Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Phalaris paradoxa
(awned canary-grass)

Toolbox

Datasheet

Phalaris paradoxa (awned canary-grass)

Summary

  • Last modified
  • 06 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Phalaris paradoxa
  • Preferred Common Name
  • awned canary-grass
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Monocotyledonae
  • Summary of Invasiveness
  • P. paradoxa is a tufted annual grass which is considered a weed in many areas and can be invasive. It contains tryptamine alkaloids, which are toxic to some animals. It is native to the Mediterranean region of...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
P. paradoxa inflorescences. The panicle of P. paradoxa is 4-5 cm long and 1-1.5 cm wide. The spikelets are in clusters of between five and seven, of which only the central one is fertile.
TitleInflorescences
CaptionP. paradoxa inflorescences. The panicle of P. paradoxa is 4-5 cm long and 1-1.5 cm wide. The spikelets are in clusters of between five and seven, of which only the central one is fertile.
Copyright©Chris Parker/Bristol, UK
P. paradoxa inflorescences. The panicle of P. paradoxa is 4-5 cm long and 1-1.5 cm wide. The spikelets are in clusters of between five and seven, of which only the central one is fertile.
InflorescencesP. paradoxa inflorescences. The panicle of P. paradoxa is 4-5 cm long and 1-1.5 cm wide. The spikelets are in clusters of between five and seven, of which only the central one is fertile.©Chris Parker/Bristol, UK
P. paradoxa infestation in teff in Ethiopia.
TitleInfestation in teff
CaptionP. paradoxa infestation in teff in Ethiopia.
Copyright©Chris Parker/Bristol, UK
P. paradoxa infestation in teff in Ethiopia.
Infestation in teffP. paradoxa infestation in teff in Ethiopia.©Chris Parker/Bristol, UK
P. paradoxa infestation in faba bean in Syria.
TitleInfestation in faba bean
CaptionP. paradoxa infestation in faba bean in Syria.
Copyright©Chris Parker/Bristol, UK
P. paradoxa infestation in faba bean in Syria.
Infestation in faba beanP. paradoxa infestation in faba bean in Syria.©Chris Parker/Bristol, UK
Wheat crop in southern Spain infested with Phalaris sp.
TitleInfestation
CaptionWheat crop in southern Spain infested with Phalaris sp.
CopyrightM.J. Jiminez
Wheat crop in southern Spain infested with Phalaris sp.
InfestationWheat crop in southern Spain infested with Phalaris sp.M.J. Jiminez
1. Seedling; 2. Group of spikelets of P. paradoxa var. paradoxa; 3. Single spikelet; 4. Fruit (seed); 5. Group of spikelets of P. paradoxa.
TitleLine drawings
Caption1. Seedling; 2. Group of spikelets of P. paradoxa var. paradoxa; 3. Single spikelet; 4. Fruit (seed); 5. Group of spikelets of P. paradoxa.
CopyrightM.J. Jiminez et al 1997
1. Seedling; 2. Group of spikelets of P. paradoxa var. paradoxa; 3. Single spikelet; 4. Fruit (seed); 5. Group of spikelets of P. paradoxa.
Line drawings1. Seedling; 2. Group of spikelets of P. paradoxa var. paradoxa; 3. Single spikelet; 4. Fruit (seed); 5. Group of spikelets of P. paradoxa.M.J. Jiminez et al 1997
Comparison of seeds of three species of Phalaris: 1. P. minor; 2. P. brachystachys; and 3. P. paradoxa.
TitleSeeds
CaptionComparison of seeds of three species of Phalaris: 1. P. minor; 2. P. brachystachys; and 3. P. paradoxa.
CopyrightM.J. Jiminez
Comparison of seeds of three species of Phalaris: 1. P. minor; 2. P. brachystachys; and 3. P. paradoxa.
SeedsComparison of seeds of three species of Phalaris: 1. P. minor; 2. P. brachystachys; and 3. P. paradoxa.M.J. Jiminez
Comparison of spikelets of three species of Phalaris: 1. P. paradoxa; 2. P. brachystachys; and 3. P. minor.
TitleSpikelets
CaptionComparison of spikelets of three species of Phalaris: 1. P. paradoxa; 2. P. brachystachys; and 3. P. minor.
CopyrightM.J. Jiminez
Comparison of spikelets of three species of Phalaris: 1. P. paradoxa; 2. P. brachystachys; and 3. P. minor.
SpikeletsComparison of spikelets of three species of Phalaris: 1. P. paradoxa; 2. P. brachystachys; and 3. P. minor.M.J. Jiminez
Comparison of panicles of three species of Phalaris: 1. P. paradoxa; 2. P.  minor; and 3. P. brachystachys.
TitlePanicles
CaptionComparison of panicles of three species of Phalaris: 1. P. paradoxa; 2. P. minor; and 3. P. brachystachys.
CopyrightM.J. Jiminez
Comparison of panicles of three species of Phalaris: 1. P. paradoxa; 2. P.  minor; and 3. P. brachystachys.
PaniclesComparison of panicles of three species of Phalaris: 1. P. paradoxa; 2. P. minor; and 3. P. brachystachys.M.J. Jiminez
TitleInflorescence components
Caption
CopyrightAgrEvo
Inflorescence componentsAgrEvo
TitleLigule
Caption
CopyrightAgrEvo
LiguleAgrEvo

Identity

Top of page

Preferred Scientific Name

  • Phalaris paradoxa L.

Preferred Common Name

  • awned canary-grass

Other Scientific Names

  • Phalaris obvallata Trin.
  • Phalaris praemorsa Lam.
  • Phalaris pseudoparadoxa Fig. & De Not.
  • Phalaris rubens Ehrenb. ex Trin.
  • Phalaris sibthorpii Griseb.

International Common Names

  • English: annual canarygrass; canarygrass (USA); hood canarygrass (USA); Mediterranean canary grass; paradox canary-grass; paradoxical canary grass
  • Spanish: alpiste evanillo; alpiste vano; alpistillo
  • French: alpiste paradoxal; phalaris deformé; phalaris rogné
  • Portuguese: alpista-brava

Local Common Names

  • Australia: bristle-spiked canary grass; paradoxa grass
  • Germany: Glanzgras, Seltsames
  • Italy: falaride
  • Netherlands: kanariegras, vreemd

EPPO code

  • PHAPA (Phalaris paradoxa)

Summary of Invasiveness

Top of page

P. paradoxa is a tufted annual grass which is considered a weed in many areas and can be invasive. It contains tryptamine alkaloids, which are toxic to some animals. It is native to the Mediterranean region of Europe, but has spread to locations including the USA, Australia and South America. It is a serious weed of wheat in Australia, with its success attribued to high seed production, innate dormancy and periodicity of emergence (Taylor et al., 1999).

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Monocotyledonae
  •                     Order: Cyperales
  •                         Family: Poaceae
  •                             Genus: Phalaris
  •                                 Species: Phalaris paradoxa

Notes on Taxonomy and Nomenclature

Top of page

The name Phalaris paradoxa is universally accepted for this common weed. Some subspecies have been described: var. paradoxa (common name 'Phalaris deformé' in French) and var. praemorsa (common name 'Phalaris rogné' in French) (Jauzein and Montegut, 1982).

Description

Top of page

The following description is taken from the Flora of China Editorial Committee (2016):

Annual, tufted. Culms 15–100 cm tall. Uppermost leaf sheath inflated; leaf blades 2–9 mm wide; ligule 2–8 mm. Panicle dense, narrowly oblong, 4–10 cm, base enclosed in uppermost leaf sheath. Spikelets arranged in clusters composed of 1 fertile spikelet encircled by 6 sterile spikelets, clusters falling entire, sterile spikelets sometimes reduced to club-shaped clusters of glumes. Fertile spikelet: glumes 4.5–6 mm, prominently 7–9-veined, narrowly winged, wing expanded near middle into large tooth, pale green or straw-coloured with dark green stripe above tooth, apex attenuate; sterile lemmas abortive, represented by 2 minute fleshy scales at base of fertile lemma; fertile lemma elliptic, 2.8–3.2 mm, cartilaginous, shiny, sparsely pilose toward apex. Anthers 1–1.8 mm.

Distribution

Top of page

P. paradoxa is native to south-west Europe and the Mediterranean (including northern Africa and western Asia) but has spread sporadically across many other regions of the world including northern and central Europe, the USA, Australia, New Zealand, and Uruguay.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

AfghanistanWidespreadHolm et al., 1991
ArmeniaRestricted distributionFayvush, 2016; USDA-ARS, 2016Endangered: Yerevan floristic region only
AzerbaijanPresentNativeUSDA-ARS, 2016
ChinaPresentPresent based on regional distribution.
-YunnanPresentIntroduced1974 Invasive Flora of China Editorial Committee, 2016
IndiaPresentHolm et al., 1991; Botanical Survey of India, 2016
IranPresentNativeHolm et al., 1991; USDA-ARS, 2016
IraqPresentNativeHolm et al., 1991; USDA-ARS, 2016
IsraelPresentNativeHolm et al., 1991; USDA-ARS, 2016
LebanonPresentNativeHolm et al., 1991; USDA-ARS, 2016
PakistanPresent, few occurrencesIntroducedFlora of Pakistan, 2015"very rare casual in Pakistan"
QatarPresentNativeFlora of Qatar, 2016
Saudi ArabiaPresentNativeUSDA-ARS, 2016
SyriaPresentNativeUSDA-ARS, 2016
TurkeyPresentNativeHolm et al., 1991; USDA-ARS, 2016
YemenPresentNativeUSDA-ARS, 2016

Africa

AlgeriaWidespreadZitoune-Lameche et al., 1988; USDA-ARS, 2016
EgyptPresentNativeHolm et al., 1991; USDA-ARS, 2016
EthiopiaWidespreadHolm et al., 1991; Gorfu et al., 1992
LibyaPresentNativeUSDA-ARS, 2016
MoroccoPresentNativeHolm et al., 1991; USDA-ARS, 2016
Spain
-Canary IslandsPresentNativeUSDA-ARS, 2016
TunisiaPresentNativeHolm et al., 1991; USDA-ARS, 2016

North America

MexicoPresentIntroducedUSDA-ARS, 2016
USAPresentPresent based on regional distribution.
-ArizonaPresentIntroducedUSDA-NRCS, 2016
-CaliforniaWidespreadIntroducedRobbins et al., 1970; Reed, 1977
-HawaiiPresentIntroducedReed, 1977; USDA-NRCS, 2016
-LouisianaPresentIntroducedReed, 1977; USDA-NRCS, 2016
-MarylandPresentIntroducedAmerica Pink, 2016; USDA-NRCS, 2016
-New JerseyPresentIntroducedAmerica Pink, 2016; USDA-NRCS, 2016
-OregonPresentIntroducedUSDA-NRCS, 2016
-PennsylvaniaPresentIntroducedReed, 1977; USDA-NRCS, 2016
-WashingtonPresentIntroducedReed, 1977; USDA-NRCS, 2016

South America

ArgentinaPresentIntroducedUSDA-ARS, 2016
BoliviaPresentIntroducedMissouri Botanical Garden, 2016
ChilePresentFinot and Pedreros, 2012
UruguayPresentIntroducedHolm et al., 1991; USDA-ARS, 2016

Europe

AlbaniaPresentNativeUSDA-ARS, 2016
AustriaPresentIntroducedUSDA-ARS, 2016
BelgiumPresentIntroducedHolm et al., 1991; USDA-ARS, 2016Adventive
BulgariaPresentTutin, 1980
CroatiaPresentNativeTutin, 1980; USDA-ARS, 2016
CyprusPresentNativeUSDA-ARS, 2016
Czech RepublicPresentIntroducedUSDA-ARS, 2016
FrancePresentNativeHolm et al., 1991; USDA-ARS, 2016
GermanyPresentIntroducedHolm et al., 1991; USDA-ARS, 2016
GreecePresentNativeHolm et al., 1991; USDA-ARS, 2016
ItalyPresentNativePignati and, 1980; USDA-ARS, 2016
LuxembourgPresentTutin, 1980
NetherlandsPresentIntroducedUSDA-ARS, 2016
NorwayPresentIntroducedUSDA-ARS, 2016
PortugalPresentNativeHolm et al., 1991; USDA-ARS, 2016
-AzoresPresentIntroducedUSDA-ARS, 2016
-MadeiraPresentNativeUSDA-ARS, 2016
SloveniaPresentNativeUSDA-ARS, 2016
SpainPresentNativeHolm et al., 1991; USDA-ARS, 2016
SwedenPresentIntroducedHolm et al., 1991; USDA-ARS, 2016
SwitzerlandPresentIntroducedHolm et al., 1991; USDA-ARS, 2016
UKPresentIntroduced Invasive Holm et al., 1991; Biological Records Centre, 2015Well established in southern Britain

Oceania

American SamoaPresent, few occurrencesIntroducedHolm et al., 1991
AustraliaWidespreadIntroducedHolm et al., 1991; Taylor et al., 1999; Weeds of Australia, 2016Widely naturalized in southern and eastern Australia
-Australian Northern TerritoryWidespreadAdkins et al., 1997
-New South WalesPresentIntroducedMcIntyre et al., 1988; Weeds of Australia, 2016
-QueenslandPresentIntroducedWilson, 1981; Weeds of Australia, 2016Southern and central areas
-South AustraliaPresentIntroducedWeeds of Australia, 2016
-TasmaniaPresentIntroducedWeeds of Australia, 2016
-VictoriaPresentIntroducedAmor, 1985; Weeds of Australia, 2016
-Western AustraliaPresentIntroducedWeeds of Australia, 2016Southern and western parts
New ZealandLocalisedIntroducedHolm et al., 1991; Edgar and Connor, 2010

Introductions

Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
China Mexico 1974 Flora of China Editorial Committee (2016) Introduced in wheat seed imported from Mexico
UK 1687 Forage (pathway cause)Biological Records Centre (2015) Cultivated in 1687, then recorded as a casual in Surrey by 1859

Habitat

Top of page

Annual Phalaris species usually grow in areas with a rainy, wet winter (subhumid) and in alluvial, sandy-clay or clay texture soils (Jauzien and Montegut, 1982). They are particularly well adapted to winter crops, and are difficult to control in cereal crops. P. paradoxa is predominant in clay soils under rain-fed conditions, and can be well adapted to the lower parts of cropped land where water accumulates and soil moisture content is high (Thurley and Chancellor, 1985; Saavedra et al., 1989; Jimenez et al., 1997). In the UK it is found on tips and waste ground, and as a weed in arable fields and newly sown grass leys (Biological Records Centre, 2015).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Freshwater

Hosts/Species Affected

Top of page

A list of crops in which the annual Phalaris spp. (P. paradoxa, P. brachystachys and P. minor) are actual, or potential weed problems would include virtually every annual winter (autumn-sown) crop of temperate regions and every annual summer (spring-sown) crop in colder, subtemperate regions within the geographical range of these species. The list provided includes only those crops where Phalaris species are commonly reported as weed problems. P. paradoxa is most often listed as a weed of cereals (especially wheat), and is the second most prominent annual winter grass weed in the northern grain region of Australia (Taylor et al., 1999). 

Host Plants and Other Plants Affected

Top of page

Biology and Ecology

Top of page

Genetics

The chromosome number of P. paradoxa is 2n=14 (Talavera, 1987).

Reproductive Biology

In warmer temperate regions Phalaris spp. behave as winter annuals, germinating in the autumn or winter, and reaching reproductive maturity in the following spring. Newly harvested Phalaris seeds exhibit at least 50% germinability. The optimum temperature range for germination is between 8 and 20°C (Jiménez et al., 1997). The percentage of germination is much lower in dark than in light conditions (Jiménez-Hidalgo et al., 1993). Phalaris spp. form a persistent seed bank in the soil and the annual germination and establishment of seedlings has been recorded as between 8 and 11% of the seed bank (Jiménez et al., 1997). Most Phalaris seedlings emerge from shallow depths <3 cm depth in the soil).

Plants are self-incompatible and did not set any seed when heads were bagged (Voshell, 2014).

Physiology and Phenology

Germination and emergence is clearly influenced by rainfall patterns. Phalaris normally shows two emergence periods, the first in the autumn, after the first autumn rains, and the second in the winter coinciding with wet weather conditions (Jiménez et al., 1997).  

Seeds become light-sensitive when imbibed in the dark and subsequent exposure to white or red light resulted in the germination of deeply dormant populations. High intensities of white light inhibited germination (Taylor et al., 1999). Where seeds were buried in pots and samples exhumed and germination tested at intervals, no seeds survived for longer than 18 months. Germination of non-dormant and moderately dormant populations was restricted to temperatures in the range 5-18.5°C, with the majority of seed germinating at 13.5°C.

Population Size and Density:

In Australia, P. paradoxa seedlings emerging from a large natural seed bank were counted. Some plots were cultivated in March (autumn) whilst others were left uncultivated. In May (autumn) more seedlings emerged from cultivated plots (2070 m-2) than from undisturbed plots (930 m-2) (Taylor et al. 1999). However, this result was reversed for seedlings emerging in July. 

Impact Summary

Top of page
CategoryImpact
Economic/livelihood Negative
Environment (generally) Negative

Economic Impact

Top of page

P. paradoxa is an aggressive annual grass weed of winter crops in temperate areas and of early spring-sown crops in colder regions (Western Europe, Western USA). It is also an economically important weed in winter crops in the Mediterranean area. 43% of the winter cereal fields surveyed in southern Spain were infested with Phalaris spp. (Saavedra et al., 1989). In Australia, high infestations of P. paradoxa in winter wheat may result in yield reductions of up to 40% (Dellow and Milne, 1986). It is regarded as the second most prominent winter grass weed in the northern grain region of Australia (Taylor and Taylor, 1999).

P. paradoxa contains tryptamine alkaloids, which are toxic to horses. Ingestion of P. paradoxa plants has been implicated in sporadic plant poisoning cases in horses in Australia (Bourke et al., 2003).

Environmental Impact

Top of page

While primarily a common weed of crops, P, paradoxa is also regarded as an environmental weed in Victoria, Australia (Weeds of Australia, 2016). As an invasive plant in California, USA, it has also been listed with other invasive species as among the threats to the endangered grass Greene’s tuctoria (Tuctoria greenei). This grass species is dependent on vernal pools for survival, and competition from invasive plant species poses a primary threat. P. paradoxa is one of the alien invasive plants typically found along the margins of vernal pools, where T. greenei is also commonly found (US Fish and Wildlife Service, 2007).

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Pioneering in disturbed areas
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
Impact outcomes
  • Negatively impacts agriculture
  • Threat to/ loss of endangered species
  • Threat to/ loss of native species
Impact mechanisms
  • Competition
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally

Similarities to Other Species/Conditions

Top of page

As seedlings, Phalaris species can be distinguished from most other grass weed species. However, confusion may arise between seedlings of Phalaris spp. and Avena spp.. These may be distinguished by the following characteristics: the leaves of Phalaris are glabrous while those of Avena have long hairs at the base of the blade edge; Avena seedlings are darker green than Phalaris; and the base of the seedling stem exhibits a red pigmentation in Phalaris and not in Avena (Jiménez et al., 1997).

Annual Phalaris species with which P. paradoxa is more likely to be confused include:

P. minor (see separate data sheet) - this is similar in vegetative morphology but the glumes lack the marked teeth of P. paradoxa.

P. brachystachys – this has a shorter panicle (3-3.5 cm long, compared with 4-5 cm in P. paradoxa).

Edgecombe (1970) provides useful drawings of the spikelets of P. minor, P. brachystachys and P. paradoxa. When flowering, P. paradoxa can be identified by the clusters of five to seven spikelets of which only the central one is fertile, and by the characteristic marked teeth of the glumes.

Prevention and Control

Top of page

Cultural Control

Date of crop sowing
Delaying crop sowing enables the main flush of Phalaris seedlings, which emerge after the first autumn rains, to be controlled before planting. Additionally, in late winter or early spring-sown crops, temperatures are higher, crops grow more quickly, and are more effective at suppressing weed growth. However, crop yields are generally reduced by late spring-sowing.

Crop density
Increased crop seed sowing rates result in higher crop densities which are able to suppress weed growth. For example, in winter cereals where infestation by Phalaris spp. is often a problem, high seed sowing rates (>170 kg/ha) effectively reduce the density of these weeds. Conversely, low seed rates of wheat or barley (60-80 kg/ha) contribute to a rapid increase in populations of Phalaris spp..

Crop rotation
This involves replacing crops in which Phalaris control is difficult or expensive (winter cereals), with other crops with a different growth cycle (e.g. sunflowers), thus avoiding Phalaris infestations, or in which a high degree of control can be achieved (e.g. rapeseed). In the Mediterranean region, Phalaris infestations in winter cereals were greatly reduced by introducing spring-sown sunflower into the rotation.

Roguing
Mature Phalaris plants at the flowering and seed setting stage are taller than wheat and barley crop plants. Thus, roguing may be practised to reduce or prevent seed return to the soil seed bank. Normally this practice is only feasible when the weed density is low <1500 plants/ha, which may take 3-4 h to hand-rogue). Herbicide-roguing involves the application of a chemical (often glyphosate) to the top of the Phalaris plants with special gloves moistened by a herbicide solution. Chemical roguing is much faster than hand roguing as it does not involve the removal of the plant from the field.

Chemical Control

Several herbicides applied pre-emergence or early post-emergence have been used to control Phalaris spp. in winter wheat and other crops. These include isoproturon, methabenzthiazuron, terbutryn and pendimethalin. More recently specialized post-emergence graminicides have been developed and used to control Phalaris spp. (Mirkamali, 1993). Tralkoxydim is effective, fenoxaprop-p-ethyl may be applied in many dicotyledenous crops and in wheat, clodanifop-propargyl is effective in triticale and durum wheat (Welsh and Popay, 1994). Cycloxydim, haloxyfop, fluazifop and sethoxydim are highly selective graminicides that can be used in many broad-leaved crops.

Resistance to herbicides has developed in some P. paradoxa populations. Herbicide Resistant Weeds (2016) reports cases of resistance in Australia, Iran, Israel, Italy and Mexico, mostly in wheat crops to ACCase Inhibitor herbicides.

References

Top of page

Adkins SW; Wills D; Boersma M; Walker SR; Robinson G; McLeod RJ; Einan JP, 1997. Weed resistance to chlorsulfuron and atrazine from the north-east grain region of Australia. Weed Research, 37(5):343-349.

Afentouli CG; Eleftherohorinos IG, 1996. Littleseed canarygrass (Phalaris minor) and short-spiked canarygrass (Phalaris brachystachys) interference in wheat and barley. Weed Science, 44(3):560-565; 24 ref.

America Pink, 2016. Phalaris paradoxa. America Pink: Website for education, essays, topics, articles and online encyclopedia. http://america.pink/phalaris-paradoxa_3488958.html

Amor RL, 1985. Seasonal emergence of weeds typically occurring in the Victorian cereal belt. Plant Protection Quarterly, 1(1):18-20

Biological Records Centre, 2015. Online atlas of the British and Irish flora. Wallingford, UK: Biological Records Centre. http://www.brc.ac.uk/plantatlas/

Botanical Survey of India, 2016. Checklist of plants of India. http://efloraindia.nic.in/efloraindia/homePage.action

Bourke CA; Colegate SM; Slattery S; Oram RN, 2003. Suspected Phalaris paradoxa (paradoxa grass) poisoning in horses. Australian Veterinary Journal, 81(10):635-637.

Clayton WD; Vorontsova MS; Harman KT; Williamson H, 2016. GrassBase - The Online World Grass Flora. Kew, UK: Royal Botanic Gardens. http://www.org/data/grasses-db.html

Council of Heads of Australasian Herbaria, 2016. Australia's Virtual Herbarium., Australia: Council of Heads of Australasian Herbaria. http://avh.ala.org.au

Danin A, 2016. Flora of Israel Online. http://flora.org.il/en/plants/

Dellow JJ; Milne BR, 1986. Control of Phalaris paradoxa in wheat. Australian Weeds, 31:22-23.

Edgar E; Connor HE, 2010. Flora of New Zealand - Vol. V: Gramineae, Ed.2 [ed. by Edgar, E.\Connor, H. E.]. Lincoln, New Zealand: Manaaki Whenua Press, Landcare Research, xlii + 23 + 650 pp.

Edgecombe WS, 1970. Weeds of Lebanon. Beirut, Lebanon: American University of Beirut.

Fayvush GM, 2016. Poaceae: Phalaris paradoxa L. http://www.mnp.am/red_book_fauna/eng/p397.html

Fernandez-de Luco D; Garcfa-Marfn JF; Badiola JJ, 1990. Phalaris toxicosis in sheep in Spain. Proceedings of the 10th Annual Meeting of the European Society of Veterinary Pathology, Zurich: European Society of Veterinary Pathology, 8:425-426.

Finot VL; Pedreros JA, 2012. Phalaris paradoxa L. (Poaceae: Phalaridinae), a new introduced weed species in central Chile. Gayana Botánica, 69(1):193-196. http://www2.udec.cl/~gvalencia/pdf/GB2012_69-1_Finot_&_Pedreros.pdf

Flora of China Editorial Committee, 2016. Flora of China. St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria. http://www.efloras.org/flora_page.aspx?flora_id=2

Flora of Pakistan, 2015. Flora of Pakistan/Pakistan Plant Database (PPD). Tropicos website. USA: St. Louis, Missouri and Cambridge, Massachusetts. http://www.tropicos.org/Project/Pakistan

Flora of Qatar, 2016. Flora of Qatar. http://www.floraofqatar.com/

Gorfu A; Tanner DG; Taa A, 1992. On-farm evaluation of pre- and post-emergence grass herbicides on bread wheat in Arsi region of Ethiopia. The seventh regional wheat workshop for eastern, central and southern Africa., 330-337; 5 ref.

Herbicide Resistant Weeds, 2016. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/Summary/Species.aspx

Holm LG; Pancho JV; Herberger JP; Plucknett DL, 1991. A Geographic Atlas of World Weeds. Malabar, Florida, USA: Krieger Publishing Company.

Jauzein PH; Montegut J, 1982. Graminées (Poaceae) Nuisibles en Agriculture. Versailles, France: Ecole National Superieur DnHorticulture de Versailles.

Jimenez Hidalgo MJ; Saavedra M; Garcia-Torres L, 1993. Germination of Phalaris species as affected by temperature and light. Proceedings of the 1993 Congress of the Spanish Weed Science Society, Lugo, Spain, 1-3 December 1993 Madrid, Spain; Sociedad Espanola de Malherbologia (Spanish Weed Science Society), 98-102

Jimenez MJ; Saavedra M; Garcfa-Torres L, 1997. Phalaris sp. L. in cereal crops. In: Xans FJ, Fernandez-Quintanilla C, eds. Biology of Weeds in Spain. Spain: Phytoma, 77-89.

McIntyre S; Ladiges PY; Adams G, 1988. Plant species-richness and invasion by exotics in relation to disturbance of wetland communities on the Riverine Plain, NSW. Australian Journal of Ecology, 13(4):361-373

Mirkamali H, 1993. Chemical control of grasses in wheat. Brighton crop protection conference, weeds. Proceedings of an international conference, Brighton, UK, 22-25 November 1993. Farnham, UK: British Crop Protection Council (BCPC), Vol. 2:579-584

Missouri Botanical Garden, 2016. Tropicos database. St. Louis, Missouri, USA: Missouri Botanical Garden. http://www.tropicos.org/

Pignati S, ed. , 1980. Flora Dn+talia, vol. 3. Bologna, Italy: Edagricole.

Reed CF, 1977. Economically important foreign weeds. Potential problems in the United States. Agriculture Handbook No. 498. United States Department of Agriculture. Washington D.C., USA: USDA-ARS.

Robbins WW; Bellue MK; Ball WS, 1970. Weeds of California. Sacramento, California: Documents and Publications.

Saavedra M; Cuevas J; Mesa-Garcia J; Garcia-Torres L, 1989. Grassy weeds in winter cereals in Southern Spain. Crop Protection, 8(3):181-187

Simon BK; Alfonso Y, 2011. AusGrass2. Grasses of Australia. Australia: CSIRO Publishing. http://ausgrass2.myspecies.info/

Talavera S, 1987. Phalaris. In: Valdés B, Talavera S, Fernandez-Galiano E, eds. Flora Vascular de Andalucia Occidental. Vol 3. Barcelona, Spain: Ketres Editores S. A., 351-355.

Taylor I; Walker S; Adkins S; Bullen K; Peters N, 1999. Dynamics of paradoxa grass (Phalaris paradoxa L.) soil seedbank. In: 12th Australian Weeds Conference, Papers and Proceedings, Hobart, Tasmania, Australia, 12-16 September 1999: Weed management into the 21st century: do we know where we're going? [ed. by Bishop, A. C.\Boersma, M.\Barnes, C. D.]. Hobart, Australia: University of Tasmania, 71-74.

Thurley B; Chancellor RJ, 1985. Observations on the occurrence of Phalaris paradoxa in England and Wales. Annals of Applied Biology, 107(1):79-86

Tutin TG, 1980. Phalaris L. In Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, eds. Flora Europaea, Volume 5. Alismataceae to Orchidaceae Moncotyledones. Cambridge, UK: Cambridge University Press.

US Fish and Wildllife Service, 2007. Green's tuctoria (Tuctoria greenei). 5-year review: summary and evaluation. Sacramento, USA: US Fish and Wildlife Service, Sacramento Fish and Wildlife Office.

USDA-ARS, 2016. Germplasm Resources Information Network (GRIN). National Plant Germplasm System. Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

USDA-NRCS, 2016. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov/

Verloove F, 2015. Manual of the alien plants of Belgium. Meise, Belgium: Botanic Garden of Meise. http://alienplantsbelgium.be

Voshell SM, 2014. Evolutionary history of the canary grasses (Phalaris, Poaceae). PhD dissertation., USA: Virginia Polytechnic Institute and State University. https://vtechworks.lib.vt.edu/bitstream/handle/10919/64289/Voshell_SM_D_2014.pdf?sequence=1

Weeds of Australia, 2016. Weeds of Australia, Biosecurity Queensland Edition. http://keyserver.lucidcentral.org/weeds/data/03030800-0b07-490a-8d04-0605030c0f01/media/Html/search.html?zoom_query=

Welsh RD, 1994. Propargyl a post-emergent herbicide for selective control of wild oats and canary grasses in wheat, triticale and durum. Proceedings of the forty seventh New Zealand plant protection conference, Waitangi, New Zealand, 9-11 August 1994 [edited by Popay, A. J.] Rotorua, New Zealand; New Zealand Plant Protection Society, 22-26

Wilson BJ, 1981. Effect of time of seedling emergence on seed production and time of flowering of eight weeds. Proceedings of the Sixth Australian Weeds Conference, 1981, Volume 1:35-38.

Zitoune-Lameche B; Caussanel JP; Hadj-Miloud D; Barralis G, 1988. Influence of soil tillage and chemical weeding on the relations between weeds and wheat. VIIIe Colloque International sur la Biologie, l'Ecologie et la Systematique des Mauvaises Herbes Paris, France; A.N.P.P., Vol. 2:581-589

Contributors

Top of page

14/06/16 Updated by:

Ian Popay, Landcare Research, New Zealand

Distribution Maps

Top of page
You can pan and zoom the map
Save map