed, 1996; Mona et al., 1997; OIE, 2009
EritreaNo information availableOIE, 2009
EthiopiaNo information availableOIE, 2009
GabonNo information availableOIE, 2009
GambiaNo information availableOIE, 2009
GhanaNo information availableOIE, 2009
GuineaNo information availableOIE, 2009
Guinea-BissauNo information availableOIE, 2009
KenyaNo information availableOIE, 2009
LesothoDisease never reportedOIE, 2009
MadagascarDisease never reportedOIE, 2009
MalawiNo information availableOIE, 2009
MaliNo information availableOIE, 2009
MauritiusDisease never reportedOIE, 2009
MoroccoNo information availableOIE, 2009
MozambiqueDisease not reportedOIE, 2009
NamibiaNo information availableOIE, 2009
NigeriaDisease never reportedOIE, 2009
RwandaNo information availableOIE, 2009
SenegalNo information availableOIE, 2009
South AfricaNo information availableNULLBuys et al., 1989a; Buys et al., 1989b; Maharaj et al., 1994; OIE, 2009
SudanDisease never reportedOIE, 2009
SwazilandNo information availableOIE, 2009
TanzaniaNo information availableOIE, 2009
TogoNo information availableOIE, 2009
TunisiaDisease not reportedOIE, 2009
UgandaNo information availableOIE, 2009
ZambiaNo information availableOIE, 2009
ZimbabweDisease not reportedNULLCadman et al., 1994; OIE, 2009

North America

CanadaDisease never reportedOIE, 2009
GreenlandDisease never reportedOIE, 2009
MexicoDisease never reportedOIE, 2009
USARestricted distributionOIE, 2009
-ColoradoPresentCook et al., 1989
-MinnesotaPresentSeal, 1998; Cook et al., 1999
-North DakotaPresentPanigrahy et al., 2000
-South DakotaPresentPanigrahy et al., 2000

Central America and Caribbean

BelizeDisease never reportedOIE, 2009
Costa RicaNo information availableOIE, 2009
CubaDisease never reportedOIE, 2009
Dominican RepublicNo information availableOIE, 2009
El SalvadorNo information availableOIE, 2009
GuadeloupeNo information availableOIE, 2009
GuatemalaDisease never reportedOIE, 2009
HaitiDisease never reportedOIE, 2009
HondurasDisease never reportedOIE, 2009
JamaicaNo information availableOIE, 2009
MartiniqueNo information availableOIE, 2009
NicaraguaDisease never reportedOIE, 2009
PanamaNo information availableOIE, 2009

South America

ArgentinaDisease never reportedOIE, 2009
BoliviaNo information availableOIE, 2009
BrazilDisease never reportedOIE, 2009
-Sao PauloPresentDani et al., 1999a; Dani et al., 1999b
ChileAbsent, reported but not confirmedNULLToro et al., 1998; OIE, 2009
ColombiaDisease never reportedOIE, 2009
EcuadorDisease never reportedOIE, 2009
French GuianaNo information availableOIE, 2009
PeruDisease never reportedOIE, 2009
UruguayDisease never reportedOIE, 2009
VenezuelaDisease never reportedOIE, 2009


AlbaniaDisease never reportedOIE, 2009
AustriaNo information availableNULLPollan et al., 1992; OIE, 2009
BelarusNo information availableOIE, 2009
BelgiumDisease not reportedNULLZande et al., 1997; Zande et al., 1998; OIE, 2009
BulgariaNo information availableOIE, 2009
CroatiaDisease not reportedOIE, 2009
CyprusDisease not reportedOIE, 2009
Czech RepublicDisease not reportedOIE, 2009
DenmarkDisease not reportedOIE, 2009
EstoniaNo information availableOIE, 2009
FinlandDisease not reportedOIE, 2009
FranceNo information availableNULLGiraud et al., 1986; Picault et al., 1987; OIE, 2009
GermanyDisease not reportedNULLHafez and Löhren, 1990; Redmann et al., 1991; Pollan and Anrather, 1993; Redmann et al., 1993; Wemmer, 1993; OIE, 2009
GreeceNo information availableOIE, 2009
HungaryRestricted distributionNULLCook et al., 1993a; Szalay et al., 1991; OIE, 2009
IcelandDisease never reportedOIE, 2009
IrelandDisease not reportedOIE, 2009
ItalyNo information availableNULLCapua et al., 1994; Fabris et al., 1998; OIE, 2009
LatviaDisease never reportedOIE, 2009
LiechtensteinDisease not reportedOIE, 2009
LithuaniaDisease not reportedOIE, 2009
LuxembourgDisease never reportedOIE, 2009
MacedoniaNo information availableOIE, 2009
MaltaDisease never reportedOIE, 2009
MontenegroDisease never reportedOIE, 2009
NetherlandsPresentNULLCook et al., 1993a; Litjens et al., 1989; OIE, 2009
NorwayDisease never reportedOIE, 2009
PolandNo information availableNULLMinta et al., 1995; Ramza, 1995; OIE, 2009
PortugalDisease not reportedOIE, 2009
RomaniaNo information availableOIE, 2009
Russian FederationAbsent, reported but not confirmedOIE, 2009
SerbiaDisease never reportedOIE, 2009
SlovakiaDisease not reportedNULLJantosovic et al., 1997; OIE, 2009
SloveniaDisease not reportedNULLZorman-Rojs and Stalcer, 1998; OIE, 2009
SpainNo information availableNULLPagès and San, 1990; Majó et al., 1998; OIE, 2009
SwedenDisease never reportedNULLAnon, 1998; OIE, 2009
SwitzerlandDisease never reportedOIE, 2009
UKRestricted distributionNULLCook et al., 1993a; Jones et al., 1986; Wyeth et al., 1987; Cook et al., 1988; Cavanagh et al., 1999; OIE, 2009
UkraineDisease never reportedOIE, 2009
Yugoslavia (former)PresentBi<d>in et al., 1990


AustraliaDisease never reportedOIE, 2009
French PolynesiaDisease not reportedOIE, 2009
New CaledoniaDisease never reportedOIE, 2009
New ZealandDisease never reportedOIE, 2009


Top of page


Examination of nasal turbinates following experimental infection revealed clear to greyish exudates, first watery and then mucoid. This lasted 9 days. In the trachea there was excess mucous up to 7 days (Jones et al., 1988). In the field, serious secondary bacterial infection of poults is more likely, with effects similar to those of infection of domestic fowl described below.

In one study experimental infection of 7-week-old poults with type C virus did not reveal gross lesions in turbinates, infraorbital sinuses and trachea, but microscopic examination showed acute rhinitis, sinusitis and tracheitis (Panigrahy et al., 2000). In another experimental study using 3-week-old poults, Jirjis et al. (2000) observed gross changes of clear frothy fluid in the sinuses up to 10 days after inoculation. Microscopic changes were observed in nasal turbinates and infraorbital sinuses but not trachea or other respiratory tissues, including infiltration by lymphocytes, macrophages and plasma cells.

Intranasal infection of laying turkey hens, not previously infected with aMPV, resulted in infection of the oviduct (Jones et al., 1988). White masses of inspissated albumen were commonly observed up to 12 days after infection. Less frequently, there were deposits of solid yolk material in the abdomen. One bird had a folded shell membrane in the magnum whilst another had egg peritonitis. Misshapen asymmetric eggs were present in the uterus. There were signs of early stage ovary regression, with follicles showing shrinkage.

Domestic fowl

The lesions in broilers have been described by Cook and Pattison (1996) as a fine petechiation of the turbinate mucosa, progressing to a severe generalized red to purple discoloration of the mucosa. Yellow, oedematous subcutaneous tissue is revealed when the skin over the head is removed. Pericarditis and perihepatitis may be seen (Nakamura et al., 1997). Histological analysis reveals marked fibrinopurulent inflammation with oedema in the subcutaneous tissues of the head. Also seen in these tissues were marked exudation of fibrin, serum, heterophils, lymphocytes and macrophage with Gram-negative bacilli and sometimes vasculitis and thrombus formation were seen. Purulent inflammation in the air spaces of cranial spongy bones may be observed. Respiratory tissues exhibit rhinitis, infraorbital sinusitis and tracheitis.

McMullin (1998) has described field aMPV infections in broiler breeders. Sinusitis and rhinitis were seen but not tracheitis. Pus in subcutaneous tissue was observed less frequently than in broilers although pus with fluid accumulation was observed in cranial bones. Cook and Pattison (1996) report extensive peritonitis, initially as a moist inflammatory lesion in the ovarian region, often with yolk free in the peritoneum. Subsequently, there are advanced inflammatory lesions of the peritoneum with large amounts of yolk material.


Top of page

Clinical Diagnosis and Lesions

The observations described in Disease Course and Pathology for infection of turkeys would be indicative of infection by aMPV but not diagnostic. In domestic fowl the clinical signs and lesions seen could be associated with a number of viruses and bacteria. Laboratory diagnosis is, therefore, required for confirmation.

Differential Diagnosis


The clinical signs exhibited by turkeys infected by aMPV are similar to those caused by other pathogens, including avian influenza virus, Newcastle disease virus, mycoplasmas, Bordetella avium, Pasteurella spp. and Aspergillus spp. Indeed, many pathogens were incorrectly implicated as the primary aetiological agent of turkey rhinotracheitis before the discovery of aMPV. Clinically, infection by Bordetella avium cannot be distinguished from that of aMPV. The name 'turkey rhinotracheitis' is best used for infections by aMPV, 'turkey coryza' being used for Bordetella avium infection.

Domestic fowl

Infection with infectious bronchitis virus and mild forms of Newcastle disease virus and avian influenza virus could produce similar clinical signs and pathology as aMPV, as would infection by Mycoplasma spp. and bacteria such as Haemophilus paragallinarum and Escherichia coli.

Laboratory Diagnosis

Laboratory diagnosis is essential for confirmation of aMPV infections.

Reverse transcriptase polymerase chain reaction (RT-PCR) tests are now the preferred means of laboratory diagnosis of active infections, and many have been described, including: (Naylor et al., 1997a,b; Bäyon-Auboyer et al., 1999; Cavanagh et al., 1999; Banet-Noach et al., 2005; D’Arce et al., 2005; Kwon et al., 2010; Chacón et al., 2011; Falchieri et al., 2012. This approach has been used directly on virus recovered on mouth, nose and tracheal swabs, avoiding the need for virus isolation. The identity of the PCR product may be confirmed by sequencing.

Antibody detection is also used to confirm aMPV infections. Several ELISAs are commercially available for this purpose. Ideally, paired sera should be examined for evidence of a rise in titre. A single live vaccination with aMPV generally stimulates a poor antibody response in contrast to infection with virulent virus. ELISAs made with either A or B types of aMPV have been used to detect infection with both types of virus but it is generally accepted that sensitivity is greater when the homologous antigen is used (Eterradossi et al., 1995; Toquin et al., 1996; Bäyon-Auboyer et al., 1999). Antibodies to type C virus were not detected by ELISAs with types A and B antigen (Senne et al., 1998; Toquin et al., 1999). Choi et al. (2010) have demonstrated that diagnosis of aMPV infection in laying hens by yolk ELISA to detect anti-aMPV antibodies may be a suitable alternative to testing serum.

Antibodies can also be detected by indirect immunofluorescence applied to sections of tissue; trachea has been most widely used. Neutralization tests may be applied, though less frequently than RT-PCR tests, using virus grown in tracheal organ cultures (ciliostasis being used to determine the endpoint) or, after adaptation, to chick embryo fibroblasts or Vero cells (absence of cytopathic effect or antigen detectable by fluorescence/immunoperoxidase staining being used to determine the endpoints). aMPVs do not cause haemagglutination, hence haemagglutination-inhibition tests cannot be used.

Primary isolation of aMPV is carried out using chicken tracheal organ culture (TOC) or chicken embryonated eggs with subsequent adaptation in chicken embryo fibroblasts (CEF) or Vero cultures for further investigation (Coswig et al., 2010). Virus isolation should be sought as soon as possible after development of clinical signs. Indeed, it is advisable to collect samples from birds exhibiting the earliest clinical signs. Sources of virus are: nasal turbinates and trachea; ocular, nasal or tracheal exudates; swabbings of these. Jirjis et al. (2000) were able to detect type C virus (by virus isolation and RT-PCR) in experimentally infected 3-week-old turkeys from nasal turbinates, but not from trachea, up to 6 days after infection by the ocular/nasal route.

Virus isolation from domestic fowl has been more difficult than from turkeys. A contributory factor may be that other viruses interfere with the replication of aMPV. For example, both vaccinal and virulent strains of infectious bronchitis virus interfere with the replication of aMPV (Jones et al., 1998). Also, if other viruses are present these may outgrow aMPV during virus isolation in, for example, tracheal organ cultures.

Although aMPVs can be adapted to grow in chick embryo fibroblasts (CEFs; Collins et al., 1993), Vero cells (Buys et al., 1989a; Cavanagh and Barrett, 1988), chick embryo rough cells (CER) (Dani et al., 1999a, b) and QT35 quail cells (Goyal, 1998) these are not generally regarded as being optimal for primary isolation. In many laboratories this has been done for aMPV types A and B using tracheal organ cultures from chick or turkey embryos, the presence of aMPV being suggested by ciliostasis (McDougall and Cook, 1986; Jones et al., 1991). Ciliostasis takes much longer to occur than with, say, infectious bronchitis virus. Cultures should be observed for up to 11 days and further passages may be necessary. Alternatively, one might culture the virus for 2 or 3 days, passage it once for the same period and then passage a third time, observing for up to 11 days. Confirmation that the ciliostatic agent is aMPV must be sought, for example, by immunofluorescence. This can be done without fixing the tracheal rings (Bhattacharjee et al., 1994 ). The Colorado strain of aMPV was poorly ciliostatic (Cook et al., 1999). A pneumovirus in Muscovy ducks was isolated using Vero cells (Toquin et al., 1999).

Primary isolation may also be attempted using chick or turkey embryos inoculated via the yolk sac (McDougall and Cook, 1986). The Colorado aMPV was isolated by inoculating 6-day-old embryonated domestic fowl eggs via the yolk sac and incubating for 9 days. After a second 9-day passage in embryos, a yolk sac membrane homogenate was inoculated on CEFs and passaged again on CEFs, whereupon a cytopathic effect was observed. Goyal used seven to eight blind passages in CEFs and QT35 cells for primary isolation of the Colorado strains (Goyal, 1998). Passage of the Colorado virus first in chick embryos, via the yolk sac, and then in CEFs has also been described by Panigrahy et al. (2000).


Immunology of the disease

Live aMPV vaccines tend to induce a poor serum antibody response. Certainly the absence of detectable antibody after vaccination is not a cause for concern. Field infection is likely to result in detectable antibodies. Vaccinated poults without detectable aMPV antibody are protected against challenge, immunity taking a week or more to develop (Cook et al., 1989; Jones et al., 1992). Vaccination or challenge of laying hens results in progeny with maternally derived antibody (MDA). Experiments indicated that MDA did not prevent the development of clinical disease in poults infected at up to 10 days of age (Naylor et al., 1997b). There is evidence of temporary immunosuppression – impaired humoral and cell-mediated immunity – after natural infection (Timms et al., 1986).

List of Symptoms/Signs

Top of page
SignLife StagesType
Digestive Signs / Anorexia, loss or decreased appetite, not nursing, off feed Poultry:All Stages Sign
General Signs / Head, face, ears, jaw, nose, nasal, swelling, mass Poultry:All Stages Sign
General Signs / Increased mortality in flocks of birds Poultry:All Stages Sign
General Signs / Lack of growth or weight gain, retarded, stunted growth Poultry:Cockerel Sign
General Signs / Orbital, periorbital, periocular, conjunctival swelling, eyeball mass Poultry:All Stages Sign
General Signs / Reluctant to move, refusal to move Poultry:All Stages Sign
General Signs / Torticollis, twisted neck Poultry:All Stages Sign
Nervous Signs / Dullness, depression, lethargy, depressed, lethargic, listless Sign
Nervous Signs / Head shaking, headshaking Sign
Ophthalmology Signs / Conjunctival, scleral, redness Sign
Ophthalmology Signs / Lacrimation, tearing, serous ocular discharge, watery eyes Poultry:All Stages Sign
Reproductive Signs / Decreased, dropping, egg production Poultry:Mature female Sign
Respiratory Signs / Abnormal breathing sounds of the upper airway, airflow obstruction, stertor, snoring Poultry:All Stages Sign
Respiratory Signs / Abnormal lung or pleural sounds, rales, crackles, wheezes, friction rubs Poultry:All Stages Sign
Respiratory Signs / Coughing, coughs Poultry:All Stages Sign
Respiratory Signs / Dyspnea, difficult, open mouth breathing, grunt, gasping Poultry:All Stages Sign
Respiratory Signs / Increased respiratory rate, polypnea, tachypnea, hyperpnea Sign
Respiratory Signs / Mucoid nasal discharge, serous, watery Poultry:All Stages Sign
Respiratory Signs / Purulent nasal discharge Poultry:All Stages Sign
Respiratory Signs / Sneezing, sneeze Poultry:All Stages Sign

Disease Course

Top of page

Jones (1996) has written a good review of several aspects of aMPV infections in turkeys and chickens.


Turkeys infected by aMPV exhibit sneezing, snicking, rales and head shaking. There is a nasal discharge, foamy conjunctivitis and swelling of the infraorbital sinuses. Some birds develop pus cores within the infraorbital sinuses, large numbers of Escherichia coli and other bacteria being present. This can lead to mortality, especially in poults (Grant, 1996; Jones and Wilding, 1996; Alexander, 1997). Concurrent infection of turkey poults with Mycoplasma gallisepticum and Mycoplasma imitans (Naylor et al., 1992; Ganapathy et al., 1998) but not Mycoplasma synoviae (Khehra et al., 1999), may exacerbate disease.

Morbidity is frequently 100% in flocks that have not been vaccinated or previously infected. In the first year (1985) of clinical disease in Britain mortality varied between 3% and 15%, with overall losses in stags/toms of up to 25% to 20 weeks and 20% in hens to 16 weeks (Pattison, 1998). When type C virus first affected the state of Colorado in the USA, 80 to 100% of a flock developed a cough which persisted for about 10 days. Three to four days after the commencement of coughing, 10 to 40% of the birds developed severe sinusitis, nasal discharge and dried mucus around the nares. Mortality was only 1 to 5% when secondary bacterial infections were controlled by antibiotics but up to 30% and more when the bacteria were not controlled (Senne et al., 1998).

Mortality can occur in vaccinated flocks, depending in part on the nature of the bacteria present and environmental factors (poor ventilation, high levels of ammonia and dust) that enhance infection by these secondary pathogens. Surviving birds recover within 10 to 12 days.

Infection in laying turkeys can result in loss of egg production of 10 to 15% but sometimes much higher, and sometimes egg quality (Jones et al., 1988), recovery taking 3 to 5 weeks.

Domestic fowl

The consequences of infection of domestic fowl by aMPVs can, as in turkeys, be very variable although usually they are less severe than in turkeys. Indeed, infected flocks of chickens may not always exhibit clinical signs. Secondary bacterial infections and environmental factors (poor ventilation, high levels of ammonia and dust) are important contributors to clinical disease following infection with aMPV (Cook and Pattison, 1996). Assessment of the impact of aMPV infections in domestic fowl is complicated in broilers by infections at around the same time with other viral respiratory pathogens, such as infectious bronchitis (Cavanagh et al., 1999).

Infected broilers may exhibit coughing and sneezing with nasal discharge. A small proportion, perhaps 5% or so, may have head swelling, which has given rise to the name 'swollen head syndrome'. This is associated with secondary bacterial infection and may lead to mortality.

Swollen heads are exhibited to a lesser extent by infected broiler breeders, perhaps 1% or less (Wyeth et al., 1987; Pattison et al., 1989; Jones et al., 1991) although Maharaj et al. (1994) observed swollen heads in 10% of breeders. The breeders sit with their neck arched, the head resting on the back, sometimes referred to as ‘star gazing’. There may be discharge from eyes or ears and swelling around the eyes and on top of the head. Such birds, when disturbed, lose coordination. Some may exhibit head rolling. Soiling around the vent may follow production of green diarrhoea. Egg production is adversely affected.

Females are affected more than males and commercial egg layers are affected by aMPV to a lesser extent than broiler breeders.

Strains of aMPV may differ in their virulence although on occasion this may be a consequence of partial attenuation during growth in laboratories. Notwithstanding, Cook et al. (1993a, b) reported that a chicken isolate grew to higher titres in specific pathogen free (SPF) chickens than did a turkey isolate. Strains also differ with respect to the severity of clinical signs within a given species.


Top of page

Following infection of turkeys and domestic fowl virus is released within 24 h, reaching a peak 3 to 5 days after infection and declining precipitously thereafter. Clinical signs may be evident at day three although they would probably be minor at this stage so that maximum release – and spread – of the virus may occur before the disease is fully recognized. Although the virus is undoubtedly released in aerosols, spread appears to require fairly close contact between birds. Spread is believed to be oral rather than faecal.

No specific biological vectors are known, the virus probably being spread by such agents as people, their vehicles and non-specifically by vermin. However, there is evidence for replication of aMPVs in game birds and many species of wild birds. Thus many avian species might be considered as potential carriers of aMPVs, with consequences for disease security. There is no evidence for vertical transmission.

Impact: Economic

Top of page

When aMPV-related rhinotracheitis was first observed in turkeys in South Africa and Europe morbidity was usually >90% and mortality about 30% (Buys and du Preez, 1980; Buys et al., 1989a). Of course, as none of the birds had been vaccinated, economic losses were very high. Vaccines were subsequently developed and their use is widespread. The consequences of field infection were thereby diminished although some economic losses are still sustained despite vaccine application. The effects of aMPV in vaccinated flocks may be irregular; not all houses on a site will exhibit disease and sites will not necessarily exhibit disease with every successive crop. In the USA, where there is no vaccination against aMPV, aMPV-C caused 50-100% morbidity and 3-30% mortality in meat-type turkeys (Jirjis et al., 2000).

The economic effects of aMPV infection on domestic fowl have been more difficult to assess, in part because of widespread infections with other respiratory viruses. When aMPV vaccines have been applied to broilers some farms have yielded better economic performance whilst others have not. This may be interpreted as being indicative that certain, unspecified conditions apply to some farms with the consequence that infection by aMPV has significant effects on performance. In those cases vaccination may be beneficial.

Zoonoses and Food Safety

Top of page

There is no known zoonotic or food safety issue regarding aMPVs.

Disease Treatment

Top of page

There is no treatment for the viral infection. Antibiotics, administered in drinking water, have been used in attempts, sometimes successful, to minimize losses caused by secondary bacterial infections. Severely affected birds should be culled but moderately affected ones might be moved to a hospital pen and injected with antibiotics. Ventilation should be improved and ammonia and dust levels minimized. In-feed medication could be continued for a further two weeks.

Prevention and Control

Top of page

Immunization and Vaccines

Vaccination is the main form of control in those countries where aMPV infection is widespread. Live and killed vaccines are available to manage infections by subtype A and B viruses. Although the vaccines are effective, it has been demonstrated that live aMPV vaccines have a tendency to revert to virulence (Lupini et al., 2011). Also, there is evidence for the mutation of field virus in response to sustained vaccination (Cecchinato et al., 2010). Some variants have an increased capacity to break through the immunity induced by available commercial vaccines (Catelli et al., 2010).

A number of vaccination protocols have been used.

In meat-type (commercial) turkeys it is common to apply live virus vaccine by eye drop or coarse spray in the hatchery. Sometimes it is applied at 7-10 days of age. Where field virus of both types A and B are present some growers have applied a mixture of type A and B vaccines. Others have vaccinated at 1-day-old with one type and vaccinated with the other type later. Turkey breeders have a live primer vaccination applied by coarse spray at about 2 weeks of age, followed by injection of a killed vaccine at about 22 weeks of age (Cook et al., 1996).

Where aMPV is considered to be an economic problem in broiler chickens the birds may be given live vaccine at the hatchery or at 7 days of age. Broiler breeders and commercial layers may be given live vaccine at 10 to 12 weeks of age followed by killed vaccine at 16 to 20 weeks of age. Depending on the dominant type of aMPV in a region, one might use a live type B vaccine and a killed type A vaccine in an attempt to maximize protection. Infectious bronchitis virus vaccines have been shown to interfere with the replication of vaccinal and field aMPVs although immunity to aMPV was still induced (Jones et al., 1998). Ganapathy et al. (2010) compared the induction of protection in chickens following vaccination by three different routes: spray, drinking water and oculo-oral application. The authors concluded that accurate vaccination by spray and drinking water achieved levels of protection equal to that induced by the oculo-nasal application.


Farm-Level Control

In addition to vaccination (where appropriate) good biosecurity should be practised, as always, including attention to temporary storage and disposal of carcasses at a farm. Multi-age sites are particularly at risk. As with other viral diseases, air quality is important to reduce stress on the respiratory mucosa which, together with aMPV infection, can predispose the birds to secondary bacterial infections. Thus control of ventilation, heating and possibly misting if litter is very dry is important. Overstocking of poults up to 6 weeks of age is to be avoided.

After the first instances of aMPV infection in Colorado, USA, the disease was eliminated from that state by depopulation, cleaning, a good interval before repopulation, marketing restrictions and good biosecurity in general.


Top of page

Alexander DJ, 1997. Newcastle disease and other avian paramyxovirus infections. In: Calnek BW, Barnes HJ, Beard CW, McDougald LR, Saif YM, eds.. Diseases of Poultry, 10th edn. Iowa, USA: Iowa State University Press, 541-570.

Anon, 1998. Swollen head syndrome in SkÅne. Svensk Veterinärtidning, 50(7):328.

Aydin F; Gürbüz A, 1996. Turkey rhinotracheitis virus infection. Veteriner Kontrol ve Arastirma Enstitüsü Müdürlügü Dergisi, 21(35):185-191; 31 ref.

Aydin N; Akan M; Erdeger J, 1993. Study on the swollen head syndrome in fowls in the Ankara area. Etlik Veteriner Mikrobiyoloji Dergisi, 7(4):24-33; 21 ref.

Azri A; Roosevien RFN; Sohayati AR; Goh GY; Aminahkadariah AL; Chulan U, 1998. Isolation of avian pneumovirus in broiler chickens in Malaysia. Jurnal Veterinar Malaysia, 10(1):21-23; 8 ref.

Banet-Noach C; Simanov L; Perk S, 2005. Characterization of Israeli avian metapneumovirus strains in turkeys and chickens. Avian Pathology, 34(3):220-226.

Bendheim V; Samberg Y, 1990. Seasonal distribution of poultry diseases in Israel. Israel Journal of Veterinary Medicine, 45(3):189-190; [14th Symposium of Veterinary Medicine, Koret School, Israel, 26-28 June, 1988.].

Bennett RS; Nezworski J; Velayudhan BT; Nagaraja KV; Zeman DH; Dyer N; Graham T; Lauer DC; Njenga MK; Halvorson DA, 2004. Evidence of avian pneumovirus spread beyond Minnesota among wild and domestic birds in Central North America. Avian Diseases, 48(4):902-908.

Bhattacharjee PS; Naylor CJ; Jones RC, 1994. A simple method for immunofluorescence staining of tracheal organ cultures for the rapid identification of infectious bronchitis virus. Avian Pathology, 23(3):471-480; 7 ref.

Biin Z; Stanisic Z; curic S; Rusac I; Mikec M, 1990. Turkey rhinotracheitis. I. Clinical picture and the specific serum antibody findings in the first reported outbreak of the disease in Yugoslavia. Veterinarski Arhiv, 60(2):59-67; 30 ref.

Brown PA; Lupini C; Catelli E; Clubbe J; Ricchizzi E; Naylor CJ, 2011. A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature. Journal of General Virology, 92(2):346-354.

Buys SB; Preez JH du, 1980. A preliminary report on the isolation of a virus causing sinusitis in turkeys in South Africa and attempts to attenuate the virus. Turkeys, 28(3):36.

Buys SB; Preez JHdu; Els HJ, 1989. Swollen head syndrome in chickens: a preliminary report on the isolation of a possible aetiological agent. Journal of the South African Veterinary Association, 60(4):221-222; 9 ref.

Buys SB; Preez JHdu; Els HJ, 1989. The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa. Onderstepoort Journal of Veterinary Research, 56(2):87-98; 19 ref.

Bäyon-Auboyer MH; Arnauld C; Toquin D; Eterradossi N, 2000. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup. Journal of General Virology, 81(11):2723-2733; Many ref.

Bäyon-Auboyer MH; Jestin V; Toquin D; Cherbonnel M; Eterradossi N, 1999. Comparison of F-, G- and N-based RT-PCR protocols with conventional virological procedures for the detection and typing of turkey rhinotracheitis virus. Archives of Virology, 144(6):1091-1109; 42 ref.

Cadman HF; Kelly PJ; Zhou R; Davelaar F; Mason PR, 1994. A serosurvey using enzyme-linked immunosorbent assay for antibodies against poultry pathogens in ostriches (Struthio camelus) from Zimbabwe. Avian Diseases, 38(3):621-625; 6 ref.

Capua I; Gough RE; Mancini M; Casaccia C; Weiss C, 1994. A 'novel' infectious bronchitis strain infecting broiler chickens in Italy. Journal of Veterinary Medicine. Series B, 41(2):83-89; 8 ref.

Catelli E; Cecchinato M; Savage CE; Jones RC; Naylor CJ, 2006. Demonstration of loss of attenuation and extended field persistence of a live avian metapneumovirus vaccine. Vaccine, 24(42/43):6476-6482.

Catelli E; Cook JKA; Chesher J; Orbell SJ; Woods MA; Baxendale W; Huggins MB, 1998. The use of virus isolation, histopathology and immunoperoxidase techniques to study the dissemination of a chicken isolate of avian pneumovirus in chickens. Avian Pathology, 27(6):632-640; 22 ref.

Catelli E; Lupini C; Cecchinato M; Ricchizzi E; Brown P; Naylor CJ, 2010. Field avian Metapneumovirus evolution avoiding vaccine induced immunity. Vaccine, 28(4):916-921.

Cavanagh D; Barrett T, 1988. Pneumovirus-like characteristics of the mRNA and proteins of turkey rhinotracheitis virus. Virus Research, 11(3):241-256; 36 ref.

Cavanagh D; Mawditt K; Britton P; Naylor CJ, 1999. Longitudinal field studies of infectious bronchitis virus and avian pneumovirus in broilers using type-specific polymerase chain reactions. Avian Pathology, 28(6):593-605; 36 ref.

Cecchinato M; Catelli E; Lupini C; Ricchizzi E; Clubbe J; Battilani M; Naylor CJ, 2010. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction. Veterinary Microbiology, 146(1/2):24-34.

Chacón JL; Mizuma M; Vejarano MP; Toquín D; Eterradossi N; Patnayak DP; Goyal SM; Ferreira AJP, 2011. Avian metapneumovirus subtypes circulating in Brazilian vaccinated and nonvaccinated chicken and turkey farms. Avian Diseases, 55(1):82-89.

Choi KangSeuk; Lee EunKyoung; Jeon WooJin; Park MiJa; Yoo YaeNa; Kwon JunHun, 2010. Diagnostic utility of egg yolk for the detection of avian metapneumovirus antibodies in laying hens. Avian Diseases, 54(4):1230-1236.

Collins MS; Gough RE, 1988. Characterization of a virus associated with turkey rhinotracheitis. Journal of General Virology, 69(4):909-916; 27 ref.

Collins MS; Gough RE; Alexander DJ, 1993. Antigenic differentiation of avian pneumovirus isolates using polyclonal antisera and mouse monoclonal antibodies. Avian Pathology, 22(3):469-479; 21 ref.

Cook JKA; Dolby CA; Southee DJ; Mockett APA, 1988. Demonstration of antibodies to turkey rhinotracheitis virus in serum from commercially reared flocks of chickens. Avian Pathology, 17(2):403-410; 10 ref.

Cook JKA; Huggins MB; Orbell SJ; Senne DA, 1999. Preliminary antigenic characterization of an avian pneumovirus isolated from commercial turkeys in Colorado, USA. Avian Pathology, 28(6):607-617; 30 ref.

Cook JKA; Jones BV; Ellis MM; Jing L; Cavanagh D, 1993. Antigenic differentiation of strains of turkey rhinotracheitis virus using monoclonal antibodies. Avian Pathology, 22(2):257-273; 25 ref.

Cook JKA; Kinloch S; Ellis MM, 1993. In vitro and in vivo studies in chickens and turkeys on strains of turkey rhinotracheitis virus isolated from the two species. Avian Pathology, 22(1):157-170; 24 ref.

Cook JKA; Orthel F; Orbell S; Woods MA; Huggins MB, 1996. An experimental turkey rhinotracheitis (TRT) infection in breeding turkeys and the prevention of its clinical effects using live-attenuated and inactivated TRT vaccines. Avian Pathology, 25(2):231-243; 11 ref.

Cook JKA; Pattison M, 1996. Swollen head syndrome. Poultry diseases,, Ed. 4:243-246; 4 ref.

Cook KA; Holmes HC; Finney PM; Dolby CA; Ellis MM; Huggins MB, 1989. A live attenuated turkey rhinotracheitis virus vaccine. 2. The use of the attenuated strain as an experimental vaccine. Avian Pathology, 18(3):523-534; 5 ref.

Coswig LT; Santos MBdos; Hafez HM; Ferreira HL; Arns CW, 2010. Propagation of avian metapneumovirus subtypes A and B using chicken embryo related and other cell systems. Journal of Virological Methods, 167(1):1-4.

Dani MAC; Arns CW; Durigon EL, 1999. Molecular characterization of Brazilian avian pneumovirus isolates using reverse transcription-polymerase chain reaction, restriction endonuclease analysis and sequencing of a G gene fragment. Avian Pathology, 28(5):473-476; 17 ref.

Dani MAC; Durigon EL; Arns CW, 1999. Molecular characterization of Brazilian avian pneumovirus isolates: comparison between immunochemiluminescent Southern blot and nested PCR. Journal of Virological Methods, 79(2):237-241; 18 ref.

D'Arce RCF; Coswig LT; Almeida RS; Trevisol IM; Monteiro MCB; Rossini LI; Fabio Jdi; Hafez HM; Arns CW, 2005. Subtyping of new Brazilian avian metapneumovirus isolates from chickens and turkeys by reverse transcriptase-nested-polymerase chain reaction. Avian Pathology, 34(2):133-136.

Eterradossi N; Toquin D; Guittet M; Bennejean G, 1995. Evaluation of different turkey rhinotracheitis viruses used as antigens for serological testing following live vaccination and challenge. Journal of Veterinary Medicine. Series B, 42(3):175-186; 18 ref.

Fabris G; Della Valentina M; Gavazzi L; Gozzini P, 1998. TRT in commercial turkeys: serological investigations on TRT vaccinated and control groups. Selezione Veterinaria, No. 8/9:645-654; 8 ref.

Falchieri M; Brown PA; Catelli E; Naylor CJ, 2012. Avian metapneumovirus RT-nested-PCR: a novel false positive reducing inactivated control virus with potential applications to other RNA viruses and real time methods. Journal of Virological Methods, 186(1/2):171-175.

Felippe PA; Silva LHAda; Santos MBdos; Sakata ST; Arns CW, 2011. Detection of and phylogenetic studies with avian metapneumovirus recovered from feral pigeons and wild birds in Brazil. Avian Pathology, 40(5):445-452.

Ganapathy K; Bufton A; Pearson A; Lemiere S; Jones RC, 2010. Vaccination of commercial broiler chicks against avian metapneumovirus infection: a comparison of drinking-water, spray and oculo-oral delivery methods. Vaccine, 28(23):3944-3948.

Ganapathy K; Jones RC; Bradbury JM, 1998. Pathogenicity of in vivo-passaged Mycoplasma imitans in turkey poults in single infection and in dual infection with rhinotracheitis virus. Avian Pathology, 27(1):80-89; 40 ref.

Gharaibeh S; Shamoun M, 2012. Avian metapneumovirus subtype B experimental infection and tissue distribution in chickens, sparrows, and pigeons. Veterinary Pathology, 49(4):704-709.

Giraud P; Bennejean G; Guittet M; Toquin D, 1986. Turkey rhinotracheitis in France: preliminary investigations on a ciliostatic virus. Veterinary Record, 119(24):606-607; 4 ref.

Gough RE; Collins MS; Cox WJ; Chettle NJ, 1988. Experimental infection of turkeys, chickens, ducks, geese, guinea fowl, pheasants and pigeons with turkey rhinotracheitis virus. Veterinary Record, 123(2):58-59; 20 ref.

Gough RE; Jones RC, 2008. Avian Metapneumovirus. In: Diseases of Poultry, 12th edition [ed. by Saif, Y. M. \Fadly, A. M. \Glisson, J. R. \McDougald, L. R. \Nolan, L. K. \Swayne, D. E.]. Ames, Iowa, USA: Blackwell Publishing, 100-110.

Goyal SM, 1998. Research review: experience of a diagnostic lab. In: Clark SR, Ginsburg LM, eds. Proceedings & Technical Supplement of the Roche Avian Pneumovirus Workshop, St. Cloud, Minnesota, USA. Roche Animal Nutrition and Health, 59-62.

Grant G, 1996. Diseases of turkeys. Poultry diseases,, Ed. 4:401-414; 1 ref.

Hafez HM; Löhren U, 1990. Swollen head syndrome: clinical observations and serological examinations in West Germany. Deutsche Tierärztliche Wochenschrift, 97(8):322-324; 17 ref.

Heffels-Redmann U; Neumann U; Braune S; Cook JKA; Prüter J, 1998. Serological evidence for susceptibility of sea gulls to avian pneumovirus (APV) infection. Proceedings international symposium on infectious bronchitis and pneumovirus infections in poultry, Rauischholzhausen, Germany, 15-18 June 1998., 23-25; 3 ref.

Jantosovic J; Sály J; Kozák M; Pálenik L; Magic D; Eliás J, 1997. Turkey rhinotracheitis. Veterinárství, 47(4):156-157; 16 ref.

Jirjis FF; Noll SL; Halvorson DA; Nagaraja KV; Townsend EL; Sheikh AM; Shaw DP, 2000. Avian pneumovirus infection in Minnesota turkeys: experimental reproduction of the disease. Avian Diseases, 44(1):222-226; 5 ref.

Jones RC, 1996. Avian pneumovirus infection: questions still unanswered. Avian Pathology, 25(4):639-648; 38 ref.

Jones RC; Baxter-Jones C; Wilding GP; Kelly DF, 1986. Demonstration of a candidate virus for turkey rhinotracheitis in experimentally inoculated turkeys. Veterinary Record, 119(24):599-600; 5 ref.

Jones RC; Khehra RS; Naylor CJ; Cavanagh D, 1998. Dual infection of tracheal organ cultures and chicks with infectious bronchitis virus and avian pneumovirus. Proceedings international symposium on infectious bronchitis and pneumovirus infections in poultry, Rauischholzhausen, Germany, 15-18 June 1998., 97-105; 23 ref.

Jones RC; Naylor CJ; Al-Afaleq AI; Worthington KJ; Jones R, 1992. Effect of cyclophosphamide immunosuppression on the immunity of turkeys to viral rhinotracheitis. Research in Veterinary Science, 53(1):38-41; 10 ref.

Jones RC; Naylor CJ; Bradbury JM; Savage CE; Worthington K; Williams RA, 1991. Isolation of a turkey rhinotracheitis-like virus from broiler breeder chickens in England. Veterinary Record, 129(23):509-510; 10 ref.

Jones RC; Wilding GP, 1996. Turkey rhinotracheitis. Poultry diseases,, Ed. 4:236-242; 5 ref.

Jones RC; Williams RA; Baxter-Jones C; Savage CE; Wilding GP, 1988. Experimental infection of laying turkeys with rhinotracheitis virus: distribution of virus in the tissues and serological response. Avian Pathology, 17(4):841-850; 12 ref.

Juhasz K; Easton AJ, 1994. Extensive sequence variation in the attachment (G) protein gene of avian pneumovirus: evidence for two distinct subgroups. Journal of General Virology, 75(11):2873-2880; 27 ref.

Khehra RS; Jones RC; Bradbury JM, 1999. Dual infection of turkey poults with avian pneumovirus and Mycoplasma synoviae. Avian Pathology, 28(4):401-404; 15 ref.

Kwon JiSun; Lee HyunJeong; Jeong SeungHwan; Park JeongYong; Hong YoungHo; Lee YounJeong; Youn HoSik; Lee DongWoo; Do SunHee; Park SeungYong; Choi InSoo; Lee JoongBok; Song ChangSeon, 2010. Isolation and characterization of avian metapneumovirus from chickens in Korea. Journal of Veterinary Science, 11(1):59-66.

Lamb RA; Collins PL; Kolakofsky D, et al. , 2000. Paramyxoviridae. In: Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB. New York, USA: Academic Press, 549-561.

Lee EunHo; Song MinSuk; Shin JinYoung; Lee YoungMin; Kim ChulJoong; Lee YoungSik; Kim HyungGee; Choi YoungKi, 2007. Genetic characterization of avian metapneumovirus subtype C isolated from pheasants in a live bird market. Virus Research, 128(1/2):18-25.

Li J; Ling; R; Randhawa JS; Shaw K; Davis PJ; Juhasz K; Pringle; CR; Easton AJ; Cavanagh D, 1996. Sequence of the nucleocapsid protein gene of subgroup A and B avian pneumoviruses. Virus Research, 41:185-192.

Ling R; Davis PJ; Yu QingZhong; Wood CM; Pringle CR; Cavanagh D; Easton AJ, 1995. Sequence and in vitro expression of the phosphoprotein gene of avian pneumovirus. Virus Research, 36(2/3):247-257; 33 ref.

Litjens JB; Willigen FC; Kleyn van; Sinke M, 1989. Swollen head syndrome in a flock of guinea fowl. Tijdschrift voor Diergeneeskunde, 114(13):719-720.

Lu YS; Shien YS; Tsai HJ; Tseng CS; Lee SH; Lin DF, 1994. Swollen head syndrome in Taiwan - isolation of an avian pneumovirus and serological survey. Avian Pathology, 23(1):169-174; 8 ref.

Lupini C; Cecchinato M; Ricchizzi E; Naylor CJ; Catelli E, 2011. A turkey rhinotracheitis outbreak caused by the environmental spread of a vaccine-derived avian metapneumovirus. Avian Pathology, 40(5):525-530.

Maharaj SB; Thomson DK; Graca JVda, 1994. Isolation of an avian pneumovirus like agent from broiler breeder chickens in South Africa. Veterinary Record, 134(20):525-526; 5 ref.

Majó N; Ramis A; Pagès A, 1998. Avian pneumovirus: role as primary agent in mixed infections. Proceedings international symposium on infectious bronchitis and pneumovirus infections in poultry, Rauischholzhausen, Germany, 15-18 June 1998., 69-75; 8 ref.

Mase M, 1998. Analysis of avian pneumovirus detected in Japan. Proceedings international symposium on infectious bronchitis and pneumovirus infections in poultry, Rauischholzhausen, Germany, 15-18 June 1998., 2-8; 20 ref.

Mase M; Yamaguchi S; Tsukamoto K; Imada T; Imai K; Nakamura K, 2003. Presence of avian pneumovirus subtypes A and B in Japan. Avian Diseases, 47(2):481-484.

McDougall JS; Cook JKA, 1986. Turkey rhinotracheitis: preliminary investigations. Veterinary Record, 118(8):206-207; 6 ref.

McMullin P, 1998. Diagnosis, management and control of avian pneumovirus infection in broiler parent chickens. PaulMcMullin@Poultry

Minta Z; Bartnicka B; Bugajak P, 1995. Serological surveillance of avian pneumovirus in chicken and turkey flocks in Poland. Bulletin of the Veterinary Institute in Pulawy, 39(2):103-107; 28 ref.

Mona MA; El-Zaher AA; Amin A, 1997. Studies on swollen head syndrome in Egypt. 1. Serological survey and comparison between two ELISA kits for detection of antibody. Veterinary Medical Journal Giza, 45(2):251-258; 31 ref.

Morley AJ; Thomson DK, 1984. Swollen-head syndrome in broiler chickens. Avian Diseases, 28(1):238-243; 2 ref.

Nakamura K; Mase M; Tanimura N; Yamaguchi S; Nakazawa M; Yuasa N, 1997. Swollen head syndrome in broiler chickens in Japan: its pathology, microbiology and biochemistry. Avian Pathology, 26(1):139-154; 34 ref.

Naylor C; Shaw K; Britton P; Cavanagh D, 1997. Appearance of type B avian pneumovirus in Great Britain. Avian Pathology, 26(2):327-338; 19 ref.

Naylor CJ; Al-Ankari AR; Al-Afaleq AI; Bradbury JM; Jones RC, 1992. Exacerbation of Mycoplasma gallisepticum infection in turkeys by rhinotracheitis virus. Avian Pathology, 21(2):295-305; 19 ref.

Naylor CJ; Britton P; Cavanagh D, 1998. The ectodomain but not the transmembrane domain of the fusion (F) proteins of subtypes A and B avian pneumovirus are conserved to a similar extent as those of human respiratory syncytial virus. Journal of General Virology, 79:1393-1398.

Naylor CJ; Worthington KJ; Jones RC, 1997. Failure of maternal antibodies to protect young turkey poults against challenge with turkey rhinotracheitis virus. Avian Diseases, 41(4):968-971; 9 ref.

OIE, 2009. World Animal Health Information Database - Version: 1.4. World Animal Health Information Database. Paris, France: World Organisation for Animal Health.

O'Loan CJ; Allan GM; McNair J; Mackie DP; McNulty MS, 1990. TRT virus serology: discrepancy between ELISA and indirect immunofluorescence. Avian Pathology, 19(1):173-180; 10 ref.

O'Loan CJ; Curran WL; McNulty MS, 1992. Immuno-gold labelling of turkey rhinotracheitis virus. Journal of Veterinary Medicine. Series B, 39(6):469-466; 21 ref.

Ongor H; Karahan M; Kalin R; Bulut H; Cetinkaya B, 2010. Detection of avian metapneumovirus subtypes in turkeys using RT-PCR. Veterinary Record, 166(12):363-366.

Otsuki K; Hirai N; Mitani M; Itani M; Shimohata T; Kunii E; Uramoto K; Kiyotake M; Kato H; Ellis MM; Cook JKA, 1996. Demonstration of serum-neutralising antibody to turkey rhinotracheitis virus in serum from chicken flocks in Japan. Journal of Veterinary Medical Science, 58(9):869-874; 23 ref.

Pagès A; San Gabriel A, 1990. Present considerations on swollen head syndrome in poultry. Medicina Veterinaria, 7(4):243-246,248-250; 20 ref.

Panigrahy B; Senne DA; Pedersen JC; Gidlewski T; Edson RK, 2000. Experimental and serologic observations on avian pneumovirus (APV/turkey/Colorado/97) infection in turkeys. Avian Diseases, 44(1):17-22; 9 ref.

Pattison M, 1998. TRT in the field: field situation and control. In: Clark, SR, Ginsburg, LM. Proceedings & Technical Supplement of the Roche Avian Pneumovirus Workshop, St. Cloud, Minnesota, USA, Roche Animal Nutrition and Health, 43-49.

Pattison M; Chettle NJ; Randall CJ; Wyeth PJ, 1989. Observations on swollen head syndrome in broiler and broiler breeder chickens. Veterinary Record, 125(9):229-231; 11 ref.

Perelman B; Meroz M; Samberg Y, 1988. 'Swollen head syndrome' in broiler breeders in Israel. Veterinary Record, 123(17):444.

Picault JP; Giraud P; Drouin P; Guittet M; Bennejean G; Lamande J; Toquin D; Gueguen C, 1987. Isolation of a TRTV-like virus from chickens with swollen-head syndrome. Veterinary Record, 121(6):135; 9 ref.

Pollan B; Anrather J, 1993. Investigations on the incidence and persistence of maternal antibodies against turkey rhinotracheitis in turkey poults. Archiv für Geflügelkunde, 57(6):275-280; 28 ref.

Pollan B; Hafez HM; Vasicek L, 1992. Turkey rhinotracheitis in Austria. Wiener Tierärztliche Monatsschrift, 79(3):70-74; 14 ref.

Ramza J, 1995. An outbreak of infectious rhinotracheitis in a reproductive flock of turkeys. Medycyna Weterynaryjna, 51(7):405-406; 6 ref.

Randhawa JS; Marriott AC; Pringle CR; Easton AJ, 1997. Rescue of synthetic minireplicons establishes the absence of the NS1 and NS2 genes from avian pneumovirus. Journal of Virology, 71(12):9849-9854; 33 ref.

Randhawa JS; Pringle CR; Easton AJ, 1996. Nucleotide sequence of the matrix protein gene of a subgroup B avian pneumovirus. Virus Genes, 12(2):179-183; 26 ref.

Randhawa JS; Wilson SD; Tolley KP; Cavanagh D; Pringle CR; Easton AJ, 1996. Nucleotide sequence of the gene encoding the viral polymerase of avian pneumovirus. Journal of General Virology, 77(12):3047-3051; 25 ref.

Redmann T; Kamphausen L; Hafez HM; Neumann U; Kaleta EF, 1991. Serological studies on the prevalence of turkey rhinotracheitis virus in Germany. Tierärztliche Umschau, 46(11):660-664; 32 ref.

Redmann T; Kamphausen L; Neumann U; Failing K, 1993. Seroprevalence of turkey rhinotracheitis in Germany. Preventive Veterinary Medicine, 16(4):263-269; 18 ref.

Seal BS, 1998. Matrix protein gene nucleotide and predicted amino acid sequence demonstrate that the first US avian pneumovirus isolate is distinct from European strains. Virus Research, 58(1/2):45-52; 3 pp. of ref.

Seal BS; Sellers HS; Meinersmann RJ, 2000. Fusion protein predicted amino acid sequence of th4 first US avian pneumovirus isolate and lack of heterogeneity among other US isolates. Virus Research, 66 (2):139-147.

Senne D; Pederson JC; Panigrapyhy B, 1998. Avian pnemovirus in turkeys, preliminary findings. In: Clark, SR, Ginsburg, LM. Proceedings & Technical Supplement of the Roche Avian Pneumovirus Workshop, St. Cloud, Minnesota, USA, Roche Animal Nutrition and Health, 51-52.

Szalay O; Tekes L; Földi J; Tanyi J, 1991. Incidence of turkey rhinotracheitis infection in East-Hungarian turkey flocks. Magyar állatorvosok Lapja, 46(1):20-22; 10 ref.

Takase K; Murakawa Y; Fujikawa H, 1998. A survey of various pathogens in a fully non-vaccinated broiler flock. Proceedings international symposium on infectious bronchitis and pneumovirus infections in poultry, Rauischholzhausen, Germany, 15-18 June 1998., 173-179; 7 ref.

Tanaka M; Kokumai N; Obi T; Higashihara R; Takuma H; Hiramatsu K; Shimizu Y, 1996. A serological survey of turkey rhinotracheitis virus infection in chickens in Japan. Journal of Veterinary Medical Science, 58(7):689-691; 8 ref.

Tanaka M; Takuma H; Kokumai N; Oishi E; Obi T; Hiramatsu K; Shimizu Y, 1995. Turkey rhinotracheitis virus isolated from broiler chicken with swollen head syndrome in Japan. Journal of Veterinary Medical Science, 57(5):939-941; 16 ref.

Timms LM; Jahans KL; Marshall RN, 1986. Evidence of immunosuppression in turkey poults affected by rhinotracheitis. Veterinary Record, 119(4):91-92; 4 ref.

Toquin D; Bäyon-Auboyer MH; Eterradossi N, et al. , 1999. Isolation of pneumovirus from a Muscovy duck. Veterinary Record, 146:680.

Toquin D; Eterradossi N; Guittet M, 1996. Use of a related ELISA antigen for efficient TRT serological testing following live vaccination. Veterinary Record, 139(3):71-72; 11 ref.

Toquin D; Guionie O; Jestin V; Zwingelstein F; Allee C; Eterradossi N, 2006. European and American subgroup C isolates of avian metapneumovirus belong to different genetic lineages. Virus Genes, 32(1):97-103.

Toro H; Hidalgo H; Ibanez M; Hafez HM, 1998. Serologic evidence of pneumovirus in Chile. Avian Diseases, 42(4):815-817; 6 ref.

Wei Ping, 1995. Study on the swollen head syndrome of chickens - a review. Chinese Journal of Veterinary Medicine, 21(12):40-42; 23 ref.

Wemmer U, 1993. The swollen head syndrome in poultry: occurrence and distribution among poultry farms in western Germany. Das Swollen-Head-Syndrom: Vorkommen und Verbreitung in Hühnerbeständen der alten Länder der Bundesrepublik Deutschland., 147 pp.; 11 pp. of ref.

Wilding GP; Baxter-Jones C; Grant M, 1986. Ciliostatic agent found in rhinotracheitis. Veterinary Record, 118(26):735; 7 ref.

Wyeth PJ; Chettle NJ; Gough RE; Collins MS, 1987. Antibodies to TRT [turkey rhinotracheitis] in chickens with swollen head syndrome. Veterinary Record, 120(12):286-287; 3 ref.

Youssef NMA; Ahmed MHH, 1996. Serological studies on flocks showing depressed egg production. Veterinary Medical Journal Giza, 44(4):719-726; 10 ref.

Yu Q; Barrett T; Brown TDK; Cook; JKA; Green P; Skinner M; Cavanagh D, 1994. Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein gene (F). Vaccine, 12:569-573.

Yu Q; Davis PJ; Barrett T; Binns MM; Boursnell MEG; Cavanagh D, 1991. Deduced amino acid sequence of the fusion glycoprotein of turkey rhinotracheitis virus has greater identity with that of human respiratory syncytial virus, a pneumovirus, than that of paramyxoviruses and morbilliviruses. Journal of General Virology, 72(1):75-81; 38 ref.

Yu Q; Davis PJ; Brown TDK; Cavanagh D, 1992. Sequence and in vitro expression of the M2 gene of turkey rhinotracheitis pneumovirus. Journal of General Virology, 73(6):1355-1363; 33 ref.

Yu Q; Davis PJ; Li J; Cavanagh D, 1992. Cloning and sequencing of the matrix protein (M) gene of turkey rhinotracheitis virus reveal a gene order different from that of respiratory syncytial virus. Virology (New York), 186(2):426-434; 44 ref.

Zande Svan de; Nauwynck H; Cavanagh D; Pensaert M, 1998. Infections and reinfections with avian pneumovirus subtype A and B on Belgian turkey farms and relation to respiratory problems. Journal of Veterinary Medicine. Series B, 45(10):621-626; 14 ref.

Zande Svan de; Nauwynck H; Hendrickx W; Pensaert M, 1997. Prevalence of respiratory and lymphotropic viruses in turkeys in Belgium. Vlaams Diergeneeskundig Tijdschrift, 66(5):223-228; 33 ref.

Zorman-Rojs O; Stalcer L, 1998. Demonstration of antibodies to avian pneumovirus in comparison with clinical manifestation of swollen head syndrome in broiler breeders. Zbornik Veterinarske Fakultete Univerza Ljubljana, 35(1/2):49-56; 11 ref.

Links to Websites

Top of page
Avian Metapneumovirus Information Website (Merck Animal Health)
Diagnosis, management and control of avian pneumovirus in broiler parent chickens. Paul McMullin. paper presented at the FACTA Symposium, Campinas, Brazil, April 1998. Includes 22 references
Pneumovirus Research Laboratory, University of Warwick, UK.

Distribution Maps

Top of page
You can pan and zoom the map
Save map