Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Trialeurodes vaporariorum
(whitefly, greenhouse)

Toolbox

Datasheet

Trialeurodes vaporariorum (whitefly, greenhouse)

Summary

  • Last modified
  • 29 March 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Vector of Plant Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Trialeurodes vaporariorum
  • Preferred Common Name
  • whitefly, greenhouse
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Trialeurodes vaporariorum (whitefly, greenhouse); scanning electron micrograph of pupa.
TitlePupa
CaptionTrialeurodes vaporariorum (whitefly, greenhouse); scanning electron micrograph of pupa.
Copyright©Ian D. Bedford
Trialeurodes vaporariorum (whitefly, greenhouse); scanning electron micrograph of pupa.
PupaTrialeurodes vaporariorum (whitefly, greenhouse); scanning electron micrograph of pupa.©Ian D. Bedford
Trialeurodes vaporariorum (whitefly, greenhouse); two adults, together with an adult of Bemisia tabaci (bottom right).
TitleAdults
CaptionTrialeurodes vaporariorum (whitefly, greenhouse); two adults, together with an adult of Bemisia tabaci (bottom right).
Copyright©Ian D. Bedford
Trialeurodes vaporariorum (whitefly, greenhouse); two adults, together with an adult of Bemisia tabaci (bottom right).
AdultsTrialeurodes vaporariorum (whitefly, greenhouse); two adults, together with an adult of Bemisia tabaci (bottom right).©Ian D. Bedford

Identity

Top of page

Preferred Scientific Name

  • Trialeurodes vaporariorum Westwood 1856

Preferred Common Name

  • whitefly, greenhouse

Other Scientific Names

  • Aleurochiton vaporariorum
  • Aleurodes papillifer Maskell
  • Aleurodes vaporariorum
  • Aleyrodes sonchi Kotinsky
  • Aleyrodes vaporariorum Westwood, 1856
  • Asterochiton vaporariorum Westwood
  • Dialeurodes vaporariorum
  • Trialeurodes mossopi
  • Trialeurodes natalensis
  • Trialeurodes natanlensis Corbett
  • Trialeurodes sonchi Kotinsky

International Common Names

  • English: glasshouse whitefly; greenhouse whitefly; whitefly, glasshouse
  • Spanish: mosca blanca de las hortalizas; mosca blanca de los invernaderos
  • French: aleurodes des serres; mouche blanche des serres
  • Russian: teplichnoj belokrylki
  • Chinese: tea whitefly
  • Portuguese: mosca blanca das estufas

Local Common Names

  • Croatia: bijele musice
  • Denmark: weibe fliege der gewachshauser
  • Finland: ansarijauhiainen
  • Germany: Schildlaus, Kohlmotten-; Weisse Fliege
  • Israel: knimat ash hachmamot
  • Italy: aleirode delle serre; aleirodes delle serre; aleurode del cavolo; alreurode delle serre
  • Netherlands: Witte vlieg
  • Norway: veksthusmjøllus
  • Poland: maczlika skarniowego
  • Serbia: bijele musice
  • Sweden: växthusmjöllus; vit flygare

EPPO code

  • TRIAMS (Trialeurodes mossopi)
  • TRIANA (Trialeurodes natalensis)
  • TRIASO (Trialeurodes sonchi)
  • TRIAVA (Trialeurodes vaporariorum)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Hemiptera
  •                         Suborder: Sternorrhyncha
  •                             Unknown: Aleyrodoidea
  •                                 Family: Aleyrodidae
  •                                     Genus: Trialeurodes
  •                                         Species: Trialeurodes vaporariorum

Description

Top of page Eggs

Eggs are approximately conical in shape, yellowish-white turning to purplish grey after 2 days and 0.25 mm long. They are oviposited on a short pedicel, which is inserted in epidermal cells on the lower leaf surface, often in a circle or a crescent.

Nymphs

Nymphs or 'crawlers' are usually pale green, but can also range from yellow to dark brown. They are oval, flat and resemble scale insects. There are four or possibly five leg segments and two to three antennal segments. Segmentation is not clear and most specimens will appear to have only three leg segments and two antennal segments. Small amounts of powdery white wax are usually produced after the crawler settles and begins feeding. The first nymph is mobile, whereas later nymphal stages are immobile. They resemble soft scale insects, but have a vasiform orifice on the back through which honeydew is expelled. There are four nymphal stages with the final stage beginning as a feeding nymph before it becomes a pupa. The final larval stage begins as a flat translucent disc, but as it develops through to the pupa a waxy fringe begins to develop around the margin. As this grows, the larva becomes more 'pork pie' shaped.

Pupae

The pupa is the final stage of the fourth nymphal instar and is assumed to be at the point where the nymph stops feeding and apolysis begins. The pupa becomes a milky-yellow colour and, as the adult develops within, red eyes become visible through the cuticle. The marginal fringe, which is formed from many fused wax rods, is very obvious at this stage. Downward curving wax setae are also visible all around the edge of the marginal plain. On hirsute leaves, the pupae often develop long, waxy setae on the dorsal surface. These are not always present on pupae that have developed on glabrous leaves.

Adults

Adults are about 1.5 mm long, white and resemble tiny moths. The wings are pale yellow, held relatively flat when in repose and are coated with a pure white waxy bloom.

Distribution

Top of page T. vaporariorum is a widely distributed pest of ornamental and horticultural plants. It is not native to Europe, but has become successfully established in glasshouses.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

BangladeshPresentEPPO, 2014
ChinaWidespreadLi et al., 1995; Zhu and Ju, 1990; EPPO, 2014
-FujianPresentPan et al., 2007
-HebeiPresentZheng et al., 2005
-HeilongjiangPresentWang et al., 2000
-Hong KongPresentEPPO, 2014
-ShandongPresentLiu et al., 2003
-ShanxiPresentChu et al., 2008
IndiaPresentByrne et al., 1990; EPPO, 2014
-Himachal PradeshPresentAnjana and Mehta, 2008
IndonesiaPresentEPPO, 2014
-SulawesiPresentNasruddin and Mound, 2016
IranPresentByrne et al., 1990; EPPO, 2014
IsraelPresentKajita, 1986; EPPO, 2014
JapanPresentMasuda and Kikuchi, 1993; EPPO, 2014
JordanPresentEPPO, 2014
Korea, Republic ofPresentEPPO, 2014
PhilippinesPresentEPPO, 2014
SingaporePresentAVA, 2001
Sri LankaPresentByrne et al., 1990; EPPO, 2014
TurkeyPresentYasarakinci and Hincal, 1996; Erdogan et al., 2012; EPPO, 2014
UzbekistanPresentZakhidov, 2001
YemenPresentEPPO, 2014

Africa

AlgeriaPresentTalaboulma, 1989; Kebir, 1990
EthiopiaPresentByrne et al., 1990; EPPO, 2014
KenyaPresentByrne et al., 1990; EPPO, 2014
MoroccoPresentByrne et al., 1990
RéunionPresentEPPO, 2014
South AfricaPresentEPPO, 2014
Spain
-Canary IslandsPresentByrne et al., 1990; EPPO, 2014
ZimbabwePresentEPPO, 2014

North America

BermudaPresentByrne et al., 1990; EPPO, 2014
CanadaPresentEPPO, 2014
-AlbertaPresentSteiner, 1992
-British ColumbiaPresentEPPO, 2014
-QuebecPresentLambert et al., 2003
MexicoPresentArteaga-Garibay et al., 1993; Lopez and Botto, 1995; EPPO, 2014
USAPresentCastane and Albajes, 1994; EPPO, 2014
-AlabamaPresentByrne et al., 1990
-AlaskaPresentByrne et al., 1990
-ArizonaPresentByrne et al., 1990
-CaliforniaPresentByrne et al., 1990
-ColoradoPresentByrne et al., 1990
-District of ColumbiaPresentByrne et al., 1990
-FloridaPresentOsborne and Landa, 1992
-GeorgiaPresentByrne et al., 1990
-HawaiiPresentLynch and Johnson, 1991; EPPO, 2014
-IdahoPresentByrne et al., 1990
-IllinoisPresentByrne et al., 1990
-IndianaPresentByrne et al., 1990
-IowaPresentByrne et al., 1990
-MainePresentByrne et al., 1990
-MarylandPresentByrne et al., 1990
-MassachusettsPresentByrne et al., 1990
-MichiganPresentByrne et al., 1990
-MississippiPresentByrne et al., 1990
-MissouriPresentByrne et al., 1990
-NebraskaPresentByrne et al., 1990
-New JerseyPresentByrne et al., 1990
-New MexicoPresentByrne et al., 1990
-New YorkPresentByrne et al., 1990
-OhioPresentByrne et al., 1990
-OregonPresentByrne et al., 1990
-PennsylvaniaPresentByrne et al., 1990
-Rhode IslandPresentByrne et al., 1990
-TexasPresentByrne et al., 1990
-UtahPresentByrne et al., 1990
-VirginiaPresentByrne et al., 1990
-WashingtonPresentByrne et al., 1990
-West VirginiaPresentByrne et al., 1990
-WisconsinPresentByrne et al., 1990

Central America and Caribbean

BarbadosPresentEPPO, 2014
BelizePresentEPPO, 2014
Costa RicaPresentAlpizar, 1993; EPPO, 2014
CubaPresentEPPO, 2014
Dominican RepublicPresentEPPO, 2014
El SalvadorPresentByrne et al., 1990; EPPO, 2014
GuadeloupePresentEPPO, 2014
GuatemalaPresentByrne et al., 1990; EPPO, 2014
HondurasPresentByrne et al., 1990; EPPO, 2014
JamaicaPresentEPPO, 2014
MartiniquePresentEPPO, 2014
Netherlands AntillesPresentde Goey, 1993; van Giessen et al., 1995
PanamaPresentZachrisson, 1992
Puerto RicoPresentByrne et al., 1990; EPPO, 2014

South America

ArgentinaPresentLopez and Botto, 1995; EPPO, 2014
BrazilPresentByrne et al., 1990; EPPO, 2014
-Rio Grande do SulPresentMarsaro Júnior et al., 2015
-Sao PauloPresentLourenção et al., 2008
ChilePresentOrtiz, 1995; Estay, 1993; EPPO, 2014
ColombiaPresentRodriguez et al., 1996; EPPO, 2014
EcuadorPresentByrne et al., 1990; EPPO, 2014
French GuianaAbsent, confirmed by surveyEPPO, 2014
PeruPresentByrne et al., 1990; EPPO, 2014
UruguayPresentDolores et al., 2003
VenezuelaPresentEPPO, 2014

Europe

AlbaniaPresentBalliu and Cota, 2007
AustriaPresentByrne et al., 1990; EPPO, 2014
BelgiumPresentHeungens and Buysse, 1991a; de Cock, 1993; Brasch et al., 1994; Bolckmans et al., 1995; EPPO, 2014
Bosnia-HercegovinaPresentKohnic et al., 2006
BulgariaPresentLoginova, 1990; EPPO, 2014
CroatiaPresentZanic, 2006; Simala et al., 2015
Czech RepublicPresentByrne et al., 1990
DenmarkPresentBroedsgard et al., 1993; EPPO, 2014
EstoniaPresentHiiesar et al., 1994; Malumphy and Ostrauskas, 2013
FinlandPresentEPPO, 2014
FrancePresentMalezieux et al., 1995; Trottin-Caudal, 1992; Meesters and Pitsioudis, 1994; EPPO, 2014
GermanyPresentKress, 1992; Albert et al., 1993; Dirks and Wilke, 1993; Kassis and Michelakis, 1993; Ruisinger and Backhaus, 1994; EPPO, 2014
GreecePresentBoukadida, 1991; Abdalla, 1992; EPPO, 2014
HungaryPresentSzabo and Lenteren, 1995; EPPO, 2014
IrelandPresentEPPO, 2014
ItalyPresentVacante, 1995; Colombo, 1993; Giorgini and Viggiani, 1994; EPPO, 2014
-SardiniaPresentNannini et al., 2007
LatviaPresentZarinysh, 2002
LithuaniaPresentMalumphy and Ostrauskas, 2013; EPPO, 2014
MaltaPresentEPPO, 2014
MontenegroPresentRadonjic and Hrncic, 2011
NetherlandsPresentByrne et al., 1990; EPPO, 2014
NorwayPresentEPPO, 2014
PolandPresentBaranowski and Gorski, 1991; Domagala et al., 1992; EPPO, 2014
PortugalPresentEPPO, 2014
-AzoresPresentEPPO, 2014
-MadeiraPresentByrne et al., 1990; EPPO, 2014
-Portugal (mainland)PresentByrne et al., 1990
RomaniaPresentByrne et al., 1990
Russian FederationPresentTverdyukov et al., 1994
-Russian Far EastPresentYarkulov FYa, 2008
SerbiaPresentPeric et al., 2009; EPPO, 2014
SpainPresentCabello Garcia et al., 1996; Albajes et al., 1994; Arno and Gabarra, 1994; EPPO, 2014
SwedenPresentByrne et al., 1990
SwitzerlandPresentRavensberg et al., 1993
UKPresentGorman et al., 1998; EPPO, 2014
-Channel IslandsPresentByrne et al., 1990
Yugoslavia (former)PresentPagliarini and Jasek, 1989

Oceania

AustraliaPresentByrne et al., 1990; EPPO, 2014
-South AustraliaPresentGambley et al., 2010
New ZealandPresentBeck et al., 1993; EPPO, 2014
Papua New GuineaPresentEPPO, 2014

Hosts/Species Affected

Top of page The total world record of greenhouse whitefly host plants is approximately 859 species, belonging to 469 genera in 121 families.

Many species of plants grown under glass are liable to attack by T. vaporariorum. In temperate countries, the most severely affected crops are aubergine, cucumber, beans sweet peppers, tomatoes and a large number of ornamentals, including species of Fuchsia, Gerbera, Pelargonium, Solanum and chrysanthemums, poinsettias and primulas.

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Actinidia chinensis (Chinese gooseberry)ActinidiaceaeUnknown
Ageratina adenophora (Croftonweed)AsteraceaeUnknown
Apium graveolens (celery)ApiaceaeOther
AsterAsteraceaeUnknown
BouvardiaRubiaceaeUnknown
BrassicaBrassicaceaeMain
Camellia sinensis (tea)TheaceaeUnknown
Capsicum (peppers)SolanaceaeUnknown
Capsicum annuum (bell pepper)SolanaceaeUnknown
Chenopodium giganteum (large lambsquarters)ChenopodiaceaeUnknown
Chrysanthemum (daisy)AsteraceaeMain
Citrullus lanatus (watermelon)CucurbitaceaeOther
Cucumis melo (melon)CucurbitaceaeMain
Cucumis sativus (cucumber)CucurbitaceaeMain
Cucurbita (pumpkin)CucurbitaceaeUnknown
Cucurbita pepo (marrow)CucurbitaceaeUnknown
Cucurbitaceae (cucurbits)CucurbitaceaeMain
Cyphomandra betacea (tree tomato)SolanaceaeUnknown
Euphorbia pulcherrima (poinsettia)EuphorbiaceaeMain
Fragaria (strawberry)RosaceaeUnknown
FreesiaIridaceaeUnknown
FuchsiaOnagraceaeUnknown
Gerbera (Barbeton daisy)AsteraceaeUnknown
Gerbera jamesonii (African daisy)AsteraceaeUnknown
Glycine max (soyabean)FabaceaeUnknown
Gossypium hirsutum (Bourbon cotton)MalvaceaeMain
Helianthus annuus (sunflower)AsteraceaeUnknown
Hibiscus rosa-sinensis (China-rose)MalvaceaeUnknown
Impatiens (balsam)BalsaminaceaeOther
Ipomoea (morning glory)ConvolvulaceaeUnknown
Lactuca sativa (lettuce)AsteraceaeUnknown
Lantana camara (lantana)VerbenaceaeUnknown
LycopersiconSolanaceaeUnknown
Malva sylvestrisMalvaceaeOther
NicotianaSolanaceaeUnknown
Origanum majorana (sweet marjoram)LamiaceaeMain
Pelargonium graveolens (Rose geranium)GeraniaceaeUnknown
Persea americana (avocado)LauraceaeMain
Phaseolus (beans)FabaceaeUnknown
Phaseolus vulgaris (common bean)FabaceaeMain
Psidium guajava (guava)MyrtaceaeUnknown
Rhododendron (Azalea)EricaceaeUnknown
Rosa (roses)RosaceaeMain
Rubus idaeus (raspberry)RosaceaeUnknown
Solanum lycopersicum (tomato)SolanaceaeMain
Solanum melongena (aubergine)SolanaceaeMain
Solanum tuberosum (potato)SolanaceaeOther
Sonchus (Sowthistle)AsteraceaeUnknown
Stellaria media (common chickweed)CaryophyllaceaeWild host
Tagetes erecta (African marigold)AsteraceaeUnknown

Growth Stages

Top of page Seedling stage, Vegetative growing stage

List of Symptoms/Signs

Top of page
SignLife StagesType
Fruit / honeydew or sooty mould
Inflorescence / honeydew or sooty mould
Leaves / abnormal colours
Leaves / abnormal forms
Leaves / necrotic areas
Stems / honeydew or sooty mould
Whole plant / dwarfing

Biology and Ecology

Top of page All whiteflies have a similar life cycle that includes eggs, a mobile crawler (first-instar nymph), non-mobile second-, third- and fourth-instar nymphs and a non-feeding puparium (part of the fourth-instar nymphal stage), and the adult.

Eggs are laid on their ends with a pedicel on the tip and are inserted into a slit in the leaf or into stomata. T. vaporariorum lays its eggs in a circular fashion on leaves with no hairs, but on pubescent leaves, no obvious pattern is evident.

Crawlers are the first-instar nymphs that hatch out of eggs. After hatching, crawlers wander around the leaf until they are successful in locating the sap of the leaf from plant phloem. Once they find a good feeding location, they remain immobile until they become adults.

Fourth-instar nymphs can be considered to undergo three substages, during the last of which the adult begins to form under the surface, so that the eyes and yellow body pigment of the adult may be visible. Adults force open a 'T'-shaped slit as they emerge from the shell of the fourth instar. After several hours the wings are dried, pigmentation is complete and they are able to fly. Adults feed on leaf sap with piercing, sucking mouthparts. Although capable of flying for 2 or more hours, whiteflies commonly make relatively short flights from plant to plant or field to field; however, they may be carried great distances by wind or transported on plants. Whiteflies land on particular plants mostly by chance, choosing to stay on desirable or moving off undesirable ones.

The duration of the immature stages varies with temperature and host plant; at 21°C, it is about 18 days. The total period from egg to adult at this temperature is 27 days.

In cold climates, this whitefly is found only in glasshouses, whereas further south, it is found in the open, on both wild and cultivated plants. Further south, adults may also overwinter on wild plants growing outdoors if the climatic conditions are not too severe.

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Amitus arcturus Parasite
Amitus fuscipennis Parasite
Anthocoris nemorum Predator Adults/Nymphs
Aschersonia aleyrodis Pathogen Nymphs
Aschersonia papillata Pathogen Adults/Nymphs
Aschersonia placenta Pathogen Adults/Nymphs
Bacillus thuringiensis Pathogen Adults/Nymphs Ecuador; South America; Colombia
Barberiella formicoides Predator Adults/Nymphs
Beauveria bassiana Pathogen Adults/Nymphs Romania
Chrysopa pallens Predator Adults/Nymphs
Chrysoperla carnea Predator Adults/Nymphs
Chrysoperla carnea Predator Adults/Nymphs Russia
Chrysoperla harrisii Predator Adults/Nymphs
Clitostethus arcuatus Predator Adults/Nymphs
Coccinella septempunctata Predator Adults/Nymphs
Coenosia attenuata Predator Adults/Nymphs
Delphastus pusillus Predator
Deraeocoris serenus Predator Adults/Nymphs
Dicyphus errans Predator Adults/Nymphs
Dicyphus tamaninii Predator Adults/Nymphs Spain
Encarsia adrianae Parasite
Encarsia costaricensis Parasite
Encarsia formosa Predator/parasite Nymphs Australia; Austria; Belgium; British Columbia; Bulgaria; California; China; Denmark; Finland; France; Germany; Greece; Crete; Hawaii; Hungary; Irish Republic; Israel; Italy; Japan; Kyushu; Maryland; Moldova; Netherlands; New York; Norway; Ohio; Poland; Romania; Sicily; Spain; Sweden; Switzerland; UK; USSR; Uzbekistan; Republic of Georgia Hibiscus; ornamental plants; tomatoes
Encarsia guadeloupae Parasite
Encarsia inaron Parasite
Encarsia japonica Parasite
Encarsia lutea Predator/parasite Nymphs
Encarsia luteola Parasite
Encarsia lycopersici Parasite
Encarsia meritoria Parasite Adults/Nymphs
Encarsia mineoi Parasite
Encarsia nigricephala Parasite
Encarsia pergandiella Predator/parasite Nymphs Israel; Italy ornamental plants; vegetables
Encarsia porteri Parasite Nymphs
Encarsia sophia Parasite
Encarsia transvena Parasite Adults/Nymphs Hawaii tomatoes
Encarsia tricolor Predator/parasite Nymphs Spain
Eretmocerus corni Parasite Nymphs
Eretmocerus haldemani Parasite Adults/Nymphs Hawaii ornamental plants
Lecanicillium lecanii Pathogen Nymphs Italy; Romania; Russia; USSR cucumbers
Macrolophus caliginosus Predator Adults/Nymphs Spain; Netherlands
Macrolophus nubilus Predator Adults/Nymphs Russia
Macrolophus rubi Predator Adults/Nymphs
Macrolophus rufi Predator Adults/Nymphs
Nephaspis oculata Predator Adults/Nymphs
Nesidiocoris tenuis Predator Adults/Nymphs
Orius majusculus Predator Adults/Nymphs
Orius niger Predator Adults/Nymphs
Paecilomyces farinosus Pathogen Adults/Nymphs
Paecilomyces fumosoroseus Pathogen
Paecilomyces fumosoroseus beijingensis Pathogen Adults/Nymphs
Paecilomyces lilacinus Pathogen Nymphs
Propylea japonica Predator Adults/Nymphs
Propylea quatuordecimpunctata Predator Adults/Nymphs
Solenopsis invicta Predator Adults/Nymphs

Notes on Natural Enemies

Top of page T. vaporariorum is attacked by species of Encarsia, Eretmocerus and fungal pathogens, many of which have been used as biological control agents in glasshouses. The minute chalcid wasp Encarsia formosa is commercially produced and sent from country to country for release onto crops in glasshouses. Consequently, it is not possible to provide an accurate distribution for this natural enemy, which originated in North America and has been introduced to Australia and Hawaii, USA. The most likely distribution of natural enemies important in the field are provided in the tabular data.

Impact

Top of page

Whiteflies damage plants directly by sucking sap from leaves and indirectly by transmitting viruses and producing a sticky secretion known as honeydew, which prevents crops from functioning normally, as well as acting as a substrate for fungal growth (sooty moulds).

Whitefly adults and nymphs feed by inserting their proboscis into the leaf, penetrating the phloem or nutrient conducting vessels and withdrawing sap. As it feeds, the whitefly injects saliva into plant tissues. Whitefly feeding removes nutrients from the plant which may result in stunting, poor growth, defoliation, reduced yields and even death in extreme cases. The extent of damage caused by feeding is generally directly proportional to the whitefly population and low populations rarely have much impact. On certain plants, stunting or abnormal coloration can be caused due to the physiological stress of the feeding. Plants stressed by the removal of sap due to heavy whitefly feeding may require more irrigation.

Whiteflies secrete significant quantities of honeydew as they feed. When populations of whiteflies are high, honeydew production can be copious, dripping down leaves onto fruit. Honeydew becomes a serious problem when it is colonized by black, sooty mould fungi, blackening leaf or fruit surfaces. This can render fruit unmarketable and block out sunlight, inhibiting photosynthesis.

T. vaporariorum became an economical important insect pest of greenhouse vegetable and ornamental crops in the middle 1970s in Beijing, China. More recently, it has become a serious horticultural pest within areas of southern Europe, where an increase in the incidence of Tomato chlorosis virus may be attributed to it. Within the UK, insecticide resistance has led to increased problems for growers of shrubs such as Ceanothus and soft fruit crops such as strawberries.

Virus transmission

The piercing and sucking mouthparts of T. vaporariorum provide an excellent mode for transmitting disease-causing viruses from one plant to another. As immature stages do not move on to new plants, virus transmission is a concern only with adult whiteflies.

Some of the more important viruses spread by T. vaporariorum are Beet pseudo-yellows virus (cucumbers, melons, lettuces and sugarbeet), Tomato infectious chlorosis virus and Lettuce infectious yellow virus. Further viruses are being identified and characterized which include Strawberry pallidosis virus (Tzanetakis et al., 2004).

Detection and Inspection

Top of page Regular field monitoring is important for the detection and management of T. vaporariorum and should be part of an overall IPM programme. The intensity of monitoring is dependent on the perceived pest threat and the likelihood of management action being required. If insecticides or beneficial insects are to be applied, a good estimate of whitefly populations should be made before and after treatment, as treatments should be made according to established action thresholds if they are available. Tools available for monitoring whiteflies include visual sampling (leaf turning), yellow sticky traps, pan counts and vacuum samples.

Visual sampling by leaf examination is the most common and accurate method of monitoring whiteflies. Although nymphs are difficult to count without a microscope, they are probably the most accurate reflection of the infestation level. Carefully tagged leaf samples can be taken back to a laboratory for counting of nymphs if necessary. Adults should be sampled in the early morning when they are not as active.

Bright yellow sticky traps are useful for tracking the movement of whiteflies into areas or fields or at the beginning of the season. When used over a large area in a co-ordinated fashion, they can provide valuable information about population movement to growers in a region. However, counts of whiteflies on traps are not a reliable indicator of population density and should not be used alone to determine the need for treatments. They can be useful for determining when visual sampling should begin. Yellow sticky traps catch only adult whiteflies plus the adults of a wide variety of other small flying insects such as leafminers, aphids and even parasitic wasps. Traps must be checked and cleaned frequently to remain effective; during periods of intense migration, cleaning may be required every 24 hours.

Similarities to Other Species/Conditions

Top of page T. vaporariorum may be confused with the tobacco, cotton or sweet potato whitefly (Bemisia tabaci) and the silverleaf whitefly (B. argentifolii), but it is larger and more triangular in appearance (See Pictures). At rest, both B. argentifolii and B. tabaci have wings more closely pressed to the body than T. vaporariorum. It has to be noted though that B. argentifolii is now no longer recognized as a separate species and is now referred to as the B biotype of B. tabaci.

The fourth instar or puparium can also be used to distinguish B. tabaci from T. vaporariorum as glasshouse pests. T. vaporariorum is 'pork pie shaped', regularly ovoid, has straight sides (viewed laterally) and in most instances, 12 large, waxy setae. In B. tabaci, the puparium has an irregular 'pancake-like' oval shape, with oblique sides and shorter, finer setae. Although the number of enlarged setae in B. tabaci and T. vaporariorum can vary according to host plant morphology, the two caudal setae are always stout and nearly always as long as the vasiform orifice in B. tabaci.

T. vaporariorum is similar to the banded wing whitefly, T. abutiloneum, but can be distinguished by the pupal case, which does not have the central dorsal dark area observed in T. abutiloneum. In the UK, the closely related cabbage whitefly (Aleyrodes proletella) lives outdoors, but only on brassicas and related plants. It can be distinguished from T. vaporariorum because it has a small dark patch on each wing. Another whitefly that might be confused with T. vaporariorum is the strawberry whitefly (T. packardi) which is smaller and has less elongated wings.

Prevention and Control

Top of page

Cultural Control

It is important to ensure that plants are not infested with T. vaporariorum before being taken into the glasshouse. This is equally as important when whitefly populations are already present in the glasshouse, due to the risk of introducing novel insecticide resistant strains. A suitable insecticide can be applied as a routine precaution. Recent studies have demonstrated the effectiveness of UV absorbent plastic films at reducing T. vaporariorum infestations on protected crops (Mutwiwa et al., 2005).

Biological Control

Biological control has been widely used in glasshouses, especially since the development of insecticide-resistant whiteflies, and is chiefly based on the chalcid wasp Encarsia formosa and entomopathogenic fungi (Osborne and Landa, 1992).

E. formosa parasitizes T. vaporariorum, each female being capable of laying 50-200 eggs during its lifespan of 10-14 days. Each egg is inserted into advanced nymphal stages which are subsequently killed. Scales containing parasites are highly visible because they are black. Successful control can be obtained if the parasite is established on plants when natural infestations are small. The parasitoid is usually shipped as parasitized scales on strips. For cucumbers, a typical rate of release is 12,500 parasitoids per ha in areas where T. vaporariorum is a habitual pest, starting at the beginning of the season. In tomato, most growers introduce parasitized scales weekly at the rate of 5000/ha as soon as plants are available. Once the parasitoid is established, it is important to avoid removing from the glasshouse leaves with black scales from which adult wasps have not emerged. Empty scales can be spotted by holding leaves up to the light and examining them for emergence holes (Sprau, 1990; Lynch and Johnson, 1991; Ruisinger and Backhaus, 1994; van Lenteren et al., 1996; van Roermund et al., 1997).

The predatory beetle Delphastus pusillus is very effective against greenhouse and sweet potato whitefly (Bemisia tabaci). Both the larval and adult beetles feed on all stages of T. vaporariorum and will eat spider mites when whitefly are not available.

Lacewings (species of Chrysoperla) are also used as general predators of glasshouse pests and will consume whiteflies.

The fungal pathogen Verticillium lecanii attacks whiteflies and thrips and can be a useful control agent in situations where the crop is grown in high humidities (Masuda and Kikuchi, 1993). The disease attacks young as well as adults, taking about 1-2 weeks to develop. Commercial preparations are available (Ravensburg et al., 1990, 1993). Microbial insecticides based on the entomopathogenic fungus Paecilomyces fumosoroseus have also been used for the control of T. vaporariorum (Bolckmans et al., 1995; Sterk et al., 1996).

Host-Plant Resistance

Soria et al. (1996) showed the participation of both antixenosis and antibiosis resistance mechanisms against T. vaporariorum in an accession of melon (C. melo var. agrestis). Lambert et al. (1995) investigated possible resistance mechanisms in soyabean and discovered that trichome erectness was a factor. Cultivars supporting lower whitefly populations had higher erectness ratings (trichomes flat on leaf surface) than accessions with higher whitefly populations. An investigation of epicuticular lipid composition also revealed that soyabean accessions with low levels of luteol were more susceptible to whitefly colonization (both T. vaporariorum and Bemisia tabaci).

Chemical Control

Many recommended insecticides give some control (Heungens and Buysse, 1991a, 1991b), but strains of T. vaporariorum resistant to one or other of them have become established, compounded by the fact that fewer insecticides are registered for glasshouse use. Imidacloprid, fenpropathrin, bifenthrin (Zhu and Ju, 1990), buprofezin (Stenseth and Singh, 1990; de Cock, 1993), deltamethrin, fenvalerate, dimethoate and pymetrozine are all currently used for whitefly control, dependent on resistance levels. Most insecticides used are only effective against adults, so that repeated treatments at 3- to 5-day intervals are necessary for several weeks before control can be achieved. It is important to choose insecticides and methods of application that are not damaging to biological control agents (Hayashi, 1996). A new range of environmentally safer insecticides have recently become available within the UK and Europe for controlling whiteflies. These have a physical activity and are therefore outside of the legislation that controls the use of biological and chemical insecticides. These products appear to control adult whiteflies by sticking their wings together. Juvenile whitefly are controlled by a suffocation effect.

Insecticide resistance

The synthetic pyrethroids were the most effective insecticides for greenhouse whitefly control, when they were first introduced in the end of the 1970s. But after several years of application, whitefly control with both fenvalerate and deltamethrin became very difficult in glasshouses. In the late 1980s, buprofezin was used for whitefly control instead of pyrethroids. Recent sampling of populations of T. vaporariorum for insecticide resistance are described by Gorman et al. (1988) for Europe, Ortega Arenas et al. (1998) for Mexico and by Omer et al. (1993) for Hawaii, USA. Resistance to buprofezin and imidacloprid has recently been confirmed.

References

Top of page

Abdalla S, 1992. Integrated control of the greenhouse whitefly trialeurodes vaporariorum (Westwood) on eggplant. Centre International de Hautes Études Agronomiques Mediterraneennes, Chania (Greece). Chania, Greece: Institut Agronomique Mediterranéen.

Albajes R; Gabarra R; Castane C; Alomar O; Arno J; Arino J; Bellavista J; Marti M; Moliner J; Ramirez M, 1994. Implementation of an IPM program for spring tomatoes in mediterranean greenhouses. Integrated control in protected crops. Mediterranean climate. Montfavet, France: OILB, 14-21.

Albert R; Schneller H; Sautter H, 1993. Development of methods for the biological control of pest species in ornamentals. Nachrichtenblatt des deutschen Pflanzenschutzdienstes, 45(7):129-133.

Alpizar MD, 1993. Basic aspects of whiteflies with emphasis on Bemisia tabaci and Trialeurodes vaporarorium. Boletin Divulgativo - Ministerio de Agricultura y Ganaderia/Camara de Insumos Agropecuarios No. 112. San Jose, Costa Rica: Ministeiro de Agricultura y Ganaderia.

Anjana Patial; Mehta PK, 2008. Pest complex of brinjal and their succession under mid hills of Himachal Pradesh. Journal of Insect Science (Ludhiana), 21(1):67-71.

Arno J; Gabarra R, 1994. Whitefly species composition in winter tomato greenhouses. Integrated control in protected crops. Mediterranean climate. Montfavet, France: OILB, 104-109.

Arteaga Garibay LE; Mota Sanchez D; Sanchez Arroyo H; Lagunes Tejeda A, 1993. Evaluacion de soluciones acuosas de jabon en el control de mosquita blanca Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Agrociencia (Mexico). Serie Protección Vegetal, 5(1):65-74.

AVA, 2001. Diagnostic records of the Plant Health Diagnostic Services, Plant Health Centre, Agri-food & Veterinary Authority, Singapore.

Balliu A; Cota E, 2007. Biological control of main greenhouse pests in Albania. Acta Horticulturae, 729:489-492. http://www.actahort.org

Baranowski T; Gorski R, 1991. Usefulness of coloured sticky traps for protection of glasshouse plants against pests. Research Session: plant protection. In: Pruszynski S, ed. Materials of the 31st Research Session of Institute for Plant Protection, Part 2, Posters. Poznan, Poland: Institute for Plant Protection, 39-43.

Beck NG; Martin NA; Workman PJ, 1993. Lutte integrée en culture sous serre en Nouvelle Zelande: agrement des cultivateurs. Pacific Grove (USA). Montfavet, France: Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les Plantes Nuisibles, 1-4.

Bolckmans K; Sterk G; Eyal J; Sels B; Stepman W, 1995. PreFeRal, (Paecilomyces fumosoroseus strain Apopka 97), a new microbial insecticide for the biological control of whiteflies in greenhouses. Mededelingen - Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent, 60(3a):707-711; 1 ref.

Boukadida R, 1991. Biological and integrated methods in the control of the Whitefly Trialeurodes vaporariorum (westwood) on greenhouse tomato and cucumber. Centre International de Hautes Etudes Agronomiques Mediterraneennes, Chania (Greece). Chania, Greece: Institut Agronomique Mediterraneen.

Brasch K; Lenteren JC van; Boisclair J; Henter H, 1994. Biological control of Bemisia tabaci with Encarsia formosa: a realistic option? 46th International Symposium on Crop Protection. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Universiteit Gent (Belgium), 59(2a):325-332.

Broedsgaard HF; Enkegaard A; Andersen H, 1993. Biological control of pests in potted Gerbera (Gerbera jamesonii, Orius majusculus, Encarsia formosa, Aphidius colemani, Bradysia). Statens Planteavlsforsoeg, Copenhagen (Denmark). Kongelige Veterinaer- og Landbohoejskole, Copenhagen. Horticultural Research on Glasshouse Crops. SP-Rapport (Denmark), 6:43-45.

Byrne DN; Bellows TS; Parella MP, 1990. Whiteflies in agricultural systems. In: Gerling D, ed. Whiteflies: their bionomics, pest status and management. Andover, UK: Intercept Limited, P227-261.

Cabello Garcia T; Carricondo Martinez I; Justicia del Rio L; Belda Suarez JE, 1996. Biologia y control de las especies de mosca blanca Trialeurodes vaporariorum (Gen.) y Bemisia tabaci (West.) (Hom, Aleyrodidae) en cultivos horticolas en invernadero. Junta de Andalucia, Direccion General de Investigacion Agraria. Sevilla, Espana: JA, DGIA.

Castane C; Albajes R, 1994. Mortality of immature stages of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on regal geranium, Pelargonium x domesticum. Environmental Entomology, 23(6):1443-1449.

Chu Dong; Wan FangHao; Xu BaoYun; Wu QingJun; Zhang YouJun, 2008. Comparative analysis of population genetic structure in Bemisia tabaci (Gennadius) biotypes B and Q based on ISSR marker. Agricultural Sciences in China, 7(11):1348-1354. http://www.sciencedirect.com/science/journal/16712927

Cock A de, 1993. Buprofezin: biological activity and effect on the ultrastructure of the cuticle of Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius). Gent, Belgium: Rijksuniversiteit, Faculteit van de Landbouwwetenschappen.

Colombo M, 1993. Organismi ausiliari e possibilita tecniche nel contenimento di Trialeurodes vaporariorum (Westw.) e Bemisia tabaci (Genn.) in serre di Euphorbia pulcherrima Willd. Lotta biologica integrata per la difesa delle colture agrarie e delle piante forestali. Convegno del sottoprogetto "colture protette. Colture-Protette, 22(suppl.1):39-42.

Dirks I; Wilke R, 1993. Biological control of Trialeurodes vaporariorum by Encarsia formosa. Zierpflanzenbau, 33(14):606-607.

Dolores Rodríguez M; Paullier J; Buenahora J; Maeso D, 2003. Mosca blanca: importante plaga de los cultivos horticolas en Uruguay [ed. by Rodríguez, M. D.\Paullier, J.\Buenahora, J.\Maeso, D. ]. Montevideo, Uruguay: Instituto Nacional de Investigacion Agropecuaria (INIA), 19 pp. http://www.inia.org.uy

Domagala T; Piatkowski J; Serafinska I, 1992. Role of the trap plants in biological control of T. vaporariorum in the glasshouses. In: Pruszynski S, Lipa JJ, eds. Instytut Ochrony Roslin. Materials of the 32nd Research Session of Institute for Plant Protection. Poznan, Poland: IPP, 216-219.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Erdogan C; Velioglu AS; Gurkan MO; Denholm I; Moores GD, 2012. Chlorpyrifos ethyl-oxon sensitive and insensitive acetylcholinesterase variants of greenhouse whitefly Trialeurodes vaporariorum (Westw.) (Hemiptera:Aleyrodidae) from Turkey. Pesticide Biochemistry and Physiology, 104(3):273-276. http://www.sciencedirect.com/science/article/pii/S0048357512001435

Estay PP, 1993. Plagas del tomate y pepino de ensalada bajo plastico y su control. Produccion de hortalizas protegidas bajo plastico. Produccion de hortalizas protegidas bajo plastico. Santiago, Chile: Curso Internacional, 1-15.

Gambley CF; Thomas JE; Persley DM; Hall BH, 2010. First report of Tomato torrado virus on tomato from Australia. Plant Disease, 94(4):486. http://apsjournals.apsnet.org/loi/pdis

Giessen WA van; Mollema C; Elsey KD, 1995. Design and use of a simulation model to evaluate germplasm for antibiotic resistance to the greenhouse whitefly (Trialeurodes vaporariorum) and the sweetpotato whitefly (Bemisia tabaci). Entomologia Experimentalis et Applicata, 76(3):271-286

Giorgini M; Viggiani G, 1994. Results of an integrated control trial against Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae) on fresh tomatoes in protected cultivation (second crop). Informatore Fitopatologico, 44(7-8):49-53

Goey JWFM de, 1993. IPM and extension in floriculture in the Netherlands. Bulletin OILB/SROP Route de Marseilles - BP 91, Netherlands; International Organization for Biological Control of Noxious Animals and Plants (OIBC/OILB), West Palaearctic Regional Section (WPRS/SROP), 16(8):82-85

Gorman K; Cahill M; Denholm I, 1998. Response of European populations of the glasshouse whitefly, Trialeurodes vaporariorum, to conventional and novel insecticides. Brighton Crop Protection Conference: Pests & Diseases - 1998: Volume 2: Proceedings of an International Conference, Brighton, UK, 16-19 November 1998., 491-496; 12 ref.

Hayashi H, 1996. Side effects of pesticides on Encarsia formosa Gahan. Bulletin of the Hiroshima Prefectural Agriculture Research Center, 64:34-43.

Heungens A; Buysse G, 1991. Chemical control of the greenhouse whitefly (Trialeurodes vaporariorum Westw.) in azalea culture. 42. International Symposium on Crop Protection. Gent (Belgium). 42(2):667-674.

Heungens A; Buysse G, 1991. Control of the greenhouse whitefly, Trialeurodes vaporariorum (Westw.), in azalea culture with buprofezin and methamidophos. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 56(3b):1211-1215

Hiiesaar K; Lauk Ue; Metspalu L, 1994. Plant toxins for pest control. Transactions of Estonian Agricultural University (Estonia). Agronomy, 178:137-139.

Kajita H, 1986. Parasitism of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae) by Encarsia formosa Gahan (Hymenoptera: Aphelinidae) in a greenhouse covered with near-ultraviolet absorbing vinyl film. Proceedings of the Association for Plant Protection of Kyushu, 32:155-157

Kassis G; Michelakis S, 1993. The effectiveness of biological control of the glasshouse whitefly Trialeurodes vaporariorum Westwood (Hom., Aleyrodidae) by Encarsia formosa Gahan (Hym., Aphelinidae). Journal of Applied Entomology, 116(3):298-302

Kebir M, 1990. Contribution a l' étude bioecologique de l' aleurode des serres [Trialeurodes vaporariorum] a l' INA. El Harrach, Algeria: Institut National Agronomique.

Kohnic A; Ostojic I; Karic N, 2006. Vegetable pests in greenhouses in territory of Herzegovina. (Stetnici plodovitog povrca u zasticenim prostorima na podrucju Hercegovine.) Radovi Poljoprivrednog Fakulteta Univerziteta u Sarajevu (Works of the Faculty of Agriculture University of Sarajevo), 51(57(2)):139-140.

Kress O, 1992. Biological pest control in Hibiscus. Gartenbau Magazin, 1(7):62-64.

Lambert AL; McPherson RM; Espelie KE, 1995. Soybean host plant resistance mechanisms that alter abundance of whiteflies (Homoptera: Aleyrodidae). Environmental Entomology, 24(6):1381-1386; 20 ref.

Lambert L; Chouffot T; Turcotte G; Lemieux M; Moreau J, 2003. Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with Dicyphus hesperus on tomato for interplanting under supplemental lighting in Quebec (Canada). (Contrôle de l'aleurode (Trialeurodes vaporariorum) avec Dicyphus hesperus pour la tomate de serre sous éclairage d'appoint et en contre-plantation au Québec (Canada).) In: Colloque international tomate sous abri, protection intégrée - agriculture biologique, Avignon, France, 17-18 et 19 septembre 2003 [ed. by Roche, L.\Edin, M.\Mathieu, V.\Laurens, F.]. Paris, France: Centre Technique Interprofessionnel des Fruits et Légumes, 203-207.

Lenteren JC van; Roermund HJW van; Sutterlin S, 1996. Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with the parasitoid Encarsia formosa: how does it work? Biological control: theory and applications in pest management (USA), 6(1):1-10.

Liu DongQing; Wang ShaoMin; Xin ShuRong; Zhang ShiGui, 2003. Study on different pesticide application methods for the control of Trialeurodes vaporariorum on tomato. Journal of Henan Agricultural University, 37(2):158-160&164.

Loginova E, 1990. Application of Applaud 25 WP against glasshouse whitefly (Trialeurodes vaporariorum). Selskostopanska Akademiya, Rasteniev"dni-Nauki (Bulgaria). Plant Science, 27(3):105-109.

Lopez S; Botto E, 1995. Control biologico de Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae) por entomofagos parasitoides (Hymenoptera: Aphelinidae). 3. Congreso Argentino de Entomologia. Resumenes del 3. Congreso Argentino de Entomologia.

Lourenção AL; Alves AC; Fugi CGQ; Matos ES, 2008. Outbreaks of Trialeurodes vaporariorum (West.) (Hemiptera: Aleyrodidae) under field conditions in the State of São Paulo, Brazil. Neotropical Entomology, 37(1):89-91. http://www.scielo.br/ne

Lynch JA; Johnson MW, 1991. Mass rearing the greenhouse whitefly parasitoid Encarsia formosa for augmentative releases in fresh market tomatoes in Hawaii. Research extension series College of Tropical Agriculture and Human Resources University of Hawaii Cooperative Extension Service (USA), 134:123-127.

Maliepaard C; Bas N; Heusden Svan; Kos J; Pet G; Verkerk R; Vrielink R; Zabel P; Lindhout P, 1995. Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F from Lycopersicon esculentum x Lycopersicon hirsutum f. glabratum. Heredity, 75(4):425-433; 32 ref.

Malumphy C; Ostrauskas H, 2013. New data on whiteflies (Hemiptera: Aleyrodidae) of Estonia, Latvia and Lithuania, including the first records of rhododendron whitefly Massilieurodes chittendeni (Laing). Zoology and Ecology, 23(1):1-4. http://www.tandfonline.com/loi/tzec20

Marsaro Júnior AL; Racca Filho F; Raga A; Costa VA, 2015. New records of whiteflies (Hemiptera: Aleyrodidae) in Rio Grande do Sul State, Brazil. IDESIA, 33(1):143-145. http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-34292015000100015&lng=es&nrm=iso&tlng=en

Masuda T; Kikuchi O, 1993. Control of whitefly, Trialeurodes vaporariorum, by a Verticillium lecanii preparation. Annual Report of the Society of Plant Protection of North Japan, 44:191-193.

Meesters P; Pitsioudis F, 1994. Lutte biologique sur 550 m8 de framboisiers. Arboriculture Fruitiere, 41(471):27.

Mutwiwa UN; BorgemeisterC; Elsner B-von; Tantau HJ, 2005. Effects of UV-absorbing plastic films on greenhouse whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology, 98(4): 1221-1228.

Nannini M; Foddi F; Murgia G; Pisci R; Sanna F, 2007. . http://www.actahort.org

Nasruddin A; Mound LA, 2016. First record of Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae) severely damaging field grown potato crops in South Sulawesi, Indonesia. Journal of Plant Protection Research, 56(2):199-202. http://www.degruyter.com/view/j/jppr.2016.56.issue-2/jppr-2016-0023/jppr-2016-0023.xml?format=INT

Omer AD; Johnson MW; Tabashnik BE; Ullman DE, 1993. Association between insecticide use and greenhouse whitefly (Trialeurodes vaporariorum Westwood) resistance to, insecticides in Hawaii. Pesticide Science, 37(3):253-259

Ortega Arenas LD; Lagunes Tejeda A; Rodrfguez Maciel JC; Rodrfguez Hernßndez C; Alatorre Rosas R; Bßrcenas Ortega NM, 1998. Susceptibility to insecticides in adults of whitefly Trialeurodes vaporariorum (West.) (Homoptera: Aleyrodidae) from Tepoztlan, Morelos, Mexico. Agrociencia, 32(3):249-254; 21 ref.

Ortiz C; Rodrigo Alfonso, 1995. Mosquita blanca de los invernaderos (Trialeurodes vaporariorum West.) monitoreo de su dispersion en el cultivo del tomate (Lycopersicon esculentum Mill.) y control quimico con insecticidas selectivos. Universidad Catolica de Valparaiso, Fac. de Agronomia. Quillota (Chile).

Osborne LS; Landa Z, 1992. Biological control of whiteflies with entomopathogenic fungi. Florida Entomologist, 75(4):456-471

Pagliarini N; Jasek S, 1989. Growth regulators - new agents for controlling glasshouse whitefly, Trialeurodes vaporariorum Westw. In: Vasiljevic Lj, ed. Proceedings of Yugoslav Conference on the Application of Pesticides, Opatija, Yugoslavia, 155-160.

Pan JieRu; Zhang HongSheng; Zhu YanPing; Qiu JunZhi, 2007. The insecticidal activities of the metabolites from entomopathogenic fungus Aschersonia sp. Jos009. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 36(1):25-27.

Peric P; Marcbreve~ic D; Prijovic M; Ogurlic I; Andric G, 2009. Effectiveness of biorational pesticides for controlling some vegetable pests in Serbia. Acta Horticulturae [Proceedings of the IV Balkan Symposium on Vegetables and Potatoes, Plovdiv, Bulgaria, 9-12 September 2008.], No.830:531-538. http://www.actahort.org/books/830/830_76.htm

Radonjic S; Hrncic S, 2011. An overview of invasive species on vegetables in greenhouses in southern part of Montenegro. IOBC/WPRS Bulletin [Proceedings of the IOBC/WPRS Working Group "Integrated Control in Protected crops, Temperate Climate", Sutton Scotney, UK, 18-22 September 2011.], 68:153-157. http://www.iobc-wprs.org/pub/bulletins/bulletin_2011_68_table_of_contents_abstracts.pdf

Ravensberg WJ; Altena K, 1992. Lutte integrée en cultures ornementales sous serre: mise en pratique des premieres étapes. IPM in greenhouse ornamentals. Montfavet, France: Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les Plantes Nuisibles, 119-122.

Ravensberg WJ; Buysen AC; Berns R, 1994. Side-effects of pesticides on Verticillium lecanii: in vivo tests on whitefly [Trialeurodes vaporariorum] and aphids [Aphis gossypii]. Bulletin OILB/SROP, 17(3):234-238

Ravensberg WJ; Malais M; Van der Schaaf DA, 1990. Applications of Verticillium lecanii in tomatoes and cucumbers to control whitefly and thrips. Integrated control in glasshouses. Contributions to the meeting at Copenhagen (Denmark), Guyancourt, France, 173-178.

Rodriguez GA; Hiller M; Williams E, 1996. Action thresholds for the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae) in tomato. Revista Colombiana de Entomologi^acute~a, 22(2):87-92; 15 ref.

Roermund HJW van; Lenteren JC van; Rabbinge R, 1997. Biological control of greenhouse whitefly with the parasitoid Encarsia formosa on tomato: an individual-based simulation approach. Biological control: theory and applications in pest management (USA), 9(1):25-47.

Ruisinger M; Backhaus GF, 1994. Control of Trialeurodes vaporariorum and Bemisia tabaci with Encarsia formosa in stock cultures of Euphorbia pulcherrima. Gesunde Pflanzen, 46(4):122-127

Schmidt S; Naumann ID; Barro PJde, 2001. Encarsia species (Hymenoptera: Aphelinidae) of Australia and the Pacific Islands attacking Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) - a pictorial key and descriptions of four new species. Bulletin of Entomological Research, 91(5):369-387; many ref.

Simala M; Milek TM; Pintar M, 2015. Alien whiteflies (Hemiptera: Aleyrodidae) of Europe recorded in Croatia [Conference poster]. In: Zbornik predavanj in referatov 12. Slovenskega posvetovanja o varstvu rastlin z mednarodno udelezbo, 3.-4. marec 2015, Ptuj, Slovenija [ed. by Trdan, S.]. Ljubljana, Slovenia: Drustvo za Varstvo Rastlin Slovenije, 267-271.

Sood AK; Sonika Sood; Mehta PK, 2006. Development of greenhouse whitefly Trialeurodes vaporariorum on summer vegetable crops. Indian Journal of Entomology, 68(1):44-47.

Soria C; SesT AIL; G=mez-Guillam=n ML, 1996. Resistance mechanisms of Cucumis melo var. agrestis against Trialeurodes vaporariorum and their use to control a closterovirus that causes a yellowing disease of melon. Plant Pathology, 45(4):761-766; 24 ref.

Sprau G, 1990. Whiteflies on poinsettias controlled with Encarsia formosa. Trials show good results. Gb + Gw, Gartnerborse und Gartenwelt, 90(15):738-739

Steiner MY, 1993. IPM practices in greenhouse poinsettia crops in Alberta, Canada. Bulletin OILB/SROP Route de Marseilles - BP 91, Netherlands; International Organization for Biological Control of Noxious Animals and Plants (IOBC/OILB), West Palaearctic Regional Section (WPRS/SROP), 16(8):133-134

Stenseth C; Singh HM, 1990. Buprofezin against the glasshouse whitefly and the cotton whitefly Gartneryrket, 80(1):18-19.

Sterk G; Bolckmans K; Eyal J, 1996. A new microbial insecticide, Paecilomyces fumosoroseus strain Apopka 97, for the control of the greenhouse whitefly. Brighton Crop Protection Conference: Pests & Diseases - 1996: Volume 2: Proceedings of an International Conference, Brighton, UK, 18-21 November 1996, 461-466; 5 ref.

Szabo P; Lenteren JC van; Huisman PWT, 1995. The development, lifespan, fecundity and mortality of the whitefly parasitoid Encarsia formosa inthe hosts Bemisia tabaci and Trialeurodes vaporariorum. Novenyvedelem, 31(2):67-70

Talaboulma H, 1989. Contribution a l' etude bioecologique de l' aleurode des serres [Trialeurodes vaporariorum Westwood] sur aubergine a Boufarik. El Harrach, Algeria: Institut National Agronomique.

Trottin-Caudal Y; Malausa JC; Millot P; Trapateau M, 1992. Integrated control under glass. A predator of the greenhouse aleyrodid on tomatoes Macrolophus caliginosus. Infos-CTIFL (Paris), 86:27-30.

Tverdyukov AP; Nikonov PV; Yushchenko NP, 1994. Verticillin (biopreparation on basis Verticillium lecanii for greenhouse whitefly and aphid control) [Vertitsillin]. Zashchita Rastenij, 8:20.

Tzanetakis IE; Halgren AB; Wintermantel WM; Keller KE; Martin RR, 2004. Two criniviruses are associated with the strawberry pallidosis disease. Acta Horticulturae, 656: 21-26.

Wang KeQun; Li XinMin; Liu ChunLai; Xu GuoQing, 2000. Preliminary study on controlling Trialeurodes vaporariorum with toxin extracted from Verticillium lecanii. Plant Protection, 26(4):44-45.

Yarkulov FYa, 2008. The biological fight against whiteflies in the Primor'e Territory. Zashchita i Karantin Rastenii, No.11:19-20. http://www.z-i-k-r.ru

Yasarakinci N; Hincal P, 1996. Izmir’de örtüaltinda yetistirilen domateslerde bulunan ana zararlilarin (Trialeurodes vaporariorum (Westw.)), Bemisia tabaci Gern ve Liriomyza spp. populasyon gelismesi üzerinde arastirmalar. Türkiye III. Entomoloji Kongresi Bildirileri, 24-28 Eylül 1996, Ankara: 150-157.

Z?anic´ K, 2006. Whiteflies on flowers. (Stitasti moljci na cvijecu.) Glasilo Biljne Zastite, 6(5):228-231.

Zakhidov FM, 2001. Whitefly in Uzbekistan. Zashchita i Karantin Rastenii, No.11:21.

Zarinysh I, 2002. Efficiency of some plant protection biopreparations. In: Integrated systems of plant protection. The present and the Future. (Materials of the International Scientific Conference devoted to the 90th anniversary of the birth of the Corresponding-Member of the AS RB A.L. Ambrosov and the 65th anniversity of the birth of the Academician of the AAS RB V.F. Samersov Minsk-Prilukii, 15-17 July, 2002). Minsk, Belarus: National Academy of the Republic of Belarus, 242-245.

Zheng Li; Zhou YuFeng; Song Kai, 2005. Augmentative biological control in greenhouses: experiences from China. In: Second International Symposium on Biological Control of Arthropods, Davos, Switzerland, 12-16 September, 2005. Washington, USA: United States Department of Agriculture, Forest Service, 538-545. [USDA Forest Service Publication FHTET-2005-08.]

Zhu G; Ju Z, 1990. Study on applied techniques for controlling greenhouse whitefly with Bifenthrin. Chinese Vegetables, 5:14-15.

Distribution Maps

Top of page
You can pan and zoom the map
Save map