Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Xyleborus dispar
(pear blight beetle)

Toolbox

Datasheet

Xyleborus dispar (pear blight beetle)

Summary

  • Last modified
  • 10 December 2020
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Xyleborus dispar
  • Preferred Common Name
  • pear blight beetle
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • X. dispar should be considered a high-risk quarantine pest. This is because members of the tribe Xyleborini (Xyleborus plus related genera) are all inbreeding, with the males generally mating with their sisters within the parental gallery system befo...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Xyleborus dispar (pear blight beetle); female, lateral view. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
TitleAdult female
CaptionXyleborus dispar (pear blight beetle); female, lateral view. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Copyright©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); female, lateral view. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Adult femaleXyleborus dispar (pear blight beetle); female, lateral view. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adult female, dorsal view. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
TitleAdult female
CaptionXyleborus dispar (pear blight beetle); adult female, dorsal view. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Copyright©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adult female, dorsal view. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Adult femaleXyleborus dispar (pear blight beetle); adult female, dorsal view. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adult female, head capsule. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
TitleAdult female
CaptionXyleborus dispar (pear blight beetle); adult female, head capsule. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Copyright©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adult female, head capsule. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Adult femaleXyleborus dispar (pear blight beetle); adult female, head capsule. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adult female, dorsal view of pronotum. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
TitleAdult female
CaptionXyleborus dispar (pear blight beetle); adult female, dorsal view of pronotum. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Copyright©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adult female, dorsal view of pronotum. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Adult femaleXyleborus dispar (pear blight beetle); adult female, dorsal view of pronotum. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adult female, posterior view of elytra. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
TitleAdult female
CaptionXyleborus dispar (pear blight beetle); adult female, posterior view of elytra. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Copyright©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adult female, posterior view of elytra. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.
Adult femaleXyleborus dispar (pear blight beetle); adult female, posterior view of elytra. Museum set specimen. Collected by M. Knizek. Štěchovice, Central Bohemian region of the Czech Republic. July 1989.©PaDIL/Simon Hinkley & Ken Walker/Museum Victoria - CC BY 3.0 AU
Xyleborus dispar (pear blight beetle); adults. Left: female, ca. 3.5mm long; right: male, ca. 2mm long.
TitleMale and female
CaptionXyleborus dispar (pear blight beetle); adults. Left: female, ca. 3.5mm long; right: male, ca. 2mm long.
Copyright©Swiss Federal Research Station, Wadenswil
Xyleborus dispar (pear blight beetle); adults. Left: female, ca. 3.5mm long; right: male, ca. 2mm long.
Male and femaleXyleborus dispar (pear blight beetle); adults. Left: female, ca. 3.5mm long; right: male, ca. 2mm long.©Swiss Federal Research Station, Wadenswil
Xyleborus dispar (pear blight beetle); entrance hole, with fine, white, sawdust trickling out.
TitleEntrance hole
CaptionXyleborus dispar (pear blight beetle); entrance hole, with fine, white, sawdust trickling out.
Copyright©Swiss Federal Research Station, Wadenswil
Xyleborus dispar (pear blight beetle); entrance hole, with fine, white, sawdust trickling out.
Entrance holeXyleborus dispar (pear blight beetle); entrance hole, with fine, white, sawdust trickling out.©Swiss Federal Research Station, Wadenswil
Xyleborus dispar (pear blight beetle); opened gallery system, with the young beetles passing the winter in the breeding gallery, tightly packed one behind the other.
TitleOpened gallery system
CaptionXyleborus dispar (pear blight beetle); opened gallery system, with the young beetles passing the winter in the breeding gallery, tightly packed one behind the other.
Copyright©Swiss Federal Research Station, Wadenswil
Xyleborus dispar (pear blight beetle); opened gallery system, with the young beetles passing the winter in the breeding gallery, tightly packed one behind the other.
Opened gallery systemXyleborus dispar (pear blight beetle); opened gallery system, with the young beetles passing the winter in the breeding gallery, tightly packed one behind the other.©Swiss Federal Research Station, Wadenswil
Xyleborus dispar (pear blight beetle); the red wing trap 'Rebell rosso' in an apple orchard.
TitleRed wing trap
CaptionXyleborus dispar (pear blight beetle); the red wing trap 'Rebell rosso' in an apple orchard.
Copyright©Swiss Federal Research Station, Wadenswil
Xyleborus dispar (pear blight beetle); the red wing trap 'Rebell rosso' in an apple orchard.
Red wing trapXyleborus dispar (pear blight beetle); the red wing trap 'Rebell rosso' in an apple orchard.©Swiss Federal Research Station, Wadenswil

Identity

Top of page

Preferred Scientific Name

  • Xyleborus dispar (Fabricius, 1792)

Preferred Common Name

  • pear blight beetle

Other Scientific Names

  • Anisandrus aequalis Reitter
  • Anisandrus dispar (Ferrari, 1867)
  • Anisandrus dispar rugulosus Eggers, 1922
  • Anisandrus pyri (Peck)
  • Anisandrus swainei Drake, 1921
  • Apate dispar Fabricius, 1792
  • Bostrichus brevis Panzer, 1793
  • Bostrichus dispar (Herbst, 1793)
  • Bostrichus ratzeburgi Kolenati, 1846
  • Bostrichus tachygraphus Sahlberg, 1834
  • Bostrichus thoracicus Panzer, 1793
  • Scolytus pyri Peck, 1817
  • Tomicus dispar (Thomson, 1857)
  • Tomicus pyri (Harris, 1852)
  • Trypodendron dispar (Stephens, 1830)
  • Xyleborus cerasi Eggers, 1937
  • Xyleborus pyri (Zimmermann, 1868)

International Common Names

  • English: ambrosia beetle; beetle, pear blight; European shothole borer; larger shothole borer; shothole borer
  • Spanish: barrenador; taladrador; xileboro dispar
  • French: bostryche disparate; bostryche dissemblable; xylébore disparate

Local Common Names

  • Denmark: barkbille; vedborer, uens
  • Finland: lustokuoriainen
  • Germany: Borkenkaefer, ungleicher Holz-; Holzbohrer, ungleicher; ungleicher Borkenkäfer; ungleicher Holzbohrer; ungleicher Holzborkenkäfer
  • Italy: anisandro dispari; bostrico dispari; xileboro disuguale; xyleboro (bostrico) disuguale
  • Netherlands: houtboorkever; ongelijke houtkever; ongelijke houtschorskever
  • Norway: lauvtrebarkbille
  • Poland: rozwiertek nieparek
  • Sweden: loevvedborre, svart
  • Turkey: dalkiran

EPPO code

  • XYLBDI (Xyleborus dispar)

Summary of Invasiveness

Top of page
X. dispar should be considered a high-risk quarantine pest. This is because members of the tribe Xyleborini (Xyleborus plus related genera) are all inbreeding, with the males generally mating with their sisters within the parental gallery system before dispersal. Thus the introduction of only a few mated females may lead to the establishment of an active population if suitable host plants can be found and environmental conditions are satisfactory. A very wide range of host plants have been recorded for many species of Xyleborus and related genera. Any woody material of suitable size, moisture content and density may be all that is required. The direct risk of establishment of populations of X. dispar outside its present range should be considered very serious. It is evident that the species has been introduced to new areas, primarily, but not entirely, in temperate and subtropical regions, and to spread within these areas, over at least the past 200 years. Further introductions and spread are likely. Although X. dispar is usually a secondary species, it may become a primary species attacking healthy trees, especially in areas where it is an exotic species (Kühnholz et al., 2003). Such a change in habits considerably increases its potential for causing economic damage to crop and forest trees.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Coleoptera
  •                         Family: Scolytidae
  •                             Genus: Xyleborus
  •                                 Species: Xyleborus dispar

Notes on Taxonomy and Nomenclature

Top of page
Xyleborus dispar was first described by Fabricius in 1792 as Apate dispar, and has had a long and varied taxonomic history. The many synonyms that have resulted are listed by Bright (1968), Postner (1974), Schedl (1981), Wood (1982), Wood and Bright (1992), Pfeffer (1995) and Mandelshtam (2000). The earlier opinion that X. dispar in Europe and Xyleborus pyri in North America are two different species is no longer held (Bright, 1968). Wood and Bright (1992) include an exhaustive bibliography of references, and this is supplemented by Bright and Skidmore (1997, 2002).

Description

Top of page
Eggs

Eggs are oval (0.8-0.9 mm x 0.4 mm), pearly white and shiny.

Larvae

The mature larva has been described in detail and figured by Lekander (1968, as Anisandrus dispar). A few additional characters are given by Kalina (1970). Only characters which can be used to distinguish the species from other European genera of bark and ambrosia beetle larvae are given here. Head capsule and mouthparts unusually wide, head capsule index, 0.84. Antennae conical, not constricted at base. Labrum broad, with four anteromedian setae. Three pairs of median epipharyngeal setae, the posterior two pairs smaller and spine-like. Tormae long, diverging posteriorly, and bent sharply outwards near the anterior end. Mentum short and broad, narrowed posteriorly. Kalina (1975) notes that the larva is more similar to that of Xyleborus cryptographus, and less close to the larvae of Xyleborus monographus and Xyleborinus saxesenii.

Pupae

The pupa has been described by Nosek (1958), and distinguished from that of Xyleborinus saxesenii. The pupae of scolytids remain poorly known, and taxonomically important characters uncertain.

Adults

There is an evident morphological difference between both sexes. The male is much smaller than the female, 1.8-2.4 mm long (about 1.6 times as long as wide) and has a body strongly convex (thorax relatively small and abdomen short). The female is 3.2-3.7 mm long (twice as long as wide) and the body is more elongate and cylindrical than in the male. The female can be distinguished from related European species by the broad pronotum, which is wider than long, the disc finely shagreened, and finely, sparsely punctured; the elytra 1.3 to 1.4 times longer than wide, both disc and declivity with strongly punctured striae, the declivity steep, with minute granules on the interstriae. The males are uncommon, and rarely found outside the gallery system.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 15 Dec 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

AlgeriaPresent, LocalizedNative
MoroccoPresent, LocalizedNative
TunisiaPresent, LocalizedNative

Asia

ArmeniaPresentNative
AzerbaijanPresentNative
ChinaPresentPresent based on regional distribution.
-HeilongjiangPresentNative
-ShaanxiPresentNative
GeorgiaPresentNative
IranPresent, LocalizedNative
JapanAbsent, Intercepted only
MongoliaPresentNative
TurkeyPresent, LocalizedNative

Europe

AustriaPresent, WidespreadNative
BelarusPresent, LocalizedNative
BelgiumPresent, LocalizedNative
Bosnia and HerzegovinaPresent, LocalizedNative
BulgariaPresent, LocalizedNative
CroatiaPresent, LocalizedNative
CzechiaPresent, LocalizedNative
CzechoslovakiaPresent, LocalizedNative
DenmarkPresent, LocalizedNative
EstoniaPresent, LocalizedNative
FinlandPresent, LocalizedNative
FrancePresent, WidespreadNative
GermanyPresent, WidespreadNative
GreecePresent, LocalizedNative
HungaryPresent, LocalizedNative
ItalyPresent, LocalizedNative
LatviaPresent, LocalizedNative
LiechtensteinPresent, LocalizedNative
LithuaniaPresent, LocalizedNative
LuxembourgPresent, LocalizedNative
MoldovaPresent, LocalizedNative
NetherlandsPresent, WidespreadNative
North MacedoniaPresent, LocalizedNative
NorwayPresent, LocalizedNative
PolandPresent, WidespreadNative
RomaniaPresent, LocalizedNative
RussiaPresentPresent based on regional distribution.
-Central RussiaPresent, LocalizedNative
-Eastern SiberiaPresent, LocalizedNative
-Southern RussiaPresent, LocalizedNative
-Western SiberiaPresent, LocalizedNative
SerbiaPresent
Serbia and MontenegroPresent, LocalizedNative
SlovakiaPresent, LocalizedNative
SloveniaPresent, LocalizedNative
SpainPresent, LocalizedNative
SwedenPresent, LocalizedNative
SwitzerlandPresent, WidespreadNative
UkrainePresent, WidespreadNative
United KingdomPresent, WidespreadNative

North America

CanadaPresentPresent based on regional distribution.
-British ColumbiaPresent, LocalizedIntroducedInvasive
-Nova ScotiaPresent, LocalizedIntroducedInvasive
-OntarioPresent, LocalizedIntroducedInvasive
-QuebecPresent, LocalizedIntroducedInvasive
United StatesPresentPresent based on regional distribution.
-CaliforniaPresent, LocalizedIntroducedInvasive
-IdahoPresent, LocalizedIntroducedInvasive
-IllinoisPresent, LocalizedIntroducedInvasive
-MainePresent, LocalizedIntroducedInvasive
-MarylandPresent, LocalizedIntroducedInvasive
-MassachusettsPresent, LocalizedIntroducedInvasive
-MichiganPresent, LocalizedIntroducedInvasive
-MissouriPresent, LocalizedIntroducedInvasive
-New HampshirePresent, LocalizedIntroducedInvasive
-New JerseyPresent, LocalizedIntroducedInvasive
-New YorkPresent, LocalizedIntroducedInvasive
-North CarolinaPresent, LocalizedIntroducedInvasive
-OhioPresent, LocalizedIntroducedInvasive
-OregonPresent, LocalizedIntroducedInvasive
-PennsylvaniaPresent, LocalizedIntroducedInvasive
-Rhode IslandPresent, LocalizedIntroducedInvasive
-South CarolinaPresent, LocalizedIntroducedInvasive
-UtahPresent, LocalizedIntroducedInvasive
-VirginiaPresent, LocalizedIntroducedInvasive
-WashingtonPresent, LocalizedIntroducedInvasive
-West VirginiaPresent, LocalizedIntroducedInvasive

History of Introduction and Spread

Top of page
In Europe, X. dispar is widespread from Spain to the Urals and from Italy to Finland (Stark, 1952; Balachowsky, 1963; Postner, 1974; Schedl, 1981; Pfeffer, 1995).

In Asia, it is known from the Middle East through Siberia to Sakhalin Island and north-eastern China. In Africa, it is present only in the North in Mediterranean countries (Stark, 1952; Balachowsky, 1963; Postner, 1974; Schedl, 1981; Pfeffer, 1995; Yanovskii, 1999).

In North America, where it was accidentally introduced from Europe before 1817 (Wood, 1977), X. dispar now occurs in eastern North America west to the Great Lakes states and south to South Carolina, western Canada, the Pacific Northwest states and California (Linsley and MacLeod, 1942; Bright 1968; Wood, 1982; Kovach and Gorsuch, 1985; Hobson and Bright, 1994). The distribution in North America suggest two introductions, one in the east and one in the west.

Risk of Introduction

Top of page
A number of species of Xyleborus and related genera with similar habits to X. dispar have become important pests of tree crops, ornamental and native trees in tropical, subtropical and warm temperate zone areas where they have been introduced. The risk of introduction for X. dispar must be considered high, most probably in the branches of imported plants, although other pathways are also possible. Once established, such species are difficult to eradicate, and are likely to spread with the movement of infested plants, as well as by normal dispersal of the adults. X. dispar is included on the New Zealand Regulated Pest List, and Xyleborus spp. on the APHIS Regulated Pest List in the USA.

Hosts/Species Affected

Top of page
X. dispar is very polyphagous. It attacks many deciduous trees, probably all in its distribution range (Schvester, 1954; Balachowsky, 1963; Bright, 1968; Schedl, 1981; Wood, 1982; Wood and Bright, 1992; Pfeffer, 1995). Recently it was also found on Eucalyptus (Lombardero et al., 1997). A few conifers are also mentioned (Bright, 1968; Postner, 1974; Schedl, 1981).

Favoured species are fruit trees, such as apple, apricot, peach, nectarine, pear, cherry, plum, hazel (Mathers, 1940; Linsley and MacLeod, 1942; Vasseur and Schvester, 1948; Schvester, 1954; Balachowsky, 1963; Postner, 1974; Viggiani, 1979; Chepurnaya and Myalova, 1981; Mani and Schwaller, 1983; Kovach and Gorsuch, 1985; Furniss and Johnson, 1987; Hesjedal and Edland, 1988; Schick and Thines, 1988; Juillard-Condat and Perrau, 1989; Schröder, 1996; Lagowska and Winiarska, 1997; Morone and Scortichini, 1998). Of forest trees, maple, oak (Postner, 1974), birch, poplar, alder (Balachowsky, 1963), chestnut (Schvester, 1954; Bud, 1972) and Chinese chestnut (Tsankov and Ganchev, 1988) are mostly attacked. Damage on urban hawthorn trees has also been reported (Nachtigall, 1993).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContextReferences
Abies (firs)PinaceaeWild host
    Acacia (wattles)FabaceaeWild host
      Acer campestre (field maple)AceraceaeWild host
        Acer platanoides (Norway maple)AceraceaeOther
          Acer pseudoplatanus (sycamore)AceraceaeOther
            Acer saccharinum (silver maple)AceraceaeWild host
              Aesculus hippocastanum (horse chestnut)HippocastanaceaeWild host
                Alnus glutinosa (European alder)BetulaceaeOther
                  Alnus incana (grey alder)BetulaceaeWild host
                    Betula occidentalis (Water birch)BetulaceaeWild host
                      Betula papyrifera (paper birch)BetulaceaeWild host
                        Betula pendula (common silver birch)BetulaceaeWild host
                          Betula pubescens (Downy birch)BetulaceaeWild host
                            Carpinus betulus (hornbeam)BetulaceaeWild host
                              Carya (hickories)JuglandaceaeWild host
                                Castanea dentata (American chestnut)FagaceaeOther
                                  Castanea mollissima (hairy chestnut)FagaceaeOther
                                    Castanea sativa (chestnut)FagaceaeOther
                                      Cedrus (cedars)PinaceaeWild host
                                        Corylus avellana (hazel)BetulaceaeMain
                                        Crataegus (hawthorns)RosaceaeOther
                                          Cydonia (quince)RosaceaeOther
                                            Diervilla (bush-honeysuckle)CaprifoliaceaeWild host
                                              Eucalyptus globulus (Tasmanian blue gum)MyrtaceaeOther
                                                Fagus sylvatica (common beech)FagaceaeWild host
                                                  Frangula alnus (alder buckthorn)RhamnaceaeWild host
                                                    Fraxinus excelsior (ash)OleaceaeWild host
                                                      Juglans regia (walnut)JuglandaceaeOther
                                                        Juniperus (junipers)CupressaceaeWild host
                                                          Koelreuteria paniculata (golden rain tree)SapindaceaeWild host
                                                            Liriodendron (tulip tree)MagnoliaceaeWild host
                                                              Malus domestica (apple)RosaceaeMain
                                                                Malus sylvestris (crab-apple tree)RosaceaeOther
                                                                  Mespilus (medlar)RosaceaeWild host
                                                                    Pinus (pines)PinaceaeUnknown
                                                                    Pinus sylvestris (Scots pine)PinaceaeWild host
                                                                      Platanus occidentalis (sycamore)PlatanaceaeWild host
                                                                        Platanus orientalis (plane)PlatanaceaeWild host
                                                                          Platycladus orientalis (Chinese arborvitae)CupressaceaeWild host
                                                                            Populus tremula (aspen (European))SalicaceaeOther
                                                                              Prunus amygdalusRosaceaeMain
                                                                                Prunus armeniaca (apricot)RosaceaeMain
                                                                                  Prunus avium (sweet cherry)RosaceaeMain
                                                                                    Prunus cerasus (sour cherry)RosaceaeMain
                                                                                      Prunus domestica (plum)RosaceaeMain
                                                                                        Prunus laurocerasus (cherry laurel)Wild host
                                                                                          Prunus mahaleb (mahaleb cherry)RosaceaeWild host
                                                                                            Prunus padus (bird cherry)RosaceaeWild host
                                                                                              Prunus persica (peach)RosaceaeMain
                                                                                                Prunus persica var. nucipersica (nectarine)RosaceaeMain
                                                                                                  Prunus salicina (Japanese plum)RosaceaeOther
                                                                                                    PunicaPunicaceaeWild host
                                                                                                      Pyrus (pears)RosaceaeUnknown
                                                                                                      Pyrus communis (European pear)RosaceaeMain
                                                                                                        Pyrus syriacaRosaceaeWild host
                                                                                                          Quercus cerris (European Turkey oak)FagaceaeWild host
                                                                                                            Quercus frainetto (Hungarian oak)FagaceaeWild host
                                                                                                              Quercus lusitanicaFagaceaeWild host
                                                                                                                Quercus petraea (durmast oak)FagaceaeOther
                                                                                                                  Quercus pubescens (downy oak)FagaceaeWild host
                                                                                                                    Quercus robur (common oak)FagaceaeWild host
                                                                                                                      Quercus rubra (northern red oak)FagaceaeWild host
                                                                                                                        Rhamnus cathartica (buckthorn)RhamnaceaeWild host
                                                                                                                          Ribes (currants)GrossulariaceaeOther
                                                                                                                            Robinia pseudoacacia (black locust)FabaceaeWild host
                                                                                                                              Rosa (roses)RosaceaeWild host
                                                                                                                                Salix (willows)SalicaceaeWild host
                                                                                                                                  Sambucus nigra (elder)CaprifoliaceaeWild host
                                                                                                                                    SassafrasLauraceaeWild host
                                                                                                                                      SophoraFabaceaeWild host
                                                                                                                                        Sorbus aucuparia (mountain ash)RosaceaeWild host
                                                                                                                                          Sorbus torminalis (rowan)RosaceaeWild host
                                                                                                                                            SpiraeaRosaceaeWild host
                                                                                                                                              ThujaCupressaceaeWild host
                                                                                                                                                Tilia (limes)TiliaceaeWild host
                                                                                                                                                  Tsuga (hemlocks)PinaceaeWild host
                                                                                                                                                    Ulmus (elms)UlmaceaeWild host
                                                                                                                                                      Vitis vinifera (grapevine)VitaceaeMain

                                                                                                                                                        Growth Stages

                                                                                                                                                        Top of page
                                                                                                                                                        Flowering stage, Vegetative growing stage

                                                                                                                                                        Symptoms

                                                                                                                                                        Top of page
                                                                                                                                                        Attacked trees have delayed growth. Whole trees or part of trees start to wilt and often perish within a short time (especially young fruit trees).

                                                                                                                                                        In April/May small, round entry holes (about 2 mm in diameter) become visible in the bark of trunks and larger branches. Fine, white frass trickles out from such holes. In plants still in good health, plant sap or gum (especially in Prunus) flows out of the holes.

                                                                                                                                                        In general, X. dispar attacks only stressed trees which are already damaged by frost, drought, wetness, transplanting, root feeders or diseases. The beetle may also attack trees before conspicuous external evidence appears to indicate the stressed condition of the tree. Attacks by X. dispar may be regarded as symptomatic of an altered physiological condition in the tree. However, Vasseur and Schvester (1948), Schvester (1954), Egger (1973), Postner (1974), Viggiani (1979), Schröder (1996) and Perny (1998) report that apparently healthy trees, especially apple, pear, apricot and hazel, may also be attacked. This occurs mainly when insect populations are high.

                                                                                                                                                        List of Symptoms/Signs

                                                                                                                                                        Top of page
                                                                                                                                                        SignLife StagesType
                                                                                                                                                        Stems / dieback
                                                                                                                                                        Stems / gummosis or resinosis
                                                                                                                                                        Stems / internal feeding
                                                                                                                                                        Stems / mycelium present
                                                                                                                                                        Stems / visible frass
                                                                                                                                                        Whole plant / frass visible
                                                                                                                                                        Whole plant / internal feeding
                                                                                                                                                        Whole plant / plant dead; dieback
                                                                                                                                                        Whole plant / unusual odour

                                                                                                                                                        Biology and Ecology

                                                                                                                                                        Top of page
                                                                                                                                                        Almost all of the work on the biology of X. dispar has been carried out in Europe. However, it seems probable that these studies are applicable to North America. X. dispar has one generation per year (Schneider-Orelli, 1913; Schvester, 1954). The opinion of earlier authors, that X. dispar has two generations, may be due to the long flight period of the females and to some young and old females leaving the galleries in summer.

                                                                                                                                                        As soon as the maximum daily temperature in spring reaches 18-20°C the female beetles start flying and searching for host plants. This is mostly in April/May, but sometimes as early as March (Schneider-Orelli, 1913; Schvester, 1954; Roediger, 1956; Egger, 1973; Mani and Schwaller, 1983; Mani et al., 1990, 1992; Schröder, 1996). The emergence of the females usually continues for 4-8 weeks depending on weather conditions.

                                                                                                                                                        The main flight activity of the beetles is between 14:00 h and 16:00 h (Mani et al., 1990, 1992). In orchards with high populations, a distinct swarming of females was directly observed. Traps in open fields often caught many beetles, indicating that the beetles may fly over long distances. Catches of beetles in traps indicated that the flight in a shady forest started and finished later than in the adjacent orchard (Mani et al., 1990, 1992). A similar situation may be the cause of the unusually long period of trap catches (4 months) observed by Markalas and Kalapanida (1997) in a forest.

                                                                                                                                                        After emergence, females may start boring in the same tree in which they have developed, if this is still in a suitable condition, or disperse to find another suitable host plant. The females first bore a short, radial entrance tunnel (1-3 cm deep) before excavating a transverse tunnel to either side. From each of these, cylindrical breeding galleries are produced, directed perpendicularly both upwards and downwards (Schneider-Orelli, 1913; Egger, 1973; Postner, 1974; Alford, 1984; Mani et al., 1990). In smaller trunks or in branches, the galleries are often simpler.

                                                                                                                                                        Shortly after the beginning of boring, when the ambrosia fungus has become established, the female starts egg laying. The female then continues excavating the gallery and laying eggs. Larvae emerge a few days after oviposition. Adults and larvae feed on the fungus growing in the tunnels. In June/July pupation takes place and in July/August beetles of the new generation appear. Full development takes about 2 months. Due to the long flight and oviposition period of the females, different developmental stages may be found in a gallery at the same time. Teneral adults enter diapause and are unable to attack trees and to breed. The diapause is terminated during the winter (Schvester, 1954).

                                                                                                                                                        Beetles pass the winter in the breeding galleries, tightly packed one behind the other. The following spring, the young females of the new generation leave the gallery system through the parental entrance hole. Brother-sister mating takes place in the gallery. Males are unable to fly and usually die within the parental nest. However, it was noted long ago by Schneider-Orelli (1913) that males can sometimes be found in spring crawling on the bark of attacked trees, and may mate with overwintered females from other galleries. The ratio of males to females is very variable. Egger (1973) found some galleries in which males outnumbered females, but more usually the sex ratio is biased towards females, from 1:5 to 1:15, and occasionally higher. The average number of beetles in a gallery is about 25, depending on the size and quality of the gallery, with a maximum of about 40 (Schneider-Orelli, 1913; Schvester, 1954; Egger, 1973).

                                                                                                                                                        X. dispar belongs to the group of ambrosia beetles (Schneider-Orelli, 1913; Francke-Grosmann, 1963; Batra, 1963, 1967; French and Roeper, 1972, 1975). The larvae are exclusively mycetophagous; they do not feed on wood, but on the symbiotic fungus Ambrosiella hartigii, which grows in the tunnels. It grows as a continuous palisade within the galleries of the active brood. A. hartigii has two growth forms. The ambrosial form (conidia and sprout cells) is produced in association with the insect and the mycelial form is produced in vitro without the insect. French and Roeper (1972) found that larvae feed on the mycelial form in vitro, but ambrosia is required by the larvae to develop and pupate. They also believe that the main mechanism for ambrosia induction and control involves a secretion of the insect. Oocyte development and oviposition occurred only after the post-diapause females had fed on the ambrosial form of the fungus. French and Roeper (1975) also observed a tending and nursing behaviour of the females. The quality of the host tissues affects fungal growth.

                                                                                                                                                        The fungus is transferred by the mother beetle to the new gallery in a mycangium (Batra, 1963, 1967). In X. dispar, the mycangia are paired, pocket-shaped organs situated underneath the mesonotum (Francke-Grosmann, 1956; Batra, 1963).

                                                                                                                                                        Natural enemies

                                                                                                                                                        Top of page
                                                                                                                                                        Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
                                                                                                                                                        Eurytoma morio Parasite Larvae
                                                                                                                                                        Perniphora robusta Parasite Larvae

                                                                                                                                                        Notes on Natural Enemies

                                                                                                                                                        Top of page
                                                                                                                                                        The immature stages of xyleborines have few natural enemies. The female parent normally remains in the gallery entrance whilst the immature stages are developing, preventing the entry of potential predators and parasitoids. Provided that the female remains alive and the growth of the ambrosia fungus on which the larvae feed is satisfactory, mortality of the immature stages is likely to be very low. Most mortality is probably during the dispersal of the adults, and during gallery establishment. Adults of ambrosia beetles are predated by lizards, clerid beetles and ants as they attempt to bore into the host tree. Adults will also fail to oviposit if the ambrosia fungus fails to establish in the gallery.

                                                                                                                                                        Few species of parasitoid Hymenoptera have been recorded from X. dispar (Noyes, 2003) and it is unlikely that any cause major mortality. Perniphora robusta attacks ambrosia beetles (Trypodendron spp., Xyleborus spp.) throughout Europe (Balazy, 1963; Capecki, 1963; Hedqvist, 1963). Its larvae feed externally on the beetle larvae (Eichhorn and Graf, 1974). Habritys brevicornis has a very wide range of hosts which includes sphecid wasps and stratiomyiid flies, in addition to bark beetles (Noyes, 2003). Vrestovia querci was described from specimens attacking X. dispar in Quercus sp. (Noyes, 2003) and is known only from the original collection in China (Shaanxi). Eurytoma morio is a polyphagous species which attacks both scolytids and their parasitoids (Hedqvist, 1963). Schvester (1950) found a nematode of the family Allantonematidae, Parasitylenchus xylebori, in the body cavity of adult females, and found that it reduced their fecundity, but nothing more is known of the species.

                                                                                                                                                        Means of Movement and Dispersal

                                                                                                                                                        Top of page
                                                                                                                                                        Natural Dispersal

                                                                                                                                                        Adult females fly readily, and flight is one the main means of movement and dispersal to previously uninfected areas.

                                                                                                                                                        Vector Transmission

                                                                                                                                                        In addition to the ambrosia fungus Ambrosiella hartigii, the females of ambrosia beetles often also transfer other microorganisms (Schneider-Orelli, 1913; Francke-Grosmann, 1956; Zimmermann, 1973). Natali et al. (1994) found that X. dispar females, collected in three different biotopes of hazel growing in Italy, transferred 15 bacterial species, three yeasts and three fungi. Tiberi and Ragazzi (1998) (see also Sousa, 2002) found that X. dispar collected from oak trees (Quercus) in decline, transmitted the fungi Fusarium eumartii [Nectria haematococca), F. solani and Verticillium dahliae, and suggest that the beetles can exploit the trees more easily as a result of the activity of these fungi.

                                                                                                                                                        Plant Trade

                                                                                                                                                        Top of page
                                                                                                                                                        Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
                                                                                                                                                        Bark adults Yes Pest or symptoms usually visible to the naked eye
                                                                                                                                                        Stems (above ground)/Shoots/Trunks/Branches adults; eggs; larvae; pupae Yes Pest or symptoms not visible to the naked eye but usually visible under light microscope
                                                                                                                                                        Wood adults; eggs; larvae; pupae Yes Pest or symptoms not visible to the naked eye but usually visible under light microscope
                                                                                                                                                        Plant parts not known to carry the pest in trade/transport
                                                                                                                                                        Bulbs/Tubers/Corms/Rhizomes
                                                                                                                                                        Flowers/Inflorescences/Cones/Calyx
                                                                                                                                                        Fruits (inc. pods)
                                                                                                                                                        Growing medium accompanying plants
                                                                                                                                                        Leaves
                                                                                                                                                        Roots
                                                                                                                                                        Seedlings/Micropropagated plants
                                                                                                                                                        True seeds (inc. grain)

                                                                                                                                                        Wood Packaging

                                                                                                                                                        Top of page
                                                                                                                                                        Wood Packaging liable to carry the pest in trade/transportTimber typeUsed as packing
                                                                                                                                                        Loose wood packing material Fresh sapwood Yes
                                                                                                                                                        Solid wood packing material with bark Fresh sapwood Yes
                                                                                                                                                        Solid wood packing material without bark Fresh sapwood Yes
                                                                                                                                                        Wood Packaging not known to carry the pest in trade/transport
                                                                                                                                                        Non-wood
                                                                                                                                                        Processed or treated wood

                                                                                                                                                        Impact Summary

                                                                                                                                                        Top of page
                                                                                                                                                        CategoryImpact
                                                                                                                                                        Animal/plant collections None
                                                                                                                                                        Animal/plant products None
                                                                                                                                                        Biodiversity (generally) None
                                                                                                                                                        Crop production Negative
                                                                                                                                                        Environment (generally) None
                                                                                                                                                        Fisheries / aquaculture None
                                                                                                                                                        Forestry production Negative
                                                                                                                                                        Human health None
                                                                                                                                                        Livestock production None
                                                                                                                                                        Native fauna None
                                                                                                                                                        Native flora None
                                                                                                                                                        Rare/protected species None
                                                                                                                                                        Tourism None
                                                                                                                                                        Trade/international relations None
                                                                                                                                                        Transport/travel None

                                                                                                                                                        Impact

                                                                                                                                                        Top of page
                                                                                                                                                        The economic damage caused by X. dispar is not easy to estimate. The beetle preferentially attacks stressed trees. Such trees might often have a chance of recovery without beetle attack.

                                                                                                                                                        In several countries of Europe and North America, X. dispar is sporadically a serious pest of fruit trees such as apple, apricot, peach, nectarine, pear, cherry and plum, and of hazel (Mathers, 1940; Linsley and MacLeod, 1942; Vasseur and Schvester, 1948; Schvester, 1954; Balachowsky, 1963; Postner, 1974; Viggiani, 1979; Mani and Schwaller, 1983; Hesjedal and Edland, 1988; Schick and Thines, 1988; Juillard-Condat and Perrau, 1989; Mani et al., 1990, 1992; Natali et al., 1994; Schröder, 1996; Lagowska and Winiarska, 1997; Saruhan and Tuncer, 2001). Less often, damage occurs in vineyards (Ioakimov, 1925; Russ, 1966; Mani et al., 1990, 1992). In the north-western states of America and western Canada, X. dispar is an important pest in chestnut (Castanea spp.) orchards (Bhagwandin, 1993; Kühnholz et al., 2003).

                                                                                                                                                        In most cases, only single trees or groups of trees are attacked and destroyed, but sometimes whole new plantings of young trees are severely damaged. This happens mostly in the second year after planting, to young plants in poor condition (Mani and Schwaller, 1983; Mani et al., 1992; Morone and Scortichini, 1998). In such cases, important economic losses can occur.

                                                                                                                                                        In European forests, losses due to X. dispar are sometimes important. Severe attack has been observed in young plantations of maple and oaks (Postner, 1974), of chestnut (Schvester, 1954; Bud, 1972), Chinese chestnut (Tsankov and Ganchev, 1988) and in some stands of birch, poplar and alder (Balachowsky, 1963). In Austria, sometimes massive attacks up to 4 m high have been observed both on fungus-infected and healthy trees of sycamore maple, ash, oak and cherry (Perny, 1998).

                                                                                                                                                        Impact: Biodiversity

                                                                                                                                                        Top of page
                                                                                                                                                        Mudge et al. (2001) note that the species is more abundant than native species of Scolytidae at some sites in Oregon, USA, and suggest that the ecosystem may have been permanently altered as a result of its introduction. However, it is not clear whether it has significantly reduced the abundance of the native species, or is occupying host material that would otherwise have remained unexploited.

                                                                                                                                                        Detection and Inspection

                                                                                                                                                        Top of page
                                                                                                                                                        X. dispar attack can be detected in spring by traces of fine, white sawdust trickling out of holes on the bark of trunks or larger branches. Sometimes only gum or moist spots of sap will be found with the beginning of holes.

                                                                                                                                                        Opening the attacked plant part reveals a ramified gallery system which is easy to distinguish from the gallery system of bark beetles.

                                                                                                                                                        During the flight period in spring, beetles can be caught in alcohol traps (see Biotechnical Control). The traps must be placed in spring as soon as the maximum temperature rises to 18-20°C.

                                                                                                                                                        Similarities to Other Species/Conditions

                                                                                                                                                        Top of page
                                                                                                                                                        Postner (1974) and Alford (1984) describe the characteristics of galleries and of the biology of Xyleborinus saxesenii. This species, smaller in size than X. dispar, and with a conical, not flattened scutellum, often occurs in association with X. dispar. Keys to palearctic species of Xyleborini, including X. dispar, can be found in Balachowsky (1949), Duffy (1953), Schedl (1981) and Pfeffer (1995). Bright (1968), Wood (1982), Atkinson et al. (1990) and Vandenberg et al. (2000) have keys to nearctic species.

                                                                                                                                                        Prevention and Control

                                                                                                                                                        Top of page

                                                                                                                                                        Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

                                                                                                                                                        Cultural Control

                                                                                                                                                        In most areas, X. dispar is considered to be a secondary pest (Schneider-Orelli, 1913; Linsley and MacLeod, 1942; Balachowsky, 1963; Postner, 1974; Zöggeler, 1987; Schick and Thines, 1988; Juillard-Condat and Perrau, 1989; Keimer, 1990; Mani et al., 1990, 1992; Schröder, 1996; but compare Bhagwandin, 1993; Perny, 1998; Kühnholz et al., 2003). Weakened trees are especially attractive to this beetle.

                                                                                                                                                        For this reason all cultural measures improving the health of trees must have priority. New plantations are at risk, particularly during the first and the second spring after planting. Avoid drying of roots before and after planting. Remove and destroy infected trees and branches immediately when attack is observed, or at the latest before the beetles of the new generation leave the galleries the following spring.

                                                                                                                                                        Biological Control

                                                                                                                                                        No method of biological control of X. dispar exists at present. The natural enemies listed do not provide effective control, and augmentation is not likely to produce much improvement. Canganella et al. (1994) suggest that the bacteria (Pseudomonas chlororaphis and Bacillus subtilis) they found on the insect and in the galleries may represent the starting point for future research.

                                                                                                                                                        Biotechnical Control

                                                                                                                                                        Schvester (1954) observed that attacked trees often produce an odour of alcohol. He explained this by the interruption or slowing down of plant sap transport and by the fermentation of this sap. Roling and Kearby (1975) showed that oak trees injected with ethanol attracted ambrosia beetles. Ethanol is apparently a good signal for a suitable host plant, especially for an ambrosia beetle cultivating a fungus in wet plant tissue (Klimetzek et al., 1986). All these observations may explain why many ambrosia beetles are attracted by alcohol traps.

                                                                                                                                                        In forests, window flight traps baited with ethanol are used, often in combination with pheromones, to estimate the flight periods and flight pattern of bark and ambrosia beetles (Moeck, 1970; Roling and Kearby, 1975; Annila, 1977; Schroeder and Lindelöw, 1989; Markalas and Kalapanida, 1997).

                                                                                                                                                        The red wing trap, baited with ethanol (Rebell rosso), has been developed in Switzerland to attract X. dispar in orchards and vineyards. It has proved to be useful in monitoring and in control systems (Mani et al., 1986, 1988, 1990, 1992). This method has become accepted in several countries (Zöggeler, 1987; Juillard-Condat and Perrau, 1989; Schröder, 1996; Lagowska and Winiarska, 1997). For other designs of trap using ethanol as a bait, see, for example, Bambara et al. (2002), Oliver and Mannion (2001) and Grégoire et al. (2003).

                                                                                                                                                        For monitoring, one or two traps per hectare of orchard or vineyard have to be placed in spring, when maximum temperatures rise above 17°C. In favourable weather conditions, the lure (250 ml 50% ethanol denatured with 1% toluene) has to be replaced every 2-3 days. When catches reach 20 beetles per trap per day, the risk of attack of some importance is indicated.

                                                                                                                                                        For control of X. dispar in an endangered orchard or vineyard, eight traps per hectare need to be placed. Such a control system will reduce the beetle population and the damage considerably.

                                                                                                                                                        The red wing trap attracts a variety of other insect species (especially Diptera), but only a few honey bees and known natural enemies of insect pests.

                                                                                                                                                        Chemical Control

                                                                                                                                                        Chemical control of X. dispar is very difficult and expensive due to its protected breeding sites and its resistance to many insecticides. Therefore, sprays are only applied in exceptional cases. Compounds used previously may no longer be used. Compounds registered at present, such as carbaryl, organophosphates and pyrethroids (Viggiani, 1979; Dominik and Kinelski, 1985; Juillard-Condat and Perrau, 1989; Schröder, 1996) often give only partial control.

                                                                                                                                                        Insecticides are applied when the insects start flying and searching for suitable host plants (maximum temperature 18-20°C; first catches in alcohol traps) or at the latest, when the first beetles start boring entrance holes. The concentration of the insecticide is often higher than usual and the whole tree, especially the trunk and larger branches, should be sprayed thoroughly. When trap catches continue to be significant the application has to be repeated after 2-3 weeks.

                                                                                                                                                        Integrated Pest Management

                                                                                                                                                        Control of X. dispar must rely on a combination of different methods. All measures promoting plant health are essential. Attacked plant parts must be removed in time. In orchards with a risk of damage, alcohol traps should be placed for monitoring or for control. Only in exceptional cases do insecticide sprays become necessary. Eventually, it may be possible to develop the use of non-host volatiles as repellents to prevent, or at least reduce, attacks (Borden et al., 2003).

                                                                                                                                                        References

                                                                                                                                                        Top of page

                                                                                                                                                        1992. Scolytids. Zashchita Rastenii (Moskva), No. 4:62-63

                                                                                                                                                        Alford DV, 1984. A Colour Atlas of Fruit Pests. Their Recognition, Biology and Control. London, UK: Wolfe Publishing Ltd, 320 pp

                                                                                                                                                        Annila E, 1977. Seasonal flight patterns of spruce bark beetles. Annales Entomologici Fennici, 43(1):31-35

                                                                                                                                                        Atkinson TH, Rabaglia RJ, Bright DE, 1990. Newly detected exotic species of Xyleborus (Coleoptera: Scolytidae) with a revised key to species in eastern North America. Canadian Entomologist, 122(1-2):93-104

                                                                                                                                                        Balachowsky AS, 1949. Coleopteres, Scolytides. Faune de France 50. Paris, France: Lechevalier

                                                                                                                                                        Balachowsky AS, 1963. Famille des Scolytidae. In: Balachowsky AS, ed. Entomologie appliquée à l'agriculture. Masson, Paris, I ColéoptFres, Vol. 2, 1237-1287

                                                                                                                                                        Balazy S, 1963. Some remarks on Perniphora robusta Rusch. (Hym. Pteromalidae). Polskie Pismo Entomologiczne, (B) 29-30:91-94. (Polish with english summary)

                                                                                                                                                        Bambara S, Stephan D, Reeves E, 2002. Asian ambrosia beetle trapping. North Carolina Cooperative Extension Service. http://www.ces.ncsu.edu/depts/ent/notes/O&T/trees/note122/note122.html

                                                                                                                                                        Batra LR, 1963. Ecology of Ambrosia fungi and their dissemination by beetles. Transactions of the Kansas Academy of Science, 66(2):213-236

                                                                                                                                                        Batra LR, 1967. Ambrosia fungi: A taxonomic revision, and nutritional studies of some species. Mycologia, 59:976-1017

                                                                                                                                                        Bhagwandin HO, 1993. The shothole borer: an ambrosia beetle of concern for chestnut orcharding in the Pacific Northwest. Annual Report of the Northern Nut Growers' Association, 84:168-177

                                                                                                                                                        Borden JH, Chong LJ, Gries R, Pierce HD Jr, 2003. Potential for nonhost volatiles as repellents in integrated pest management of ambrosia beetles. Integrated Pest Management Reviews, 6:221-236

                                                                                                                                                        Bright DE, 1968. Review of the tribe Xyleborini in America North of Mexico (Coleoptera: Scolytidae). Canadian Entomologist, 100:1288-1323

                                                                                                                                                        Bright DE, Skidmore RE, 1997. A catalog of Scolytidae and Platypodidae (Coleoptera), Supplement 1 (1990-1994). Ottawa, Canada: NRC Research Press, 368 pp

                                                                                                                                                        Bright DE, Skidmore RE, 2002. A catalogue of Scolytidae and Platypodidae (Coleoptera), Supplement 2 (1995-1999). Ottawa, Canada: NRC Research Press, 523 pp

                                                                                                                                                        Bud N, 1972. Anisandrus dispar (Ferrari) - un daunator periculos al plantatiilor tinere de castan comestibil. Revista Padurilor, 87(4):196-198

                                                                                                                                                        Canganella F, Paparatti B, Natali V, 1994. Microbial species isolated from the bark beetle Anisandrus dispar F. Microbiological Research, 149(2):123-128; 34 ref

                                                                                                                                                        Capecki Z, 1963. Perniphora robusta Ruschka (Pteromalidae, Hymenoptera) and Ipideurytoma spessiotsevi Bouc. et Nov. (Eurytomidae, Hymenoptera) parasites of Trypodendron lineatum Ol. (Scolytidae, Coleoptera) in Poland. Ekologia Polska, Warszawa 11A, (12):303-308

                                                                                                                                                        Chepurnaya VI, Myalova LA, 1981. Pests and diseases of cherry. Zashchita Rastenii, No. 7:53-55

                                                                                                                                                        Dominik J, Kinelski S, 1985. Studies on the effectiveness of some insecticides containing synthetic pyrethroids for protecting timber from certain wood-boring insects [Badanie przydatnosci niektorych insectycydow opartych na syntetycznych piretroidach do dezynsekcji drewna opanowanego przez niektore szkodniki techniczne]. Sylwan, 129(6):67-70

                                                                                                                                                        Duffy EAJ, 1953. Handbooks for the Identification of British Insects. Coleoptera: Scolytidae and Platypodidae. London, UK: Royal Entomological Society of London, 5(15)

                                                                                                                                                        Egger A, 1973. Beiträge zur Biologie und Bekämpfung von Xyleborus (Anisandrus) dispar F. und X. saxeseni Ratz. (Col., Scolytidae). Anzeiger für Schadlingskunde, Pflanzen- und Umweltschutz, 46(12):183-186

                                                                                                                                                        Eichhorn O, Graf P, 1974. On some timber bark-beetles and their enemies. Anzeiger für Schadlingskunde, Pflanzen- und Umweltschutz, 47(9):129-135

                                                                                                                                                        Francke-Grosmann H, 1956. Hautdrüsen als Träger der Pilzsymbiose bei Ambrosiakäfern. Zeitschrift für Morphologie und Oekologie der Tiere, 45:275-308

                                                                                                                                                        Francke-Grosmann H, 1963. Some new aspects in forest entomology. Annual Review of Entomology, 8:415-438

                                                                                                                                                        Frankenhuyzen A van, 1992. Schadelijke en Nuttige Insekten en Mijten in Fruitgewassen. The Hague, The Netherlands: Nederlandse Fruittelers Organisatie

                                                                                                                                                        French JRJ, Roeper RA, 1972. Interactions of the ambrosia beetle, Xyleborus dispar (Coleoptera: Scolytidae), with its symbiotic fungus Ambrosiella hartigii (Fungi Imperfecti). Canadian Entomologist, 104(10):1635-1641

                                                                                                                                                        French JRJ, Roeper RA, 1975. Studies on the biology of the ambrosia beetle Xyleborus dispar (F.) (Coleoptera: Scolytidae). Zeitschrift fur Angewandte Entomologie, 78(3):241-247

                                                                                                                                                        Furniss MM, Johnson JB, 1987. List of Idaho Scolytidae (Coleoptera) and notes on new records. Great Basin Naturalist, 47(3):375-382

                                                                                                                                                        Grégoire J-C, Piel F, De Proft M, Gilbert M, 2003. Spatial distribution of ambrosia beetle catches: a possibly useful knowledge to improve mass-trapping. Integrated Pest Managament Reviews, 6:237-242

                                                                                                                                                        Hedqvist KJ, 1963. Die Feinde der Borkenkafer in Schweden I Erzwespe (Chalcidoidea)-Studia Forestalia Suecica, 11:1-176

                                                                                                                                                        Hesjedal K, Edland T, 1988. Attack of the deciduous tree bark-beetle in fruit orchards. Gartneryrket, 78(4):115-117

                                                                                                                                                        Hobson KR, Bright DE, 1994. A key to the Xyleborus of California, with faunal comments (Coleoptera: Scolytidae). Pan-Pacific Entomologist, 70(4):267-268

                                                                                                                                                        Ioakimov D, 1925. Beschädigungen der Rebe durch die Larve des Käfers Anisandrus dispar F. Mitteilungen der Bulgarischen Entomologischen Gesellschaft, 2:56

                                                                                                                                                        Juillard-Condat L, Perrau C, 1989. Le Xylébore disparate. Phytoma, 409:61-63

                                                                                                                                                        Kalina V, 1970. A contribution to the knowledge of the larvae of European bark beetles (Coleoptera, Scolytidae). Acta Entomologica Bohemoslovaca, 67:116-132

                                                                                                                                                        Kalina V, 1975. Beitrag zur Kenntnis der Larven Europäischer Borkenkäfer. III. (Col., Scolytidae). Studia Entomologica Forestalia, 2:41-59

                                                                                                                                                        Keimer C, 1990. Decline of apple trees in the Geneva region, relationships between soil and plant. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 22(6):365-369

                                                                                                                                                        Klimetzek D, Köhler J, Vité JP, Kohnle U, 1986. Dosage response to ethanol mediates host selection by 'secondary' bark beetles. Naturwissenschaften, 73:270-272

                                                                                                                                                        Kovach J, Gorsuch CS, 1985. Survey of ambrosia beetle species infesting South Carolina peach orchards and a taxonomic key for the most common species. Journal of Agricultural Entomology, 2(3):238-247

                                                                                                                                                        Kühnholz S, Borden JH, Uzunovic A, 2003. Secondary ambrosia beetles in apparently healthy trees: adaptations, potential causes and suggested research. Integrated Pest Management Reviews, 6:209-219

                                                                                                                                                        Lagowska B, Winiarska, W, 1997. The shot hole borer - a pest of fruit trees [Rozwiertek nieparek - szkodnik drzew owocowych]. Ochrona Roslin, 41(8):16

                                                                                                                                                        Lekander B, 1968. Scandinavian bark beetle larvae. Royal College of Forestry, Sweden, Research Notes, 4:1-186

                                                                                                                                                        Linsley EG, MacLeod GF, 1942. Ambrosia beetles attacking deciduous fruit trees in California. Journal of Economic Entomology, 35:601

                                                                                                                                                        Lombardero MJ, Fernandez FJ, Magan A, 1997. New pinhole borers on Eucalyptus in Galicia (Coleoptera: Scolytidae and Platypodidae) [Nuevos insectos perforadores asociados al eucalipto en Galicia (Coleoptera: Scolytidae y Playpodidae)]. Boletin de Sanidad Vegetal, Plagas, Spain, 23:177-188

                                                                                                                                                        Mandelshtam MY, 2000. New synonymy and new records in Palaearctic Scolytidae (Coleoptera). Zoosystematica Rossica, 9(1):203-204; 4 ref

                                                                                                                                                        Mani E, Remund U, Schwaller F, 1986. Alcohol traps for flight control and reduction of infestation of the wood borer (Anisandrus dispar F.). Schweizerische Zeitschrift für Obst- und Weinbau, 122(7):203-207

                                                                                                                                                        Mani E, Remund U, Schwaller F, 1988. Einsatz der Alkoholfalle zur Reduktion von Holzbohrerschäden in Obstanlagen. Schweizerische Zeitschrift für Obst- und Weinbau, 124:206-210

                                                                                                                                                        Mani E, Remund U, Schwaller F, 1990. The bark beetle, Xyleborus dispar F. (Coleoptera: Scolytidae) in fruit- and vine-growing. Importance, biology, control, development and use of an efficient ethanol trap, flight observations. Landwirtschaft Schweiz, 3(3):105-112

                                                                                                                                                        Mani E, Remund U, Schwaller F, 1992. Attack of the bark beetle, Xyleborus dispar F., (Coleoptera: Scolytidae) in orchards and vineyards. Importance, biology, flight observations, control, development and use of an efficient ethanol trap. Acta Phytopathologica et Entomologica Hungarica, 27(1-4):425-433

                                                                                                                                                        Mani E, Schwaller F, 1983. Zur Flugüberwachung und Bekämpfung des Ungleichen Holzbohrers, Xyleborus (Anisandrus) dispar F. Schweizerische Zeitschrift für Obst- und Weinbau, 119:104-108

                                                                                                                                                        Markalas S, Kalapanida M, 1997. Flight pattern of some Scolytidae attracted to flight barrier traps baited with ethanol in an oak forest in Greece. Anzeiger für Schädlingskunde, Pflanzenschutz und Umweltschutz, 70(3):55-57; 20 ref

                                                                                                                                                        Martikainen P, Viiri H, Raty M, 2001. Beetles (Coleoptera) caught with pheromones of Gnathotrichus retusus and G. sulcatus (Col., Scolytidae) in southern Finland. Anzeiger für Schadlingskunde, 74(1):7-10; 20 ref

                                                                                                                                                        Mathers WMG, 1940. The shot hole borer, Anisandrus pyri (Peck), in British Columbia (Coleoptera, Scolytidae). Canadian Entomologist, 72(10):189-190

                                                                                                                                                        Moeck HA, 1970. Ethanol as a primary attractant for the ambrosia beetle Trypodendron lineatum (Coleoptera: Scolytidae). Canadian Entomologist, 102:985-995

                                                                                                                                                        Morone C, Scortichini M, 1998. Damage by Pseudomonas syringae pv. syringae in apple orchards in Piedmont [Danni da Pseudomonas syringae pv. syringae in meliti piemontesi]. Informatore Agrario, 54(7):89-91

                                                                                                                                                        Mudge AD, LaBonte JR, Johnson KJR, LaGasa EH, 2001. Exotic woodboring Coleoptera (Micromalthidae, Scolytidae) and Hymenoptera (Xiphydriidae) new to Oregon and Washington. Proceedings of the Entomological Society of Washington, 103(4):1011-1019; 42 ref

                                                                                                                                                        Nachtigall G, 1993. Secondary damage to trees. Gartenamt, 42(2):101-102

                                                                                                                                                        Natali V, Paparatti B, Canganella F, 1994. Microorganisms carried by Xyleborus dispar (F.) (Coleoptera, Scolytidae) females, collected on European hazel trees in the area surrounding the lake of Vico (Viterbo, central Italy). Redia, 77(2):285-295; 67 ref

                                                                                                                                                        Nosek J, 1958. K morfologii kukel Xyleborus dispar F. a Xyleborus saxeseni Rtzb. Zoologicke a Entomologicke Listy, 7:87-90

                                                                                                                                                        Noyes JS, 2003. Universal Chalcidoidea Database. World Wide Web at: www.nhm.ac.uk/entomology/chalcidoids/about.html

                                                                                                                                                        Ohno K, 1991. Studies on Scolytidae and Platypodidae (Coleoptera) found on imported timber at Japanese ports. IV. A key to the species of genus Xyleborus. Research Bulletin, Plant Protection Service, Japan, 27:13-40

                                                                                                                                                        Oliver JB, Mannion CM, 2001. Ambrosia beetle (Coleoptera: Scolytidae) species attacking chestnut and captured in ethanol-baited traps in middle Tennessee. Environmental Entomology, 30(5):909-918; [Available online at http://www.entsoc.org/pubs/ee/eetocs]; 42 ref

                                                                                                                                                        Perny B, 1998. Notable insect pests in Austria in 1997. Forstschutz Aktuell, No. 22:6-8

                                                                                                                                                        Pfeffer A, 1995. Bark and Ambrosia beetles from the central and west palaearctic region (Coleoptera, Scolytidae, Platypodidae). Entomologica Basiliensia, 17(1994):5-310

                                                                                                                                                        Postner M, 1974. Scolytidae (= Ipidae), Borkenkäfer. In: Schwenke W, ed. Die Forstschadlinge Europas. Vol. 2. Hamburg, Berlin, Germany: Parey, 334-482

                                                                                                                                                        Roediger H, 1956. Zur Biologie und Bekämpfung des Ungleichen Holzbohrers (Xyleborus dispar F.). Nachrichtenblatt für den Deutschen Pflanzenschutzdienst, 8:36-40

                                                                                                                                                        Roling MP, Kearby WH, 1975. Seasonal flight and vertical distribution of Scolytidae attracted to ethanol in an oak-hickory forest in Missouri. Canadian Entomologist, 107(12):1315-1320

                                                                                                                                                        Russ K, 1966. Ungleicher Holzbohrer (Anisandrus dispar) an Reben. Pflanzenarzt, 19(7):83

                                                                                                                                                        Saruhan i, Tuncer C, 2001. Population densities and seasonal fluctuations of hazelnut pests in Samsun, Turkey. Acta Horticulturae, No.556:495-502; 14 ref

                                                                                                                                                        Saruhan, I., Akyol, H., 2013. Monitoring population density and fluctuations of Xyleborus dispar and Xyleborinus saxesenii (Coleoptera: Scolytıdae) with red winged sticky traps in hazelnut orchards. African Journal of Agricultural Research, 8(19), 2189-2194. http://www.academicjournals.org/ajar/PDF/pdf2013/23May/Saruhan%20and%20Akyol.pdf

                                                                                                                                                        Schedl KE, 1981. Familie: Scolytidae (Borken- und Ambrosiakäfer). In: Freude H, Harde KW, Lohse GA, eds. Die Käfer Mitteleuropas. Vol. 10. Krefeld, Germany: Goecke & Evers, 34-99

                                                                                                                                                        Schick W, Thines G, 1988. Der Ungleiche Holzbohrer - eine Plage in vielen Apfelanlagen. Obst und Garten, 107(56):143-144

                                                                                                                                                        Schneider-Orelli O, 1913. Untersuchungen über den pilzzüchtenden Obstbaumborkenkäfer Xyleborus (Anisandrus) dispar und seinen Nährpilz. Centralblatt für Bakteriologie und Parasitenkunde, 38:25-110

                                                                                                                                                        Schroeder LM, Lindelöw A, 1989. Attraction of scolytids and associated beetles by different absolute amounts and proportions of -pinene and ethanol. Journal of Chemical Ecology, 15(3):807-817

                                                                                                                                                        Schröder WO, 1996. Ungleicher Holzbohrer und kleiner Holzbohrer. Rheinische Monatsschrift, 1:13-15

                                                                                                                                                        Schvester D, 1950. Sur un nematode du groupe du Parasitylenchus dispar Fuchs, parasite nouveau du xylebore disparate (Xyleborus dispar F.). Annales des Epiphyties, 1:48-53

                                                                                                                                                        Schvester D, 1954. Le Xylébore disparate, Anisandrus dispar F. (Coléoptere Scolytide) en France. Annales des Epiphyties, Serie C, 5:225-257

                                                                                                                                                        Skiba NS, Parii IF, 1989. Pests and diseases of cherry. Zashchita Rastenii (Moskva), No. 8:48-51

                                                                                                                                                        Sousa E, 2002. Insects and fungi involved in oak decline in Italy. Bulletin OILB-SPROP, 25(5):67-74

                                                                                                                                                        Stark VN, 1952. Korojedi (bark beetles). In: Fauna SSSR. Moskow, Leningrad, SSSR: Public. Acad. Sc. USSR, 31:95-461

                                                                                                                                                        Tanasković, S., Marjanović, M., Gvozdenac, S., Popović, N., Drašković, G., 2016. Sudden occurrence and harmfulness of Xyleborus dispar (Fabricius) on pear. Contemporary Agriculture, (No.3/4), 57-62. https://www.degruyter.com/downloadpdf/j/contagri.2016.65.issue-3-4/contagri-2016-0019/contagri-2016-0019.pdf

                                                                                                                                                        Tiberi R, Ragazzi A, 1998. Association between fungi and xylophagous insects of declining oaks in Italy. Redia, 81:83-91; 20 ref

                                                                                                                                                        Tsankov G, Ganchev P, 1988. Attack by Dryocoetes (Anisandrus) dispar on Castanea mollissima in Bulgaria. Gorsko Stopanstvo, 44(5):16-17

                                                                                                                                                        Tyeryent'ev SN, Stolyarova LA, 1989. Survey of pests and diseases of cork oak from the Black Sea coastline of the Caucasus. Subtropicheskie Kul'tury, 1:122-125

                                                                                                                                                        Vandenberg NJ, Rabaglia RJ, Bright DE, 2000. New records of two Xyleborus (Coleoptera: Scolytidae) in North America. Proceedings of the Entomological Society of Washington, 102(1):62-68; 11 ref

                                                                                                                                                        Vasseur R, Schvester D, 1948. Le Xylébore disparate (Xyleborus dispar F.) dans la Région Lyonnaise. Annales des Epiphyties, (N.S.)14:1-5

                                                                                                                                                        Viggiani G, 1979. The attacks of Anisandrus dispar on hazel tend to spread. Informatore Agrario, 35(13):5335-5357

                                                                                                                                                        Voolma K, 1996. Distribution of xylomycetophagous scolytids (Trypodendron and Xyleborus) in Estonia [Puitu kahjustavate urasklaste (Trypodendron, Xyleborus) (Coleoptera: Scolytidae) esinemisest eestis]. Metsanduslikud-Uurimused, 27:140-148

                                                                                                                                                        Wood SL, 1977. Introduced and exported American Scolytidae (Coleoptera). Great Basin Naturalist, 37(1):67-74

                                                                                                                                                        Wood SL, 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs, No. 6:1359 pp

                                                                                                                                                        Wood SL, Bright DE, 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. Great Basin Naturalist Memoirs, 13: 1-1553

                                                                                                                                                        Yanovskii VM, 1999. An annotated list of scolytids (Coleoptera, Scolytidae) of North Asia. Entomologicheskoe Obozrenie, 78(2):327-362; 3 pp. of ref. English translation: Entomological Review, 79: 493-522

                                                                                                                                                        Yanovskii VM, Tegshzhargal D, 1984. Bark beetles (Coleoptera, Scolytidae) of the Mongolian People's Republic. Nasekomye Mongolii, 9:404-417. (In Russian)

                                                                                                                                                        Yin H-F, Huang F-S, Li Z-L, eds, 1984. Economic Insect Fauna of China, Fasc. 29, Coleoptera: Scolytidae. Beijing: Science Press, 205 pp

                                                                                                                                                        Zimmermann G, 1973. The fungus flora of some wood-inhabiting bark-beetles. Material und Organismen, 8(2):121-131

                                                                                                                                                        Zöggeler M, 1987. Alkoholfalle zur Flugüberwachung und BekSmpfung des Ungleichen Holzbohrers. Obst- und Weinbau, 24:74-75

                                                                                                                                                        Distribution References

                                                                                                                                                        Alford D V, 1984. A colour atlas of fruit pests. Their recognition, biology and control. London, United Kingdom: Wolfe Publishing Ltd. 320 pp.

                                                                                                                                                        Annila E, 1977. Seasonal flight patterns of spruce bark beetles. Annales Entomologici Fennici. 43 (1), 31-35.

                                                                                                                                                        Anon, 1984. Economic Insect Fauna of China, Fasc. 29, Coleoptera: Scolytidae., [ed. by Yin H-F, Huang F-S, Li Z-L]. Beijing, Science Press. 205 pp.

                                                                                                                                                        Balachowsky AS, 1963. (Famille des Scolytidae). In: Entomologie appliquée à l'agriculture, 2 [ed. by Balachowsky AS]. Masson, Paris: I ColéoptFres. 1237-1287.

                                                                                                                                                        Bright D E Jr, 1968. Review of the tribe Xyleborini in America north of Mexico (Coleoptera : Scolytidae). Canadian Entomologist. 100 (12), 1288-1323 pp.

                                                                                                                                                        Bright DE, Skidmore RE, 2002. A catalogue of Scolytidae and Platypodidae (Coleoptera), Supplement 2 (1995-1999., Ottawa, Canada: NRC Research Press. 523 pp.

                                                                                                                                                        Bud N, 1972. Anisandrus [Xyleborus] dispar - a dangerous pest of young Castanea sativa plantations. Revista Padurilor. 87 (4), 196-198.

                                                                                                                                                        CABI, Undated. Compendium record. Wallingford, UK: CABI

                                                                                                                                                        CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI

                                                                                                                                                        CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

                                                                                                                                                        Chepurnaya V I, Myalova L A, 1981. Pests and diseases of cherry. Zashchita Rastenii. 53-55.

                                                                                                                                                        Dominik J, Kinelski S, 1985. Studies on the effectiveness of some insecticides containing synthetic pyrethroids for protecting timber from certain wood-boring insects. (Badanie przydatności niektórych insektycydów opartych na syntetycznych piretroidach do dezynsekcji drewna opanowanego przez niektóre szkodniki techniczne.). Sylwan. 129 (6), 67-70.

                                                                                                                                                        Duffy E A J, 1953. Handbooks for the Identification of British Insects, 5(15). Coleoptera: Scolytidae and Platypodidae. London, UK: Royal Entomological Society of London.

                                                                                                                                                        Egger A, 1973. Contribution to the biology and control of Xyleborus (Anisandrus) dispar F. and X. saxeseni Ratz. (Col., Scolytidae). (Beitrage zur Biologie und Bekampfung von Xyleborus (Anisandrus) dispar F. und X. saxeseni Ratz. (Col., Scolytidae).). Anzeiger fur Schadlingskunde, Pflanzen- und Umweltschutz. 46 (12), 183-186.

                                                                                                                                                        Frankenhuyzen A van, 1992. (Schadelijke en Nuttige Insekten en Mijten in Fruitgewassen)., The Hague, The Netherlands: Nederlandse Fruittelers Organisatie.

                                                                                                                                                        French J R J, Roeper R A, 1972. Interactions of the ambrosia beetle, Xyleborus dispar (Coleoptera: Scolytidae), with its symbiotic fungus Ambrosiella hartigii (Fungi Imperfecti). Canadian Entomologist. 104 (10), 1635-1641.

                                                                                                                                                        French J R J, Roeper R A, 1975. Studies on the biology of the ambrosia beetle Xyleborus dispar (F.) (Coleoptera: Scolytidae). Zeitschrift fur Angewandte Entomologie. 78 (3), 241-247.

                                                                                                                                                        Furniss M M, Johnson J B, 1987. List of Idaho Scolytidae (Coleoptera) and notes on new records. Great Basin Naturalist. 47 (3), 375-382.

                                                                                                                                                        Hesjedal K, Edland T, 1988. Attack of the deciduous tree bark-beetle in fruit orchards. (Angrep av lauvtrebarkbille i frukthagen.). Gartneryrket. 78 (4), 115-117.

                                                                                                                                                        Hobson K R, Bright D E, 1994. A key to the Xyleborus of California, with faunal comments (Coleoptera: Scolytidae). Pan-Pacific Entomologist. 70 (4), 267-268.

                                                                                                                                                        Ioakimov D, 1925. [English title not available]. (Beschädigungen der Rebe durch die Larve des Käfers Anisandrus dispar F.). Mitteilungen der Bulgarischen Entomologischen Gesellschaft. 56.

                                                                                                                                                        Juillard-Condat L, Perrau C, 1989. (Le Xylébore disparate). In: Phytoma, 409 61-63.

                                                                                                                                                        Jurc M, Bojović S, Komjanc B, Krč J, 2009. Xylophagous entomofauna in branches of oaks (Quercus spp.) and its significance for oak health in the Karst region of Slovenia. Biologia (Bratislava). 64 (1), 130-138. http://www.springerlink.com/content/p225h6575l3v0316/?p=8aeab9fab4af4490be43d60e965b3447&pi=17 DOI:10.2478/s11756-009-0024-8

                                                                                                                                                        Keimer C, 1990. Decline of apple trees in the Geneva region, relationships between soil and plant. (Le dépérissement du pommier dans le canton de Genève, relations entre le sol et la plante.). Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture. 22 (6), 365-369.

                                                                                                                                                        Klimetzek D, Köhler J, Vité J P, Kohnle U, 1986. Dosage response to ethanol mediates host selection by 'secondary' bark beetles. Naturwissenschaften. 73 (5), 270-272. DOI:10.1007/BF00367783

                                                                                                                                                        Kovach J, Gorsuch C S, 1985. Survey of ambrosia beetle species infesting South Carolina peach orchards and a taxonomic key for the most common species. Journal of Agricultural Entomology. 2 (3), 238-247.

                                                                                                                                                        Linsley E G, Macleod G F, 1942. Ambrosia Beetles attacking deciduous Fruit Trees in California. Journal of Economic Entomology. 35 (4), 601 p. DOI:10.1093/jee/35.4.601

                                                                                                                                                        Lombardero M J, Fernández F J, Magán A, 1997. New pinhole borers on Eucalyptus in Galicia (Coleoptera: Scolytidae and Platypodidae). (Nuevos insectos perforadores asociados al eucalipto en Galicia (Coleoptera: Scolytidae y Platypodidae).). Boletín de Sanidad Vegetal, Plagas. 23 (2), 177-188.

                                                                                                                                                        Mani E, Schwaller F, 1983. (Zur Flugüberwachung und Bekämpfung des Ungleichen Holzbohrers, Xyleborus (Anisandrus) dispar F). In: Schweizerische Zeitschrift für Obst- und Weinbau, 119 104-108.

                                                                                                                                                        Markalas S, Kalapanida M, 1997. Flight pattern of some Scolytidae attracted to flight barrier traps baited with ethanol in an oak forest in Greece. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz. 70 (3), 55-57. DOI:10.1007/BF01996922

                                                                                                                                                        Martikainen P, Viiri H, Räty M, 2001. Beetles (Coleoptera) caught with pheromones of Gnathotrichus retusus and G. sulcatus (Col., Scolytidae) in southern Finland. Anzeiger für Schädlingskunde. 74 (1), 7-10. DOI:10.1046/j.1439-0280.2001.01003.x

                                                                                                                                                        MATHERS W G, 1940. The Shot Hole Borer, Anisandrus pyri (Peck), in British Columbia (Coleóptera, Scolytidae). Canadian Entomologist. 72 (10), 189-190 pp.

                                                                                                                                                        Ohno S, 1991. Studies on Scolytidae and Platypodidae (Coleoptera) found on imported logs at Japanese ports. IV. A key to the species of genus Xyleborus. Research Bulletin of the Plant Protection Service, Japan. 13-40.

                                                                                                                                                        Pfeffer A, 1995. Bark and Ambrosia beetles from the central and west palaearctic region (Coleoptera, Scolytidae, Platypodidae). (Zentral- und Westpaläarktische Borken- und Kernkäfer (Coleoptera, Scolytidae, Platypodidae).). Entomologica Basiliensia. 17 (1994), 5-310.

                                                                                                                                                        Postner M, 1974. (Scolytidae (= Ipidae), Borkenkäfer). In: Die Forstschadlinge Europas, 2 [ed. by Schwenke W]. Hamburg, Berlin, Germany: Parey. 334-482.

                                                                                                                                                        Roediger H, 1956. (Zur Biologie und Bekämpfung des Ungleichen Holzbohrers (Xyleborus dispar F.)). In: Nachrichtenblatt für den Deutschen Pflanzenschutzdienst, 8 36-40.

                                                                                                                                                        Roling M P, Kearby W H, 1975. Seasonal flight and vertical distribution of Scolytidae attracted to ethanol in an oak-hickory forest in Missouri. Canadian Entomologist. 107 (12), 1315-1320.

                                                                                                                                                        Russ K, 1966. (Ungleicher Holzbohrer (Anisandrus dispar) an Reben). In: Pflanzenarzt, 19 (7) 83.

                                                                                                                                                        Saruhan I, Akyol H, 2013. Monitoring population density and fluctuations of Xyleborus dispar and Xyleborinus saxesenii (Coleoptera: Scolytidae) with red winged sticky traps in hazelnut orchards. African Journal of Agricultural Research. 8 (19), 2189-2194. http://www.academicjournals.org/ajar/PDF/pdf2013/23May/Saruhan%20and%20Akyol.pdf

                                                                                                                                                        Schedl KE, 1981. (Familie: Scolytidae (Borken- und Ambrosiakäfer)). In: Die Käfer Mitteleuropas, 10 [ed. by Freude H, Harde KW, Lohse GA]. Krefeld, Germany: Goecke & Evers. 34-99.

                                                                                                                                                        Schneider-Orelli O, 1913. [English title not available]. (Untersuchungen über den pilzzüchtenden Obstbaumborkenkäfer Xyleborus (Anisandrus) dispar und seinen Nährpilz.). Centralblatt für Bakteriologie und Parasitenkunde. 25-110.

                                                                                                                                                        Schröder WO, 1996. (Ungleicher Holzbohrer und kleiner Holzbohrer). In: Rheinische Monatsschrift, 1 13-15.

                                                                                                                                                        Schroeder L M, Lindelöw Ǻ, 1989. Attraction of scolytids and associated beetles by different absolute amounts and proportions of a-pinene and ethanol. Journal of Chemical Ecology. 15 (3), 807-817. DOI:10.1007/BF01015179

                                                                                                                                                        Schvester D, 1954. [English title not available]. (Le Xylébore disparate, Anisandrus dispar F. (Coléoptere Scolytide) en France.). Annales des Epiphyties, Serie C. 225-257.

                                                                                                                                                        Sezen K, Muratoglu H, Nalcacioglu R, Mert D, Demirbag Z, Kati H, 2008. Highly pathogenic Bacillus thuringiensis subsp. tenebrionis from European shot-hole borer, Xyleborus dispar (Coleoptera: Scolytidae). 77-84. DOI:0.1080/01140670809510223

                                                                                                                                                        Skiba N S, Parii I F, 1989. Pests and diseases of cherry. Zashchita Rasteniĭ (Moskva). 48-51.

                                                                                                                                                        Stark V N, 1952. Korojedi. (Bark beetles.). In: Fauna SSSR, Moskow and Leningrad, USSR: Akademia Nauk SSSR. 95-461.

                                                                                                                                                        Tanasković S, Marjanović M, Gvozdenac S, Popović N, Drašković G, 2016. Sudden occurrence and harmfulness of Xyleborus dispar (Fabricius) on pear. Contemporary Agriculture. 57-62. https://www.degruyter.com/downloadpdf/j/contagri.2016.65.issue-3-4/contagri-2016-0019/contagri-2016-0019.pdf

                                                                                                                                                        Tsankov G, Ganchev P, 1988. Attack by Dryocoetes (Anisandrus) dispar on Castanea mollissima in Bulgaria. Gorsko Stopanstvo. 44 (5), 16-17.

                                                                                                                                                        Tyeryent'ev S N, Stolyarova L A, 1989. Survey of pests and diseases of cork oak from the Black Sea coastline of the Caucasus. Subtropicheskie Kul'tury. 122-125.

                                                                                                                                                        Vasseur R, Schvester D, 1948. Xyleborus dispar F. (Le Xylébore disparate (Xyleborus dispar F.)). Annales des Epiphyties. 1-5.

                                                                                                                                                        Viggiani G, 1979. The attacks of Anisandrus dispar on hazel tend to spread. (Tendono ad allargarsi gli attachi di Anisandrus dispar al nocciolo.). Informatore Agrario. 35 (13), 5335-5357.

                                                                                                                                                        Voolma K, 1996. Distribution of xylomycetophagous scolytids (Trypodendron and Xyleborus) in Estonia. (Puitu kahjustavate ürasklaste (Trypodendron, Xyleborus) (Coleoptera: Scolytidae) esinemisest eestis.). Metsanduslikud Uurimused. 140-148.

                                                                                                                                                        Wood S L, 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. In: Great Basin Naturalist Memoirs, 1359 pp.

                                                                                                                                                        Wood SL, Bright DE, 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. In: Great Basin Naturalist Memoirs, 13 1-1553.

                                                                                                                                                        Yanovskii VM, Tegshzhargal D, 1984. Bark beetles (Coleoptera, Scolytidae) of the Mongolian People's Republic. In: Nasekomye Mongolii, 9 404-417.

                                                                                                                                                        Zöggeler M, 1987. (Alkoholfalle zur Flugüberwachung und Bekämpfung des Ungleichen Holzbohrers). In: Obst- und Weinbau, 24 74-75.

                                                                                                                                                        Distribution Maps

                                                                                                                                                        Top of page
                                                                                                                                                        You can pan and zoom the map
                                                                                                                                                        Save map
                                                                                                                                                        Select a dataset
                                                                                                                                                        Map Legends
                                                                                                                                                        • CABI Summary Records
                                                                                                                                                        Map Filters
                                                                                                                                                        Extent
                                                                                                                                                        Invasive
                                                                                                                                                        Origin
                                                                                                                                                        Third party data sources: