Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Thrips imaginis
(plague thrips)

Toolbox

Datasheet

Thrips imaginis (plague thrips)

Summary

  • Last modified
  • 22 November 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Thrips imaginis
  • Preferred Common Name
  • plague thrips
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • T. imaginis is highly polyphagous, can breed fast and can be carried long distances on the wind. Its habits mean that it can remain hidden with flowers and so can easily go undetected in quarantine. It therefore has the potential to be a major pest a...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
T. imaginis: adult female feeding on pollen in a flower.
TitleAdult
CaptionT. imaginis: adult female feeding on pollen in a flower.
CopyrightW.D.J. Kirk
T. imaginis: adult female feeding on pollen in a flower.
AdultT. imaginis: adult female feeding on pollen in a flower.W.D.J. Kirk
T. imaginis: adult female.
TitleAdult
CaptionT. imaginis: adult female.
CopyrightW.D.J. Kirk
T. imaginis: adult female.
AdultT. imaginis: adult female.W.D.J. Kirk

Identity

Top of page

Preferred Scientific Name

  • Thrips imaginis Bagnall, 1926

Preferred Common Name

  • plague thrips

Other Scientific Names

  • Thrips apertus Kelly & Mayne, 1934
  • Thrips aureolus Girault, 1928
  • Thrips fortis Bagnall, 1926
  • Thrips io Girault, 1927

International Common Names

  • English: apple blossom thrips; apple thrips; Australian thrips; plague, thrips

EPPO code

  • THRIIM (Thrips imaginis)

Summary of Invasiveness

Top of page T. imaginis is highly polyphagous, can breed fast and can be carried long distances on the wind. Its habits mean that it can remain hidden with flowers and so can easily go undetected in quarantine. It therefore has the potential to be a major pest and to spread rapidly by means of horticultural trade. It is surprising that outside Australia it has so far only managed to establish in New Caledonia. A possible reason for it not spreading is that it is still easy to control with insecticides. However, the arrival in Australia of Frankliniella occidentalis, which is highly insecticide resistant, means that T. imaginis may be jointly exposed to more insecticide treatments and the selection pressure for resistance may be increased. T. imaginis is on the EPPO Alert List because it may present a phytosanitary risk for the EPPO region.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Thysanoptera
  •                         Family: Thripidae
  •                             Genus: Thrips
  •                                 Species: Thrips imaginis

Notes on Taxonomy and Nomenclature

Top of page T. imaginis was first described by Bagnall in 1926 (Bagnall, 1926). The adults are highly variable in colour and size, and this has led to many forms being incorrectly described as separate species. These have now been synonymized (Mound and Houston, 1987). However, the tropical populations may be biologically distinct (Mound and Gillespie, 1997). There has been no detailed study of the variation within the species.

In the past in Australia, some reports of crop damage by thrips appear to have confused or misidentified the species that were abundant in flowers, such as T. imaginis, Thrips australis, Thrips tabaci and Frankliniella schultzei. As a result, some early reports of damage may have been attributed to the wrong species. Thrips species are often not distinguished by growers and are collectively described as 'thrips' or 'thrip'. When these species occur together it is not easy to distinguish which is responsible for any damage.

Description

Top of page The eggs are oval or kidney-shaped, white to clear and approximately 0.3 mm long. They are inserted into plant tissue. As the egg develops, two red eyes become visible within it.

On emergence, the bodies of the larvae are white to clear with red eyes. The bodies quickly turn yellow to orange. Microscopic features of sclerotization and the lengths of setae can be used to distinguish the species and separate the two instars (Kirk, 1987a; Milne et al., 1997). The larvae grow to a length of approximately 1 mm.

The propupae are whitish with short, forward-pointing antennae and short wing buds. The pupae are also whitish, but the antennae point backwards over the head and the wing buds are longer. Both are approximately 1 mm long.

The adult females vary from pale-yellow through to dark-brown, but are typically golden-brown. The adult males are less variable and are typically pale-yellow. The body size of the adult females is variable, but is typically just over 1 mm long, whereas the males are just under 1 mm long. Like most thrips, the adults have two pairs of strap-like fringed wings. T. imaginis has antennae with seven segments and a wide gap in the row of setae on the first vein of the forewing. In live or freshly killed specimens, the ocelli are red.

Distribution

Top of page T. imaginis is common to abundant in the non-arid parts of Australia, but it has also been found across the arid centre of Australia wherever Acacia or Maireana were in flower (Mound, 1997). The distribution has not been mapped in detail. Only a few specimens have been recorded from Fiji and New Zealand (Mound, 1983). Outside Australia, the species has only established in New Caledonia (Mound and Kibby, 1998). It is not clear why the species has not established more widely, considering that other similar species have become cosmopolitan pests (Mound, 1997; Kirk and Terry, 2003). It has not been possible to locate the original specimens or substantiate a record from Papua New Guinea (Palmer, 1992), it is therefore possible that this is an error.

The distribution map includes records based on specimens of T. imaginis from the collection in the Natural History Museum (London, UK): dates of collection are noted in the List of countries (NHM, various dates).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 23 Apr 2020

History of Introduction and Spread

Top of page T. imaginis breeds in many Australian native flowers and is abundant in Australia, so it appears to be native to that country. However, T. imaginis is unlike other native thrips in that it also breeds in many non-native flowers, so it is possible that it originated from outside Australia, but an alternative origin has not been discovered. T. imaginis appears to have spread from Australia to New Caledonia, Fiji and New Zealand (Mound, 1983), but is only known to have established in New Caledonia (Mound and Kibby, 1998).

Risk of Introduction

Top of page Introduction on flowering plant material is the most likely route of entry to other countries. The eggs, larvae and adults within flowers can easily be overlooked. The species is frequently abundant so it is likely to be intercepted in flowers exported from Australia. It is also possible that the larvae or pupae could be transported in soil or growing medium accompanying plants in flower.

Habitat

Top of page T. imaginis is common in a wide range of habitats, breeding on many native plants and non-native crops. Large numbers can be caught in traps well away from host plants and the species appears to be carried on the wind between habitats.

Hosts/Species Affected

Top of page During outbreaks, the species is so abundant that the adults can be recorded on virtually any species of plant. However, the species also has a very wide host range. It breeds on a wide range of native and non-native plants, including species in the Asteraceae, Fabaceae, Mimosaceae, Myrtaceae, Proteaceae and Rosaceae (Steele, 1935; Kirk, 1987a). The adults land in response to colours, and white, yellow or blue flowers tend to attract more thrips than red flowers (Lloyd, 1973; Kirk, 1984).

Host Plants and Other Plants Affected

Top of page

Growth Stages

Top of page Flowering stage, Fruiting stage

Symptoms

Top of page The feeding of the larvae and adults, and oviposition by adult females causes the damage. It is not distinguishable from that of other flower-dwelling thrips.

Feeding damage removes the contents of cells to produce small patches with a silver appearance, an effect known as 'silvering'. On coloured petals, white or silver patches can appear where the pigment has been removed. After feeding, the adults and larvae produce anal droplets that dry to produce small dark spots. These are the same colour as the tissue, but darker, so that the spots on a purple petal would appear dark-purple. However, some flowers can contain large numbers of thrips with few, if any, signs of damage. Feeding at an early stage of bud development can produce stunted or deformed flowers and feeding at the end of flowering can produce stunted and deformed fruit.

Heavy infestations on apple blossom cause brown streaks on the flower, and the stamens and pistils wither (Evans, 1932; Andrewartha and Kilpatrick, 1951; Lloyd, 1973). Blossoms can be destroyed, turning brown and shrivelling without opening. If the flowers open, the petals can be stunted, with small concave petals, and can hang on for days or weeks longer than usual.

On strawberries, large numbers of thrips cause the flowers to fall. They can also cause malformed fruit, known as cat-face damage, but this can also be caused by poor pollination in cool conditions (Houlding, 1995).

T. imaginis is not known to transmit any tospoviruses, such as tomato spotted wilt virus (TSWV) (Day and Irzykiewicz, 1954; Ullman et al., 1997).

T. imaginis and other flower thrips can transmit prunus necrotic ringspot virus (PNRSV) via infected pollen in the laboratory, and there is circumstantial evidence that these thrips may be an important cause of new tree infections in stonefruit (Milne and Walter, 2003).

List of Symptoms/Signs

Top of page
SignLife StagesType
Fruit / abnormal shape
Fruit / reduced size
Inflorescence / blight; necrosis
Inflorescence / discoloration (non-graminaceous plants)
Inflorescence / dwarfing; stunting
Inflorescence / external feeding
Inflorescence / fall or shedding
Inflorescence / frass visible
Inflorescence / lesions; flecking; streaks (not Poaceae)
Leaves / external feeding
Leaves / frass visible
Whole plant / external feeding
Whole plant / frass visible

Biology and Ecology

Top of page Genetics

Genetic variation within the species has not been studied. However, the mitochondrial genome has been sequenced and shows several unusual features (Shao and Barker, 2003).

Physiology and Phenology

The adult females vary from pale-yellow through to dark-brown, but are typically golden-brown. Darker forms tend to be larger than the paler ones and are associated with cooler weather (Evans, 1932; Steele, 1935; Kirk, 1984). The colour variation is probably a result of the temperature during the immature stages, but genetic variation cannot be ruled out. The adult males are less variable and are typically pale-yellow. There has been no detailed study of the variation within the species.

Reproductive Biology

The egg stage is followed by two larval instars: one propupal instar and one pupal instar and the adult stage. Populations include both females and males. Fertilized eggs are diploid and produce females, whereas unfertilized eggs are haploid and produce males by arrhenotoky.

The eggs are inserted into the plant tissue, mainly in and around the flowers. A few eggs are laid each day throughout most of the life of the adult females (Andrewartha, 1935). The larvae usually live within the flowers and feed on plant tissues, including pollen. In bright sunlight, they retreat within the flowers and are hard to see, but in dim light and at night they will crawl over the flower and are much more exposed (Kirk, 1984). The mature second-instar larvae drop from the plant and pupate in the soil (Andrewartha, 1934). The propupal and pupal stages are spent in the soil. Following emergence, the adults fly to flowers, where they feed on plant tissues, including pollen. The adults also tend to avoid bright sunlight when in flowers and are less obvious than the adults of Thrips tabaci. However, they fly readily in hot weather when shade temperatures exceed approximately 25°C (Evans, 1932). Although the larvae are usually found within flowers, they can also complete their development on tender leaves (Evans, 1932).

The development rate increases with temperature (Andrewartha, 1936). At 20°C, the egg, larval and pupal stages take 4.4 days, 5.7 days and 5.0 days respectively, whereas at 25°C they take 2.6 days, 3.8 days and 3.1 days. Neither eggs nor larvae develop at temperatures below approximately 8°C. Many generations are completed in a year. The adults live longer at lower temperatures. At 23°C, the adult females live for 23 to 66 days. They do not lay eggs at temperatures less than approximately 8°C (Andrewartha, 1935).

The adults and larvae require a high humidity to survive and soil moisture content is critical to the survival of the pupal stages. For example, at 23°C there is high pupal mortality when the soil moisture as a percentage of field capacity is below 25% or above 85% (Andrewartha, 1934).

The life cycle and population dynamics were studied over many years in Adelaide, South Australia, following large outbreaks in the 1930s (Davidson and Andrewartha, 1948a, b). The species is active throughout the year in the Adelaide area, but is claimed to spend the winter as inactive adults in cooler parts of Australia (Andrewartha and Steele, 1934). The population increases greatly in the spring and early summer (September to December) when many host flowers become available and the soil moisture is suitable for the pupal stages. A population crash in the summer (December to January) follows the peak, when hot, dry weather causes the disappearance of the abundant spring flowers and the soil dries out. There is a small peak in the autumn when the rains return before the numbers drop again over winter.

The size of the population peak in spring is variable, but in some years the species becomes so abundant that the adults are present on virtually all plants. Over 4000 thrips have been recorded in a single rose flower (Zeck and Noble, 1932). These massive outbreaks are the reason for the common name of 'plague thrips'. In these 'thrips years', susceptible crops flowering in the spring may be severely affected and even crops on which T. imaginis does not breed, can be infested by many adults. The size of outbreaks has been predicted accurately from four measures of rainfall and temperature in the preceding autumn and spring. Outbreaks occur across large geographical areas and appear to be particularly favoured by an early start to the growing season of the wild host plants in the previous autumn. The detailed interpretation of the 'Andrewartha-Birch equation' that was used to predict the size of the population peak in the Adelaide area (Andrewartha and Birch, 1954), has proved extremely controversial in the field of population dynamics, but the accuracy of the prediction has not been disputed (Kirk, 1997).

Environmental Requirements

The environmental determinants of the distribution of T. imaginis have not been studied. The species is abundant in parts of south-east Australia with mild winters and hot, dry summers, but it has also been found across the arid centre of Australia wherever Acacia or Maireana were in flower (Mound, 1997). It may not be able to survive cold winters.

Associations

T. imaginis is often found in flowers with other species of flower thrips, such as Thrips australis, Thrips tabaci and Frankliniella schultzei. Since the arrival of the western flower thrips, Frankliniella occidentalis in Australia in 1993 (Malipatil et al., 1993), this species has also started to be found in flowers along with T. imaginis (Steiner and Enkegaard, 2002).

T. imaginis can be abundant in the flowers of many native plants in Australia, but its role in the beneficial pollination of native plants is not known (Armstrong, 1979; Kirk, 1984; Williams et al., 2001). During outbreaks, it has been claimed to be so abundant in flowers that it reduces the availability of nectar and pollen for bees and so causes problems for beekeepers (Gosford, 1931; Evans, 1932; Andrewartha and Kilpatrick, 1951).

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Ceranisus menes Parasite Larvae

Notes on Natural Enemies

Top of page T. imaginis has been noted for apparently having very few natural enemies (Davidson and Andrewartha, 1948b). However, more recent studies in Australia have shown that the indigenous parasitic wasp, Ceranisus menes attacks the larvae and outbreaks of pathogenic fungi, such as Entomophthora sp., have been recorded in the field (MY Steiner, National Centre for Greenhouse Horticulture, New South Wales, Australia, personal communication, 2003). It is likely that predators in Australia include bugs (Campylomma and Orius), thrips (Desmothrips and Haplothrips), mites and ants (Iridomyrmex sp.) (Kirk, 1984).

Means of Movement and Dispersal

Top of page Natural Dispersal

Adult T. imaginis flies actively. It can be carried long distances on the wind and may even have been transported from Australia to New Zealand by this means (Mound, 1983).

Movement in Trade

In view of the abundance of T. imaginis, it is likely that it will be transported on Australian cut flowers or flowering plants. Specimens have been intercepted in the UK on cut flowers of Grevillea and in the Netherlands on Banksia imported from Australia (Vierbergen, 1999). Thrips can be transported in the flowers of species for which thrips are not considered to be a pest. They can also be found in flowers with no obvious signs of damage.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Flowers/Inflorescences/Cones/Calyx adults; eggs; larvae; pupae Yes Yes Pest or symptoms not visible to the naked eye but usually visible under light microscope
Growing medium accompanying plants larvae; pupae Yes Yes Pest or symptoms not visible to the naked eye but usually visible under light microscope
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs/Tubers/Corms/Rhizomes
Fruits (inc. pods)
Leaves
Roots
Seedlings/Micropropagated plants
Stems (above ground)/Shoots/Trunks/Branches
True seeds (inc. grain)
Wood

Wood Packaging

Top of page
Wood Packaging not known to carry the pest in trade/transport
Loose wood packing material
Non-wood
Processed or treated wood
Solid wood packing material with bark
Solid wood packing material without bark

Impact Summary

Top of page
CategoryImpact
Animal/plant collections None
Animal/plant products None
Biodiversity (generally) None
Crop production Negative
Environment (generally) None
Fisheries / aquaculture None
Forestry production None
Human health None
Livestock production None
Native fauna None
Native flora None
Rare/protected species None
Tourism None
Trade/international relations None
Transport/travel None

Impact

Top of page T. imaginis has caused severe losses to apples during outbreaks in southern Australia, particularly in the early twentieth century. For example, there were frequent apple crop losses of 60-70% in New South Wales, Victoria, South Australia and Western Australia during the period 1914-1931 (Evans, 1932), and there was a 56% loss of apples in South Australia in the 1950-1951 season (Kilpatrick, 1955). However, T, imaginis is currently easily controlled with insecticides, unlike the newly arrived Frankliniella occidentalis, which shows high insecticide resistance.

Although T. imaginis is stated to be a minor pest of many crops in Australia, there are few studies that establish economic damage. Early reports of T. imaginis as a pest of cotton appear to have been based on the misidentification of other species and more recent studies indicate that it is not a pest of cotton (Wilson and Bauer, 1993). T. imaginis has been listed as a pest of citrus, but the current opinion is that it does not cause economic damage to the fruit (Broughton and De Lima, 2002).

Thrips can be abundant (up to 500 per bunch) on waxflowers (Chamelaucium spp.) and other native wild flowers grown for export (Woods et al., 1996; Seaton and Woods, 2003). They do not damage the flowers, but they pose a high quarantine risk if left unchecked.

Although T. imaginis is generally considered as a potential pest, it eats the eggs of the two-spotted spider mites (Tetranychus urticae) and is potentially an important beneficial predator of spider mites on cotton (Wilson et al., 1996).

Social Impact

Top of page In some years, vast outbreaks occur and at these times T. imaginis becomes a nuisance to people, even in the middle of cities (Bailey, 1936). The thrips become obvious on car windscreens and on laundry on washing lines. They settle on people's faces and on the exposed skin of bathers, which can cause an itching sensation or even a rash. They also get in people's eyes.

Detection and Inspection

Top of page Thrips adults and larvae can be detected by tapping flowers onto the palm of the hand or over a dark background, which shows up pale larvae. A more thorough search can be done by submerging the buds and flowers in 70% alcohol and then dissecting them under a stereoscopic microscope.


The adults respond in flight to colours and scents (Kirk, 1984; 1987b), so flying adults could be detected by white, blue or yellow sticky traps.

Similarities to Other Species/Conditions

Top of page To the naked eye, T. imaginis looks very similar to the other species of thrips that can be found in Australian flowers, such as Thrips australis, Thrips tabaci, Frankliniella occidentalis and Frankliniella schultzei. Identification keys are available for the separation of adults (Mound and Walker, 1982; Mound and Gillespie, 1997; Mound and Kibby, 1998) and larvae (Kirk, 1987a; Milne et al., 1997). These keys require specimens to be mounted on microscope slides.

The adults can be readily separated from other similar pest species by a few characteristics that can be seen with a good stereoscopic microscope. The presence of seven antennal segments, as opposed to eight, separates T. imaginis from F. occidentalis and F. schultzei. A forewing first vein with a wide gap in the row of setae, as opposed to an evenly spaced row of setae, separates T. imaginis from T. australis, F. occidentalis and F. schultzei. In live or freshly killed specimens, T. imaginis has red ocelli, whereas T. tabaci has grey or brown ocelli.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Phytosanitary Measures

T. imaginis is on the EPPO Alert List because it may present a phytosanitary risk for the EPPO region.

Cultural Control and Sanitary Methods

T. imaginis normally migrates into a crop from outside, so cultural control or sanitary methods will have little or no impact. However, the control of flowering weeds in and around orchards may help by removing potential host plants.

Host-Plant Resistance

Flowering time in relation to peak numbers can affect the amount of damage. Some varieties of apple have been found to be more resistant than others (Evans, 1932).

Biological Control

No biological control measures have been developed against this species.

Chemical Control

T. imaginis is still easily controlled with insecticides, such as dimethoate, tau-fluvalinate or spinosad, and several are approved for T. imaginis or thrips in general on a range of crops in Australia.

The postharvest disinfestation of waxflowers was achieved by washing flowers in water with the addition of a non-ionic surfactant or petroleum oil and shaking off the excess. The addition of deltamethrin, fluvalinate or bifenthrin enhanced the control (Seaton et al., 1993).

Early Warning Systems

No early warning system is currently in operation. However, an equation was developed in the 1940s for the Adelaide area of South Australia that accurately predicted the size of outbreaks from four measures of rainfall and temperature in the preceding autumn and spring (Davidson and Andrewartha, 1948b).

Field Monitoring/Economic Threshold Levels

Thrips can be easily monitored in the field by tapping a flower against the palm of the hand and counting the number of thrips that are dislodged. More than 20 thrips per flower are needed to cause damage to apple blossom in the cooler, moist highland districts of New South Wales, whereas only four or five per flower can reduce setting in dry inland districts (Lloyd, 1973). A spray threshold of six to eight per flower following warm dry weather during the pink to full bloom period has been recommended in New South Wales (Johnson et al., 1980). In strawberries in Western Australia, serious damage occurs when there are more than ten thrips per flower (Houlding, 1995). Insecticide treatment when thrips reached a level of 40% of flowers with ten or more adult thrips, kept strawberry fruit damage to below economic threshold levels (Steiner and Enkegaard, 2002). Waxflowers (Chamelaucium spp.) should be treated once the number of thrips exceeds ten per bunch (Seaton and Woods, 2003).

IPM Programmes

No IPM programmes have been developed.
 

References

Top of page

Andrewartha HG, 1934. Thrips investigation 5. On the effect of soil moisture on the viability of the pupal stages of Thrips imaginis Bagnall. Journal of the Council for Scientific and Industrial Research Australia, 7:239-244.

Andrewartha HG, 1935. Thrips investigation 7. On the effect of temperature and food upon egg production and the length of adult life of Thrips imaginis Bagnall. Journal of the Council for Scientific and Industrial Research Australia, 8:281-288.

Andrewartha HG; Birch LC, 1954. The distribution and abundance of animals. Chicago, USA: University of Chicago Press.

Andrewartha HG; Kilpatrick DT, 1951. The apple thrips. Journal of Agriculture of South Australia, 54:586-592.

Andrewartha HG; Steele HV, 1934. Thrips investigation 4. Some observations on the fluctuations in the numbers of Thrips imaginis Bagnall, in the vicinity of Melbourne during the period 1932 to 1934. Journal of the Council for Scientific and Industrial Research Australia, 7:234-238.

Andrewartha HV, 1936. Thrips investigation 8. The influence of temperature on the rate of development of the immature stages of Thrips imaginis Bagnall and Haplothrips victoriensis Bagnall. Journal of the Council for Scientific and Industrial Research Australia, 9:57-64.

Armstrong JA, 1979. Biotic pollination mechanisms in the Australian flora - a review. New Zealand Journal of Botany, 17:467-508.

Bagnall RS, 1926. Brief descriptions of new Thysanoptera XVII. Annals and Magazine of Natural History, Series 9, 18:98-114.

Bailey SF, 1936. Thrips attacking Man. Canadian Entomologist, 68:95-98.

Bournier JP; Mound LA, 2000. Inventaire commenté des Thysanoptères de Nouvelle Calédonie. Bulletin de la Société Entomologique de France, 105:231-240.

Broughton S; De Lima F, 2002. Monitoring and control of thrips in citrus. Government of Western Australia Department of Agriculture Farmnote, 7:1-4.

Davidson J; Andrewartha HG, 1948. Annual trends in a natural population of Thrips imaginis (Thysanoptera). Journal of Animal Ecology, 17:193-199.

Davidson J; Andrewartha HG, 1948. The influence of rainfall, evaporation and atmospheric temperature on fluctuations in size of a natural population of Thrips imaginis (Thysanoptera). Journal of Animal Ecology, 17:200-222.

Day MF; Irzykiewicz H, 1954. Physiological studies on thrips in relation to transmission of tomato spotted wilt virus. Australian Journal of Biological Sciences, 7:274-281.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Evans JW, 1932. The bionomics and economic importance of Thrips imaginis. Pamphlet of the Council for Scientific and Industrial Research Australia, 30:1-48.

Gosford, 1931. Thrip infestation. Australasian Beekeeper, 33:130.

Houlding B, 1995. Mite and insect pests of strawberries. Government of Western Australia Department of Agriculture Farmnote, 71:1-7.

Johnson JF; Penrose LJ; Thwaite WG, 1980. Deciduous fruits spray calendar (volume 20), season 1980-1981. New South Wales, Australia: Department of Agriculture.

Kilpatrick DT, 1955. There is an answer to biennial bearing in apples. Journal of the Department of Agriculture, South Australia, 58:471-474.

Kirk WDJ, 1984. Ecological studies on Thrips imaginis Bagnall (Thysanoptera) in flowers of Echium plantagineum L. in Australia. Australian Journal of Ecology, 9(1):9-18

Kirk WDJ, 1987. A key to the larvae of some common Australian flower thrips (Insecta: Thysanoptera), with a host-plant survey. Australian Journal of Zoology, 35(2):173-185.

Kirk WDJ, 1987. Effects of trap size and scent on catches of Thrips imaginis Bagnall (Thysanoptera: Thripidae). Journal of the Australian Entomological Society, 26(4):299-302

Kirk WDJ, 1997. Distribution, abundance and population dynamics. In: Lewis T, ed. Thrips as Crop Pests. Wallingford, UK: CAB International, 217-257.

Kirk WDJ; Terry LI, 2003. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agricultural and Forest Entomology, 5:301-310.

Lloyd NC, 1973. Plague thrips a pest of apples. Agricultural Gazette of New South Wales, 84(4):249-251

Malipatil MB; Postle AC; Osmelak JA; Hill M; Moran J, 1993. First record of Frankliniella occidentalis (Pergande) in Australia (Thysanoptera: Thripidae). Journal of the Australian Entomological Society, 32:378.

Milne JR; Milne M; Walter GH, 1997. A key to larval thrips (Thysanoptera) from granite belt stonefruit trees and a first description of Pseudanaphothrips achaetus (Bagnall) larvae. Australian Journal of Entomology, 36(4):319-326; 15 ref.

Milne JR; Walter GH, 2003. The coincidence of thrips and dispersed pollen in PNRSV-infected stonefruit orchards - a precondition for thrips-mediated transmission via infected pollen. Annals of Applied Biology, 142:291-298.

Mound LA, 1983. Natural and disrupted patterns of geographical distribution in Thysanoptera (Insecta). Journal of Biogeography, 10:119-133.

Mound LA, 1997. Biological diversity. In: Lewis T, ed. Thrips as crop pests. Wallingford, UK: CAB International, 197-215.

Mound LA; Gillespie P, 1997. Identification Guide to Thrips Associated with Crops in Australia. Orange, Australia: NSW Agriculture.

Mound LA; Houston KJ, 1987. An annotated check-list of Thysanoptera from Australia. Occasional Papers on Systematic Entomology, No. 4:28pp.

Mound LA; Kibby G, 1998. Thysanoptera: An Identification Guide. Wallingford, UK: CAB International.

Mound LA; Walker AK, 1982. Terebrantia (Insecta: Thysanoptera). Fauna of New Zealand, No. 1, 113 pp.

Palmer JM, 1992. Thrips (Thysanoptera) from Pakistan to the Pacific: a review. Bulletin of the British Museum (Natural History), Entomology Series, 61(1):76 pp.

Seaton K; Woods B, 2003. Insect control of waxflowers. Government of Western Australia Department of Agriculture Farmnote, 40:1-4.

Seaton KA; Woods WM; Walsh PG, 1993. Postharvest disinfestation of arthropods from field-grown Geraldton wax (Chamelaucium uncinatum Schauer). New Zealand Journal of Crop and Horticultural Science, 21(2):147-151

Shao RenFu; Barker SC, 2003. The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Molecular Biology and Evolution, 20(3):362-370.

Steele HV, 1935. Thrips investigation: some common Thysanoptera in Australia. Pamphlet of the Council for Scientific and Industrial Research, Commonwealth of Australia, 54:1-59.

Steiner M; Enkegaard E, 2002. Progress towards integrated pest management for thrips (Thysanoptera: Thripidae) in strawberries in Australia. Bulletin OILB/SROP, 25:253-256.

Ullman DE; Sherwood JL; German TL, 1997. Thrips as vectors of plant pathogens. Thrips as crop pests., 539-565; 7 pp. of ref.

Vierbergen G, 1999. Risks of Thysanoptera detected on imported plant products: the Dutch experience. Proceedings: Sixth International Symposium on Thysanoptera, Akdeniz University, Antalya, Turkey, 27 April-1 May, 1998., 157-162; 11 ref.

Williams GA; Adam P; Mound LA, 2001. Thrips (Thysanoptera) pollination in Australian subtropical rainforests, with particular reference to pollination of Wilkiea huegeliana (Monimiaceae). Journal of Natural History, 35:1-21.

Wilson LJ; Bauer LR, 1993. Species composition and seasonal abundance of thrips (Thysanoptera) on cotton in the Namoi Valley. Journal of the Australian Entomological Society, 32(2):187-192

Wilson LJ; Bauer LR; Walter GH, 1996. 'Phytophagous' thrips are facultative predators of twospotted spider mites (Acari: Tetranychidae) on cotton in Australia. Bulletin of Entomological Research, 86(3):297-305; 46 ref.

Woods B; Seaton K; Grimm M, 1996. Pests of export wildflowers and proteas. Government of Western Australia Department of Agriculture Farmnote, 1:1-5.

Zeck EH; Noble NS, 1932. Thrips - experiments for the control of Thrips imaginis. Agricultural Gazette of New South Wales, 43:231-236.

Distribution References

Bournier JP, Mound LA, 2000. (Inventaire commenté des Thysanoptères de Nouvelle Calédonie). In: Bulletin de la Société Entomologique de France, 105 231-240.

CABI, Undated. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

EPPO, 2020. EPPO Global database. In: EPPO Global database, Paris, France: EPPO.

Kirk W D J, 1987. A key to the larvae of some common Australian flower thrips (Insecta: Thysanoptera), with a host-plant survey. Australian Journal of Zoology. 35 (2), 173-185. DOI:10.1071/ZO9870173

Milne J R, Milne M, Walter G H, 1997. A key to larval thrips (Thysanoptera) from granite belt stonefruit trees and a first description of Pseudanaphothrips achaetus (Bagnall) larvae. Australian Journal of Entomology. 36 (4), 319-326.

Mound L A, Houston K J, 1987. An annotated check-list of Thysanoptera from Australia. In: Occasional Papers on Systematic Entomology, 28pp.

Mound L A, Walker A K, 1982. Terebrantia (Insecta: Thysanoptera). In: Fauna of New Zealand, 113 pp.

NHM, 1979. Specimen record from the collection in the Natural History Museum (London, UK)., London, UK: Natural History Museum (London).

NHM, 1983. Specimen record from the collection in the Natural History Museum (London, UK)., London, UK: Natural History Museum (London).

Distribution Maps

Top of page
You can pan and zoom the map
Save map