Cookies on Invasive Species Compendium

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

Continuing to use www.cabi.org means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

Datasheet

Anastrepha ludens (Mexican fruit fly)

Summary

  • Last modified
  • 22 November 2017
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Anastrepha ludens
  • Preferred Common Name
  • Mexican fruit fly
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • A. ludens has a broad host range and is a major pest, especially of citrus and mango (Mangifera indica) in most parts of its range. This species and Anastrepha obliqua are the most important pest sp...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Adult females ovipositing on citrus fruit skin.
TitleAdults
CaptionAdult females ovipositing on citrus fruit skin.
CopyrightUSDA-ARS
Adult females ovipositing on citrus fruit skin.
AdultsAdult females ovipositing on citrus fruit skin.USDA-ARS
Line artwork of adult female
TitleLine artwork of adult female
Caption
CopyrightCAB International
Line artwork of adult female
Line artwork of adult femaleCAB International

Identity

Top of page

Preferred Scientific Name

  • Anastrepha ludens (Loew)

Preferred Common Name

  • Mexican fruit fly

Other Scientific Names

  • Acrotoxa ludens (Loew)
  • Anastrepha lathana Stone
  • Trypeta ludens Loew

International Common Names

  • English: fruitfly, Mexican
  • Spanish: gusano de la fruta; gusano de la naranja; mosca mexicana de la fruta
  • French: mouche mexicaine des fruits

Local Common Names

  • Germany: Fruchtfliege, Mexikanische
  • Italy: anastrefa; mosca de la fruta

EPPO code

  • ANSTLU (Anastrepha ludens)

Summary of Invasiveness

Top of page

A. ludens has a broad host range and is a major pest, especially of citrus and mango (Mangifera indica) in most parts of its range. This species and Anastrepha obliqua are the most important pest species of Anastrepha in Central America and Mexico. It occurs in subtropical areas as far north as southern Texas, thus it may be more of a threat of introduction to other subtropical areas of the world than other species of Anastrepha. It is invasive at least in Panama and has been trapped in California, USA. It is considered an A1 quarantine pest by EPPO.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Diptera
  •                         Family: Tephritidae
  •                             Genus: Anastrepha
  •                                 Species: Anastrepha ludens

Notes on Taxonomy and Nomenclature

Top of page

This species was first described in 1873 by Loew as Trypeta ludens. The current combination was proposed by Wulp (1900). The name Anastrepha lathana is recognized as a synonym. A record for presence in Colombia was based on misidentification of Anastrepha manizaliensis (Norrbom et al., 2005).

Description

Top of page

For a general description of the genus, see the datasheet on Anastrepha.

Adult

As in most other Anastrepha spp., the adults of A. ludens are easily separated from those of other tephritid genera by a simple wing venation character; vein M, the vein that reaches the wing margin just behind the wing apex, curves forwards before joining the wing margin. Furthermore, most Anastrepha spp. have a very characteristic wing pattern; the apical half of the wing has two inverted 'V'-shaped markings, one fitting within the other; and a stripe along the forward edge of the wing that runs from near the wing base to about half-way along the wing length.

Identification to species is more difficult. In particular, it is essential to dissect the aculeus (ovipositor piercer) of a female specimen for positive identification. The adults of A. ludens are unlikely to be confused with those of any of the other species of Anastrepha occurring within its range, except perhaps Anastrepha distincta, which has considerably shorter male and female terminalia. Several species from South America, such as Anastrepha manizaliensis and Anastrepha schultzi are more difficult to distinguish from A. ludens (Norrbom et al., 2005). For a positive identification, the females should be dissected to check the aculeus dimensions and shape carefully.

The body is predominantly yellow to orange-brown and the setae are red-brown to dark-brown.

Head: yellow except ocellar tubercle brown. Facial carina, in profile, concave. Frons with three or more frontal setae, two orbital setae. Antenna not extended to ventral facial margin.

Thorax: mostly yellow to orange-brown, with the following areas yellow to white and often contrasting: postpronotal lobe; single medial and paired sublateral vittae on scutum, the slender medial vitta extended nearly the full length of the scutum, slightly broadened posteriorly, ovoid; sublateral vitta extended from transverse suture almost to posterior margin, including intra-alar seta; scutellum; propleuron; dorsal margin of anepisternum; dorsal margin of katepisternum; katepimeron; and most of anatergite and katatergite. Area bordering scutoscutellar suture medially usually with irregular dark-brown spot. Subscutellum dark-brown laterally; brown mark often extending onto lateral part of mediotergite. Scutum entirely microtrichose or at most with small presutural, medial bare area.

Wing: 7-9 mm long. Vein M strongly curved apically. Vein R2+3 nearly straight. Pattern mostly orange-brown and moderate brown. C-band and S-band usually connected along vein R4+5, but sometimes separated; marginal hyaline spot (or end of band) present in cell r1 at apex of vein R4+5. S-band with middle section between costa and vein Cu1 largely yellow to orange with narrow brown margins; distal section of band moderately broad, well-separated from apex of vein M. V-band with distal arm usually complete and connected to proximal arm, although often weaker anteriorly; proximal arm extended to vein R4+5, not connected to S-band.

Abdomen: tergites yellow to orange-brown, without dark-brown markings.

Male terminalia: lateral surstylus moderately long, in posterior view slightly tapered, somewhat truncate apically. Phallus 5.2-6.1 mm long; ratio to mesonotum length 1.51-1.84. Glans with basolateral membranous lobe, mostly membranous medially, with isolated, T-shaped apical sclerite.

Female terminalia: oviscape straight, 3.4-6.3 mm long; ratio to mesonotum length 1.10-1.55. Dorsobasal scales of eversible membrane numerous, hook-like, in triangular pattern. Aculeus length 3.35-5.75 mm; tip 0.32-0.40 mm long, 0.12-0.14 mm wide, gradually tapering, but with slight medial constriction, distal half or less serrate. Three spermathecae ovoid.

Larva: the larvae of Anastrepha are extremely difficult to identify, but the third-instar larvae of A. ludens can usually be distinguished from those of other species of the genus using the key by Steck et al. (1990) or the interactive key by Carroll et al. (2004). Carroll and Wharton (1989) provided a detailed description of the egg, larva (all three instars) and puparium. Berg (1979), Heppner (1984), and White and Elson-Harris (1992) also provided descriptions of the third-instar.

The following diagnostic description of the third-instar is based on Carroll and Wharton (1989) and White and Elson-Harris (1992).

Larvae: medium-large, 5.8-11.1 mm long and 1.2-2.5 mm wide.

Head: stomal sensory organ large, rounded, with five small sensilla; 11-17 oral ridges with margins entire or slightly undulant; accessory plates small; mandible moderately sclerotised, with a large slender curved apical tooth.

Thoracic and abdominal segments: T1-T3 with spinulose areas on anterior margins; mid-dorsally with four to six, three to five and one to two rows of spinules, respectively. Dorsal spinules absent from A1-A8. Creeping welt on A1 with seven to nine rows of spinules, those on A2-A8 with 9-17 rows. A8 with intermediate lobes moderately developed; tubercles and sensilla small, but obvious.

Anterior spiracles: with 12-21 tubules.

Posterior spiracles: spiracular slits approximately 3.5 times as long as broad, with moderately sclerotised rimae. Spiracular hairs short (about one-third to one-fifth the length of the spiracular slit), often branched in the apical third; dorsal and ventral bundles of 6-13 hairs, lateral bundles of four to seven hairs.

Anal area: lobes large, protuberant, usually distinctly bifid; surrounded by three to four discontinuous rows of small spinules.

Egg: 1.37-1.60 mm long, greatest width 0.18-0.21 mm. White, spindle-shaped, broad anteriorly, tapering posteriorly; micropyle slightly to one side of apex of anterior pole; faint reticulation near micropyle consisting primarily of irregular pentagons and hexagons, these becoming very faint and elongated in the posterior portion of the egg; distinct openings into chorion at vertices of polygons in anterior end (from Carroll and Wharton, 1989).

Distribution

Top of page Baker et al. (1944) considered this species to be native only to northeastern Mexico, although Jirón et al. (1988) suggested it also may have been native to Nicaragua and Costa Rica and that further evaluation of the status of the original southern populations was needed.

A. ludens was rare in Costa Rica and was not a pest of citrus prior to the mid-1990s, when it suddenly became common in the central highlands and was found attacking orange (Citrus spp.) and grapefruit (Citrus paradisi), including at a research station where Jirón et al. (1988) had worked extensively and had not found it. It has subsequently been detected attacking citrus at high elevations in western Panama. This information suggests that a new population was introduced to Costa Rica from further north and has spread into Panama.

The record of this species from Colombia (Núñez Bueno, 1981) was based on misidentification of Anastrepha manizaliensis (Norrbom et al., 2005). There are no valid reports of A. ludens from Colombia.

See also CABI/EPPO (2001, Map no. 89).


Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

North America

MexicoWidespreadLoew, 1873; Stone, 1942; Hernandez-Ortiz, 1992; CABI/EPPO, 2001; EPPO, 2014
USATransient: actionable, under eradicationStone, 1942; Foote et al., 1993; CABI/EPPO, 2001; NAPPO, 2012; EPPO, 2014
-ArizonaAbsent, formerly presentFoote et al., 1993; CABI/EPPO, 2001; EPPO, 2014
-CaliforniaEradicatedFoote et al., 1993; CABI/EPPO, 2001; NAPPO, 2009; EPPO, 2014
-FloridaAbsent, intercepted onlyCABI/EPPO, 2001; EPPO, 2014Rarely trapped, not established
-TexasTransient: actionable, under eradicationStone, 1942; Foote et al., 1993; CABI/EPPO, 2001; NAPPO, 2012; NAPPO, 2013; NAPPO, 2013; EPPO, 2014

Central America and Caribbean

BelizePresentNative Not invasive CABI/EPPO, 2001; EPPO, 2014
Costa RicaLocalisedStone, 1942; Jiron et al., 1988; CABI/EPPO, 2001; EPPO, 2014Higher elevations. More common and widely distributed since the 1990s
El SalvadorPresentNative Not invasive CABI/EPPO, 2001; EPPO, 2014
GuatemalaPresentNative Not invasive Stone, 1942; CABI/EPPO, 2001; EPPO, 2014
HondurasPresentNative Not invasive CABI/EPPO, 2001; EPPO, 2014
NicaraguaPresentNative Not invasive Jiron et al., 1988; CABI/EPPO, 2001; EPPO, 2014
PanamaLocalisedIntroduced<1996 Invasive Norrbom et al., 2005Higher elevations, western Panama

South America

ArgentinaAbsent, invalid recordEPPO, 2014
ColombiaAbsent, invalid recordNúñez Bueno, 1981; Norrbom et al., 2005; EPPO, 2014

Oceania

New ZealandAbsent, confirmed by surveyEPPO, 2014

Risk of Introduction

Top of page

Consignments of fruits of Citrus spp., Malus spp., mango (Mangifera indica) and guava (Psidium guajava) from countries where the pest occurs should be inspected for symptoms of infestation and those suspected should be cut open in order to look for larvae. For example, EPPO recommends (OEPP/EPPO, 1990) that such fruits should come from an area where A. ludens does not occur or from a place of production found free from the pest by regular inspection for 3 months before harvest.

Fruits may also be treated in transit by cold treatment (for example, 18, 20 or 22 days at 0.5, 1.0 or 1.5°C, respectively) or, for certain types of fruits, by vapour heat (for example maintaining at 43°C for 4-6 h) (USDA, 1994), or forced hot-air treatment (Mangan and Ingle, 1994). Shellie et al. (1997) found that heating in a controlled atmosphere was more effective. Hot-water immersion has also been tested and found to be inadequate (Thomas and Mangan, 1995).

Ethylene dibromide was previously widely used as a fumigant, but is now generally withdrawn because of its carcinogenicity. The use of fruit coating has also been investigated as a means of killing the larvae (Hallman, 1997).

Plants of host species transported with roots from countries where A. ludens occurs should be free from soil, or the soil should be treated against puparia, and should not carry fruits. Such plants may indeed be prohibited from importation.

Habitat

Top of page

A. ludens may be found in fruit-growing areas with suitable hosts and in natural forests.

Habitat List

Top of page
CategoryHabitatPresenceStatus
Terrestrial-managed
Cultivated / agricultural land Present, no further details Harmful (pest or invasive)
Disturbed areas Present, no further details
Managed forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Urban / peri-urban areas Present, no further details Harmful (pest or invasive)
Terrestrial-natural/semi-natural
Natural forests Present, no further details Natural

Hosts/Species Affected

Top of page

Baker et al. (1944) considered Casimiroa greggii (Rutaceae) to be the only native wild host of A. ludens, although Casimiroa edulis may also have been an original native host (Jirón et al., 1988). Citrus spp. and mango (Mangifera indica) are the most important introduced hosts (Hernandez-Ortiz, 1992). Myrtaceae (e.g. guavas, Psidium guajava), Rosaceae (e.g. peaches, Prunus persica) and a variety of other fruits are occasional hosts (Norrbom, 2004a).  

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Anacardium occidentale (cashew nut)AnacardiaceaeOther
AnnonaAnnonaceaeOther
Annona cherimola (cherimoya)AnnonaceaeOther
Annona liebmanniana (hardshell custard-apple)AnnonaceaeOther
Annona muricata (soursop)AnnonaceaeOther
Annona reticulata (bullock's heart)AnnonaceaeOther
Annona squamosa (sugar apple)AnnonaceaeOther
Carica papaya (pawpaw)CaricaceaeOther
Casimiroa edulis (white sapote)RutaceaeMain
Casimiroa pubescensRutaceaeOther
CitrusRutaceaeMain
Citrus aurantiifolia (lime)RutaceaeOther
Citrus aurantium (sour orange)RutaceaeMain
Citrus limetta (sweet lemon tree)RutaceaeOther
Citrus maxima (pummelo)RutaceaeMain
Citrus medica (citron)RutaceaeOther
Citrus reticulata (mandarin)RutaceaeOther
Citrus reticulata x paradisi (tangelo)RutaceaeOther
Citrus sinensis (navel orange)RutaceaeMain
Citrus x paradisi (grapefruit)RutaceaeMain
Coffea arabica (arabica coffee)RubiaceaeOther
Diospyros kaki (persimmon)EbenaceaeOther
fruitsOther
IngaFabaceaeOther
Malus domestica (apple)RosaceaeOther
Mammea americana (mamey apple)ClusiaceaeOther
Mangifera indica (mango)AnacardiaceaeMain
Passiflora edulis (passionfruit)PassifloraceaeOther
Persea americana (avocado)LauraceaeOther
Prunus persica (peach)RosaceaeMain
Psidium cattleianum (strawberry guava)MyrtaceaeOther
Psidium guajava (guava)MyrtaceaeOther
Punica granatum (pomegranate)PunicaceaeOther
Pyrus communis (European pear)RosaceaeOther
Spondias purpurea (red mombin)AnacardiaceaeOther
Syzygium jambos (rose apple)MyrtaceaeOther
Talisia olivaeformisSapindaceaeOther

Growth Stages

Top of page Fruiting stage, Post-harvest

Symptoms

Top of page Attacked fruit can show signs of oviposition punctures, but these, or any other symptoms of damage, are often difficult to detect in the early stages of infestation. Much damage may occur inside the fruit before external symptoms are seen, often as networks of tunnels accompanied by rotting. Very sweet fruits may produce a sugary exudate.

List of Symptoms/Signs

Top of page

Fruit

  • internal feeding

Biology and Ecology

Top of page

As in many Anastrepha spp., generally, the eggs are laid below the skin of the host fruit in clutches of 1-23 eggs. They hatch within 6-12 days and the larvae feed for another 15-32 days at 25°C. Pupariation is in the soil under the host plant and the adults emerge after 15-19 days (longer in cool conditions); the adults occur throughout the year (Christenson and Foote, 1960).

Climate

Top of page
ClimateStatusDescriptionRemark
A - Tropical/Megathermal climate Preferred Average temp. of coolest month > 18°C, > 1500mm precipitation annually
Af - Tropical rainforest climate Preferred > 60mm precipitation per month
Am - Tropical monsoon climate Preferred Tropical monsoon climate ( < 60mm precipitation driest month but > (100 - [total annual precipitation(mm}/25]))
As - Tropical savanna climate with dry summer Preferred < 60mm precipitation driest month (in summer) and < (100 - [total annual precipitation{mm}/25])
Aw - Tropical wet and dry savanna climate Preferred < 60mm precipitation driest month (in winter) and < (100 - [total annual precipitation{mm}/25])
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
27 8

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Aceratoneuromyia indica Parasite Larvae Belize; Mexico Citrus; grapefruits; oranges
Biosteres arisanus Parasite Mexico Citrus
Biosteres longicaudatus Parasite Larvae Belize; Mexico Citrus; grapefruits; oranges
Biosteres vandenboschi Parasite Mexico Citrus
Diachasmimorpha tryoni Parasite Mexico Citrus
Dirhinus giffardii Parasite Mexico Citrus
Doryctobracon crawfordi Parasite Larvae
Lyssomanes pescadero Predator
Opius incisi Parasite Mexico Citrus
Pachycrepoideus vindemmiae Parasite Pupae Belize Citrus; grapefruits; oranges
Peromyscus boylii Predator
Peromyscus leucopus Predator
Solenopsis geminata Predator
Trybliographa daci Parasite Mexico Citrus

Notes on Natural Enemies

Top of page

Aluja et al. (1990) found that Biosteres longicaudatus was the major parasitoid with up to 29% parasitism of Anastrepha spp., including A. ludens. In another area of Mexico, Gonzalez-Hernandez and Tejada (1979) found that Doryctobracon crawfordi was the most abundant parasitoid from 1954-1959. Thomas (1993) found that Peromyscus spp. could destroy up to 34% of puparia. Other predators were also reported by Thomas (1995), for example, ants and staphylinid beetles, which attacked larvae (up to 5%) on the ground while they were hunting for pupariation sites.

Spiders may be important natural regulators of numbers and Lyssomanes pescadero has been regarded as a potential biocontrol agent of A. ludens (Jimenez and Tejas, 1996).

Means of Movement and Dispersal

Top of page

There is evidence that the adults of Anastrepha spp. can fly as far as 135 km (Fletcher, 1989) and therefore natural movement is an important means of spread.

In international trade, the major means of dispersal to previously uninfested areas is the transport of fruit containing live larvae. The most important fruits liable to carry A. ludens are Citrus spp. and mango (Mangifera indica), and to a lesser extent peaches (Prunus persica) and guava (Psidium guajava). The various tropical fruit hosts that may be locally important in America are infrequently traded to Europe. There is also a risk from the transport of puparia in soil or packaging with plants that have already fruited.

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Crop production Yes Yes

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
AircraftImmatures in fruit Yes Yes
Containers and packaging - woodOf fruit cargo. Yes
LuggageImmatures in fruit Yes Yes
MailFruit in post. Yes
Plants or parts of plantsImmatures in fruit Yes Yes
Soil, sand and gravelRisk of puparia in soil. Yes

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Fruits (inc. pods) eggs; larvae; pupae Yes Pest or symptoms usually visible to the naked eye
Growing medium accompanying plants larvae; pupae Yes Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs/Tubers/Corms/Rhizomes
Flowers/Inflorescences/Cones/Calyx
Leaves
Roots
Seedlings/Micropropagated plants
Stems (above ground)/Shoots/Trunks/Branches
True seeds (inc. grain)
Wood

Impact Summary

Top of page
CategoryImpact
Economic/livelihood Negative

Impact

Top of page

Anastrepha spp. are the most serious fruit fly pests in the tropical Americas (Norrbom and Foote, 1989), with the possible exception of the introduced Ceratitis capitata (CABI/EPPO, 1998). A. ludens is mainly important on Citrus spp. and mangoes [Mangifera indica]. It is the most abundant fruit fly in some areas of Guatemala (Eskafi, 1988) and Mexico (Malo et al., 1987).

Risk and Impact Factors

Top of page

Diagnosis

Top of page Non-morphological methods for fruit fly diagnosis are being investigated, but few species have so far been compared. A. ludens was included in a comparative study of cuticular hydrocarbons of larvae and adults of six species by Carlson and Yocom (1986).

Detection and Inspection

Top of page

No male lures have yet been identified for Anastrepha spp. However, they are captured by traps emitting ammonia and it is likely that traps already set for Rhagoletis cerasi in the cherry-growing areas of the EPPO region may attract Anastrepha spp. if they should ever occur in those areas. McPhail traps are usually used for the capture of Anastrepha spp. (Drew, 1982) and possible baits are ammonium acetate (Hedstrom and Jimenez, 1988), casein hydrolysate (Sharp, 1987) and torula yeast (Hedstrom and Jiron, 1985). The number of traps required per unit area is high; in a release and recapture test, Calkins et al. (1984) placed 18 traps per 0.4 ha and only recovered about 13% of the released flies.

Trap shape and design is important. Epsky et al. (1995) and Heath et al. (1995) described dry traps for use with synthetic lures. Robacker (1992) tested spheres and rectangles (vertical and horizontal) and found that the most efficient trap shapes and colours varied between seasons. Blanco-Montero and Sanchez-Salas (1990) showed that the traditional McPhail trap was more effective than yellow circular or rectangular traps.

Similarities to Other Species/Conditions

Top of page

The adults of A. ludens are unlikely to be confused with those of any other species of Anastrepha occurring within its range, except perhaps Anastrepha distincta, which has considerably shorter male and female terminalia. Several species from South America, such as Anastrepha manizaliensis and Anastrepha schultzi are more difficult to distinguish from A. ludens (Norrbom et al., 2005). For a positive identification, the females should be dissected to carefully check the aculeus dimensions and shape.

The larvae of Anastrepha are extremely difficult to identify and specialist help should be sought to confirm critical identifications. The third stage larva of A. ludens can usually be distinguished using the key by Steck et al. (1990) or the interactive key by Carroll et al. (2004).

Prevention and Control

Top of page

Control can be considerably aided by good cultural practices, for example, by gathering all fallen and infected host fruits and destroying them. Insecticidal protection is possible by using a cover spray or a bait spray. Malathion is the usual choice of insecticide for fruit fly control and this is usually combined with protein hydrolysate to form a bait spray (Roessler, 1989); practical details are given by Bateman (1982) and Silva-Contreras (1978) give an example specific to A. ludens.

Bait sprays work on the principle that both male and female tephritids are strongly attracted to a protein source from which ammonia emanates. Bait sprays have the advantage over cover sprays that they can be applied as a spot treatment so that the flies are attracted to the insecticide and there is minimal impact on natural enemies. Many different attractants have been developed including fermented corn extract (Lee et al., 1997), host-fruit volatiles (Robacker and Heath, 1996), pheromones (Landolt and Heath, 1996), Staphylococcus aureus odour (Robacker and Flath, 1995) and corn hydrolysate (Heath et al., 1994).

Biological Control

Control of A. ludens using Bacillus thuringiensis has been tested in the laboratory (Martinez et al., 1997) and found to cause up to 90% adult mortality.

Biological control has been tried against A. ludens, but introduced parasitoids have had little impact (Wharton, 1989). Sterile insect release has been tested against A. ludens (Gilmore, 1989) and although no major eradication programme has been carried out, sterile flies are used as part of a programme to keep a fly free zone in southern Texas, USA (Mangan, 1996).

Parasitoids of the mediterranean and oriental fruit flies were imported from Hawaii, USA, in 1954-59, but only Biosteres longicaudatus and Aceratoneuromyia indica became established. It was claimed that A. indica accounted for up to 80% parasitism (Clausen, 1978).

References

Top of page

Aluja M, Guillen J, Liedo P, Cabrera M, Rios E, Rosa G de la, Celedonio H, Mota D, 1990. Fruit infesting tephritids (Dipt.: Tephritidae) and associated parasitoids in Chiapas, Mexico. Entomophaga, 35(1):39-48

BAKER AC, STONE WE, PLUMMER CC, MCPAHAIL M, 1944. A Review of Studies on the Mexican Fruitfly and related Mexican Species. Miscellaneous Publications. United States Department of Agriculture. Washington, D.C., 155 pp.

Bateman MA, 1982. III. Chemical methods for suppression or eradication of fruit fly populations, In: Drew RAI, Hooper GHS, Bateman MA eds. Economic Fruit Flies of the South Pacific Region. 2nd edn. Brisbane, Australia: Queensland Department of Primary Industries, 115-128.

Bateman MA, 1982. III. Chemical methods for suppression or eradication of fruit fly populations. In: Economic Fruit Flies of the South Pacific Region [ed. by Drew RAI, Hooper GHS, Bateman MA] Brisbane, Australia: Queensland Department of Primary Industries, 115-128.

Berg GH, 1979. Pictorial key to fruit fly larvae of the family Tephritidae. Pictorial key to fruit fly larvae of the family Tephritidae. Organismo Internacional Regional de Sanidad Agropecuaria. San Salvador El Salvador, 36 pp.

Blanco Montero CA, Sanchez Salas JA, 1990. Evaluation of six different traps for detecting the Mexican fruit fly. Southwestern Entomologist, 15(3):327-331

CABI/EPPO, 1998. Distribution maps of quarantine pests for Europe (edited by Smith IM, Charles LMF). Wallingford, UK: CAB International, xviii + 768 pp.

CABI/EPPO, 2001. Anastrepha ludens. Distribution Maps of Plant Pests, Map No. 89. Wallingford, UK: CAB International.

Calkins CO, Schroeder WJ, Chambers DL, 1984. Probability of detecting Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae), populations with McPhail traps. Journal of Economic Entomology, 77(1):198-201.

Carlson DA, Yocom SR, 1986. Cuticular hydrocarbons from six species of tephritid fruit flies. Archives of Insect Biochemistry and Physiology, 3(4):397-412

Carroll LE, Norrbom AL, Dallwitz MJ, Thompson FC, 2004. Pest fruit flies of the world - larvae. http://delta-intkey

Carroll LE, Wharton RA, 1989. Morphology of the immature stages of Anastrepha ludens (Diptera; Tephritidae). Annals of the Entomological Society of America, 82(2):201-214

Christenson LD, Foote RH, 1960. Biology of fruit flies. Annual Review of Entomology, 5:171-192.

Clausen CP, 1978. Tephritidae (Trypetidae, Trupaneidae), In: Clausen CP, ed. Introduced Parasites and Predators of Arthropod Pests and Weeds: A World Review. Agricultural Handbook, United States Department of Agriculture, 480:320-335.

Drew RAI, 1982. Fruit fly collecting. In: Drew RAI, Hooper GHS, Bateman MA, eds. Economic Fruit Flies of the South Pacific Region, 2nd edition. Brisbane, Australia: Queensland Department of Primary Industries, 129-139.

EPPO, 1983. Data sheets on quarantine organisms. Set 6. EPPO Bulletin, 13(1). unnumbered.

EPPO, 1990. Specific quarantine requirements. EPPO Technical Documents, No. 1008. Paris, France: European and Mediterranean Plant Protection Organization.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Epsky ND, Heath RR, Guzman A, Meyer WL, 1995. Visual cue and chemical cue interactions in a dry trap with food-based synthetic attractant for Ceratitis capitata and Anastrepha ludens (Diptera: Tephritidae). Environmental Entomology, 24(6):1387-1395; 16 ref.

Eskafi FM, 1988. Infestation of citrus by Anastrepha spp. and Ceratitis capitata (Diptera: Tephritidae) in high coastal plains of Guatemala. Environmental Entomology, 17(1):52-58

FAO/IAEA, 2003. Trapping Guidelines for area-wide fruit fly programmes. Vienna, Austria: International Atomic Energy Agency, 47 pp.

Fletcher BS, 1989. Ecology; movements of tephritid fruit flies. In: Robinson AS, Hooper G, eds. Fruit Flies; Their Biology, Natural Enemies and Control. World Crop Pests, 3(B). Amsterdam, Netherlands: Elsevier, 209-219.

Foote RH, Blanc FL, Norrbom AL, 1993. Handbook of the Fruit Flies (Diptera: Tephritidae) of America North of Mexico. Ithaca, USA: Comstock.

García-Ramírez Ade J, Medina H RE, López-Martínez V, Vázquez L M, Duarte U IE, Delfín-González H, 2010. Talisia olivaeformis (Sapindaceae) and Zuelania guidonia (Flacourtiaceae): new host records for Anastrepha spp. (Diptera: Tephritidae) in México. Florida Entomologist, 93(4):633-634. http://www.fcla.edu/FlaEnt/

Gilmore JE, 1989. Control; sterile insect technique (SIT); overview. In: Robinson AS, Hooper G, eds. Fruit Flies; Their Biology, Natural Enemies and Control. World Crop Pests 3(B). Amsterdam, Netherlands: Elsevier, 353-363.

Gonzalez-Hernandez A, Tejada LO, 1979. Population fluctuations of Anastrepha ludens (Loew) and of its natural enemies on Sargentia greggii S. Watts. Folia Entomologica Mexicana, No. 41:49-60

Gonzalez-Hernandez A, Tejada LO, 1980. Especies de Anastrepha (Diptera: Tephritidae) en el Estado de Nuevo Leon, Mexico. Folia Entomologica Mexicana, 44:121-128.

Hallman GJ, 1997. Mortality of Mexican fruit fly (Diptera: Tephritidae) immatures in coated grapefruits. Florida Entomologist, 80(3):324-328; 11 ref.

Heath RR, Epsky ND, Bloem S, Bloem K, Acajabon F, Guzman A, Chambers D, 1994. pH Effect on the attractiveness of a corn hydrolysate to the Mediterranean fruit fly and several Anastrepha species (Diptera: Tephritidae). Journal of Economic Entomology, 87(4):1008-1013

Heath RR, Epsky ND, Guzman A, Dueben B, Manukian A, Meyer WL, 1995. Development of a dry plastic insect trap with food-based synthetic attractant for the Mediterranean and Mexican fruit flies (Diptera: Tephritidae). Journal of Economic Entomology, 88(5):1307-1315; 26 ref.

Hedstrom I, Jimenez J, 1988. Field evaluation of attractants in the capture of Anastrepha spp. (Diptera, Tephritidae), pests of fruit trees in tropical America. II. Ammonium acetate and torula with sodium borate. Revista Brasileira de Entomologia, 32(2):319-322.

Hedström I, Jirón LF, 1985. Field evaluation of attractants in the trapping of Anastrepha spp. (Diptera, Tephritidae), pests of fruit trees in tropical America. I. Molasses and torula yeast. Revista Brasileira de Entomologia, 29(3/4):515-520.

Heppner JB, 1984. larvae of fruit flies. I. Anastrepha ludens (Mexican fruit fly) and Anastrepha suspensa (Caribbean fruit fly) (Diptera: Tephritidae). Entomology Circular, Division of Plant Industry, Florida Department of Agricultural and Consumer Services, No. 260, 4 pp.

Hernandez-Ortiz V, 1992. El género Anastrepha en México. Taxonomfa, distribución y sus plantas huéspedes. Xalapa, Mexico: Instituto de Ecologfa.

Hernandez-Ortiz V, Perez-Alonso R, 1993. The natural host plants of Anastrepha (Diptera: Tephritidae) in a tropical rain forest of Mexico. Florida Entomologist, 76(3):447-460

Jimenez ML, Tejas A, 1996. Variacion temporal de la araneofauna en frutales de la region del Cabo, Baja California Sur Mexico. Southwestern Entomologist, 21:331-336.

Jirón LF, Soto-Manitiu J, Norrbom AL, 1988. A preliminary list of the fruit flies of the genus Anastrepha (Diptera: Tephritidae) in Costa Rica. Florida Entomologist, 71(2):130-137

Kisliuk M, Cooley DE, 1933. Fruit-fly survey in the West Indies, Brazil, Uruguay, Chile, and Peru. Department of Agriculture, Plant Quarantine Service Regulatory Announcements, 227-243.

Landolt PJ, Heath RR, 1996. Development of pheromone-based trapping systems for monitoring and controlling tephritid fruit flies in Florida. In: Rosen D, Bennett FD, Capinera JL, eds. Pest Management in the Subtropics: Integrated Pest Management a Florida Perspective. Andover, UK: Intercept Limited, 197-207.

Lee ChangJoo, DeMilo AL, Moreno DS, Mangan RL, 1997. Identification of the volatile components of E802 Mazoferm steepwater, a condensed fermented corn extractive highly attractive to the Mexican fruit fly (Diptera: Tephritidae). Journal of Agricultural and Food Chemistry, 45(6):2327-2331; 19 ref.

Loew H, 1873. Monographs of the Diptera of North America, pt. III. Smithsn. Misc. Collect. 11, (no. 256), 1-351.

Malo E, Baker PS, Valenzuela J, 1987. The abundance of species of Anastrepha (Diptera; Tephritidae) in the coffee producing area of coastal Chiapas, southern Mexico. Folia Entomologica Mexicana, No. 73:125-140

Mangan RL, 1996. Effects of adult chill treatments on mate attracting potential for irradiated Mexican fruit fly males. Entomologia Experimentalis et Applicata, 79(2):153-159; 20 ref.

Mangan RL, Ingle SJ, 1994. Forced hot-air quarantine treatment for grapefruit infested with Mexican fruit fly (Diptera: Tephritidae). Journal of Economic Entomology, 87(6):1574-1579

Martinez AJ, Robacker DC, Garcia JA, 1997. Toxicity of an isolate of Bacillus thuringiensis subspecies darmstadiensis to adults of the Mexican fruit fly (Diptera: Tephritidae) in the laboratory. Journal of Economic Entomology, 90(1):130-134; 20 ref.

McAlister Jr LC, 1936, April. Observations on the West Indian Fruit Fly at Key West in 1932-33. Journal of Economic Entomology, 29(2):440-445 pp.

NAPPO, 2009. Phytosanitary Alert System: Anastrepha ludens (Mexican fruit fly) - Removal of Quarantine Area in Los Angeles County, California - United States. NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=385&keyword=anastrepha%20ludens

NAPPO, 2012. Phytosanitary Alert System: Anastrepha ludens (Mexican fruit fly) eradicated in the United States. NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=511&keyword=anastrepha%20ludens

NAPPO, 2013. Phytosanitary Alert System: Mexican fruit fly, Anastrepha ludens - regulated area established in Willacy County, Texas. Phytosanitary Alert System: Mexican fruit fly, Anastrepha ludens - regulated area established in Willacy County, Texas. NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=548

NAPPO, 2013. Phytosanitary Alert System: Mexican fruit fly, Anastrepha ludens, eradicated in Texas, US. Phytosanitary Alert System: Mexican fruit fly, Anastrepha ludens, eradicated in Texas, US. NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=565

Norrbom AL, 2004. Host plant database for Anastrepha and Toxotrypana (Diptera: Tephritidae: Toxotrypanini). Diptera Data Dissemination Disk (CD-ROM) 2.

Norrbom AL, Foote RH, 1989. Taxonomy and zoogeography; the taxonomy and zoogeography of the genus Anastrepha (Diptera: Tephritidae). In: Robinson AS, Hooper G, eds. Fruit flies; Their Biology, Natural Enemies and Control. World Crop Pests, 3(A). Amsterdam, Netherlands: Elsevier, 15-26.

Norrbom AL, Kim KC, 1988. A list of the reported host plants of the species of Anastrepha (Diptera: Tephritidae). Hyattsville, MD, USA: US Dept. Agric., Animal and Plant Health Inspection Service, Plant Protection and Quarantine.

Norrbom AL, Korytkowski CA, Gonzalez F, Orduz B, 2005. A new species of Anastrepha from Colombia related to Mexican fruit fly (Diptera: Tephritidae). Revista Colombiana de Entomologia, 31(1):67-70.

Núñez Bueno L, 1981. [English title not available]. (Contribucion al reconocimiento de las moscas de las frutas (Diptera: Tephriridae [sic]) en Colombia) Revista do Instituto Colombiano Agropecuario, 16:173-179.

OEPP/EPPO, 1990. Specific quarantine requirements. EPPO Technical Documents, No. 1008. Paris, France: EPPO.

Robacker DC, 1992. Effects of shape and size of colored traps on attractiveness to irradiated, laboratory-strain Mexican fruit flies (Diptera: Tephritidae). Florida Entomologist, 75(2):230-241

Robacker DC, Flath RA, 1995. Attractants from Staphylococcus aureus cultures for Mexican fruit fly, Anastrepha ludens. Journal of Chemical Ecology, 21(11):1861-1874; 24 ref.

Robacker DC, Heath RR, 1996. Attraction of Mexican fruit flies (Diptera: Tephritidae) to lures emitting host-fruit volatiles in a citrus orchard. Florida Entomologist, 79(4):600-602; 4 ref.

Roessler Y, 1989. Control; insecticides; insecticidal bait and cover sprays. In: Robinson AS, Hooper G, eds. Fruit Flies. Their Biology, Natural Enemies and Control. World Crop Pests 3(B). Amsterdam, Netherlands: Elsevier, 329-336.

Ruiz-Montiel C, Flores-Peredo R, Hernández-Librado V, Illescas-Riquelme CP, Domínguez-Espinosa PI, Piñero JC, 2013. Annona liebmanniana and A. cherimola × A. reticulata (Magnoliales: Annonaceae): two new host plant species of Anastrepha ludens (Diptera: Tephritidae) in Mexico. Florida Entomologist, 96(1):232-234. http://www.fcla.edu/FlaEnt/

Sharp JL, 1987. Laboratory and field experiments to improve enzymatic casein hydrolysate as an arrestant and attractant for Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae). Florida Entomologist, 70(2):225-233.

Shellie KC, Mangan RL, Ingle SJ, 1997. Tolerance of grapefruit and Mexican fruit fly larvae to heated controlled atmospheres. Postharvest Biology and Technology, 10(2):179-186; 18 ref.

Silva-Contreras JdeJ, 1978. Efectividad de dos metodos de control quimico de la mosca mexicana de la fruta, Anastrepha ludens Loew, en el Istmo de Tehuantepec, Oaxaca. Instituto Nacional de Investigaciones Agricolas, Mexico: Technical Report 1978. Informe Tecnico de la Coordinacion Nacional del Apoyo Entomologico, 3:60-64.

Smith IM McNamara DG Scott PR Holderness M, 1997. Ceratitis capitata. In: Quarantine Pests for Europe. Wallingford, UK: CABI, 146-152.

Smith IM McNamara DG Scott PR Holderness M, 1997. Ceratitis capitata. In: Quarantine Pests for Europe. Wallingford, UK: CABI, 146-152.

Smith IM, McNamara DG, Scott PR, Holderness M, 1997. Quarantine pests for Europe. Second Edition. Data sheets on quarantine pests for the European Union and for the European and Mediterranean Plant Protection Organization. Quarantine pests for Europe. Second Edition. Data sheets on quarantine pests for the European Union and for the European and Mediterranean Plant Protection Organization., Ed. 2:vii + 1425 pp.; many ref.

Steck GJ, 2001. Concerning the occurrence of Anastrepha obliqua (Diptera: Tephritidae) in Florida. Florida Entomologist, 84(2):320-321.

Steck GJ, Carroll LE, Celedonio-Hurtado H, Guillen-Aguilar J, 1990. Methods for identification of Anastrepha larvae (Diptera: Tephritidae), and key to 13 species. Proceedings of the Entomological Society of Washington, 92(2):333-346

Stone A, 1942. The fruitflies of the genus Anastrepha. Miscellaneous Publications of the United States Department of Agriculture, 439:1-112.

Thomas DB, 1993. Survivorship of the pupal stages of the Mexican fruit fly Anastrepha ludens (Loew) (Diptera: Tephritidae) in an agricultural and a nonagricultural situation. Journal of Entomological Science, 28(4):350-362

Thomas DB, 1995. Predation on the soil inhabiting stages of the Mexican fruit fly. Southwestern Entomologist, 20(1):61-71

Thomas DB, Mangan RL, 1995. Morbidity of the pupal stage of the Mexican and West Indian fruit flies (Diptera: Tephritidae) induced by hot-water immersion in the larval stage. Florida Entomologist, 78(2):235-246

UK CAB International, 2001. Anastrepha ludens. [Distribution map]. Distribution Maps of Plant Pests. Wallingford, UK: CAB International, Map 89.

USDA, 1994. Treatment manual. Frederick, USA: USDA/APHIS.

Wharton RH, 1989. Control; classical biological control of fruit-infesting Tephritidae, In: Robinson AS, Hooper G, eds. Fruit Flies; their Biology, Natural Enemies and Control. World Crop Pests 3(B). Amsterdam, Netherlands: Elsevier, 303-313.

White IM, Elson-Harris MM, 1992. Fruit flies of economic significance: their identification and bionomics. Wallingford, UK: CAB International, 601 pp.

Wulp FMder, 1900. Family Muscidae. (Biologia Centrali-Americana. Zoologia. Class Insecta. Diptera) In: Contributions to the knowledge of the fauna and flora of Mexico and Central America. Volume 2 [ed. by Godman FD, Salvin O] London, UK: Taylor & Francis, 417-428.

Links to Websites

Top of page
WebsiteURLComment
Featured Creatureshttp://entnemdept.ufl.edu/creatures/

Contributors

Top of page

27/02/2008 Updated by:

Allen Norrbom, Systematic Entomology Laboratory, USDA, c/o National Museum of Natural History, MRC 168, PO Box 37012, Washington, DC 20013-7012, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map
Download KML file Download CSV file
Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT