Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Tomicus piniperda
(common pine shoot beetle)



Tomicus piniperda (common pine shoot beetle)


  • Last modified
  • 14 July 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Tomicus piniperda
  • Preferred Common Name
  • common pine shoot beetle
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • T. piniperda is classified as an invasive species after its introduction to North America, where it is currently spreading.

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Dust created by larval boring in bark crevice indicating attack by T. piniperda.
TitleLarval dust
CaptionDust created by larval boring in bark crevice indicating attack by T. piniperda.
Copyright©Bo Långström
Dust created by larval boring in bark crevice indicating attack by T. piniperda.
Larval dustDust created by larval boring in bark crevice indicating attack by T. piniperda. ©Bo Långström
Early gallery with male and female of T. piniperda.
TitleEarly gallery
CaptionEarly gallery with male and female of T. piniperda.
Copyright©Bo Långström
Early gallery with male and female of T. piniperda.
Early galleryEarly gallery with male and female of T. piniperda. ©Bo Långström
Fully developed egg galleries with resin-soaked edges.
TitleFully developed egg galleries
CaptionFully developed egg galleries with resin-soaked edges.
Copyright©Bo Långström
Fully developed egg galleries with resin-soaked edges.
Fully developed egg galleriesFully developed egg galleries with resin-soaked edges.©Bo Långström
Adult exit holes in bark indicating successful brood production.
TitleExit holes in bark
CaptionAdult exit holes in bark indicating successful brood production.
Copyright©Bo Långström
Adult exit holes in bark indicating successful brood production.
Exit holes in barkAdult exit holes in bark indicating successful brood production.©Bo Långström
Resin flow on bark of standing pine indicating failed attack.
TitleResin flow on bark
CaptionResin flow on bark of standing pine indicating failed attack.
Copyright©Bo Långström
Resin flow on bark of standing pine indicating failed attack.
Resin flow on barkResin flow on bark of standing pine indicating failed attack.©Bo Långström
Reaction zones surrounding failed egg gallery under bark.
TitleReaction zones
CaptionReaction zones surrounding failed egg gallery under bark.
Copyright©Bo Långström
Reaction zones surrounding failed egg gallery under bark.
Reaction zonesReaction zones surrounding failed egg gallery under bark.©Bo Långström
Blue-stain and egg galleries of T. piniperda.
TitleBlue-stained timber
CaptionBlue-stain and egg galleries of T. piniperda.
Copyright©Bo Långström
Blue-stain and egg galleries of T. piniperda.
Blue-stained timberBlue-stain and egg galleries of T. piniperda. ©Bo Långström
Resin tube signalling shoot attack in early season by Tomicus sp.
TitleResin tube
CaptionResin tube signalling shoot attack in early season by Tomicus sp.
Copyright©Bo Långström
Resin tube signalling shoot attack in early season by Tomicus sp.
Resin tubeResin tube signalling shoot attack in early season by Tomicus sp.©Bo Långström
Shoot opened to display pine shoot beetle in feeding tunnel.
TitleDissected pine shoot
CaptionShoot opened to display pine shoot beetle in feeding tunnel.
Copyright©Bo Långström
Shoot opened to display pine shoot beetle in feeding tunnel.
Dissected pine shootShoot opened to display pine shoot beetle in feeding tunnel.©Bo Långström
Fallen pine shoots on the ground beneath tree indicate feeding by pine shoot beetles.
TitleFallen pine shoots
CaptionFallen pine shoots on the ground beneath tree indicate feeding by pine shoot beetles.
Copyright©Bo Långström
Fallen pine shoots on the ground beneath tree indicate feeding by pine shoot beetles.
Fallen pine shootsFallen pine shoots on the ground beneath tree indicate feeding by pine shoot beetles.©Bo Långström
Pine stand damaged over 3 years by pine shoot beetles.
TitleDamaged pine stand
CaptionPine stand damaged over 3 years by pine shoot beetles.
Copyright©Bo Långström
Pine stand damaged over 3 years by pine shoot beetles.
Damaged pine standPine stand damaged over 3 years by pine shoot beetles.©Bo Långström


Top of page

Preferred Scientific Name

  • Tomicus piniperda (Linnaeus, 1758)

Preferred Common Name

  • common pine shoot beetle

Other Scientific Names

  • Blastophagus destruens (Wollaston, 1865)
  • Blastophagus major Eggers, 1943
  • Blastophagus piniperda (Linnaeus, 1758)
  • Bostrichus abietinus Fabricius, 1792
  • Bostrichus testaceus Fabricius, 1787
  • Dermestes piniperda Linnaeus 1758
  • Hylesinus piniperda (Linnaeus, 1758)
  • Hylurgops piniperda (Linnaeus, 1758)
  • Hylurgus analogus Le Conte, 1868
  • Hylurgus destruens Wollaston, 1865
  • Myelophilus piniperda (Linnaeus, 1758)
  • Myelophilus piniperda rubescens Krausse
  • Myelophilus piniperda rubripennis Reitter
  • Myelophilus testaceus (Fabricius, 1787)
  • Tomicus destruens (Wollaston, 1865)
  • Tomicus piniperda Latreille 1802
  • Tomicus piniperda rubescens Krausse

International Common Names

  • English: beetle, pine; beetle, pine shoot; Japanese pine engraver; larger pith borer; pine beetle; pine engraver, Japanese; pine shoot beetle; pith borer, larger
  • Spanish: hilesino destructor de los pinos; jardinero del monte
  • French: blastophage destructeur du pin; hylesine du pin; jardinier des bois
  • Portuguese: hilésina do pinheiro

Local Common Names

  • Denmark: marvborer; marvborer, fyrrens
  • Finland: pystynävertäjä
  • Germany: Grosser Waldgärtner; Kaefer, Grosser Kiefernmark-; Waldgärtner, Gefurchter; Waldgärtner, Grosser
  • Italy: mielofilo distruttore dei pini
  • Japan: matu-no-kikuimusi
  • Netherlands: dennenscheerder
  • Norway: den store margboreren
  • Sweden: större märgborre

EPPO code

  • BLASPI (Tomicus piniperda)

Summary of Invasiveness

Top of page T. piniperda is classified as an invasive species after its introduction to North America, where it is currently spreading.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Coleoptera
  •                         Family: Scolytidae
  •                             Genus: Tomicus
  •                                 Species: Tomicus piniperda

Notes on Taxonomy and Nomenclature

Top of page Tomicus piniperda was described by Linnaeus in 1758 as Dermestes piniperda. In 1802, Latreille established the genus Tomicus with the Type species T. piniperda. In 1864, Eichhoff moved the species to the new genus Blastophagus, and in 1878 created the new genus Myelophilus. In the 1970s, the genus Tomicus was re-established, and is now the valid generic name. Pfeffer (1994) lists several older synonyms for the species. The specific status of T. piniperda in Yunnan, China, has been questioned and there is some evidence that it is a new species (Lieutier et al., 2003); however, it is still treated as T. piniperda in other parts of the world. Tomicus destruens was described as Hylurgus destruens by Wollaston in 1865, and transferred to Blastophagus destruens by Lekander (1971). For a long time it was seen as a Mediterranean race of T. piniperda, but has recently been confirmed as a valid species (Gallego and Galian, 2001; Kerdelhue et al., 2002). Some reference will be made to T. destruens in this datasheet, but it will not be fully covered.


Top of page The egg is white, shiny and oblong, ca 1 mm long. The larva is a typical scolytid larva: a legless, whitish grub with a curved body and a brown head capsule. The mature larva is 4-5 mm long. According to Lekander (1968a, b), there are four larval instars with head capsule widths (mean ±sd) as follows: instar 1 (0.47±0.02); 2 (0.58±0.02); 3 (0.76±0.03); 4 (0.99±0.03). The pupa is white and resembles the adult insect in size and general form. The newly emerged callow adult is straw-yellow and darkens with progressive sexual maturity. The mature adult has a dark-brown head, thorax and elytra, but the latter may sometimes be reddish-brown (as in T. minor). Body length ranges from 3.5-4.7 mm in Sweden (Spessivtseff, 1922) to 3.5-4.8 mm in Germany (Postner, 1974). On average, T. piniperda is larger than T. minor. The best character to distinguish between the adults of the two species is the presence of setae in all setal rows on the elytra in T. piniperda and the lack of setae in the second row on the beetle declivity in T. minor (Ritchie, 1917; Spessivtseff, 1922). T. piniperda is difficult to separate from T. destruens but, according to Lekander (1971) and Pfeffer (1994), T. destruens should have more yellow antennal clubs than T. piniperda. Faccoli (2006) provides further details on separating T. piniperda and T. destruens using morphological characters. Kohlmayr et al. (2002) state that the best key to identification is that T. destruens has three rows of hairs on the second antennal segment, whereas T. piniperda has only one row. Males and females can be separated by the shape of the last abdominal tergite, which is small and square-shaped in the male and larger and semi-circular in the female (Salonen et al., 1968). Live beetles of both species can also be sexed by the audible stridulation of males when held close to the ear (Schönherr, 1970; Salonen, 1973).


Top of page T. piniperda has an extremely wide geographical distribution, extending from Portugal in the west to Japan in the east, and from the timberline beyond the arctic circle in the north to northern Africa in the south (Browne, 1968; Lekander et al., 1977). In 1992, T. piniperda was found in Ohio, USA, and several other states surrounding the Great Lakes; in the following year it was recorded in Ontario, Canada; and by the year 2000 it had been recorded from 12 states in USA and two provinces in Canada (Haach and Poland, 2001). However, later damage surveys indicated that T. piniperda must have been present long before detection, at least in New York State, USA, and Ontario, Canada (Czokajlo et al., 1997; Scarr et al., 1999).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


ChinaPresentPresent based on regional distribution.
-Hong KongPresentBrowne, 1968
-JilinPresentSong et al., 2005
-YunnanWidespreadLÕngström et al., 2002; Ye, 1991
-ZhejiangPresentSong et al., 2005
Georgia (Republic of)PresentKurashvili et al., 1981
IsraelWidespreadHalperin, 1978
JapanPresentLekander et al., 1977; Masuya et al., 1998
Korea, DPRWidespreadPark and Lee, 1972
Korea, Republic ofPresentKim et al., 2005
TurkeyPresentYuksel et al., 2001


AlgeriaPresentBalachowsky, 1949
MoroccoWidespreadGhaioule et al., 1998
TunisiaWidespreadBen Jamaa et al., 2000

North America

CanadaPresentIPPC, 2009Present: subject to official control.
-OntarioPresent, few occurrencesHaack and Poland, 2001
-QuebecPresent, few occurrencesHaack and Poland, 2001
USAPresentPresent based on regional distribution.
-IllinoisPresent, few occurrencesHaack and Poland, 2001
-IndianaPresent, few occurrencesHaack and Poland, 2001
-MainePresent, few occurrencesHaack and Poland, 2001
-MarylandPresent, few occurrencesHaack and Poland, 2001
-MichiganPresent, few occurrencesHaack and Poland, 2001
-MissouriPresentNAPPO, 2012
-New HampshirePresent, few occurrencesHaack and Poland, 2001
-New YorkPresent, few occurrencesHaack and Poland, 2001
-OhioPresent, few occurrencesHaack and Poland, 2001
-VirginiaRestricted distributionNAPPO, 2011
-West VirginiaPresent, few occurrencesHaack and Poland, 2001
-WisconsinPresent, few occurrencesHaack and Poland, 2001


AustriaWidespreadSteyer et al., 2002
CroatiaWidespreadDiminic et al., 1995
CyprusPresentBrowne, 1968
Czech RepublicPresentFoit, 2007
Czechoslovakia (former)WidespreadSrot, 1968
DenmarkWidespreadLekander et al., 1977
EstoniaWidespreadVoolma and Luik, 2001
FinlandWidespreadLekander et al., 1977
FranceWidespreadBalachowsky, 1949; Pfeffer, 1994
GermanyWidespreadEscherich, 1923; Postner, 1974
GreeceWidespreadMarkalas, 1997
HungaryWidespreadToth, 1971
IrelandWidespreadBrowne, 1968
ItalyWidespreadFaccoli, 2001
LatviaWidespreadOzols et al., 1973
LithuaniaWidespreadGaidiene, 1976
NetherlandsWidespreadLuitjes, 1976
NorwayWidespreadBakke, 1968
PolandWidespreadBorkowski, 2001
PortugalWidespreadFerreira and Ferreira, 1990
-MadeiraPresentBalachowsky, 1949
RomaniaWidespreadDrugescu, 1980
Russian FederationPresentPresent based on regional distribution.
-Central RussiaWidespreadMozolevskaya, 1983
-Southern RussiaWidespreadArefjew, 1999
-Western SiberiaWidespreadBogdanova, 1988
SloveniaWidespreadJurc, 2001
SpainWidespreadFernandez and Costas, 1999
SwedenWidespreadLekander et al., 1977
SwitzerlandWidespreadRigling and Cherubini, 1999
UKWidespreadHanson, 1937


Top of page The brood is found under the bark of fresh pine timber or in standing weakened trees. Maturation feeding of the adults takes place in the young shoots of healthy pine trees (see Detection and Inspection Methods and Biology).

Hosts/Species Affected

Top of page T. piniperda is a common pest on many pine species throughout its geographical range. It occasionally attacks other conifers such as spruces (Picea sp.), larches (Larix sp.) and even Douglas fir (Pseudotsuga sp.) (Browne, 1968; Postner, 1974) but these cases are rare and often exceptional (Butovitsch, 1972; Löyttyniemi and Uusvaara, 1977; Lutyk, 1984). Pfeffer (1994) and Bright and Skidmore (1997) list a large number of pine species as hosts for this species.

Scots pine (Pinus sylvestris) is the principal host over much of Europe. In Sweden, T. piniperda was less attracted to lodgepole pine (Pinus contorta var. latifolia) than to P. sylvestris, but could develop in this introduced host when given no choice (Långström and Hellqvist, 1985). In southern France, T. piniperda preferred to oviposit in Pinus pinaster, but egg galleries were also recorded in Pinus halepensis, Pinus sylvestris and Pinus nigra (Lieutier et al., 1997). Amezaga (1997) reports attacks on P. sylvestris and P. radiata in Spain.

In North America, T. piniperda was first detected in a Christmas tree plantation in Ohio, USA, in 1992, and is now recorded from 12 US states and two Canadian provinces (Haack and Poland, 2001). Several studies have shown that T. piniperda can feed in the shoots of many North American pine species, both soft and hard pines (Sadof et al., 1994; Lawrence and Haack, 1995; Kauffman et al., 1998).

There is less information available regarding the suitability of American pines for oviposition, but it appears that the beetle is more selective during this phase of the life cycle. In a French-Swedish study, seven out of 10 pine species were attacked in southern France, whereas in Sweden P. sylvestris was clearly preferred over P. contorta, P. banksiana and P. strobus (Långström et al., 1995). However, in this same study, T. piniperda was shown to develop in all four species when given no choice.

Yunnan pine (Pinus yunnanensis) is the main host in southern China (Långström et al., 2002) but it was recently shown to develop in Pinus armandii, which is not normally attacked in the field (Zhao, 2003).

In conclusion, T. piniperda can live on most pine species but hard pines (diploxylon) are preferred over soft pines (haploxylon) for egg laying and brood production; the species is less discriminating during the shoot-feeding phase. Other conifers are only occasionally attacked, and cannot really be regarded as hosts.

T. destruens is reported from Pinus brutia, P. canariensis, P. halepensis and P. pinaster (Pfeffer, 1994).

List of Symptoms/Signs

Top of page
SignLife StagesType
Growing point / dieback
Growing point / internal feeding; boring
Leaves / abnormal leaf fall
Leaves / internal feeding
Stems / internal feeding
Stems / visible frass
Whole plant / internal feeding
Whole plant / plant dead; dieback

Biology and Ecology

Top of page A large number of studies have been devoted to the biology and ecology of T. piniperda, since the original study by Ratzeburg (1839). Escherich (1923) summarized early German work on the pest in his textbook. Since then, hundreds of papers (including dozens of doctoral dissertations and other major studies) have been published, mainly in northern parts of Europe, including Russia. Our current understanding of the life cycle and general biology of T. piniperda in Europe has evolved via basic studies in England (Hanson 1937, 1940), Finland (Kangas et al., 1971; Salonen, 1973; Saarenmaa, 1983, 1985a, b; Annila et al., 1999), France (Chararas, 1968; Sauvard, 1988; Herard and Mercadier, 1996; Lieuier, 2002), Germany (Führer and Kerck, 1978; Vité et al., 1986) Norway (Bakke, 1968) and Sweden (Långström, 1983; Byers et al., 1985; Lanne et al., 1987; Schroeder, 1988).

In eastern Europe, the focus has mainly been on the damage caused by T. piniperda in Czechoslovakia (Srot, 1968), Estonia (Voolma and Luik, 2001), Hungary (Toth, 1971), Poland (Gidaszewski, 1974; Borkowski, 2001), Romania (Drugescu, 1980; Michalciuc et al., 2001) and Russia (Agafonov and Kuklin, 1979; Bogdanova, 1988, 1998; Kolomiets and Bogdanova, 1998; Gninenko and Vetrova, 2002).

Damage reports exist from nearly all countries in southern Europe, such as Portugal (Ferreira and Ferreiera, 1990), Spain (Astiaso and Levya, 1970; Amezaga, 1996; Fernandez and Costas, 1999) southern France (Chararas, 1968), Italy (Masutti, 1969; Triggiani, 1984; Boriani, 1989), Slovenia (Jurc, 2001) and Greece (Kailides, 1964; Markalas, 1997; Avtzis and Gatzojannis, 2000). T. piniperda is also considered a major pest in Turkey (Yuksel et al., 2001), Israel (Halperin, 1978), Tunisia (Chararas, 1976; Ben Jamaa et al., 2000) and Morocco (Ghaioule et al., 1998).

In East Asia, there have been few studies on T. piniperda from Korea (Park and Lee, 1972; Park and Byun, 1988) and Japan (Masuya et al., 1998). In contrast, there are many Chinese studies, especially from Yunnan province. Much of the Chinese work on T. piniperda has until now been inaccessible to the western world, but starting with Ye (1991), an increasing number of papers are now being published in English (see Långström et al., 2002; Lieutier et al., 2003).

Dozens of North American publications have appeared on T. piniperda over the past decade (e.g. Haack and Poland, 2001; Kennedy and McCullough, 2002). Current knowledge on the biology of T. piniperda is summarized for, and compared between, Europe, southern China and North America as follows.

In northern Europe and North America, the adults of T. piniperda hibernate in short galleries in the bark at the base of standing pine trees, but elsewhere they seem to hibernate mainly in the shoots. Spring flight is the main period of dispersal and takes place in early spring when temperatures reach 12°C in the shade (flight threshold was 11°C in Saarenmaa's (1989) swarming model). This dispersal is dependent on latitude and annual variation and may occur in November-December in southern China (Li et al., 1993), January-February in the Mediterranean (Halperin, 1978), February-March in central Europe (Sauvard, 1988) and April-May in Fennoscandia (Långström, 1983). On the basis of flight and climatic data, the average peak flight of T. piniperda in North America would be February and April, at the southern and northern ends of its area of occurrence (Poland et al., 2002), corresponding to the situation in central and northern Europe.

The flying beetles respond to host odours, mainly alpha-pinene, which guide the beetles to the host material (Kangas et al., 1971; Vité et al., 1986; Byers et al., 1985; Lanne et al., 1987; Schroeder, 1988). According to Byers et al. (1989), the beetles may even recognize suitable host trees in flight. Until recently, there has been a consensus that T. piniperda lacks aggregation pheromones (Lanne et al., 1987; Löyttyniemi et al., 1988; but see also, Schönherr, 1972), but recently Poland et al. (2003) concluded that trans-verbenol may act as an aggregation pheromone in T. piniperda.

During the flight period, the females find and colonize suitable host material, i.e. fresh timber or weakened standing trees. In Europe and North America, T. piniperda mainly attacks the lower stem, which is covered with thick corky bark, whereas in China it seems to predominate on the upper part of the pine stem, which is covered with smooth bark (Långström, 1984; Ye and Ding, 1999). T. piniperda is monogamous and the female always excavates the egg gallery, which runs along the wood grain. On standing trees, the galleries are oriented upwards, but on fallen stems they may be oriented towards the base or the top. The gallery starts with a short sterile section, followed by a section with egg niches regularly spaced on both sides, and ends with another sterile section. The length of the gallery varies with attack density from 4-5 cm at high density to more than 10 cm at low density. Egg numbers can be derived from gallery lengths and densities (Saarenmaa, 1983).

T. piniperda has two main fungal associates among the blue-stain fungi: Leptographium wingfieldii and Ophiostoma minus. Only a part of the population seems to carry these fungi (Lieutier et al., 1989; Gibbs and Inman, 1991; Solheim and Långström, 1991) and their role in the biology of the beetle is not fully clarified. However, when inoculated into trees, these fungi alone can kill pine trees with reduced foliage (Solhein et al., 1993) and can grow well in the low oxygen levels of living xylem tissue (Solheim et al., 2000). Thus, they seem to play a similar role to the fungal associates of other aggressive bark beetles (such as Ips typographus) in overwhelming the resistance of live trees, but this is still under debate (cf. Lieutier, 2002).

The larvae feed on the phloem and construct winding galleries perpendicular to the egg galleries, which end in a pupal chamber in the bark or partly in the outer xylem. The pupal period is short, and the callow adults emerge via individual exit holes in the bark. In northern Europe, emergence takes place mainly during July, but varies with weather conditions. Development is faster than in Tomicus minor, and in Sweden the time from mean flight to mean emergence was recorded as 92±12 days with a thermal sum of day-degrees exceeding 0°C of 1016±79 (Långström, 1983). The immature stages do not survive the winter in Scandinavia (Bakke, 1968). In more southerly areas, emergence takes place earlier, but in these areas the occurrence of sister broods blurs the picture. This also appears to be the case in Yunnan, China (Li et al., 1993), but the time from mean flight to mean emergence ranged from 86 to 94 days in two separate laboratory studies (Chen, 2003; Zhao, 2003). In North America, the development and emergence times agreed with those for central and northern Europe. In Ontario, Canada, the thermal sum for the development period was 1250±73 day-degrees (Ryall and Smith, 2000).

There has been considerable discussion over the years about the number of generations and sister broods in pine shoot beetles per year. The statement by Ritchie (1917) that there is only one generation per year but that sister broods exist (i.e. new brood(s) by the same parent beetles in the same year) still holds for regions as different as Sweden (Långström, 1983), France (Sauvard, 1988, 1989), southern China (Långström et al., 2002) and Ontario, Canada (Ryall and Smith, 2000). In contrast, T. destruens has two overlapping generations per year in Italy (Nanni and Tiberi, 1997).

The occurrence of sister broods in T. piniperda increases from north to south. In Sweden, sister broods are rare although the thermal sum in most years would allow a sister brood in the southern part of the country (Långström, 1983). Ryall and Smith (2000) found that two broods occurred in Canada, and that the thermal sum required was lower (856 day-degrees) for the second brood. In France, Sauvard (1993) found four waves of oviposition, i.e. the initial wave and three sister broods, under semi-natural conditions. He also concluded that in France, ca 50% of the total beetle production comes from sister broods. Similarly, Srot (1968) and Lutyk (1988) have observed one or more sister broods in central Europe resulting in an extended period of beetle emergence lasting into September. The situation in China is not clear, but the occurrence of shoot-feeding beetles throughout most of the year indicates the existence of sister broods (Li et al., 1993; Långström et al., 2002).

During oviposition, the male stays in the gallery and removes the frass, but towards the end of the oviposition period, it leaves the gallery and flies to the pine crowns to feed in the shoots in order to regain sexual maturity. A few weeks later, when the females have finished oviposition in early summer, they may be found feeding in the shoots. This pattern has been seen in Sweden (Långström, 1983) and Canada (Ryall and Smith, 2000) and probably also holds true for southern China (Li et al., 1993; Långström et al., 2002).

At least in Fennoscandia, some of the adult beetles may hibernate for a second time, after a period of regeneration feeding in the shoots, and produce another brood the following year (Långström, 1983; Schroeder and Risberg, 1989). Whether this phenomenon also occurs in a warmer climate is not known, but it could well be the case considering the univoltine life cycle and the occurrence of postreproductive adults in the shoots even in southern China (Långström et al., 2002).

The main shoot-feeding period takes place when the callow adults emerge and fly to nearby pine crowns, where they tunnel mainly the current shoots at the outer parts of the branches. In Sweden, this takes place from July to October. The first severe frosts cause the beetles to leave the shoots and move to the base of standing pine trees, where they hibernate in short galleries made in the thick bark (Långström, 1983). The same pattern has been observed in North America (Kauffman et al., 1998; Ryall and Smith, 2000; Poland et al., 2002). In Yunnan, China, this period is more flexible as the life cycle is less synchronized, but the main shoot-feeding period seems to be May to November (Långström et al., 2002).

The parent beetles also move to the shoots for a regeneration-feeding period that starts earlier, and lasts longer, than that of the callow beetles. In Sweden, this regeneration feeding takes place in the previous year's shoots as the current shoots are seldom attacked while expanding (Långström, 1983). A similar pattern regarding the maturation feeding of re-emerging parent beetles has been observed in Canada (Ryall and Smith, 2000). Långström (1983) found that some beetles entered the shoots soon after the flight period and stayed there for the whole summer. As these beetles were sexually nature, he concluded that they had turned to the shoots after exhausting their fat reserves during the search for host material. There are no clear data demonstrating the presence of regeneration feeding after flight or oviposition among parent beetles in the southern parts of the distribution area of T. piniperda. It probably exists, but to what extent is not known.

In T. piniperda, shoot feeding preferentially takes place in the upper whorls of the pine crown (Führer and Kerck, 1978b; Långström, 1983; Kauffman et al., 1998). Långström (1980) concluded that the beetles colonize the crown from above, and that the outermost shoots are taken first. In Sweden, the preferred shoot diameter is ca 3-4 mm and, on average, each beetle tunnelled one shoot, although multiple attacks (same beetle in several shoots or more than one beetle in the same shoot) were not uncommon (Långström, 1980, 1983). In general, the previous year's shoots are tunnelled in early season and the current shoots in late season. This pattern in Sweden was also largely confirmed for North America (Kauffman et al., 1998; Haack et al., 2000, 2001) although, in one year, Ryall and Smith (2000) found that beetles consumed as many as five or six shoots per beetle. The shoots of Yunnan pine (Pinus yunnanensis) are generally longer and thicker, hence the mean diameter of shoot tunnelled was 7-8 mm (Ye, 1996).

There is another important behavioural difference in the Yunnan populations of T. piniperda (which may in fact be another species) in that the beetles may move directly from the shoots to the trunk (Lieutier et al., 2003). Thus, intensive shoot feeding may predispose trees to successive stem attacks, and this situation is aggravated by the fact that the beetles sometimes aggregate for shoot feeding on certain tree individuals (Ye and Lieutier, 1997). In this way, the beetles may create their own breeding materials and this may explain the hitherto unique beetle outbreak in Yunnan. Nothing similar has ever been observed, although intensive shoot feeding in a few cases has triggered stem attacks around sawmills or timber yards in England, UK (Hanson, 1937) and the USA (Czokajlo et al., 1997).

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Allantonema morosa Parasite
Beauveria bassiana Pathogen Italy Pinus
Coeloides abdominalis Parasite
Coeloides melanostigma Parasite
Corticeus longulus Predator Eggs/Larvae
Dendrosoter middendorffii Parasite Italy
Epuraea marseuli Predator
Epuraea unicolour Predator
Glischrochilus quadripunctatus Predator
Heterorhabditis bacteriophora Parasite
Parasitaphelenchus ateri Parasite
Parasitaphelenchus papillatus Parasite
Parasitorhabditis piniperdae Parasite
Platysoma lineare Predator
Plegaderus vulneratus Predator
Rhizophagus depressus Predator Eggs/Larvae
Rhizophagus parvulus Predator
Rhopalicus brevicornis Parasite
Rhopalicus tutela Parasite
Thanasimus dubius Predator Adults/Larvae/Pupae
Thanasimus formicarius Predator Adults/Larvae/Pupae Italy Pinus

Notes on Natural Enemies

Top of page Escherich (1923) reports a large number of natural enemies in T. piniperda, and Hanson (1937) gives a thorough description of the predators and parasites of the pine shoot beetles in England, UK. Ounap (2001) lists 52 species of natural enemies from Estonia: most are predators found in the beetle galleries (32 species) or on the bark (11 species) and the remaining nine species are parasitoids. Most of these natural enemies attack a wide range of bark beetles. Among these, larvae of different Medetera flies (Diptera, Dolichopodidae) stand out as one important group, as do certain beetles of the family Rhizophagidae. None of these species is specific to T. piniperda, but three Medetera species (M. dichrocera, M. setiventris and especially M. signaticornis) are frequently also found in Tomicus galleries (Ounap, 2001). Among the predatory beetles, the clerid beetle Thanasimus formicarius and the rhizophagid Rhizophagus depressus are the most common (Ounap, 2001). Hypophloeus longulus is considered an important predator on pine shoot beetles and other bark beetles in Bryansk, Russia (Pishchik, 1980).

Parasitic wasps of the superfamily Chalcidoidea and the family Braconidae are well known parasitoids of bark beetles and several species also attack T. piniperda, but not exclusively (Ounap, 2001). One species, Dinotiscus colon, was only found with T. piniperda or T. minor, whereas two more species were exclusively found with T. minor (Ounap, 2001). Hedqvist (1963) lists 10 species of Chalcidoidea for T. piniperda, but all are shared with other bark beetles. He concluded his grand work on Swedish Chalcidoidea with a complete catalogue (Hedqvist, 2003). Recently, Hedqvist (1998) also concluded his work on Braconidae as bark beetle parasitoids, in which he reared three species from T. piniperda (and T. minor) and lists six more based on literature records, but gives no information about their importance as natural enemies.

Jakaitis (1979) found seven important parasitoids (three braconids and four chalcidids) on pine and spruce bark beetles in Lithuania. One of these parasitoids, Coeloides melanostigma, used T. piniperda and Ips typographus as hosts during the spring and summer generations, respectively.

In Canada, Bright (1996) reported that a number of native predators and parasitoids had been recorded from galleries of T. piniperda, indicating that native natural enemies had quickly found the newly introduced beetle species. The native clerid beetle Thanasimus dubius was also observed to prey upon T. piniperda in Michigan, USA (Kennedy and McCullough, 2002).

The role of natural enemies and diseases in population regulation of T. piniperda is not well understood. According to Hanson (1937), pathogens are of minor importance compared to predators and pathogens. Nematodes are well known parasites in bark beetles (Kurashvili et al., 1981; Tomalak et al., 1984), but for some reason these seem to have been better studied in T. minor than in T. piniperda, and hence are discussed more under the former species. Recently, Kohlmayr et al. (2003) described a new microsporidian that was infecting T. piniperda. There is very little published information on diseases in T. piniperda, although Beauveria bassiana has been tested for biological control.

However, the thorough work by Herard and Mercadier (1996) in central France, demonstrates that natural enemies are important mortality factors in T. piniperda. They found that predators (T. formicarius, R. depressus and Medetera sp.) were the dominant natural enemies early in the season, whereas parasitoids (mainly Rhopalicus brevicornis, R. tutela, Coeloides abdominalis, C. melanostigma and Dendrosoter middendorffi) occurred in late season. On the basis of prey consumption rates, they concluded that T. formicarius and R. depressus are important predators, the former on adults and larvae and the latter on eggs and young larvae, but no quantitative estimates are given. The parasitoids mainly attacked late-instar larvae and pupae, and the last mentioned species D. middendorffi was the most common (75 adults per m³ bark surface).

Much attention has been paid to the clerid beetle Thanasimus formicarius, which is known to be a voracious predator of bark beetles in the larval and imaginal stages (Escherich, 1923; Hanson, 1937; Mazur, 1973; Yuksel et al., 2001). In Poland, Gidaszewski (1974) calculated that this predator caused ca 50-80% mortality in the p brood of T. piniperda. Cage studies in Sweden have shown that this clerid can reduce the production of offspring in T. piniperda by 80-90% (Schroeder, 1996). In comparison, the other predator studied, R. depressus, caused only 40% reduction, and rearing the host with both predators did not exceed the effect beyond that of T. formicarius alone (Schroeder, 1996).

In a similar experiment, Schroeder and Weslien (1994) demonstrated that the longhorn beetle Acanthocinus aedilis, which often attacks the same part of the pine stem as T. piniperda, also reduced Tomicus offspring by ca 80% when reared together, compared with 90% for T. formicarius. The combined effect of both predators was the same as for T. formicarius alone, as each had a negative effect on the other (Schroeder and Weslien, 1994).

Although woodpeckers often visit and peck on trees attacked by bark beetles, experiments have demonstrated that they often arrive late in the season when the pine shoot beetles have left the trees, and mainly prey upon the larvae of pine weevils and longhorn beetles (Nuorteva and Saari, 1980).

Altogether, the capacity of natural enemies to regulate pine shoot beetle (and other bark beetle) populations remains unclear. They certainly contribute to maintaining endemic populations, but in an outbreak situation (e.g. a large storm felling with abundant brood material) they cannot keep up with the pest eruption, but may play a role in the termination of an outbreak. In the population dynamics of T. piniperda, the availability of host material is the key factor determining the potential population level which is then modified by intraspecific competition and natural enemies.

Means of Movement and Dispersal

Top of page Natural Dispersal (non-biotic)

The adult beetles are good flyers, and can probably cover several kilometres during their spring flight, as indicated by flight mill studies (Forsse, 1989), which also indicate that the callow adults fly less when they leave the brood logs for the pine crowns. Other studies have shown that bark beetles can cover long distances in flight in the search for host material (Nuorteva and Nuorteva, 1968; Nilssen, 1984).

Movement in Trade

T. piniperda has been accidentally introduced to North America where it established in the mid-1990s.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Stems (above ground)/Shoots/Trunks/Branches adults; eggs; larvae; nymphs; pupae Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport

Wood Packaging

Top of page
Wood Packaging liable to carry the pest in trade/transportTimber typeUsed as packing
Solid wood packing material with bark Pines Yes
Wood Packaging not known to carry the pest in trade/transport
Loose wood packing material
Processed or treated wood
Solid wood packing material without bark


Top of page The economic impact caused by the pine shoot beetles is threefold: firstly, growth losses may be caused by extensive shoot-feeding in the pine crowns; secondly, stem attacks cause tree mortality; and thirdly, deterioration of timber quality may occur due to beetle-vectored blue-staining of saw logs and pulpwood.

In T. piniperda, the third type of damage is the least problem, mainly because the forest industry has developed routines to avoid timber damage by timber insects including pine shoot beetles. Compared to T. minor, the blue-staining caused by T. piniperda occurs less frequently in timber and is often more superficial, but it still poses a major problem, as indicated by a series of Finnish studies, because T. piniperda is so common (Löyttyniemi and Uusvaara, 1977; Uusvaara and Löyttyniemi, 1978). Recently, sap staining of Korean pine logs due to T. piniperda attack was reported as a timber storage problem in Korea (Kim et al., 2002). No estimates of the economic losses due to blue-staining caused by T. piniperda are available, but the presence of any blue-staining in conifer saw logs reduces the value to a fraction (ca 20%) of the price of prime timber on the timber market, hence, saw mills have developed timber handling practices that minimise insect damage. Although some blue-staining is acceptable in pulpwood, there is a cost connected to the processing of blue-stained timber, as more chemicals are needed for bleaching (Löyttyniemi et al., 1978).

In contrast to the spruce bark beetle (Ips typographus) and a few other aggressive bark beetles, T. piniperda cannot overwhelm and kill healthy pine trees, probably because it lacks aggregation pheromones. Thus, tree mortality due to pine shoot beetle attacks occurs only when trees are weakened by some other cause such as defoliation, fire damage, drought stress, flooding, etc. There are several European examples of defoliator outbreaks rendering pine trees susceptible to pine shoot beetle attacks (Saalas, 1929; Butovitsch, 1946; Lekander, 1953; Crooke, 1959; Habermann and Geibler, 2001; Långström et al., 2001; Cedervind et al., 2003), but tree mortality varies from a few to more than 50% of trees. In the worst case, 2 years of severe to total defoliation led to ca 50% pine mortality over a 5-year period, half of which was attributed to T. piniperda, whereas stands sprayed with Dimilin suffered 1 year of defoliation, no mortality and modest growth losses (Långström et al., 2001). In another case, beetles caused substantial tree mortality after 1 year of defoliation (Crooke, 1959), whereas normally such defoliation would result in only a few and mainly suppressed trees dying from subsequent beetle attack (Lekander, 1953; Cedervind et al., 2003). Each defoliation case is unique and difficult to generalise; however, in most cases studied, trees with less than 10% of the normal foliage left are in great danger of fatal beetle attacks, whereas trees with more than 30% foliage are safer.

Pine trees may also become susceptible to Tomicus attack by fungal diseases. There is one report from Denmark (Jörgensen and Bejer-Petersen, 1951) and from Poland (Sierpinski, 1969), and several from Russia (Bogdanova, 1988, 1998; Kolomiets and Bodganova, 1992) showing that the root rot fungus (Heterobasidion annosum) may predispose pine trees to fatal attacks by T. piniperda. Similarly, pine shoot beetle attacks have followed outbreaks of the fungal shoot disease (Gremmeniella abietina) in Fennoscandian pine forests (Kaitera and Jalkanen, 1994; Cedervind, 2003). Industrial pollution may also render pine trees susceptible to beetle attacks (Sierpinski, 1971; Krol, 1980; Duda, 1981; Oppermann, 1985; Heliövaara and Väisänen, 1991; Kolomiets and Bogdanova, 1998). Forest fires, which are an integral part of the boreal pine ecosystem, have often been found to render trees susceptible to pine shoot beetle attacks in both northern (Galaseva, 1976; Agafonov and Kuklin, 1979; Bogdanova, 1986; Ehnström et al., 1995; Luterek, 1996; Långström et al., 1999) and southern (Markalas, 1997; Fernandez and Costas, 1999) parts of the pest's distribution range.

Only in the Mediterranean region, does significant tree mortality occur on seemingly healthy or only slightly weakened trees of different pine species due to stem attacks by T. piniperda and/or T. destruens (Triggiani, 1983; Ben Jamaa et al., 2000). Drought stress probably caused a major outbreak of T. piniperda and other bark beetles in central France in the 1980s (Sauvard et al., 1988). Only at exceptional attack densities can beetles kill seemingly healthy pines in Scandinavia (Långström and Hellqvist, 1993).

The situation in China differs drastically from that in Europe, in that large-scale tree mortality attributed to T. piniperda has occurred in plantations of Yunnan pine (Pinus yunnanensis) during the past decade (Ye, 1991; Lieutier et al., 2003). Although these trees may suffer some drought stress from time to time, another more important explanation for these outbreaks is that intensive shoot damage may render the trees susceptible to further stem attacks, leading to a vicious self-perpetuating cycle (Lieutier et al., 2003). There are also signs of beetle aggregation during shoot feeding to certain tree individuals (Ye and Lieutier, 1997). There is now some evidence that this beetle, hitherto referred to as T. piniperda, may in fact be another Tomicus species (Lieutier et al., 2003).

In Europe, the growth losses following shoot feeding by pine shoot beetles constitute the main problem, and most of that is due to T. piniperda (Escherich, 1923; Hanson, 1937; Speight and Wainhouse, 1989). These growth losses have mainly been studied in Sweden (Mattson-Mårn, 1921; Andersson, 1973; Nilsson, 1974, 1976; Långström and Hellqvist, 1990, 1991) and Poland (Michalski and Witkowski, 1960; Borkowski, 2001). All of these studies demonstrate a reduction in growth with increasing damage levels, but growth reduction is easier to quantify than levels of damage. Nilsson (1974) claimed that high growth losses occurred at an estimated damage level of 100-150 lost shoots per tree (calculated from felled trees at the end of the study period); however, experiments with caged beetles or artificial shoot pruning did not verify this damage/loss relationship (Ericsson et al., 1985; Långström et al., 1990), implying that the damage levels were underestimated by Nilsson (1974). Later, Långström and Hellqvist (1991) established that 3 years of timber storage resulted in ca 1000 lost shoots, corresponding to more than half of the total needle biomass and a 75% loss in volume growth during the 3-year period (and 65% in basal area growth response during 6 years) on nearby trees. Damage levels and growth losses declined quickly with increasing distance to the timber yard, but could still be traced at a distance of 500 m. Borkowski (2001) found a similar pattern, with radial increment reduced to ca 50% within 300 m from the saw mill, and the number of fallen shoots more than five-fold in that area compared to more distant areas. A similar case was reported from New York State, USA (Czokajlo et al., 1997).

During the large bark beetle outbreaks in Sweden following the huge wind-throw in autumn 1969, when ca 20 million m³ of pine and spruce blew down, Nilsson (1976) estimated that pine shoot beetles caused growth losses in Sweden of several million cubic metres per year in the early 1970s. These figures were based on nation-wide surveys of fallen shoots, which were converted to growth losses, but these losses were overestimated as they were based on his damage/loss ratios (Nilsson, 1974) discussed above.

The number of fallen shoots can be used to estimate the size of the local population of pine shoot beetles. It has been said that one shoot roughly corresponds to one beetle, at least under Swedish conditions. The fallen shoots are best counted in early spring and are often expressed per square metre of soil surface, and knowing the stem density, the attack level per tree can be derived. In well-managed Swedish pine forests with only occasional suppressed trees dying in the stands, the baseline level seems to be around 0.2 shoots per m² and year corresponding to ca 2000 beetles per hectare and a few beetles per tree, with a stem density ranging from ca 2000 in pole-sized stands to ca 500 in mature pine stands (Långström and Hellqvist, 1990; Ehnström et al., 1995). In a Polish study, the baseline figure was around 0.5 shoots/m² (Borkowski, 2001). In central France, the corresponding figure ranged from 0.2 to 0.4 shoots/m², but the presence of any kind of brood material was directly reflected in elevated numbers of shoots and beetles (Sauvard et al., 1987).

In early thinnings or precommercial cleanings, the stumps produced a few tens of beetles per stump increasing linearly with stump diameter (range 5-15 cm), while the corresponding cut stem produced up to 200 beetles (no T. minor, only T. piniperda) per tree (Långström, 1979). Maximum shoot numbers were ca 20 shoots/m² corresponding to population levels of ca 200,000 beetles per ha, and ca 200 lost shoots per tree. The expected volume growth loss after this 1-year attack should have been ca 10% during a 5-year period (cf. Elfving and Långström, 1984; Ericsson et al., 1985). In older thinning stands, the logs are removed and hence only the stumps and the slash are available for the beetles to breed in. Consequently, Doom and Luitjes (1971) found in The Netherlands that beetle levels were low in thinnings when the stems were removed, and that leaving the stems caused severe shoot damage, ca 20 foliage losses.

In clear cuts in Sweden, mature pine stumps produced, on average, ca 150 pine shoot beetles (T. piniperda only) per stump (Hellqvist, 1984). The logging waste, i.e. the cut tree tops, produced no beetles of T. piniperda (bark too thin), whereas a highly variable number of T. minor beetles could be produced in the tops. In one case, the number of egg galleries increased from zero to more than a thousand when the diameter (measured at the base of the cut top) increased from 5 to 15 cm, and ca 400,000 beetles were estimated to have emerged per hectare from 250 tops (Lekander, 1974).

Compared to these cases, storm-felled trees as well as snow-breaks may produce substantially more bark beetles, due to the fact that the whole tree may be colonized by pine shoot beetles when both T. piniperda and T. minor are present in the area. Such trees may produce tens of thousands of beetles (mainly T. minor) when they are fully colonized (Långström, 1984), but the occurrence of T. minor is highly variable and unpredictable, even in areas where it should be present (Annila and Petäistö, 1978; Führer and Kerck, 1978a, b; Långström, 1984). In cases of large storm fellings, many trees may escape beetle attack in the first year for two reasons. Firstly, there may not be enough beetles to colonize all the brood material that is suddenly available, and secondly, some of the trees may display residual resistance due to live root contacts fending off the attacking beetles (Annila and Petäistö, 1978; Führer and Kerck, 1978a; Långström, 1984; Saarenmaa, 1987). The abundance in brood material often leads to high brood production in the first year, and in the second year the remaining trees are heavily attacked, and brood production goes down due to intraspecific competition (Annila and Petäistö, 1978; Långström, 1984).

During the 1970s, the main concern regarding pine shoot beetles was related to the widespread storage of unbarked pulp wood in the forests during the swarming and emergence periods of the beetles, which supported high and stable population levels and subsequent common shoot-feeding damage in pine stands, at least in northern Europe (Nilsson, 1976; Speight and Wainhouse, 1989). The colonization of pulpwood stacks by pine shoot beetles (only T. piniperda as T. minor was seldom found below the top layer) varied with latitude, exposure (shading) and type of wood stored (i.e. the proportion of timber with rough bark). More beetles emerged from exposed stacks than from shaded ones in central Sweden (Långström et al., 1984), and in northern Fennoscandia few beetles emerged at all from the inner parts of the stacks (Juutinen, 1978; Saarenmaa, 1985). The mean beetle production per cubic metre of stored timber is therefore very difficult to estimate: Juutinen (1978) gives a figure of 4400 for the upper log layers, but Långström et al. (1984) considered 2000 as a more realistic mean value for this kind of breeding material. A truck load of pulpwood would then produce tens of thousands of beetles that fly to nearby pine stands for shoot feeding and subsequent growth losses. Recognition of this situation and knowing the huge amounts of timber cut annually, for example, in Finland and Sweden, has led to changes in the forest protection legislation in these and other countries, resulting in a drastic reduction in the storage of unbarked timber (see Control).

Poor forest protection practice with common timber storage along forest roads has not only caused shoot damage and growth losses, but has also maintained high beetle populations that can erupt when storm-fellings or snow-breaks suddenly make huge amounts of brood material available locally or on a regional scale, such as occurred in Sweden after the storm in November 1969 when 20 million m³ blew down and started the outbreak of T. piniperda and Ips typographus (Nilsson, 1976). Similar scenarios have occurred in many parts of Europe during the twentieth century (Escherich, 1923; Niemeyer and Thalenhorst, 1974; Luitjes, 1976, 1977; Annila and Petäistö, 1978; Führer and Kerck, 1978a, b; Bychawska, 1983; Winter and Evans, 1990). The economic consequences of these beetle outbreaks have seldom been established.

Environmental Impact

Top of page Being an early flyer, T. piniperda may outcompete native bark beetles occupying the same part of the tree, if it becomes established in new areas.

Detection and Inspection

Top of page The presence of pine shoot beetles in the forest is disclosed by fallen and tunnelled shoots on the ground as well as typically stunted pine crowns in cases of high population levels. It is not possible to separate the shoot damage caused by T. piniperda from that caused by T. minor (or T. destruens), unless the beetles are still inside the shoots.

After the spring flight, the adults of T. piniperda disclose their presence in fresh pine timber or weakened trees by the typical boring dust containing brown bark and white wood grain (unique for this species), which is visible in bark crevices adjoining the entrance holes. In late summer, clusters of exit holes (ca 1.5 mm in diameter) reveal successful brood emergence. Peeling off the bark will show the typical longitudinal egg galleries with egg niches in early season, and larval galleries in late season. Egg galleries vary in length with attack density from a few centimetres to more than 10 cm. The same symptoms can be seen on successfully attacked standing trees, whereas failed attacks show resin flow (or crystallised resin) in bark crevices on the bark. Short hibernation tunnels can be found at the tree base. In Europe, T. piniperda normally attacks the lower part of the tree, which is covered with rough bark, whereas in Yunnan, China, it seems to prefer the upper stem (Ye and Ding, 1999).

Similarities to Other Species/Conditions

Top of page

In Europe, the longitudinal egg galleries of T. piniperda can be confused with those of Hylurgops palliatus and Hylurgus ligniperda, but in T. piniperda the egg niches occur in a more regular pattern and the lower part of the gallery often has resin-soaked edges. It is probably not possible to distinguish the egg galleries of T. piniperda from those of T. destruens. 

Tomicus adults differ from other related Hylesini-like Hylastes sp. and Hylurgops sp. by their shiny body; for more specific characters, it is advisable to consult identification keys (Pfeffer, 1994). The adults of T. minor can be distinguished from those of T. piniperda as described under Morphology. T. piniperda can be separated from T. destruens on the basis of several morphological characters (Faccoli, 2006). It takes an expert to identify bark beetle larvae to species, if they are not found in their galleries, but it can be done (Lekander, 1968).

Prevention and Control

Top of page

As both T. piniperda and T. minor are dependent on a continuous supply of suitable host material for their survival, silvicultural and logging practices may greatly affect the population density of these beetles both locally and regionally. The concept of forest hygiene, i.e. keeping the amounts of brood material available for bark beetles during their flight period as low as possible, has long been a key strategy in forest protection (Escherich, 1923; Speight and Wainhouse, 1989; Dajoz, 2000). This means that silvicultural operations should be carried out with a minimum of suitable host material left in the forests, that snow-breaks and wind-falls should be cleared up before beetle attack or at least before beetle emergence, and that the timber should be removed from the woods in due time. All this is easier said than done, and when beetle outbreaks occur, trap trees are the common method used to reduce the populations (e.g. Escherich, 1923; Hanson 1937, 1940).

A major change took place in forestry operations after World War II when the timber, which had until then mainly been debarked in the forests prior to transportation (often by floating), was instead stored unbarked along road sides until it was taken to the industry by trucks. In contrast to earlier practice, forest operations were also conducted all-year-round. This created a entirely new situation with huge amounts of unbarked timber stored in the forests during beetle flight, especially in Fennoscandia, where annual cuttings were large and roads often unaccessible during the thawing period in spring. Little has been written about this phenomenon, leading to constantly elevated bark beetle populations (Eidmann, 1985, 1992; Jääskelä et al., 1997; Day and Leather, 1997).

In Sweden, the huge storm-felling in 1969 when 20 million m³ blew down, resulted in bark beetle outbreaks of unprecedented magnitude (Nilsson, 1976) and a similar situation developed in Finland a few years later (Annila and Petäistö, 1978). These events eventually led to changes in the forestry legislation when forest protection became regulated by law (Eidmann 1985, 1992; Jääskelä et al., 1997). In principle, unbarked timber must not be stored during the flight and emergence of pine and spruce bark beetles, unless certain precautions are taken. In Sweden, up to 5 m³ of storm-felled trees per hectare can and should, according to the current debate about dead wood and biodiversity (Ehnström et al., 1995), be left without countermeasures being taken. Similar legislation exists in other European countries.

Thus, the main option to avoid bark beetle damage was, and still is, rapid transportation (i.e. before beetle flight in spring) of saw logs and pulpwood from the forest to the industry, where it is barked or submerged in water immediately, until processed. In Sweden, where timber storage and fallen Tomicus-attacked shoots were monitored nation-wide through the 1970s and 1980s, a substantial reduction in Tomicus populations was recorded with decreasing timber storage figures. Growth losses nowadays mainly occur around saw and paper mills with constant timber storage (e.g. Långström and Hellqvist, 1990; and many unpublished reports) for at least a decade.

If timely transportation is not feasible, the timber can be protected in different ways. The earlier barking at the felling site is now abandoned as being too expensive. Instead, the timber can be protected by spraying with insecticides, but this has to take place before beetle flight. In the 1980s, synthetic pyrethroids such as permethrin became the main option (Srot, 1968; Doom and Luitjes, 1970; Novak, 1972; Dowding, 1974; Dominik and Kinelski, 1979; Szmidt, 1983; Glowacha and Wajland, 1992). Due to increased environmental concerns, the use of insecticides for timber protection has decreased greatly, at least in Fennoscandia. Also, spraying against the early flying Tomicus species may be tricky under northern conditions, as snow may sometimes still cover part of the timber resulting in poor spray coverage.

Other ways of protecting log piles against bark beetles have been explored. Covering pulpwood stacks with plastic or other coatings has produced variable, but sometimes satisfactory, results, i.e. comparable to insecticide use, in Sweden and Finland (Dehlen and Nilsson, 1976; Heikkilä, 1978; Jääskelä et al., 1997). Partial debarking or removal of the upper layers in the pines also reduced beetle production substantially (Dehlen et al., 1982; Jääskelä et al., 1997) as did sprinkling with water (Regnander, 1976). A more modern approach is based on deterring the beetles from attacking by spraying log piles with verbenone or other substances with deterrent properties (Schlyter et al., 1988; Baader and Vité, 1990; Kohnle et al., 1992; McCullough et al., 1998). Non-host volatiles also show some promise for timber control (McCullough et al., 1998; Zhang, 2001) but none of these techniques has yet attained any wide use in practical forestry.

Baited traps containing host odours, especially alpha-pinene, attract large numbers of pine shoot beetles, and these are excellent for monitoring purposes but give little hope for beetle control. The recent detection of trans-verbenol, which may act as an aggregation pheromone in T. piniperda (Poland et al., 2003), may provide an even better monitoring tool but hardly a control option.

Another important approach to maintaining low beetle populations is related to the timing of silvicultural operations such as cleaning (i.e. precommercial thinning) and thinning of pine stands (Bykov, 1987). In general, late summer operations are preferred as the waste wood is neither attacked in the year of cutting (beetle flight terminated), nor in the following spring (waste wood unsuitable). In Fennoscandia, June to September are considered to be 'Tomicus-safe' months (Långström, 1979; Annila and Heikkilä, 1991), whereas Postner (1974) recommends August for central Europe. Cleanings should preferentially be made before DBH (diameter at 1.3 m stem height) exceeds 3 cm, i.e. before thick bark starts to form on the lower stem and the trees become suitable for T. piniperda (Butovitsch, 1954; Långström, 1979).

Some attempts at biological control of T. piniperda have been made using the entomopathogenic fungus Beauveria bassiana with variable results (Nuorteva and Salonen, 1968; Bychawska and Swiezynska, 1979). Lutyk and Swiezynska (1984) obtained satisfactory results when logs were covered with plastic after spraying with B. bassiana. The introduction of the clerid beetle T. formicarius to North America has been seriously considered (Haack and Poland, 2001) but this approach may now be redundant as the native and closely related clerid T. dubius seems to have adapted to the new prey (Kennedy and McCullough, 2002).


Top of page

Agafonov AF, Kuklin LV, 1979. Stem pests on Scots pine on burns. Stvolovye vrediteli sosny na garyakh. Lesnoe-Khozyaistvo, No. 10, 55-57.

Amezaga I, 1996. Monterrey pine (Pinus radiata D. Don) suitability for the pine shoot beetle (Tomicus piniperda L.) (Coleoptera: Scolytidae). Forest Ecology and Management, 86(1/3):73-79; 14 ref.

Amezaga I, 1997. Forest characteristics affecting the rate of shoot pruning by the pine shoot beetle (Tomicus piniperda L.) in Pinus radiata D. Don and P. sylvestris L. plantations. Forestry (Oxford), 70(2):129-137; 30 ref.

Andersson SO, 1973. Increment losses after thinning [in Scots Pine] caused by Myelophilus piniperda. Sveriges Skogsvardsforbunds Tidskrift, 71(4):359-379.

Annila E, Heikkila R, 1991. Breeding efficiency in Tomicus piniperda and shoot damage after late autumn thinning of young Pinus sylvestris stands. Scandinavian Journal of Forest Research, 6(2):197-207

Annila E, Långström B, Varama M, Hiukka R, Niemelä P, 1999. Susceptibility of defoliated Scots pine to spontaneous and induced attack by Tomicus piniperda and Tomicus minor. Silva Fennica, 33(2):93-106; 55 ref.

Annila E, Petäistö RL, 1978. Insect attack on windthrown trees after the December 1975 storm in western Finland. Metsantutkimuslaitoksen Julkaisuja, 94(2).

Arefjew JF, 1999. Symptoms of climatic change - an example from Russia. AFZ/Der Wald, Allgemeine Forst Zeitschrift fu^umlaut~r Waldwirtschaft und Umweltvorsorge, 54(11):558-560; 4 ref.

Astiaso JF, Leyva E, 1970. Contribution to knowledge of the bionomics of and control measures against Blastophagus sp. and Pissodes notatus F. [Contribuction al conocimiento de la biologia y metodos de combate de Blastophagus sp. y Pissodes notatus F.] First meeting of the Working Party on Integrated Control in Mediterranean Pine Forests. Primera reunion del Grupo de Trabajo de Lucha Integrada en Pinares Mediterraneos. Boletin del Servicio de Plagas Forestales, 13:203-211.

Avtzis N, Gatzojannis S, 2000. Attack of the pine forest in Thessaloniki by Blastophagus piniperda (L.) and its control. Mitteilungen der Deutschen Gesellschaft fu^umlaut~r allgemeine und angewandte Entomologie, 12(1-6):29-32; 7 ref.

Baader EJ, Vite JP, 1990. Response inhibitors for prevention of bark beetle attack. Allgemeine Forst- und Jagdzeitung, 161(8):145-148

Bakke A, 1968. Ecological studies on bark beetles (Coleoptera: Scolytidae) associated with Scots pine (Pinus sylvestris) in Norway with particular reference to the influence of temperature. Meddelelser fra Det Norske Skogforsöksvesen, 21:441-602.

Balachowsky A, 1949. Coleoptera, Scolytides. Faune de France 50. Paris, France: P Lechevalier.

Ben Jamaa ML, Lieutier F, Jerraya A, 2000. Les Scolytids ravageurs des pins en Tunisie. Annales de l'INGREF 4, 27-39.

Bogdanova DA, 1986. Trunk pests of pine in fire-damaged forest of the Upper Ob region. Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Biologicheskikh Nauk, No. 3:71-76

Bogdanova DA, 1988. Complexes of xylophagous insects in pine cultures contaminated by pine fungus. Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR. Seriya Biologicheskikh Nauk, No. 3:25-28

Bogdanova DA, 1998. Foci of Heterobasidion annosum and xylophagous insects in Scots pine forests of the Upper Ob region. Lesovedenie, No. 2:80-85; 11 ref.

Boriani M, 1998. Aspetti della gestione fitosanitaria degli ecosistemi forestali della Lombardia. Scheda tecnica: il genere Tomicus (Latreille 1802-3) (Coleoptera Scolytidae). [Aspects of phytosanitary management of forest ecosystems in Lombardia. Technical card: genus Tomicus (Latreille, 1802-3) (Coleoptera Scolytidae)]. Quaderni di Ricerca e Sperimentazione, Regione Lombardia; Azienda Regionale delle Foreste. 68-69.

Borkowski A, 2001. Threats to pine stands by the pine shoot beetles Tomicus piniperda (L.) and Tomicus minor (Hart.) (Col., Scolytidae) around a sawmill in southern Poland. Journal of Applied Entomology, 125(9/10):489-492; 7 ref.

Bright DE, 1996. Notes on native parasitoids and predators of the larger pine shoot beetle, Tomicus piniperda (Linnaeus) in the Niagara region of Canada (Coleoptera: Scolytidae). Proceedings of the Entomological Society of Ontario, 127:57-62; 19 ref.

Bright DE, Skidmore RE, 1997. A catalog of Scolytidae and Platypodidae (Coleoptera), Supplement 1 (1990-1994). Ottawa, Canada: NRC Research Press, 368 pp.

Browne FG, 1968. Pests and diseases of forest plantation trees: an annotated list of the principal species occurring in the British Commonwealth. Oxford, UK: Clarendon Press.

Butovitsch V, 1946. Redogörelse för flygbekämpningskampanjen mot tallmätaren under 1944-1945 (Bericht über die Flugzeugbestäubung gegen den Kiefernspanner in den Jahren 1944-1945). Meddelanden från statens skogsforskningsinstitut, 35(9):1-108.

Butovitsch V, 1954. Die Einwirkung der Läuterungszeit auf die Vermehrung des grossen Waldgärtners, Blastophagus piniperda. IUFRO Congr Rome, Report 645-649.

Butovitsch V, 1972. Some observations on the feeding behaviour of the greater wood-gardener (Blastophagus piniperda L.) on spruce. Zeitschrift fur Angewandte Entomologie, 72(2):194-198

Bychawska S, 1983. Occurrence of the more important bark beetles and wood borers in Scots pine stands damaged by hurricanes. Sylwan, 127(6):45-52

Bychawska S, Swiezynska H, 1979. Attempts to control Myelophilus piniperda by means of the entomopathogenic fungus Beauveria bassiana. [Proby zwalczania cetynca wiekszego (Myelophilus piniperda L.) przy uzyciu owadobojczego grzyba Beauveria bassiana (Bals.) Vuill. Sylwan, 123(12):59-64.

Byers JA, Lanne BS, Lofqvist J, 1989. Host tree unsuitability recognized by pine shoot beetles in flight. Experientia, 45(5):489-492

Byers JA, Lanne BS, Lofqvist J, Schlyter F, Bergstrom G, 1985. Olfactory recognition of host-tree susceptibility by pine shoot beetles. Naturwissenschaften, 72(6):324-326

Bykov AA, 1987. The entomological basis for improving the effectiveness of thinnings in Scots pine stands. Lesnoe Khozyaistvo, No. 7:71-72

Cedervind J, 2003. Impact of pine looper defoliation in scots pine. Acta Universitatis Agriculturae Sueciae, Silvestria, 297.

Cedervind J, 2003. Tree mortality, foliage recovery and top-kill in Scots pine stands following defoliation by Bupalus piniaria. PhD thesis. Uppsala; Sweden: Swedish University of Agricultural Sciences. Acta Universitatis Agriculturae Sueciae Silvestria, No. 264.

Cedervind J, Pettersson M, Langstrom B, 2003. Attack dynamics of the pine shoot beetle, Tomicus piniperda (Col.; Scolytinae) in Scots pine stands defoliated by Bupalus piniaria (Lep.; Geometridae). Agricultural and Forest Entomology, 5(3):253-261.

Chararas C, 1968. The power of adaptation by Blastophagus piniperda (Col. Scolytidae) to various Pinus spp., and its species preferences. C.R. Acad. Sci., Paris, 266D(3):(238-41).

Chararas C, 1976. Problems presented in different Mediterranean countries by insect pests of forests. Insect pests of forests in Tunisia. Comptes Rendus des Seances de l'Academie d'Agriculture de France, 62(17):1236-1242

Chen Peng, 2003. Is there a competition between Tomicus piniperda (L.) and T. minor (Hart.) (Col. Scolytidae) during shoot-feeding and breeding in China? MSc. thesis. Uppsala, Sweden: Swedish University of Agricultural Sciences (SLU).

Crooke M, 1959. Insecticidal control of the pine looper in Great Britain. I. Aerial spraying. Forestry, 32:166-196.

Czokajlo D, Wink RA, Warren JC, Teale SA, 1997. Growth reduction of Scots pine, Pine sylvestris, caused by the larger pine shoot beetle, Tomicus piniperda (Coleoptera, Scolytidae), in New York State. Canadian Journal of Forest Research, 27(9):1394-1397; 29 ref.

Dajoz R, 2000. Insects and forests: the role and diversity of insects in the forest environment. Insects and forests: the role and diversity of insects in the forest environment., xii + 668 pp.

Day KR, Leather SR, 1997. Threats to forestry by insect pests in Europe. In: Watt AD, Stork NE, Hunter MD, eds. Forests and Insects. Chapman & Hall, 177-206, ISBN 0-412 79110-2.

Dehlen R, Herlitz A, Johansson I, Langstrom B, Regnander J, 1982. Trough-debarking of pulpwood - debarking results and protective effect against bark beetles, as well as some economic and ergonomic aspects. [Tragbarkning av massaved - Barkningsresultat och skyddseffekt mot barkborrar samt nagra synpunkter pa ekonomi och ergonomi.] Institutionen for Skogsteknik, Sveriges Lantbruksuniversitet, Rapport No. 143.

Dehlen R, Långström B, 1977. Strip barking of pulpwood - a measure of forest protection? [Randbarkning av massaved - en skogsskyddsatgard?] Rapporter och Uppsatser, Institutionen for Skogsteknik, No. 118.

Dehlen R, Nilsson S, 1976. Covering pine stacks with plastic to prevent attack by Blastophagus piniperda. [Plastovertackning av tallvaltor for att undvika angrepp av storre margborrar.] Rapporter och Uppsatser, Institutionen for Skogsteknik, No. 95.

Diminic D, Glavas M, Hrasovec B, 1995. Fungal diseases and insect pests in Austrian pine plantations of Crikvenica-Vinodol area in 1993. S^hacek~umarski List, 119(7/8):245-252; 39 ref.

Dominik J, Kinelski S, 1979. Studies on the duration of effective protection of unpeeled Scots pine logs by several insecticides. [Badanie trwalosci skutecznego zabezpieczania kilkoma insektycydami surowca sosnowego przed owadami.] Sylwan, 123(2):13-19.

Doom D, Luitjes J, 1970. Control of the bark beetle (Tomicus piniperda) by sprays applied to the trunks. Nederlandsch Boschbouwtijdschrift, 42(11):297-302

Doom D, Luitjes J, 1971. The influence of felled Scots pine on the population density of the pine shoot beetle (Tomicus piniperda L.). Nederlands Bosbouw Tijdschrift, 43(9):180-191

Doom D, Luitjes J, 1972. Development of beetles (Scolytidae) in bark and wood of felled conifers. Nederlands Bosbouw Tijdschrift, 44(7-8):193-197.

Dowding P, 1973. Effects of felling time and insecticidal treatment on the interrelationships of fungi and arthropods in pine logs. Oikos, 24:422-429.

Drugescu C, 1980. Coenological studies on scolytids (Coleoptera) on black pine (Pinus nigra var. banatica) in the Cerna Valley. Studii si Cercetari de Biologie, Biologie Animala, 32(2):155-162

Duda S, 1974. Notes on Blastophagus [Tomicus, Myelophilus] piniperda and B. [T., M.] minor in Rzepin forest district. Sylwan, 118(7):63-74.

Duda S, 1981. Important pests of Scots pine within range of pollution from the Legnica-Gogow copper complex. Sylwan, 125(10/11/12):133-139

Ehnström B, Långström B, Hellqvist C, 1995. Insects in burned forests - forest protection and faunal conservation (preliminary results). Entomologica Fennica, 6(2/3):109-117; 25 ref.

Eidmann HH, 1985. Silviculture and insect problems. Zeitschrift fur Angewandte Entomologie, 99(1):105-112

Eidmann HH, 1992. Impact of bark beetles on forests and forestry in Sweden. Journal of Applied Entomology, 114(2):193-200

Elfving B, Langstrom B, 1984. Crown damage and growth response in a stand attacked by Tomicus piniperda. Sveriges Skogsvardsforbunds Tidskrift, 82(1):49-56

Ericsson A, Hellqvist C, Langstrom B, Larsson S, Tenow O, 1985. Effects on growth of simulated and induced shoot pruning by Tomicus piniperda as related to carbohydrate and nitrogen dynamics in Scots pine. Journal of Applied Ecology, 22(1):105-124

Escherich K, 1923. Die Forstinsekten Mitteleuropas II. Berlin, Germany: Paul Parey, 1-663.

Faccoli M, 2001. Tomicus spp. damage to pines. Sherwood - Foreste ed Alberi Oggi, 7(10):27-28; 6 ref.

Faccoli M, 2006. Morphological separation of Tomicus piniperda and T. destruens (Coleoptera: Curculionidae: Scolytinae): new and old characters. European Journal of Entomology, 103(2):433-442.

Fernandez MMF, Costas JMS, 1999. Susceptibility of fire-damaged pine trees (Pinus pinaster and Pinus nigra) to attacks by Ips sexdentatus and Tomicus piniperda (Coleoptera: Scolytidae). Entomologia Generalis, 24(2):105-114.

Ferreira MC, Ferreira GWS, 1991. Insects pests of conifers: a field guide. Se^acute~rie Divulgac^cedilla~a^tilde~o - Ministe^acute~rio da Agricultura, Pescas e Alimentac^cedilla~a^tilde~o, No. 3:108 pp.; 55 pp. of ref.

Foit J, 2007. The fauna of cambioxylophagous insects on Scots pine trees declined after spells of drought in 2003. Journal of Forest Science, 53(7):334-339.

Forsse E, 1989. Migration in bark beetles with special reference to the spruce bark beetle Ips typographus. Thesis, Sveriges Lantbruksuniversitet, Sweden.

Francke Grosmann H, 1952. Über die Ambrosiazucht der beiden Kieferborkenkäfer Myelophilus minor Htg. und Ips acuminatus Gyll.. Medd. Statens Skogsforskn. Inst., 41:1-52.

Führer E, Kerck K, 1978. Untersuchungen ueber Forstschutzprobleme in Kiefernschwachholz-Windwürfen in der Lüneburger Heide II. Die Gefährdung der Bestandesreste und Nachbarbestände durch rindenbrütende Insekten. Forstw Cbl 97, 156-167.

Gaidiene E, 1976. The insect fauna of Scots pine cones in the Lithuanian SSR. Acta Entomologica Lituanica, 3:27-36

Galaseva TV, 1976. Life tables for Blastophagus piniperda on burns in the Moscow region. [Tablitsy vyzhivaemosti bol'shogo sosnovogo luboeda na garyakh v Moskovskoi oblasti.] Forest protection. Voprosy zashchity lesa. Nauchnye Trudy, Moskovskii Lesotekhnicheskii Institut, No. 90, 31-38.

Gallego D, Galián J, 2001. The internal transcribed spacers (ITS1 and ITS2) of the rDNA differentiates the bark beetle forest pests Tomicus destruens and T. piniperda. Insect Molecular Biology, 10(5):415-420; 31 ref.

Ghaioule D, Abourouh M, Bakry M, Haddan M, 1998. Insects damaging Moroccan forests. Annales de la Recherche Forestiere au Maroc, No. 31:129-156; 57 ref.

Gibbs JN, Inman A, 1991. The pine shoot beetle Tomicus piniperda as a vector of blue stain fungi to windblown pine. Forestry (Oxford), 64(3):239-249

Gidaszewski A, 1974. Analaysis of the occurrence and vigour of Tomicus piniperda (L.) and T. minor (Hrtg.) in forest stands in the Wielkopolski National Park during the years 1969-1970. Polskie Pismo Entomologiczne, 44(4):789-815

Glowacka B, Wajland M, 1992. Wood protection against secondary pests with new insecticides. Prace Instytutu Badawczego Les^acute~nictwa, No. 738/745:121-126; [^italic~Prace^roman~ No. 744]; 5 ref.

Gninenko YuI, Vetrova OG, 2002. Protection of pines from pine bark beetles. Zashchita i Karantin Rastenii^breve~, No.7:24.

Haack RA, Lawrence RK, Heaton GC, 2000. Seasonal shoot-feeding by Tomicus piniperda (Coleoptera: Scolytidae) in Michigan. Great Lakes Entomologist, 33(1):1-8; 20 ref.

Haack RA, Petrice TR, Poland TM, 2000. Tomicus piniperda (Coleoptera: Scolytidae) emergence in relation to burial depth of brood logs. Journal of Economic Entomology, 93(2):342-346; 30 ref.

Haack RA, Poland TM, 2001. Evolving management strategies for a recently discovered exotic forest pest: the pine shoot beetle, Tomicus piniperda (Coleoptera). Biol. Invasions, 3:307-322.

Habermann M, Geibler AV, 2001. Regeneration of Scots pine (Pinus sylvestris L.) and attack of secondary bark beetles after defoliation by the nun moth (Lymantria monacha L.). Forst und Holz, 56(4):107-111; Many ref.

Halperin J, 1978. Blastophagus piniperda in Israel. La Yaaran, 28(1-4): 20-28.

Hanson HS, 1937. Notes on the ecology and control of pine beetles in Great Britain. Bull. Entomol. Res. 28:185-236.

Hanson HS, 1940. Further notes on the ecology and control of pine beetles in Great Britain. Bull. Entomol. Res., 30:483-536.

Hedqvist KJ, 1963. Die Feinde der Borkenkafer in Schweden I Erzwespe (Chalcidoidea)-Studia Forestalia Suecica, 11:1-176.

Hedqvist KJ, 1998. Bark beetle enemies in Sweden II. Braconidae (Hymenoptera) Scandinavian Entomology Ltd, Sandby, 52:3-85.

Hedqvist K-J, 2003. Katalog över svenska Chalcidoidea (Catalogue of Swedish Chalcidoidea). Ent. Tidskr. 124:73-133.

Heikkila R, 1978. Protection of pine pulpwood stacks against the common pine-shoot beetle in northern Finland. [Mantykuitupuupinojen suojaaminen pystynavertajan iskeytymista vastaan Pohjois Suomessa.] Folia Forestalia, Institutum Forestale Fenniae, No. 351.

Heliovaara K, Vaisanen R, 1991. Bark beetles and associated species with high heavy metal tolerance. Journal of Applied Entomology, 111(4):397-405

Hellqvist C, 1984. Production of Tomicus piniperda in pine stumps. Sveriges Skogsvardsforbunds Tidskrift, 82(1):37-47

Herard F, Mercadier G, 1996. Natural enemies of Tomicus piniperda and Ips acuminatus (Col., Scolytidae) on Pinus sylvestris near Orleans, France: temporal occurrence and relative abundance, and notes on eight predatory species. Entomophaga, 41(2):183-210; 4 pp. of ref.

IPPC, 2009. Pine Shoot Beetle - Update of the Regulated Areas - Canada. IPPC Official Pest Report, CAN-01/2. Rome, Italy: FAO.

Jakaitis B, Yakaitis B, 1979. The biology of the seven main species of parasites of the pine and spruce bark-beetles in the Lithuanian SSR. Academy of Sciences of the Lithuanian SSR: Hymenoptera in the Lithuanian SSR, their biology and ecology. Lietuvos TSR pleviasparniai, ju biologija ir ekologija. Acta Entomologica Lituanica, 4:141-150.

Jorgensen E, Bejer-Petersen B, 1951. Angreb af Fomes annosus (Fr.) Cke. og Hylesinus piniperda L. på Pinus silvestris i Djurslands plantager. [Attack of Fomes annosus (Fr.) Cke. and Hylesinus piniperda L. on Pinus silvestris. Dansk Skovfor.] Tidsskr., 36:453-479.

JSSskelS M, Peltonen M, Saarenmaa H, Heli÷vaara K, 1997. Comparison of protection methods of pine stacks against Tomicus piniperda. Silva Fennica, 31(2):143-152; 21 ref.

Jurc M, 2001. Harmful entomofauna (Coleoptera, Lepidoptera, Hymenoptera) on Austrian pine (Pinus nigra Arn.) in Slovenia. In: Proceedings of the 5th Slovenian Conference on Plant Protection, Catez ob Savi, Slovenia, 276-283.

Juutinen P, 1978. Pulpwood stacks as breeding sites for pine shoot beetle (Tomicus piniperda L.) in northern Finland. [Kuitupuupinot pystynavertajan (Tomicus piniperda L.) lisaantymispaikkoina Pohjois-Suomessa. Folia Forestalia, Institutum Forestale Fenniae, No. 335.

Kailides DS, 1964. Attacks by Myelophilus piniperda on Pinus brutia plantations. Dasos, 33:3-18.

Kaitera J, Jalkanen R, 1994. The history of shoot damage by Tomicus spp. (Col., Scolytidae) in a Pinus sylvestris L. stand damaged by the shoot-disease fungus Gremmeniella abietina (Lagerb.) Morelet. Journal of Applied Entomology, 117(3):307-313

Kangas E, Perttunen V, Oksanen H, 1971. Physical and chemical stimuli affecting the behavior of Blastophagus piniperda L. and B. minor Hart. (Col., Scolytidae). Acta Entomol. Fenn., 28:120-126.

Kauffman WC, Waltz RD, Cummings RB, 1998. Shoot feeding and overwintering behavior of Tomicus piniperda (Coleoptera: Scolytidae): implications for management and regulation. Journal of Economic Entomology, 91(1):182-190; 17 ref.

Kennedy AA, McCullough DG, 2002. Phenology of the larger European pine shoot beetle Tomicus piniperda (L.) (Coleoptera: Scolytidae) in relation to native bark beetles and natural enemies in pine stands. Environmental Entomology, 31(2):261-272; [Available online at http:\\\pubs\ee\eetocs]; many ref.

Kerdelhué C, Roux-Morabito G, Forichon J, Chambon JM, Robert A, Lieutier F, 2002. Population genetic structure of Tomicus piniperda L. (Curculionidae: Scolytinae) on different pine species and validation of T. destruens (Woll.). Molecular Ecology, 11(3):483-494; many ref.

Kim GyuHyeok, Kim JaeJin, Ra JongBum, 2002. Development of fungal sapstain in logs of Japanese red pine and Korean pine. Mokchae Konghak = Journal of the Korean Wood Science and Technology, 30(2):128-133; 4 ref.

Kim JaeJin, Lim YoungWoon, Breuil C, Wingfield MJ, Zhou XuDong, Kim GyuHyeok, 2005. A new Leptographium species associated with Tomicus piniperda infesting pine logs in Korea. Mycological Research, 109(3):275-284.

Koehler U, 1986. Problems of permanent infestation by Blastophagus piniperda. [Zur Problematik des Stehendbefalls durch den Grossen Waldgartner, Blastophagus piniperda L.] Anzeiger fur Schadlingskunde, Pflanzenschutz, Umweltschutz, 59(8):145-147.

Kohlmayr B, Riegler M, Wegensteiner R, Stauffer C, 2002. Morphological and genetic identification of the three pine pests of the genus Tomicus (Coleoptera, Scolytidae) in Europe. Agricultural and Forest Entomology, 4(2):151-157; 29 ref.

Kohlmayr B, Weiser J, Wegensteiner R, Handel U, Zizka Z, 2003. Infection of Tomicus piniperda (Col., Scolytidae) with Canningia tomici sp. n. (Microsporidia, Unikaryonidae). Anzeiger fur Schadl ingskunde, 76(3):65-73.

Kohnle U, Densborn S, Duhme D, Vite JP, 1992. Bark beetle attack on host logs reduced by spraying with repellents. Journal of Applied Entomology, 114(1):83-90

Kolomiets NG, Bogdanova DA, 1992. Diseases and pests of the forest stands of Novosibirsk Scientific Centre of the Siberian Branch of the Russian Academy of Sciences. Sibirskii Biologicheskii Zhurnal, No. 4:53-55

Kolomiets NG, Bogdanova DA, 1998. Xylophagous insects of northern taiga forests in the oil extraction areas of Western Siberia. Lesovedenie, No. 4:34-42; 28 ref.

Krol A, 1980. Occurrence of secondary pests and wood borers of Scots pine in an area of the Buda Stalowska forest division affected by emissions from the Tarnobrzeg sulphur works. [Wystepowanie owadow szkodnikow wtornych i technicznych sosny pospolitej (Pinus silvestris L.) na terenie Nadlesnictwa Buda Stalowska, objetym szkodliwymi emisjami Tarnobrzeskiego Zaglebia Siarkowego.] Acta Agraria et Silvestria, Silvestris, 19:25-40.

Kurashvili BE, Kakuliya GA, Devdariani TsG, 1980. Parasitic nematodes of bark beetles of the Georgian SSR. Paraziticheskie nematody koroedov Gruzii. Metsniereba. Tbilisi Georgian SSR, 170 pp.

Langstrom B, Annila E, Hellqvist C, Varama M, Niemela P, 2001. Tree mortality, needle biomass recovery and growth losses in Scots pine following defoliation by Diprion pini (L.) and subsequent attack by Tomicus piniperda (L.). Scandinavian Journal of Forest Research, 16:342-353.

Lanne BS, Schlyter F, Byers JA, Lofqvist J, Leufven A, Bergstrom G, Pers JNC van der, Unelius R, Bäckstrom P, Norin T, 1987. Differences in attraction to semiochemicals present in sympatric pine shoot beetles, Tomicus minor and T. piniperda. Journal of Chemical Ecology, 13(5):1045-1067

Lawrence RK, Haack RA, 1995. Susceptibility of selected species of North American pines to shoot feeding by an Old World scolytid: Tomicus piniperda. In: Hain FP, Salom SM, Ravlin WF, Payne TL, Raffa KF, eds. Behavior, Population Dynamics and Control of Forest Insects. Proceedings of the Joint IUFRO Conference for Working Parties S2.07-05 and S2.07-06, 6-11 February 1994, Maui, HI. Wooster, OH, USA: Ohio State University Press, 536-546.

Lekander B, 1953. Über das Auftreten von Blastophagus piniperda und Pissodes pini im Wald vorher befallen von Panolis- und Bupalus-Raupen. Medd. Statens Skogsforskn. Inst. 44.

Lekander B, 1968. Scandinavian bark beetle larvae. Royal College of Forestry, Sweden, Research Notes, 4:1-186.

Lekander B, 1968. The number of larval instars in some bark beetle species. Entomol. Tidskr., 89(1-2):25-34.

Lekander B, 1971. On Blastophagus destruens Woll and a description of its larvae (Col., Scolytidae). Entomol. Tidskr., 92(3-4):271-276.

Lekander B, 1974. Insektshärjningar vid förnyelseavverkning (Insect Damage at Clear Cuttings). Sveriges Skogsv. Förb. Tidskr., 72(1):34-59.

Lekander B, Bejer-Petersen B, Kangas E, Bakke A, 1977. The distribution of bark beetles in the Nordic countries. Acta Entomologica Fennica, No. 32:37 pp.

Li LS, Wang HL, Chai XS, Wang YX, Shu NB, Yang DS, 1993. Study on the biological characteristics of Tomicus piniperda and its damage. Forest Research, 6:14-20 (in Chinese with English summary).

Lieutier F, 2002. Mechanisms of resistance in conifers and bark beetle attack strategies. In: Wagner MR, Clancy KM, LieutierF, Paine TD, eds. Mechanisms and Deployment of Resistance in Trees to Insects. Kluwer Academic Publishers, Dordrecht, 31-77.

Lieutier F, Vouland G, Pettinetti M, 1997. Testing the preference of Scolytidae and other xylophagous insects for various Mediterranean pine species under natural conditions. Revue Forestie^grave~re Franc^cedilla~aise, 49(3):215-224; 19 ref.

Lieutier F, Yart A, Garcia J, Ham MC, Morelet M, Levieux J, 1989. Blue-stain fungi associated with two bark beetle pests of Scots pine (Pinus sylvestris): a preliminary study of fungal aggressiveness to the host tree. Annales des Sciences Forestieres, 46(3):210-216

Lieutier F, Ye Hui, Yart A, 2003. Shoot damage by Tomicus sp. (Coleoptera: Scolytidae) and effect on Pinus yunnanensis resistance to subsequent reproductive attacks in the stem. Agricultural and Forest Entomology, 5(3):227-233.

Luitjes J, 1976. Development of insects in timber damaged by the gales of 1972/73 in the Netherlands. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 83(1/2/3):87-95

Luitjes J, 1977. Development of insects in coniferous trees damaged by the gales of November 1972 and April 1973. [De ontwikkeling van insekten in naaldhout vernield door de stormen van november 1972 en april 1973.] Nederlands Bosbouw Tijdschrift, 49(1):10-26.

Luterek R, 1996. Primary insect invaders of post-fire stands in the virgin Notecka Forest. Prace z Zakresu Nauk Les^acute~nych, 82:103-110; [English tables ^italic~Prace Komisji Nauk Rolniczych i Komisji Nauk Les^acute~nych^roman~]; 6 ref.

Lutyk P, 1984. Feeding of Tomicus piniperda on shoots of Norway spruce and silver fir. Sylwan, 128(3):65-68

Lutyk P, 1988. Occurrence and size of a sister generation of the pine shoot beetle Tomicus piniperda in Poland. Sylwan, 132(10):53-60

Lutyk P, Swiezynska H, 1984. Trials of the use of Beauveria bassiana for the control of Tomicus piniperda in wood stacks. Sylwan, 128(9):41-45

Löyttyniemi K, Heliovaara K, Repo S, 1988. No evidence of a population pheromone in Tomicus piniperda (Coleoptera, Scolytidae): a field experiment. Annales Entomologici Fennici, 54(3):93-95

Löyttyniemi K, Pekkala O, Uusvaara O, 1978. Deterioration of pine and spruce pulpwood stored during the growing season and its effects on sulphite pulping. Communicationes Instituti Forestalis Fenniae, 92.6.

Löyttyniemi K, Uusvaara O, 1977. Insect attack on pine and spruce sawlogs felled during the growing season. Communicationes Instituti Forestalis Fenniae, 89(6):1-48.

Löyttyniemi K, Uusvaara O, 1978. Insect attack on pine and spruce sawlogs felled during the growing season. Metsantutkimuslaitoksen Julkaisuja, 89(6):1-48

Långström B, 1979. Breeding of pine-shoot beetles in pine litter after felling and crown damage on remaining trees. Skogsentomoligiska Rapporter, No. 1:1-52

Långström B, 1980. Distribution of pine shoot beetle attacks within the crown of Scots pine. Studia Forestalia Suecica, No. 154:25 pp.

Långström B, 1983. Life cycles and shoot-feeding of the pine shoot beetles. Studia Forestalia Suecica, No. 163:29 pp.

Långström B, 1984. Windthrown Scots pines as brood material for Tomicus piniperda and T. minor. Silva Fennica, 18(2):187-198

Långström B, Hellqvist C, 1985. Pinus contorta as a potential host for Tomicus piniperda L. and T. minor (Hart.) (Col., Scolytidae) in Sweden. Zeitschrift fur Angewandte Entomologie, 99(2):174-181

Långström B, Hellqvist C, 1990. Spatial distribution of crown damage and growth losses caused by recurrent attacks of pine shoot beetles in pine stands surrounding a pulp mill in southern Sweden. Journal of Applied Entomology, 110(3):261-269

Långström B, Hellqvist C, 1991. Shoot damage and growth losses following three years of Tomicus-attacks in Scots pine stands close to a timber storage site. Silva Fennica, 25(3):133-145

Långström B, Hellqvist C, 1993. Induced and spontaneous attacks by pine shoot beetles on young Scots pine trees: tree mortality and beetle performance. Journal of Applied Entomology, 115(1):25-36

Långström B, Hellqvist C, Ehnstrom B, 1984. Distribution and production of Tomicus piniperda in pine wood stacks. Sveriges Skogsvardsforbunds Tidskrift, 82(1):23-35

Långström B, Hellqvist C, Ehnström B, 1999. Susceptibility of fire-damaged Scots pine (Pinus sylvestris L.) trees to attack by Tomicus piniperda. Physiologie and genetics of tree-phytophage interactions. INRA, Les Colloques et, 90, 299-311.

Långström B, Hellqvist C, Ericsson A, Gref R, 1992. Induced defence reaction in Scots pine following stem attacks by Tomicus piniperda. Ecography, 15(3):318-327

Långström B, Lieutier F, Hellqvist C, Vouland G, 1995. North American pines as hosts for Tomicus piniperda (L.) (Col., Scolytidae) in France and Sweden. In: Hain FP, Salom SM, Ravlin WF, Payne TL, Raffa KF, eds. Behavior, Population Dynamics and Control of Forest Insects. Proceedings of a joint IUFRO working party conference Maui Hawaii, February 6-11, 1994, 547-557.

Långström B, Lisha L, Hongpin L, Peng C, Haoran L, Hellqvist C, Lieutier F, 2002. Shoot feeding ecology of Tomicus piniperda and T. minor (Col., Scolytidae) in southern Chin. J. Appl. Ent., 126:333-342.

Långström B, Tenow O, Ericsson A, Hellqvist C, Larsson S, 1990. Effects of shoot pruning on stem growth, needle biomass, and dynamics of carbohydrates and nitrogen in Scots pine as related to season and tree age. Canadian Journal of Forest Research, 20(5):514-523

Markalas S, 1997. Frequency and distribution of insect species on trunks in burnt pine forests of Greece. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 70(1/2):57-61; 15 ref.

Masutti L, 1969. Pine stands of the [Adriatic] coast and Blastophagus [Myelophilus] piniperda: a bad combination. Monti e Boschi, 20(3):15-27.

Masuya H, Kaneko S, Yamaoka Y, 1998. Blue stain fungi associated with Tomicus piniperda (Coleoptera: Scolytidae) on Japanese red pine. J. For. Res., 3:213-219.

Mattson Mårn L, 1921. Märgborrens kronskadegörelse och dess inverkan på tallens tillväxt. (Die Kronenbeschädigung des grossen Waldgärtners und deren Einfluss auf den Zuwachs der Kiefer). Medd Statens Skogsförsöksanstalt, 18:81-101 (in Swedish with German summary).

Mazur S, 1973. Information on the fauna of predatory beetles inhabiting the feeding places of Tomicus (Blastophagus) piniperda. Sylwan, 117(7):53-59.

McCullough DG, Haack RA, McLane WH, 1998. Control of Tomicus piniperda (Coleoptera: Scolytidae) in pine stumps and logs. Journal of Economic Entomology, 91(2):492-499; 34 ref.

Michalski I, Witkowski Z, 1960. Further observations on feeding damage of Myelophilus piniperda in age class I pine stands. Sylwan, 104(12):21-32.

Mihalciuc V, Danci A, Lupu D, Olenici N, 2001. Situation of the main bark and wood boring insects which damaged conifer stands in the last 10 years in Romania. [Situatia principalelor specii de daunatori de tulpina ce au cauzat vatamarea arboretelor de rasinoase din tara in ultimii 10 ani.] Cercetarea stiintifica pentru gestionarea durabila a padurilor. Lucrarile sesiunii stiintifice, Institutul de Cercetari si Amenajari Silvice, Bucuresti, Romania, 23 martie 2001. Anale Institutul de Cercetari si Amenajari Silvice, 1:48-53.

Mozolevskaya EG, 1983. Analysis of pith-borer populations. Trudy Vsesoyuznogo Entomologicheskaya Obshchestva, 65:19-40

Nanni C, Tiberi R, 1997. Tomicus destruens (Wollaston): biology and behaviour in Central Italy. In: Gregoire JC, Liebhold FM, Stephen FM, Day KR, Salom SM, eds. Proceedings: Integrating cultural tactics into the management of bark beetles and reforestation pests. USDA Forest Service, General Technical Report NE-236, 131-134.

NAPPO, 2011. Phytosanitary Alert System: Pine Shoot Beetle (PSB), Tomicus piniperda, additional counties in Virginia added to the quarantine area. NAPPO.

NAPPO, 2012. Phytosanitary Alert System: Pine shoot beetle (Tomicus piniperda): Additional counties in Missouri added to the regulated area. Phytosanitary Alert System: Pine shoot beetle (Tomicus piniperda): Additional counties in Missouri added to the regulated area. NAPPO.

Niemeyer H, Thalenhorst W, 1974. The bark-beetle danger in Lower Saxony after the storm disaster of 13th November 1972. Forst- und Holzwirt, 29(7):133-142

Nilssen AC, 1984. Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Annales Entomologici Fennici, 50(2):37-42.

Nilsson S, 1974. Tillväxtförluster hos tall vid angrepp av märgborrar [Increment losses caused by Blastophagus piniperda on Scots pine.] Royal Coll. of For., Dept. of Operat. Efficiency, Res. Notes 78, 1-64.

Nilsson S, 1976. Rationalization of forest operations gives rise to insect attack and increment losses. Ambio, 5(1):17-22

Novak V, 1972. Chemical protection of timber against barkbeetles and wood-destroying insects. Drevo., 27(11):314-317.

Nuorteva M, Nuorteva P, 1968. The infestation of timber by bark beetles (Col., Scolytidae) and their enemies in the Finnish south-western archipelago. Ann. Ent. Fenn., 34:56-65.

Nuorteva M, Saari L, 1980. larvae of Acanthocinus, Pissodes and Tomicus (Coleoptera) and the foraging behaviour of woodpeckers (Picidae). Annales Entomologici Fennici, 46(4):107-110

Nuorteva M, Salonen K, 1968. Versuche mit Beauveria bassiana (Bals.) Vuill. gegen Blastophagus piniperda L. (Col., Scolytidae). Ann. Entomol. Fenn., 34:49-55.

Oppermann TA, 1985. Bark and wood insect pests of pollution-damaged spruce and pine. [Rinden- und holzbrutende Insekten an immissionsgeschadigten Fichten und Kiefern.] Holz-Zentralblatt, 111(14):213-217.

Õunap H, 2001. Insect predators and parasitoids of bark beetles (Coleoptera, Scolytidae) in Estonia. Dissertationes Scientiarum Naturalium Universitatis Agriculturae Estoniae, 8:1-44, ISBN 9985-882-96-2.

Ozols G, Bicevskis M, Galvans U, 1973. Terpenes and their complexes as primary attractants for bark-beetles of conifer trees. In: Spalvins Z, ed. Spalvin'sh, Z. P. : Forest protection.: Zashchita lesa. Riga, Izdatel'stvo "Zinatne". Latvian SSR, 24-28

Park JD, Byun BH, 1988. Trapping the overwintered pine bark beetle, Tomicus piniperda L. (Coleoptera: Scolytidae), by turpentine. Research Reports of the Forestry Research Institute (Seoul), No. 36:126-129

Park KN, Lee SO, 1972. Studies on ecology and control of the pine bark beetle, Blastophagus piniperda L. Seoul, South Korea: Forest Research Inst, Res. Rep., 19:65-70.

Pfeffer A, 1994. Zentral- und Westpaläarktische Borken- und Kernkäfer. Entomologica Basiliensia, 17:1-310, ISBN-3-9520840-6-9.

Pishchik AA, 1980. An insect predator of Blastophagus [Tomicus] piniperda and B. [T.] minor. Lesnoe-Khozyaistvo, No. 11, 55-57.

Poland TM, de Groot P, Burke S, Wakarchuk D, Haack RA, Nott R, Scarr, 2003. Development of an improved attractive lure for the pine shoot beetle, Tomicus piniperda (Coleoptera: Scolytidae). Agricultural and Forest Entomology, 5:293-300.

Poland TM, Haack RA, Petrice TR, 2002. Tomicus piniperda (Coleoptera: Scolytidae) initial flight and shoot departure along a north-south gradient. Journal of Economic Entomology, 95(6):1195-1204; 26 ref.

Postner M, 1974. Scolytidae (= Ipidae), Borkenkäfer. In: Schwenke W, ed. Die Forstschadlinge Europas. Vol. 2. Hamburg, Berlin, Germany: Parey, 334-482.

Ratzeburg JTC, 1839. Die Forst-Insekten, Erster Theil, Die Käfer. Berlin.

Regnander J, 1976. Sprinkling insect-attacked pulpwood - an important part of the control of bark beetles. [Vattenbegjutning av insektsangripet virke - ett viktigt led i bekampningen av barkborrar pa skog.] Sveriges Skogsvardsforbunds Tidskrift., 74(5):497-504.

Rigling A, Cherubini P, 1999. What is the cause of the high mortality rates of the Scots pines in the 'Telwald' near Visp (Switzerland)? A summary of previous studies and a dendroecological study. Schweizerische Zeitschrift fu^umlaut~r Forstwesen, 150(4):113-131; 72 ref.

Ritchie W, 1917. The structuce, bionomics and forest importance of Myelophilus minor Hart. Trans. R. Soc. Edinb., 53:213-234.

Ryall KL, Smith SM, 2000. Brood production and shoot feeding by Tomicus piniperda (Coleoptera: Scolytidae). The Canadian Entomologist, 132: 939-949.

Saalas U, 1929. Verheerungen von Panolis griseovariegata, Blastophagus piniperda und Bl minor im Valkjärvi (Finnland). Ann. Soc. Zool. Bot. Fenn., 8:168-180.

Saarenmaa H, 1983. Modeling the spatial pattern and intraspecific competition in Tomicus piniperda (Coleoptera, Scolytidae). Communicationes Instituti Forestalis Fenniae, No. 118:40 pp.

Saarenmaa H, 1985. The role of temperature in the population dynamics of Tomicus piniperda (L.) (Col., Scolytidae) in northern conditions. Zeitschrift fur Angewandte Entomologie, 99(3):224-236

Saarenmaa H, 1985. Within-tree population dynamics models for integrated management of Tomicus piniperda (Coleoptera, Scolytidae). Communicationes Instituti Forestalis Fenniae, No. 128:56 pp.

Saarenmaa H, 1987. Insect attack and blue stain in windthrown trees in Lapland 1983-86. Folia Forestalia, No. 696:18 pp.

Saarenmaa H, 1989. A model for the timing of swarming of Tomicus piniperda (Coleoptera: Scolytidae). Holarctic Ecology, 12(4):441-444

Sadof CS, Waltz RD, Kellam CD, 1994. Differential shoot feeding by adult Tomicus piniperda (Coleoptera: Scolytidae) in mixed stands of native and introduced pines in Indiana. Great Lakes Entomologist, 27(4):223-228

Salonen K, 1973. On the life cycle, especially on the reproduction biology of Blastophagus piniperda L. (Col., Scolytidae). Acta For. Fenn., 127.

Salonen K, Pulliainen E, Koponen M, 1968. Sex ratios in Blastophagus piniperda L. (Col., Scolytidae) in Finland. Ann. Entomol. Fenn., 34:31-37.

Sauvard D, 1988. Multiplication capacity of Tomicus piniperda L. (Coleoptera: Scolytidae) according to the density of attack and various characteristics of the tree. Thesis, University of Orleans, 88 pp.

Sauvard D, 1989. Reproductive capacity of Tomicus piniperda L. (Col., Scolytidae). 1. Effects of attack density. Journal of Applied Entomology, 108(2):164-181

Sauvard D, 1993. Reproductive capacity of Tomicus piniperda L. (Col., Scolytidae). 2. Analysis of the various sister broods. Journal of Applied Entomology, 116(1):25-38

Sauvard D, Lieutier F, Levieux J, 1987. Distribution and dispersal of Tomicus piniperda (Coleoptera: Scolytidae) in the Forest of Orleans, France. Annales des Sciences Forestieres, 44(4):417-434

Sauvard D, Lieutier F, Levieux J, 1988. The pine shoot beetle (Tomicus piniperda) in the Forest of Orleans: distribution, damage and control. Revue Forestiere Francaise, 40(1):13-19

Scarr TA, Czerwinski EJ, Howse GM, 1999. Pine shoot beetle damage in Ontario. In: Fosbroke SLC, Gottschalk KW, eds. Proceedings of the US Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species. USDA For. Serv. Gen. Tech. Rep. NE-266.

Schedl KE, 1981. Familie: Scolytidae (Borken- und Ambrosiakäfer). In: Freude H, Harde KW, Lohse GA, eds. Die Käfer Mitteleuropas. Vol. 10. Krefeld, Germany: Goecke & Evers, 34-99.

Schlyter F, Byers JA, Löfqvist J, Leufven A, Birgersson G, 1988. Reduction in the attack density of the bark beetles Ips typographus and Tomicus piniperda on host bark by verbenone inhibition of attraction to pheromone and host kairomone. In: Payne TL, Saarenmaa H, eds. Integrated Control of Scolytid Bark Beetles. Proc. of the IUFRO working party and XVII Int. Congr. Entomol. Symp., Vancouver, BC, Canada, July 4 1988, 53-68.

Schonherr J, 1972. A pheromone of the pine bark-beetle Myelophilus piniperda L. (Coleopt., Scolytidae). Zeitschrift fur Angewandte Entomologie, 71(4):410-413

Schroeder LM, 1988. Host recognition in Tomicus piniperda (Col: Scolytidae) and other bark beetles attacking Scots pine. Dissertation. Swedish University of Agricultural Sciences.

Schroeder LM, 1996. Interactions between the predators Thanasimus formicarius (Col.: Cleridae) and Rhizophagus depressus (Col.: Rhizophagidae), and the bark beetle Tomicus piniperda (Col.: Scolytidae). Entomophaga, 41(1):63-75; 37 ref.

Schroeder LM, 1997. Oviposition behavior and reproductive success of the cerambycid Acanthocinus aedilis in the presence and absence of the bark beetle Tomicus piniperda. Entomologia Experimentalis et Applicata, 82(1):9-17; 47 ref.

Schroeder LM, Eidmann HH, 1993. Attacks of bark- and wood-boring Coleoptera on snow-broken conifers over a two-year period. Scandinavian Journal of Forest Research, 8(2):257-265; 19 ref.

Schroeder LM, Risberg B, 1989. Establishment of a new brood in Tomicus piniperda (L.) (Col., Scolytidae) after a second hibernation. Journal of Applied Entomology, 108(1):27-34

Schroeder LM, Weslien J, 1994. Interactions between the phloem-feeding species Tomicus piniperda (Col.: Scolytidae) and Acanthocinus aedilis (Col.: Cerambycidae), and the predator Thanasimus formicarius (Col.: Cleridae) with special reference to brood production. Entomophaga, 39(2):149-157

Schönherr J, 1970. Stridulation einheimischer Borkenkäfr. Zeitschr angew Ent., 65:309-312.

Sierpinski Z, 1969. The economic importance of secondary pests in Scots Pine stands on former agricultural land. Prace Inst. Bad. Lesn., No. 373/375, 109-27.

Sierpinski Z, 1971. Secondary insect pests of Scots Pine in stands affected by industrial air pollution with nitrogenous compounds. Sylwan, 115(10):11-18.

Solheim H, Langstrom B, 1991. Blue-stain fungi associated with Tomicus piniperda in Sweden and preliminary observations on their pathogenicity. Annales des Sciences Forestieres, 48(2):149-156

Solheim H, Långström B, Hellqvist C, 1993. Pathogenicity of the blue-stain fungi Leptographium wingfieldii and Ophiostoma minus to Scots pine: effect of tree pruning and inoculum density. Canadian Journal of Forest Research, 23(7):1438-1443; 45 ref.

Song JiYing, Luo YouQing, Shi Juan, Yan XiaoSu, Chen WeiPing, Jiang Ping, 2005. Niche characteristics of boring insects within Pinus massoniana infected by Bursaphelenchus xylophilus. Journal of Beijing Forestry University, 27(6):108-111.

Song LiWen, Ren BingZhong, Sun ShouHui, Zhang XiaoJun, Zhang KaiPeng, Gao ChangQi, 2005. Field trapping test on semiochemicals of pine shoot beetle Tomicus piniperda L. Journal of Northeast Forestry University, 33(1):38-40.

Speight MR, Wainhouse D, 1989. Ecology and management of forest insects. Oxford, UK: Clarendon Press, x + 374 pp.

Spessivtseff P, 1922. Bestämingstabell över svenska barkborrar (Bestimmungstabelle der schwedischen Borkenkäfer). Medd Stat Skogsförsöksanstalt, 19(6):453-492.

Srot M, 1968. The bionomics of Myelophilus piniperda, and new methods of chemical pest control. Lesn. Cas., Praha, 14(4):375-390.

Steyrer G, Cech TL, Krehan H, Perny B, Stagl WG, Tomiczek C, 2002. Forest damage monitoring in Austria - results 2000. Forstschutz Aktuell., No. 27:1-29.

Szmidt A, 1983. Possible control of Blastophagus [Tomicus] piniperda by spraying of unbarked Scots pine roundwood. II. [Mozliwosc zwalczania cetynca wiekszego (Blastophagus piniperda L.) za pomoca deszczowania nie korowanego surowca sosnowego. Cz. II.] Folia Forestalia Polonica, A Lesnictwo, No. 25, 243-251.

Tomalak M, Michalski J, Grocholski J, 1984. The influence of nematodes on the structure of genitalia of Tomicus piniperda (Coleoptera: Scolytidae). Journal of Invertebrate Pathology, 43(3):358-362

Toth J, 1971. The life history of Myelophilus [Tomicus] piniperda and injury caused by it in Hungary. Erdeszeti-Kutatasok, 67(1):277-284.

Triggiani O, 1983. Heavy attacks by Tomicus piniperda L. (Col.: Scolytidae) in pinewoods on the Ionian coast. (Preliminary note.). Atti XIII Congresso Nazionale Italiano di Entomologia. Istituto di Entomologia Agraria e Apicoltura, Universita di Torino Turin Italy, 391-398

Uusvaara O, Löyttyniemi K, 1978. The effect of injuries caused by summer storage of sawlogs on the quality and value of sawn timber. Metsantutkimuslaitoksen Julkaisuja, 89(3):1-61

Vite JP, Volz HA, Paiva MR, 1986. Semiochemicals in host selection and colonization of pine trees by the pine shoot beetle Tomicus piniperda. Naturwissenschaften, 73(1):39-40

Voolma K, Luik A, 2001. Outbreaks of Bupalus piniaria (L.) (Lepidoptera, Geometridae) and Pissodes piniphilus (Herbst) (Coleoptera, Curculionidae) in Estonia. Journal of Forest Science, 47(Special Issue 2):171-173; 17 ref.

Winter TG, Evans HF, 1990. Insects and storm-damaged conifers. Research Information Note - Forestry Commission Research Division UK, No. 173:3 pp.

Ye H, Lieutier F, 1997. Shoot aggregation by Tomicus piniperda L. (Col., Scolytidae) in Southwestern China. Ann. Sci. For., 54:635-641.

Ye Hui, 1991. On the bionomy of Tomicus piniperda (L.) (Col., Scolytidae) in Kunming region of China. J. Appl. Ent., 112:366-369.

Ye Hui, 1996. Studies on the biology of Tomicus piniperda (Col., Scolytidae) in the shoot-feeding period. Acta Entomologica Sinica, 39(1):58-62; 14 ref.

Ye Hui, Ding Xuedong, 1999. Impacts of Tomicus minor on distribution and reproduction of Tomicus piniperda (Col., Scolytidae) on trunk of the living Pinus yunnanensis tree. J. Appl. Ent., 123:329-333.

Yuksel B, Eroglu M, Bilgili E, 2001. Thanasimus formicarius (L.) (Coleoptera: Cleridae) in Scotch pine and eastern spruce forest in Turkey, its relationship with its prey and their importance in biological control. [Sariicam ve dogu ladini ormanlarinda Thanasimus formicarius (L.) (Coleoptera: Cleridae) 'un basliica avlarii ile iliskileri ve biyolojik mucadeledeki rolu.] Orman-Muhendisligi, 38(11):8-14.

Zhang QingHe, 2001. Olfactory recognition and behavioural avoidance of angiosperm non-host volatiles by conifer bark beetles. Acta Universitatis Agriculturae Sueciae - Agraria, No. 264:18 pp.; 50 ref.

Zhao Tao, 2003. Performance of the pine shoot beetles, Tomicus piniperda L. and T. minor (Hart.) (Coleoptera: Scolytidae) on their principal and secondary hosts, Pinus yunnanensis and Pinus armandii in Yunnan, China. MSc thesis. Uppsala, Sweden: Swedish University of Agricultural Sciences (SLU).

Distribution Maps

Top of page
You can pan and zoom the map
Save map