Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Tetranychus urticae
(two-spotted spider mite)

Toolbox

Datasheet

Tetranychus urticae (two-spotted spider mite)

Summary

  • Last modified
  • 19 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Tetranychus urticae
  • Preferred Common Name
  • two-spotted spider mite
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Chelicerata
  •         Class: Arachnida
  • Summary of Invasiveness
  • T. urticae is a highly polyphagous, cosmopolitan species, which is readily spread on the wind. Under optimum conditions, it reaches a high population density, and its presence can cause a reduction in crop yield.

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Tetranychus urticae (two-spotted spider mite); colour enhannced SEM of an adult mite.
TitleAdult
CaptionTetranychus urticae (two-spotted spider mite); colour enhannced SEM of an adult mite.
CopyrightPublic Domain - Released by the United States Dept of Agrculture/Agricultural Research Service (USDA-ARS)/original image by the Electron and Confocal Microscopy Unit
Tetranychus urticae (two-spotted spider mite); colour enhannced SEM of an adult mite.
AdultTetranychus urticae (two-spotted spider mite); colour enhannced SEM of an adult mite.Public Domain - Released by the United States Dept of Agrculture/Agricultural Research Service (USDA-ARS)/original image by the Electron and Confocal Microscopy Unit
Tetranychus urticae (two-spotted spider mite); adult male (smaller individual) and adult female.
TitleAdults
CaptionTetranychus urticae (two-spotted spider mite); adult male (smaller individual) and adult female.
Copyright©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); adult male (smaller individual) and adult female.
AdultsTetranychus urticae (two-spotted spider mite); adult male (smaller individual) and adult female.©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); adult male.
TitleAdult male
CaptionTetranychus urticae (two-spotted spider mite); adult male.
Copyright©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); adult male.
Adult maleTetranychus urticae (two-spotted spider mite); adult male.©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); adult female with eggs.
TitleAdult female
CaptionTetranychus urticae (two-spotted spider mite); adult female with eggs.
Copyright©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); adult female with eggs.
Adult femaleTetranychus urticae (two-spotted spider mite); adult female with eggs.©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); adult female with eggs and a larva.
TitleAdult female
CaptionTetranychus urticae (two-spotted spider mite); adult female with eggs and a larva.
Copyright©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); adult female with eggs and a larva.
Adult femaleTetranychus urticae (two-spotted spider mite); adult female with eggs and a larva.©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); overwintering (diapausing) females around an apple calyx.
TitleDiapausing females
CaptionTetranychus urticae (two-spotted spider mite); overwintering (diapausing) females around an apple calyx.
Copyright©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); overwintering (diapausing) females around an apple calyx.
Diapausing femalesTetranychus urticae (two-spotted spider mite); overwintering (diapausing) females around an apple calyx.©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); speckling on a strawberry leaf.
TitleDamage symptoms
CaptionTetranychus urticae (two-spotted spider mite); speckling on a strawberry leaf.
Copyright©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); speckling on a strawberry leaf.
Damage symptomsTetranychus urticae (two-spotted spider mite); speckling on a strawberry leaf.©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); speckling on hop leaves.
TitleDamage symptoms
CaptionTetranychus urticae (two-spotted spider mite); speckling on hop leaves.
Copyright©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); speckling on hop leaves.
Damage symptomsTetranychus urticae (two-spotted spider mite); speckling on hop leaves.©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); webbing on strawberry leaves.
TitleWebbing
CaptionTetranychus urticae (two-spotted spider mite); webbing on strawberry leaves.
Copyright©Horticulture Research International
Tetranychus urticae (two-spotted spider mite); webbing on strawberry leaves.
WebbingTetranychus urticae (two-spotted spider mite); webbing on strawberry leaves.©Horticulture Research International
Phytoseiulus persimilis predatory mites (orange-red individuals), in a colony of T. urticae.
TitleNatural enemy
CaptionPhytoseiulus persimilis predatory mites (orange-red individuals), in a colony of T. urticae.
Copyright©Horticulture Research International
Phytoseiulus persimilis predatory mites (orange-red individuals), in a colony of T. urticae.
Natural enemyPhytoseiulus persimilis predatory mites (orange-red individuals), in a colony of T. urticae.©Horticulture Research International

Identity

Top of page

Preferred Scientific Name

  • Tetranychus urticae Koch

Preferred Common Name

  • two-spotted spider mite

Other Scientific Names

  • Eotetranychus scabrisetus
  • Epitetranychus althaeae
  • Epitetranychus bimaculatus
  • Epitetranychus telarius
  • Paratetranychus althaeae von Hanstein
  • Tetranychus althaeae von Hanstein
  • Tetranychus bimaculatus Harvey
  • Tetranychus fragariae
  • Tetranychus manihotis
  • Tetranychus russeolus
  • Tetranychus scabrisetus
  • Tetranychus telarius *

International Common Names

  • English: glasshouse red spider mite; greenhouse red spider mite; hop red spider mite; two spotted mite; two spotted spider mite; twospotted spider mite
  • Spanish: ácaro común; arañita de las legumbres; aranuela de la patata
  • French: araignée rouge du cotonnier; l'acarien jaune commun; tétranyque à deux points; tétranyque à deux points; tétranyque commun
  • Portuguese: ácaro rajado (Brasil)

Local Common Names

  • Brazil: ácaro rajado
  • Denmark: lindespindemide; plettet væksthusspindemide; væksthusspindemide
  • Finland: lehmuspunkki; vihannespunkki
  • Germany: Spinne, Rote-; Spinnmilbe, Blatt-; Spinnmilbe, Bohnen-; Spinnmilbe, Eibisch-; Spinnmilbe, Gemeine
  • Israel: haakarit haadumu hamezuya
  • Italy: Ragnetto giallo dei giardini; Ragnetto giallo della vite e dei tiglio; Ragno rosso della vite; Ragno rosso tessitore
  • Japan: Nami-hadani
  • Netherlands: aardbeispintmijt; bonenspintmijt; cassave-mijt; kina-mijt; rode plantenspin
  • Norway: flekket veksthusspinnmide; lindespinnmidd
  • Sweden: lindspinnkvalster; växthysspinnkvalster
  • Turkey: iki benekli orumcek

EPPO code

  • TETRUR (Tetranychus urticae)

Summary of Invasiveness

Top of page T. urticae is a highly polyphagous, cosmopolitan species, which is readily spread on the wind. Under optimum conditions, it reaches a high population density, and its presence can cause a reduction in crop yield.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Chelicerata
  •                 Class: Arachnida
  •                     Subclass: Acari
  •                         Superorder: Acariformes
  •                             Suborder: Prostigmata
  •                                 Family: Tetranychidae
  •                                     Genus: Tetranychus
  •                                         Species: Tetranychus urticae

Notes on Taxonomy and Nomenclature

Top of page Tetranychus urticae is part of a group of very similar species in the genus Tetranychus. At one time, a species complex included about 60 synonyms, each described from different hosts or from different parts of the world, the best known of which were Tetranychus telarius L., Tetranychus bimaculatus Harvey and Tetranychus altheae von Hanstein. The taxonomy of the genus Tetranychus is still problematical, but may be elucidated using molecular techniques.

The list of other names used excludes Tetranychus cinnabarinus, which may be the same species (see Similarities to Other Pests and datasheet for Tetranychus cinnabarinus). Additional synonyms are provided in Bolland et al. (1998). T. urticae is also known as the red spider mite.

Description

Top of page Eggs

The egg is 0.13 mm in diameter, globular and translucent.

Larva

The larva is pale green and has six legs.

Nymphal stages

There are two nymphal instars, protonymph and deutonymph, with a quiescent interval between them and another between the deutonymph and adult. The nymphs are pale green with darker markings and have eight legs.

Adults

The adult female is 0.6 mm long, pale green or greenish-yellow with two darker patches on the body, which is oval with quite long hairs on the dorsal side. Overwintering females are orange-red in colour. The male has a smaller, narrower, more pointed body than the female.

Distribution

Top of page T. urticae occurs in most parts of the world. It has been recorded from most countries in Europe, Asia, Africa, Australasia, the Pacific and Caribbean islands, North, Central and South America.

Other reference sources are given in Bolland et al. (1998).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

AfghanistanPresentIIE, 1996
ArmeniaPresentIIE, 1996
AzerbaijanPresentIIE, 1996
BangladeshPresentMir, 1990; IIE, 1996
ChinaPresentIIE, 1996
-AnhuiPresentZhang et al., 2008
-GansuPresentIIE, 1996
-GuangdongPresentIIE, 1996
-GuangxiPresentIIE, 1996
-HebeiPresentMiao et al., 2006
-HenanPresentChen et al., 1998; IIE, 1996; Jin et al., 2001
-HubeiPresentBao et al., 2001
-HunanPresentIIE, 1996
-JiangsuPresentIIE, 1996
-LiaoningPresentMiao et al., 2006
-NingxiaPresentHe et al., 2001; Miao et al., 2006
-NingxiaPresentHe et al., 2001; Miao et al., 2006
-ShaanxiPresentIIE, 1996; Chen, 2000
-ShandongPresentMing et al., 2002; IIE, 1996
-ShanghaiPresentMiao et al., 2006
-ShanxiPresentChen, 2000
-SichuanPresentIIE, 1996
-XinjiangPresentMiao et al., 2006
-YunnanPresentIIE, 1996
Georgia (Republic of)PresentIIE, 1996
IndiaPresentIIE, 1996
-Andhra PradeshPresentIIE, 1996; Rajkumar et al., 2004
-BiharPresentIIE, 1996; Rabindra-Prasad, 2003
-GujaratPresentIIE, 1996
-HaryanaPresentIIE, 1996
-Himachal PradeshPresentMeena-Thakur et al., 2004; Rajpal and Joshi, 2003; Rajpal et al., 2004
-Indian PunjabPresentJyotika Kapur-Ghai & Bhullar, 2003
-Jammu and KashmirPresentIIE, 1996
-JharkhandPresentRabindra et al., 2006
-KarnatakaPresentIIE, 1996; Rajkumar et al., 2005; Girish et al., 2014
-KeralaPresentIIE, 1996
-Madhya PradeshPresentSingh et al., 1990
-MaharashtraPresentIIE, 1996; Akashe, 2004
-SikkimPresentNagrare and Rampal, 2008
-Tamil NaduPresentIIE, 1996; Saranya et al., 2013
-Uttar PradeshPresentIIE, 1996
-West BengalPresentIIE, 1996; Ghoshal et al., 2004; Lahiri et al., 2005
IndonesiaPresentWaterhouse, 1993
IranPresentIIE, 1996
IraqPresentIIE, 1996
IsraelPresentIIE, 1996
JapanPresentIIE, 1996
JordanPresentIIE, 1996
KazakhstanPresentIIE, 1996
Korea, Republic ofPresentIIE, 1996
KyrgyzstanPresentIIE, 1996
LebanonPresentIIE, 1996; Rubeiz et al., 1997; Bayan, 1998
MalaysiaPresentWaterhouse, 1993
-Peninsular MalaysiaPresentIIE, 1996
PakistanPresentIIE, 1996
PhilippinesPresentWaterhouse, 1993; IIE, 1996
Saudi ArabiaPresentElmoghazy, 2016
SingaporePresentWaterhouse, 1993
Sri LankaPresentWahundeniya et al., 2005
TaiwanPresentIIE, 1996
TajikistanPresentIIE, 1996
ThailandPresentWaterhouse, 1993; IIE, 1996
TurkeyPresentIIE, 1996
TurkmenistanPresentIIE, 1996
UzbekistanPresentIIE, 1996
VietnamPresentWaterhouse, 1993; IIE, 1996
YemenPresentKnapp, 1997

Africa

BeninPresentAdango et al., 2006
Congo Democratic RepublicPresentIIE, 1996
EgyptPresentIIE, 1996
KenyaPresentIIE, 1996
LibyaPresentIIE, 1996
MadagascarPresentIIE, 1996
MalawiPresentIIE, 1996
MauritaniaPresentIIE, 1996
MoroccoPresentIIE, 1996
MozambiquePresentIIE, 1996
RéunionPresentIIE, 1996
Saint HelenaPresentIIE, 1996
SenegalPresentIIE, 1996
Sierra LeonePresentIIE, 1996
South AfricaPresentIIE, 1996
Spain
-Canary IslandsPresentIIE, 1996
SudanPresentIIE, 1996
SwazilandIIE, 1996
TanzaniaIIE, 1996
TunisiaPresentIIE, 1996
UgandaIIE, 1996
ZambiaPresentIIE, 1996
ZimbabwePresentIIE, 1996

North America

CanadaPresentIIE, 1996
-British ColumbiaPresentIIE, 1996
-New BrunswickIIE, 1996
-Nova ScotiaPresentIIE, 1996
-OntarioPresentIIE, 1996
-QuebecPresentIIE, 1996
MexicoPresentIIE, 1996
USAPresentIIE, 1996
-ArizonaIIE, 1996
-ArkansasPresentKharboutli et al., 2000
-CaliforniaPresentIIE, 1996
-FloridaPresentIIE, 1996
-GeorgiaPresentIIE, 1996
-HawaiiIIE, 1996
-IdahoPresentGardiner et al., 2003
-IndianaPresentIIE, 1996
-IowaPresentIIE, 1996
-KansasPresentIIE, 1996
-KentuckyIIE, 1996
-LouisianaIIE, 1996
-MarylandIIE, 1996
-MassachusettsPresentIIE, 1996
-MichiganPresentIIE, 1996
-MinnesotaPresentWold and Hutchison, 2003
-MississippiPresentIIE, 1996
-MissouriIIE, 1996
-NebraskaIIE, 1996
-New JerseyPresentIIE, 1996
-New YorkPresentIIE, 1996
-North CarolinaPresentIIE, 1996
-OhioPresentIIE, 1996
-OklahomaPresentIIE, 1996
-OregonPresentIIE, 1996
-PennsylvaniaPresentIIE, 1996
-TennesseePresentLancaster et al., 2002
-TexasPresentIIE, 1996
-UtahPresentIIE, 1996
-VirginiaPresentIIE, 1996
-WashingtonPresentIIE, 1996
-West VirginiaIIE, 1996
-WisconsinIIE, 1996

Central America and Caribbean

Costa RicaPresentIIE, 1996; Aguilar and Murillo, 2012
CubaPresentIIE, 1996
GuadeloupePresentFlechtmann and Etienne, 2006
Windward IslandsPresentIIE, 1996

South America

ArgentinaPresentIIE, 1996
BrazilPresentIIE, 1996
-BahiaIIE, 1996
-CearaIIE, 1996
-Espirito SantoPresentChagas et al., 2001
-Mato Grosso do SulIIE, 1996
-Minas GeraisIIE, 1996; Soares et al., 2012
-ParanaIIE, 1996
-Rio Grande do NortePresentRoggia et al., 2009
-Rio Grande do SulPresentRoggia et al., 2008
-Santa CatarinaPresentMonteiro et al., 2002
-Sao PauloPresentIIE, 1996
ChilePresentIIE, 1996
ColombiaPresentIIE, 1996
GuyanaIIE, 1996
SurinameIIE, 1996
VenezuelaPresentGonzalez and Viloria, 1991; IIE, 1996

Europe

AlbaniaPresentBalliu and Cota, 2007
AustriaPresentIIE, 1996
BelarusPresentIIE, 1996
BelgiumPresentIIE, 1996
Bosnia-HercegovinaPresentKohnic et al., 2006
BulgariaPresentIIE, 1996
CroatiaPresentMilek and Masten, 2009
CyprusPresentIIE, 1996
Czech RepublicPresentIIE, 1996
DenmarkPresentIIE, 1996
EstoniaPresentIIE, 1996
FinlandPresentIIE, 1996
Former USSRPresentIIE, 1996
FrancePresentIIE, 1996
GermanyPresentIIE, 1996
GreecePresentIIE, 1996
-CretePresentIIE, 1996
HungaryPresentIIE, 1996
IrelandPresentLola-Luz et al., 2003
ItalyPresentIIE, 1996
-SardiniaPresentDelrio et al., 1989; IIE, 1996
-SicilyPresentIIE, 1996
LatviaPresentIIE, 1996
LithuaniaPresentIIE, 1996
MaltaPresentMifsud, 1997
MoldovaPresentIIE, 1996
MontenegroPresentRadonjic and Hrncic, 2011
NetherlandsPresentIIE, 1996
NorwayPresentIIE, 1996
PolandPresentIIE, 1996
RomaniaPresentIIE, 1996
Russian FederationPresentIIE, 1996
-Eastern SiberiaPresentIIE, 1996
-Russian Far EastPresentIIE, 1996
SerbiaPresentMilenkovic and Stanisavljevic, 2003
SlovakiaPresentBarok and Markovic, 2000
SloveniaPresentIIE, 1996; Milevoj and Osvald, 1996
SpainPresentIIE, 1996
SwedenPresentIIE, 1996
SwitzerlandPresentIIE, 1996
UKPresentIIE, 1996
-England and WalesPresentDewar et al., 2000
UkrainePresentIIE, 1996
Yugoslavia (former)PresentIIE, 1996

Oceania

AustraliaPresentIIE, 1996
-Australian Northern TerritoryPresentYoung and Zhang, 2001; Brown, 2003
-New South WalesPresentIIE, 1996
-QueenslandPresentIIE, 1996
-South AustraliaPresentIIE, 1996
-TasmaniaPresentIIE, 1996
-VictoriaPresentIIE, 1996
-Western AustraliaPresentIIE, 1996
New CaledoniaPresentIIE, 1996
New ZealandPresentIIE, 1996
Papua New GuineaPresentIIE, 1996
Solomon IslandsIIE, 1996

Hosts/Species Affected

Top of page T. urticae has a very wide host range. It includes many crops grown in glasshouses such as tomatoes, cucumbers and peppers and flowers such as chrysanthemums and orchids. It is also a problem on protected and unprotected strawberries. In some areas it is a problem on field-grown fruit crops such as apples, pears and on grapevines. Other important crops that are infested include cotton, soyabeans and other legumes. This mite can also live on many non-crop hosts, which can provide a source of infestation. A more exhaustive list of hosts is given by Bolland et al. (1998).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Abelmoschus esculentus (okra)MalvaceaeMain
Achillea millefolium (yarrow)AsteraceaeOther
Actinidia chinensis (Chinese gooseberry)ActinidiaceaeUnknown
Ageratum conyzoides (billy goat weed)AsteraceaeUnknown
Ageratum houstonianum (Blue billygoatweed)AsteraceaeUnknown
Allium cepa (onion)LiliaceaeOther
Allium sativum (garlic)LiliaceaeUnknown
Arachis hypogaea (groundnut)FabaceaeUnknown
Arracacia xanthorrhiza (arracacha)ApiaceaeUnknown
Asparagus officinalis (asparagus)LiliaceaeUnknown
Averrhoa carambola (carambola)OxalidaceaeUnknown
Beta vulgaris (beetroot)ChenopodiaceaeOther
Callistephus chinensis (China aster)AsteraceaeUnknown
Camellia sinensis (tea)TheaceaeUnknown
Capsicum (peppers)SolanaceaeUnknown
Capsicum annuum (bell pepper)SolanaceaeUnknown
Carica papaya (pawpaw)CaricaceaeUnknown
Catharanthus roseus (Madagascar periwinkle)ApocynaceaeOther
Chromolaena odorata (Siam weed)AsteraceaeUnknown
Chrysanthemum (daisy)AsteraceaeUnknown
Chrysanthemum indicum (chrysanthemum)AsteraceaeOther
Citrullus lanatus (watermelon)CucurbitaceaeOther
CitrusRutaceaeOther
Citrus limon (lemon)RutaceaeUnknown
Citrus sinensis (navel orange)RutaceaeUnknown
Convolvulus arvensis (bindweed)ConvolvulaceaeUnknown
CorylusBetulaceaeUnknown
Cucumis melo (melon)CucurbitaceaeOther
Cucumis sativus (cucumber)CucurbitaceaeUnknown
Cucurbita moschata (pumpkin)CucurbitaceaeOther
Cucurbita pepo (marrow)CucurbitaceaeOther
Cucurbitaceae (cucurbits)CucurbitaceaeOther
CymbidiumOrchidaceaeUnknown
Dahlia pinnata (garden dahlia)AsteraceaeUnknown
Dianthus caryophyllus (carnation)CaryophyllaceaeMain
Diospyros (malabar ebony)EbenaceaeUnknown
Elettaria cardamomum (cardamom)ZingiberaceaeOther
Enterolobium cyclocarpum (ear pod tree)FabaceaeOther
Euonymus alatus (winged spindle)CelastraceaeUnknown
Euphorbia pulcherrima (poinsettia)EuphorbiaceaeMain
Fabaceae (leguminous plants)FabaceaeMain
Ficus carica (common fig)MoraceaeMain
Fragaria (strawberry)RosaceaeUnknown
Fragaria ananassa (strawberry)RosaceaeMain
FreesiaIridaceaeUnknown
fruitsUnknown
Gerbera (Barbeton daisy)AsteraceaeUnknown
Gerbera jamesonii (African daisy)AsteraceaeUnknown
Glycine max (soyabean)FabaceaeMain
Gossypium (cotton)MalvaceaeMain
Gypsophila (baby's breath)CaryophyllaceaeMain
Hedera helix (ivy)AraliaceaeUnknown
Humulus lupulus (hop)CannabaceaeMain
Ilex crenata (Japanese holly)AquifoliaceaeUnknown
Impatiens (balsam)BalsaminaceaeUnknown
Ipomoea batatas (sweet potato)ConvolvulaceaeOther
Lactuca sativa (lettuce)AsteraceaeUnknown
Malus domestica (apple)RosaceaeMain
Manihot esculenta (cassava)EuphorbiaceaeMain
Medicago sativa (lucerne)FabaceaeMain
Mentha (mints)LamiaceaeUnknown
Nicotiana tabacum (tobacco)SolanaceaeUnknown
Orchidaceae (orchids)OrchidaceaeOther
Oryza sativa (rice)PoaceaeUnknown
Papaver orientale (Oriental poppy)PapaveraceaeUnknown
Pelargonium (pelargoniums)GeraniaceaeOther
Phaseolus (beans)FabaceaeUnknown
Phaseolus vulgaris (common bean)FabaceaeUnknown
Phoenix dactylifera (date-palm)ArecaceaeOther
Prunus avium (sweet cherry)RosaceaeUnknown
Prunus cerasus (sour cherry)RosaceaeUnknown
Prunus domestica (plum)RosaceaeOther
Prunus dulcis (almond)RosaceaeOther
Prunus persica (peach)RosaceaeMain
Prunus salicina (Japanese plum)RosaceaeMain
Pueraria montana var. lobata (kudzu)FabaceaeUnknown
Pyrus communis (European pear)RosaceaeUnknown
Rhododendron (Azalea)EricaceaeUnknown
Ribes nigrum (blackcurrant)GrossulariaceaeMain
Ribes rubrum (red currant)GrossulariaceaeUnknown
Ricinus communis (castor bean)EuphorbiaceaeUnknown
Rosa (roses)RosaceaeMain
Rosa chinensis (China rose)RosaceaeUnknown
Rubus idaeus (raspberry)RosaceaeMain
Rubus loganobaccus (loganberry)RosaceaeMain
Salvia splendens (scarlet sage)LamiaceaeUnknown
Sechium edule (chayote)CucurbitaceaeUnknown
Sesamum indicum (sesame)PedaliaceaeUnknown
Solanum lycopersicum (tomato)SolanaceaeMain
Solanum melongena (aubergine)SolanaceaeMain
Sorghum bicolor (sorghum)PoaceaeUnknown
Stachys arvensis (staggerweed)LamiaceaeUnknown
Terminalia catappa (Singapore almond)CombretaceaeOther
Tilia cordata (small-leaf lime)TiliaceaeUnknown
Trifolium repens (white clover)FabaceaeUnknown
Trifolium vesiculosum (Arrowleaf clover)FabaceaeUnknown
Vicia faba (faba bean)FabaceaeUnknown
Vicia sativa (common vetch)FabaceaeUnknown
Vigna angularis (adzuki bean)FabaceaeUnknown
Vigna radiata (mung bean)FabaceaeUnknown
Vigna unguiculata (cowpea)FabaceaeUnknown
Viola odorata (English violet)ViolaceaeUnknown
Vitis vinifera (grapevine)VitaceaeMain
Withania somnifera (poisonous gooseberry)SolanaceaeOther
Zantedeschia aethiopica (calla lily)AraceaeUnknown
Zea mays (maize)PoaceaeUnknown
Zea mays subsp. mays (sweetcorn)PoaceaeMain

Growth Stages

Top of page Post-harvest

Symptoms

Top of page Feeding by T. urticae causes pale spots to appear on leaves. As infestations become more severe, leaves appear bronzed or silvery, become brittle, and may fall prematurely. Plants can be killed quite rapidly by this mite.

The mites spin webbing, which can cover all the surfaces of the plant.

List of Symptoms/Signs

Top of page
SignLife StagesType
Leaves / abnormal colours
Leaves / abnormal leaf fall
Leaves / webbing

Biology and Ecology

Top of page Genetics

Important economic species of Tetranychidae tend to have a chromosome number of n = 3 (Hussey and Huffaker, 1976). See Overmeer and Harrison (1969) and Mitchell (1972) for reports on genetic variation with respect to factors controlling the sex ratio of T. urticae. Refer to Hussey and Huffaker (1976), and references therein, for further information on the genetics of spider mites.

Physiology and phenology

T. urticae has an overwintering or diapause form of the adult female that is initiated by short photoperiod, decreased temperature and unfavourable food supply. The overwintering females stop feeding and egg laying and leave their host plants to hibernate in cracks and crevices in protected places, such as the soil or glasshouse structures. They resume activity in the spring when they lay eggs on leaves. These mites also produce copious amounts of webbing.

Reproductive biology

The development of the mite is rapid, particularly at high temperatures. At 30-32°C, which is the optimum temperature for development, the egg stage lasts 3-5 days, the larval/nymphal stages 4-5 days, and with a pre-oviposition period of 1-2 days, the total life cycle takes only 8-12 days. Each female can lay an average of 90-110 eggs during a lifetime of about 30 days, therefore numbers of mites can increase very rapidly during the summer, or under glass or plastic.

There is much additional information available on cytology and sex determination, mating behaviour, sex ratio, genetics, etc. Much of this information is reviewed in the chapters by various authors in the volumes on spider mites edited by Helle and Sabelis (1995a, b).

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Acaropsellina sollers Predator Adults/Nymphs
Aegyptocheyla summersi Predator Adults/Nymphs
Aeolothrips intermedius Predator Adults/Nymphs Italy maize; soyabeans
Agistemus cyprius Predator Adults/Nymphs
Agistemus exsertus Predator Adults/Nymphs Egypt
Allothrombium pulvinus Parasite
Amblydromella denmarki Predator Adults/Nymphs
Amblydromella rhenanoides Predator Adults/Nymphs Italy Acer campestre
Amblyseiella setosa Predator Adults/Nymphs
Amblyseius addoensis Predator Adults/Nymphs
Amblyseius agrestis Predator Adults/Nymphs
Amblyseius andersoni Predator Adults/Nymphs Belgium; Ukraine
Amblyseius barkeri Predator Adults/Nymphs Italy soyabeans; Urtica dioica
Amblyseius bibens Predator Adults/Nymphs
Amblyseius bicaudus Predator Adults/Nymphs Italy maize; soyabeans
Amblyseius degenerans Predator
Amblyseius eharai Predator Adults/Nymphs
Amblyseius herbarius Predator Adults/Nymphs Italy soyabeans; Urtica dioica
Amblyseius herbicolus Predator Adults/Nymphs Japan
Amblyseius idaeus Predator Adults/Nymphs Sao Paulo
Amblyseius largoensis Predator Adults/Nymphs
Amblyseius limonicus Predator Adults/Nymphs
Amblyseius mckenziei Predator Adults/Nymphs USSR
Amblyseius neolentiginosus Predator Adults/Nymphs
Amblyseius nicholsi Predator
Amblyseius obtusus Predator Adults/Nymphs Italy Urtica dioica
Amblyseius olivi Predator Adults/Nymphs
Amblyseius paraki Predator Adults/Nymphs
Amblyseius potentillae Predator Adults/Nymphs Italy Lonicera; maize
Amblyseius potentillae Predator Adults/Nymphs
Amblyseius pseudolongispinosus Predator Adults/Nymphs
Amblyseius rademacheri Predator Adults/Nymphs Italy soyabeans; Urtica dioica
Amblyseius reductus Predator Adults/Nymphs Ukraine; USSR
Amblyseius sessor Predator Adults/Nymphs
Amblyseius swirskii Predator Adults/Nymphs
Amblyseius victoriensis Predator Adults/Nymphs Australia; New South Wales peachs
Amblyseius vignus Predator Adults/Nymphs
Anthoseius caudiglans Predator Adults/Nymphs
Anystis baccarum Predator Adults/Nymphs
Bacillus thuringiensis kurstaki Pathogen
Bacillus thuringiensis thuringiensis Pathogen
Balaustium putmani Predator Adults/Nymphs
Beauveria bassiana Pathogen Jeyarani et al., 2011
Campylomma diversicornis Predator Adults/Nymphs
Campylomma verbasci Predator Adults/Nymphs
Cardiastethus nazarenus Predator Adults/Nymphs
Cheiracanthium mildei Predator Adults/Nymphs
Cheletogenes ornatus Predator Adults/Nymphs
Chernes cimicoides Predator Adults/Nymphs
Chrysopa orestes Predator Adults/Nymphs
Chrysoperla carnea Predator Adults/Nymphs Canada; Ontario; Italy maize; peaches; soyabeans
Conidiobolus obscurus Pathogen
Conidiobolus thromboides Pathogen
Coniopteryx esbenpeterseni Predator Adults/Nymphs
Conwentzia psociformis Predator Adults/Nymphs
Cunliffella panamensis Predator Adults/Nymphs
Deraeocoris fasciolus Predator Adults/Nymphs
Deraeocoris punctulatus Predator Adults/Nymphs
Dictyna consulta Predator Adults/Nymphs
Erynia radicans Pathogen
Eupeodes corollae Predator Adults/Nymphs
Euseius concordis Predator Adults/Nymphs
Euseius fustis Predator Adults/Nymphs
Euseius gossipi Predator Adults/Nymphs
Euseius gossipi Predator Adults/Nymphs Egypt
Euseius mesembrinus Predator Adults/Nymphs
Euseius scutalis Predator Adults/Nymphs
Euseius stipulatus Predator Adults/Nymphs Italy soyabeans; Urtica dioica
Feltiella acarivora Predator Adults/Nymphs
Feltiella macgregori Predator Adults/Nymphs
Frankliniella occidentalis Predator Adults/Nymphs
Frankliniella schultzei Predator
Galendromus annectens Predator Adults/Nymphs
Galendromus helveolus Predator Adults/Nymphs
Geocoris pallens Predator Adults/Nymphs
Geocoris punctipes Predator Adults/Nymphs
Haplothrips victoriensis Predator Adults/Nymphs Australia; South Australia Medicago sativa
Hemicheyletia bakeri Predator Adults/Nymphs
Hirsutella thompsonii Pathogen Adults/Nymphs
Holobus minutus Predator Adults/Nymphs
Holoparasitus caesus Predator Adults/Nymphs
Holoparasitus pseudoperforatus Predator Adults/Nymphs
Hyaliodes vitripennis Predator Adults/Nymphs
Hypoaspis aculeifer Parasite
Kampimodromus aberrans Predator Adults/Nymphs Switzerland
Lasioseius scapulatus Predator Adults/Nymphs
Macrolophus caliginosus Predator Adults/Nymphs
Macrolophus nubilus Predator Adults/Nymphs
Metaseiulus occidentalis Predator
Micromus angulatus Predator Adults/Nymphs Italy maize; soyabeans
Micromus tasmaniae Predator Adults/Nymphs
Mycosphaerella tassiana Pathogen Jeyarani et al., 2011
Nabis kinbergii Predator Adults/Nymphs
Nabis palifer Predator Adults/Nymphs
Neoseiulella aceri Predator Adults/Nymphs Italy Acer campestre
Neoseiulella tiliarum Predator Adults/Nymphs
Neoseiulus alpinus Predator
Neoseiulus anonymus Predator Adults/Nymphs
Neoseiulus californicus Predator Eggs/Nymphs
Neoseiulus chilenensis Predator Adults/Nymphs
Neoseiulus cucumeris Predator
Neoseiulus fallacis Predator
Neoseiulus longispinosus Predator Adults/Nymphs Japan
Neoseiulus setulus Predator Adults/Nymphs
Neoseiulus teke Predator Adults/Nymphs
Neozygites adjarica Pathogen
Neozygites floridana Pathogen
Neozygites na Pathogen
Oligota flavicornis Predator Adults/Nymphs Italy Acer campestre; Carpinus betulus
Oligota kashmirica Predator Adults/Nymphs
Oligota kashmirica benefica Predator Adults/Nymphs
Oligota oviformis Predator Adults/Nymphs
Oligota pygmaea Predator Adults/Nymphs
Oligota yasumatsui Predator Adults/Nymphs
Orius albidipennis Predator Adults/Nymphs
Orius insidiosus Predator Adults/Nymphs USA; Virginia apples
Orius majusculus Predator Adults/Nymphs Italy Acer campestre; Carpinus betulus
Orius minutus Predator Adults/Nymphs
Orius niger Predator Adults/Nymphs
Orius sauteri Predator Adults/Nymphs
Orius tristicolor Predator Adults/Nymphs
Orius vicinus Predator Adults/Nymphs Italy Acer campestre; Carpinus betulus
Phalangium opilio Predator Adults/Nymphs
Phoenicocoris minusculus Predator Adults/Nymphs
Phytoseiulus fallacis Predator Adults/Nymphs
Phytoseiulus longipes Predator Adults/Nymphs Egypt
Phytoseiulus macropilis Predator Adults/Nymphs Florida; Sao Paulo
Phytoseiulus persimilis Predator Adults/Nymphs Australia; Australia; Queensland; Australia; South Australia; Australia; Tasmania; Australia; Victoria; Belgium; British Columbia; Bulgaria; California; China; Beijing; China; Shanghai; Czechoslovakia; Denmark; Finland; Florida; France; Germany; India; Irish Republic; Italy; Japan; Latvia; Moldova; Netherlands; New Caledonia; New Zealand; Norway; Ohio; Poland; Romania; Sweden; Switzerland; Taiwan; Tunisia; UK; USA; Texas; USSR; Washington; Egypt Ageratum conyzoides; Dahlia pinnata; hops; maize; Medicago sativa; Pelargonium lateripes; raspberries; Rosa chinensis; roses; Salvia splendens; strawberries; tomatoes; Zantedeschia aethiopica
Phytoseius domesticus Predator Adults/Nymphs
Phytoseius finitimus Predator Adults/Nymphs
Phytoseius fotheringhamiae Predator Adults/Nymphs
Phytoseius hawaiiensis Predator Adults/Nymphs
Phytoseius plumifer Predator Adults/Nymphs
Propriorseiopsis messor Predator Adults/Nymphs
Proprioseiopsis jugortus Predator
Proprioseiopsis rotundus Predator
Scolothrips acariphagus Predator Adults/Nymphs
Scolothrips longicornis Predator Adults/Nymphs
Scolothrips sexmaculatus Predator Adults/Nymphs
Scolothrips takahashii Predator Adults/Nymphs
Scymnus gracilis Predator Adults/Nymphs
Scymnus interruptus Predator Adults/Nymphs
Scymnus rubromaculatus Predator Adults/Nymphs Italy Acer campestre; Carpinus betulus
Scymnus rufipes Predator Adults/Nymphs Italy Acer campestre; Carpinus betulus
Seiulus finlandicus Predator Adults/Nymphs Italy Carpinus betulus; Ligustrum
Stethorus bifidus Predator Adults/Nymphs
Stethorus fenestralis Predator Adults/Nymphs
Stethorus histrio Predator Adults/Nymphs Chile Phaseolus vulgaris; Ricinus communis
Stethorus loi Predator Adults/Nymphs Taiwan Averrhoa carambola
Stethorus nigripes Predator Adults/Nymphs Australia; South Australia Medicago sativa
Stethorus parapauperculus Predator Adults/Nymphs
Stethorus punctillum Predator Adults/Nymphs France; Italy Acer campestre; Carpinus betulus; maize
Stethorus punctum Predator Adults/Nymphs Pennsylvania
Stethorus punctum picipes Predator Adults/Nymphs Canada; British Columbia strawberries
Stethorus siphonulus Predator Adults/Nymphs
Tapinoma melanocephalum Predator
Therodiplosis persicae Predator
Thrips imaginis Predator
Typhlodromalus macrosetosus Predator Adults/Nymphs
Typhlodromus athiasae Predator Adults/Nymphs Israel apples
Typhlodromus baccettii Predator Adults/Nymphs
Typhlodromus exhilaratus Predator Adults/Nymphs
Typhlodromus italicus Predator Adults/Nymphs
Typhlodromus longipilus Predator Adults/Nymphs
Typhlodromus negevi Predator Adults/Nymphs
Typhlodromus phialatus Predator Adults/Nymphs
Typhlodromus porresi Predator Adults/Nymphs
Typhlodromus pyri Predator Adults/Nymphs Australia; Switzerland; Tasmania; UK; Czech Republic
Zetzellia graeciana Predator Adults/Nymphs
Zetzellia mali Predator Adults/Nymphs

Notes on Natural Enemies

Top of page At each separate locality there is a complex of local predators, hence lists of natural enemies are long and of limited value in other locations. The most effective natural enemies of T. urticae are predatory mites from the family Phytoseiidae. These mites, belonging to a number of genera, such as Amblyseius, Euseius, Neoseiulus and Phytoseius, have been shown to regulate populations of T. urticae on a range of crops. Phytoseiulus persimilis successfully controls the mite in greenhouses. It is also sometimes useful outdoors and has been released into the field; usually augmentative releases are required to maintain control.

Species of Stethorus, a group of small ladybird beetles (Coccinellidae), are also important predators of spider mites. Other useful predators include anthocorids (mainly Orius spp.), larvae of chrysopids, thrips (e.g. Scolothrips spp.), staphylinids (e.g. Oligota spp.), and larvae of cecidomyiid midges, in particular Feltiella acarisuga (=Therodiplosis persicae).

Epidemics of fungal disease sometimes occur, particularly in warm, humid conditions. These epidemics are usually caused by Neozygites spp.

Means of Movement and Dispersal

Top of page T. urticae disperses by active walking or by passive transport in the wind and on plants, tools and people (Zhang, 2003). Phoretic dispersal of T. urticae mediated by winged insects is thought to be rare in the wild (Yano, 2004).

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Clothing, footwear and possessions Yes

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Flowers/Inflorescences/Cones/Calyx adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Fruits (inc. pods) adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Growing medium accompanying plants adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Leaves adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Seedlings/Micropropagated plants adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Stems (above ground)/Shoots/Trunks/Branches adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Bulbs/Tubers/Corms/Rhizomes
Roots
True seeds (inc. grain)

Impact Summary

Top of page
CategoryImpact
Animal/plant collections Negative
Animal/plant products Negative
Biodiversity (generally) None
Crop production Negative
Environment (generally) Negative
Fisheries / aquaculture None
Forestry production None
Human health Negative
Livestock production None
Native fauna None
Native flora Negative
Rare/protected species None
Tourism None
Trade/international relations None
Transport/travel None

Impact

Top of page

During feeding the mites penetrate the plant foliage/leaves with their mouth stylets and suck out the cell contents. On strawberry, low populations of T. urticae mainly damage the spongy mesophyll tissue but higher densities increase the area of damage and injury to the palisade parenchyma occurs (Sances et al., 1979; Kielkiewicz and Van de Vrie, 1983). The function of the stomatal apparatus is also affected, so that the stomata remain closed.

The result of this damage to leaf tissue is reduced chlorophyll content and reduced photosynthesis, carbon dioxide assimilation and transpiration. Such effects have been shown for cotton (Bondana et al., 1995), tomato (Nihoul et al., 1992), apple and peach (Mobley and Marini, 1990), and strawberry (Sances et al., 1982).

Crop yields are diminished as essential plant processes are affected. This has been demonstrated on maize (Archer and Bynum, 1993), strawberry (Oatman et al., 1982), pear (McNab and Jerie, 1993), cotton (Wilson, 1993), soyabean (Singh, 1988; Suekane et al., 2012) and grapevine (Hluchy and Pospisil, 1992), among others.

The mites feed directly on tomato fruit, causing gold fleck (discolouration of the fruit), which could have a negative impact on the marketability of the fruit (Meck et al., 2012).

Nyoike and Liburd (2013) studied the impact of the mites on the marketable yield of field grown strawberries in Florida and reported that yield reduction in strawberry was detected when plants had 80 mites per leaf in the 2008/2009 growing season, and 50 mites per leaf in the 2009/2010 growing season. Results like this can be used to determine the timing of control programmes, ensuring maximum yields are attained.

The timing of mite infestation has also been shown to have an impact. For example, Gore et al. (2013) reported that early infestations of T. urticae on cotton in mid-southern USA caused the highest impact on yield (compared with later infestations).

Detection and Inspection

Top of page Severely infested plants can be recognized by speckling and bronzing of the leaves and the presence of webbing. However, it is important to detect infestations before they reach this stage by examining the leaves, with a hand lens or under a microscope, to reveal the mites. Some sampling schemes have been developed that use the presence or absence of mites on a sample of leaves, to reduce the time spent counting (Raworth, 1986; Butcher et al., 1987).

Similarities to Other Species/Conditions

Top of page Several species of Tetranychus look similar to T. urticae, and have similar biology. Some of the morphological differences between Tetranychus species were described by Boudreaux and Dosse (1963). However, it is difficult to separate some of these species and, more recently, new biochemical and molecular techniques have been used to try and distinguish between them. Enohara and Amano (1996) studied six species of Tetranychus common in Japan, which are difficult to separate: T. urticae, T. kanzawai, T. phaselus, T. ludeni, T. viennensis and T. piercis. They found that esterase patterns showed species specific characteristics and that the morphological characters of the adult females could also be used to distinguish between species. Goka and Takafuji (1997) used polyacrylamide gel electrophoresis to study the differences between two enzymes among seven species of Tetranychus and concluded that these enzymes could be useful markers for classification. Navajas et al. (1997) used nucleotide sequence variation and morphological characters to study the evolutionary relationships among nine tetranychid mite species.

The relationship/conspecificity with Tetranychus cinnabarinus is still problematical: molecular techniques seem to show them as conspecifics, for example, Gotoh and Tokioka (1996). More recently, Zhang and Jacobson (2000) reported on the use of adult female morphological characters to differentiate between T. urticae and T. cinnabarinus. They stated that T. cinnabarinus could be readily separated from T. urticae by variation in the number of setae on tibia I in females.

Prevention and Control

Top of page

Biological Control

T. urticae has been the subject of some of the most successful examples of biological control. The predator used most often has been the phytoseiid mite Phytoseiulus persimilis. This species was first used in glasshouses, on various crops, in the 1960s (for example, Hussey et al., 1965), and since then has been used successfully on a wide variety of crops in a range of protected and unprotected environments. Several biological control companies package this predator for distribution on to plants by growers. Suitable release rates and timings vary with the crop. In areas where the mite has been established, augmentative releases are required to maintain control.

However, P. persimilis is active only under a limited range of conditions (Gorski and Eajfer, 2003), and so other species of phytoseiid mite have also been used against T. urticae. For example, Amblyseius idaeus and Phytoseiulus macropilis have been used on strawberry and cucumber in Brazil (Watanabe et al., 1994). Metwally et al. (2005) investigated life table and prey consumption of the predatory mite Neoseiulus cynodactylon, and concluded that T. urticae was a profitable prey species of this phytoseiid as a facultative predator.

Predators from other insect families have also shown promise as biocontrol agents against T. urticae. For example, the chrysopid Mallada basalis has been used on strawberry in Taiwan (Tzeng and Kao, 1996). Yanagita et al. (2014) reported that the predatory thrip Scolothrips takahashii could be used as an effective control agent against T. urticae in integrated pest management programmes for strawberry plug plants. Other potential predatory biocontrol agents include Orius minutus (Fathi, 2013), Coccinellla septempunctata (Sirvi and Singh, 2014), Stethorus gilvifrons (Ahmad et al., 2010) and Stethorus punctillum (Gorski and Eajfer, 2003).

Neoseiulus californicus has shown promise as an agent in conservation biological control of T. urticae; the natural control of the mite in strawberries was used as the basis for developing an integrated management plan, using acaricide only when necessary (Greco et al., 2011).

Shivaprakash et al. (2004) reported on the natural occurrence of the entomopathogenic fungus Beauveria bassiana on T. urticae in an okra plot grown without the use of chemicals in Bangalore, Karnataka, India. Laboratory tests using entomopathogens against T. urticae have also been carried out (e.g. Simova and Draganova, 2003; Chandler et al., 2005).

Host-Plant Resistance

Research to find sources of resistance to T. urticae has been carried out on a variety of crops, including Impatiens (Al-Abbasi and Weigle, 1982), soyabean (Mohammad and Rodriguez, 1985), Pelargonium (Chang et al., 1972), cucumber (de Ponti, 1980), Vigna angularis (Aguilar et al., 1996), strawberry (Shanks and Moore, 1995; Easterbrook and Simpson, 1998; Olbricht et al., 2014), watermelon (Lopez et al., 2005; El-Saiedy et al., 2011), maize (Mead et al., 2010), tomato (e.g. Saeidi and Mallik, 2012) and citrus (Agut et al., 2014). Several studies have found differences in susceptibility to the mite between different cultivars or selections. However, the resistance may be polygenic in most cases (Easterbrook and Simpson, 1998), and so is difficult to exploit by plant breeders. Even partial resistance is potentially useful in IPM programmes, however, as it slows the rate of population increase of the spider mite, and so makes it easier for predators to gain control.

Mechanisms of host-plant resistance to T. urticae have been attributed to flavonoid pathways in citrus (Agut et al., 2014), leaf trichomes on Fragaria (Olbricht et al., 2014) (shown to entrap mites on tomato [Saeidi and Mallik, 2012]), increased peroxidase and polyphenol oxidase activity in melon (Shoorooei et al., 2013), antibiosis and antixenosis in bean (Kamelmanesh et al., 2010), phytochemical compounds in watermelon, where El-Saiedy et al. (2011) reported a negative relationship between mite infestation and tannins, and nitrogen and protein content in maize leaves (Mead et al., 2010).

Chemical Control

T. urticae is very difficult to control with acaricides because most populations developed resistance to chemical groups after a few years of use (Cranham and Helle, 1985). In some cases, cross-resistance to other chemical groups has also developed. For example, resistance to the ovicide clofentezine developed quite rapidly, and cross-resistance to hexythiazox also occurred (Thwaite, 1991). Al-Jboory et al. (2004) reported that a bromopropylate-resistant strain (R) of T. urticae showed strong positive cross-resistance towards dicofol and a mixture of dicofol and tetradifon, moderate positive cross-resistance towards amitraz, and low negative cross-resistance towards chlorpyrifos. No cross-resistance was observed towards abamectin and dinobuton.

Later, control often relied on acaricides from a group that act as inhibitors of mitochondrial respiration in the mite (METIs), such as pyridaben, fenpyroximate, fenazaquin and tebufenpyrad. However, resistance was detected in a relatively short space of time, leading to decreased susceptibility to all the compounds in this group (Bylemans and Meurrens, 1997). This illustrates the importance of anti-resistance strategies, involving restricted acaricide use and rotation of acaricides from different chemical groups, such as that proposed for fruit crops by the Insecticide Resistance Action Committee (IRAC) (Wege and Leonard, 1994).

Increased resistance to acaricides has led to research into alternative sources for control, such as fatty acid derivatives (Silva-Flores et al., 2005), sugar esters (Puterka et al., 2003), plant extracts, including essential oils (e.g. Kawka and Tomczyk, 2002; Mateeva et al., 2003; Aslan et al., 2004, 2005; Hou et al., 2004; Kawka, 2004), such as Elettaria cardamomum (Fatemikia et al., 2014), and botanical insecticides derived from the neem tree (Azadirachta indica) (Pavela, 2003). Of various plant extracts tested for acaricidal activity against T. urticae in Plovdiv, Bulgaria, Mateeva et al. (2003) reported that thornapple (Datura stramonium), wormwood (Artemisia absinthium) and basil (Ocimum basilicum) were toxic to the active stages of this pest. It was stated that extracts of these species could be used to control T. urticae on rose in urban areas. Saber (2004) reported that ethanol extracts of sand wormwood (Artemisia monosperma) were least effective against females of T. urticae compared to petroleum ether, chloroform or ethyl acetate. The acaricidal activity of Australian Lamiaceae extracts has also been tested against T. urticae with varying results (Rasikari et al., 2005). Extracts from the subfamilies Ajugoideae, Scutellarioideae, Chloanthoideae, Viticoideae and Nepetoideae showed acaricidal activity, and 14 species of Plectranthus showed moderate to high contact toxicity against T. urticae. Methanol extracts of Cinnamomum species (family Lauraceae) are potential acaricides (Reddy et al., 2014).

Commercially available Bionatrol (specified emulsion nano-particle soyabean oil) was shown to reduce populations of T. urticae, aphids (Aphis gossypii) and whiteflies (Trialeurodes vaporariorum) on greenhouse-grown English cucumber (Cucumis subsp. kasa) by 88-95% (Lee et al., 2005).

Integrated Pest Management

Management of T. urticae forms an integral part of IPM programmes for many crops. It is important that pesticides used for other pests and diseases are chosen so that they cause minimal disruption to naturally occurring predators or biocontrol agents such as Phytoseiulus persimilis. Also, control agents applied against the same pest must also be chosen carefully so that they do not disrupt each other. Thus, even though P. persimilis and B. bassiana have been shown to be effective in controlling T. urticae, when applied together, an increase in handling time by P. persimilis was reported, leading to a decrease in the rate of feeding by the predatory mite (Seiedy et al., 2012).

It may sometimes be necessary to use a selective acaricide to reduce spider mite numbers and maintain a suitable pest/predator ratio. For example, a selective acaricide may be needed to reduce a large overwintered population of T. urticae in the spring, before a release of P. persimilis later in the year (Easterbrook, 1992).

IPM programmes should minimize the use of acaricides, to delay the onset of resistance and prolong their effective life, but even programmes that do not heavily rely on pesticide use need to be cautious when employing different control strategies. For example, hot-water treatment on strawberry discs has been shown to control T. urticae (Gotoh et al., 2013); however, it was suggested by the authors that the natural enemy, Neoseiulus californicus would have to be replaced following treatment due to its sensitivity to hot water.

Supplements, such as fertilizers, used in the growing environment must also work synergistically in an IPM programme and several authors have investigated the effect of fertilizer application on pests, such as T. urticae. For example, Zhang and Xiang (2007) reported an increase in the number of T. urticae (and Aphis gossypii) with an increase in organic fertilizer application; however, cucumber yield also increased. In contrast, other studies have shown that application of nitrogen or phosphorous fertilizers had no effect on numbers or activity of T. urticae (e.g. Shabalta et al., 1992, on soyabeans).

Other

In 2006, Donohue et al. reported on atmospheric pressure plasma discharge as (APPD) a non-chemical method of control for insect pests including T. urticae. APPD is used to sterilize medical equipment and was shown to kill T. urticae. However, further reports of its application to control the mite in the scientific literature could not be found after publication of Donahue et al.’s paper in 2006.

References

Top of page

Adango E; Onzo A; Hanna R; Atachi P; James B, 2006. Inventory of the mite fauna on Amaranthus cruentus (Amaranthaceae), Solanum macrocarpon and Solanum aethiopicum (Solanaceae) in southern Benin. (Inventaire de la faune des acariens sur Amaranthus cruentus (Amaranthaceae), Solanum macrocarpon et Solanum aethiopicum (Solanaceae) dans le Sud Bénin.) International Journal of Tropical Insect Science, 26(3):155-165. http://journals.cambridge.org/download.php?file=%2FJTI%2FJTI26_03%2FS1742758407223835a.pdf&code=aeabdae6c782ca68f111c69b82140018

Aguilar H; Murillo P, 2012. New hosts and records of plant feeding mites for Costa Rica: interval 2008-2012. (Nuevos hospederos y registros de ácaros fitófagos para Costa Rica: período 2008-2012.) Agronomía Costarricense, 36(2):11-28. http://www.mag.go.cr/rev_agr/index.html

Aguilar HG; Tanigoshi LK; Lumpkin TA, 1996. Evaluation of Vigna angularis (Willd.) Ohwi and Ohashi accessions for resistance to Tetranychus urticae Koch (Acari: Tetranychidae). Experimental & Applied Acarology, 20(5):237-247; 29 ref.

Agut B; Gamir J; Jacas JA; Hurtado M; Flors V, 2014. Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. Pest Management Science, 70(11):1728-1741. http://onlinelibrary.wiley.com/doi/10.1002/ps.3718/full

Ahmad M; Mofleh M; Haloum M, 2010. The efficiency of the predator Stethorus gilvifrons Mulsant to control the two spotted spider mite Tetranychus urticae Koch in greenhouse eggplant. Arab Journal of Plant Protection, 28(2):169-174. http://www.asplantprotection.org/PDF/AJPP/28-2_2010/169-174.pdf

Akashe VB, 2004. Management of spotted spider mite (Tetranychus urticae Koch) of rose during summer season. Journal of Maharashtra Agricultural Universities 29(1):96-97.

Al-Abbasi SH; Weigle JL, 1982. Resistance in New Guinea Impatiens species and hybrids to the two-spotted spider mite. HortScience, 17:47-48.

Al-Jboory IJ; Jumida RE; Al-Sammarie AI, 2004. Cross resistance of bromopropylate in the two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). University of Aden Journal of Natural and Applied Sciences, 8(3): 411-416.

Archer TL; Bynum ED Jr, 1993. Yield loss to corn from feeding by the Banks grass mite and two-spotted spider mite (Acari: Tetranychidae). Experimental & Applied Acarology, 17(12):895-903

Ashutosh Sharma; Pati PK, 2012. First record of the carmine spider mite, Tetranychus urticae, infesting Withania somnifera in India. Journal of Insect Science (Madison), 12(50):(10 April 2012). http://www.insectscience.org/12.50/i1536-2442-12-50.pdf

Aslan I; Kordali S; Calmasur O, 2005. Toxicity of the vapours of Artemisia absinthium essential oils to Tetranychus urticae Koch and Bemisia tabasi (Genn.). Fresenius Environmental Bulletin, 14(5):413-417.

Aslan I; Ozbek H; Calmasur O; Sahin F, 2004. Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Industrial Crops and Products, 19(2):167-173.

Balliu A; Cota E, 2007. Biological control of main greenhouse pests in Albania. Acta Horticulturae, 729:489-492. http://www.actahort.org

Bao JF; Yao FJ; Li FT, 2001. The control of pests and diseases in the old pear orchard. South China Fruits, 30(1):40.

Barok S; Markovic J, 2000. Protection against grape vine pests. Vinohrad (Bratislava), 38(5):102-104.

Bayan A, 1998. Injurious and predatory mites on plants in Lebanon. Arab Journal of Plant Protection, 16(2):94-97; 17 ref.

Bolland HR; Gutierrez J; Flechtmann CHW, 1998. World Catalogue of the Spider Mite Family (Acari: Tetranychidae). Leiden, Netherlands: K. Brill, 392 pp.

Bondada BR; Oosterhuis DM; Tugwell NP; Kim KS, 1995. Physiological and cytological studies of two spotted spider mite, Tetranychus urticae K., injury in cotton. Southwestern Entomologist, 20(2):171-180

Boudreaux HB; Dosse G, 1963. The usefulness of new taxonomic characters in females of the genus Tetranychus Dufour. Acarologia V(1):13-33.

Brown H, 2003. Common insect pests of cucurbits. Agdex No: 263/622. Agnote Northern Territory of Australia (159):6.

Butcher MR; Penman DR; Scott RR, 1987. A binomial sequential decision plan for control of two-spotted spider mite on strawberries in Canterbury. New Zealand Journal of Experimental Agriculture, 15(3):371-374

Bylemans D; Meurrens F, 1997. Anti-resistance strategies for two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) in strawberry culture. Acta Horticulturae, 439(2):869-873.

Chagas PRR; Tokeshi H; Alves MC, 2001. Efficiency of lime sulfur in the control of two-spotted mite in papaya in conventional and organic (Bokashi-EM) systems. In: Sixth International Conference on Kyusei Nature Farming. Proceedings of the conference on greater productivity and a cleaner environment through Kyusei Nature Farming, University of Pretoria, Pretoria, South Africa, 28-31 October, 1999 [ed. by Senanayake, Y. D. A.\Sangakkara, U. R.]. Atami, Japan: International Nature Farming Research Center (INFRC), 255-258.

Chandler D; Davidson G; Jacobson RJ, 2005. Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocontrol Science and Technology, 15(1):37-54.

Chang KP; Snetsinger R; Craig R, 1972. Leaf characteristics of spider mite resistant and susceptible cultivars of Pelargonium x hortorum. Entomology News, 83:191-197.

Chen HanJie (et al), 1998. Preliminary investigation on regularity of outbreak of Tetranychus urticae Kach in Zhengzhou area. Journal of Henan Agricultural Sciences, No. 10:26-27.

Chen HG, 2000. Infestation by and control of Tetranychus urticae Koch in Shanxi. Plant Protection, 26(2):29-30.

Cranham JE; Helle W, 1985. Pesticide resistance in Tetranychidae. In: Helle W, Sabelis MW, eds. Spider Mites: Their Biology, Natural Enemies and Control. Vol 1B. [country??]: Elsevier, 405-421.

Delrio G; Luciano P; Floris I; Cabitza F; Cubeddu M; Cabras P, 1989. Control trials against the pests of processing tomatoes in Sardinia. Difesa delle Piante, 12(1-2):97-106; [Paper presented at the conference 'Pests and diseases of horticultural field crops and methods of their control' held in Siracusa, Sicily, on 22-24 February 1988]; 13 ref.

Dewar AM; Haylock LA; Bean KM; Garner BH; Boyce R, 2000. The ecology and control of the two-spotted spider mite, Tetranychus urticae, in sugar beet. In: The BCPC Conference: Pests and diseases, Volume 3. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13-16 November 2000. Farnham, UK: British Crop Protection Council, 913-918.

Donohue KV; Bures BL; Bourham MA; Roe RM, 2006. Mode of action of a novel nonchemical method of insect control: atmospheric pressure plasma discharge. Journal of Economic Entomology, 99(1):38-47. http://miranda.esa.catchword.org/vl=5478027/cl=18/nw=1/rpsv/cw/esa/00220493/v99n1/s6/p38

Easterbrook MA, 1992. The possibilities for control of two-spotted spider mite Tetranychus urticae on field-grown strawberries in the UK by predatory mites. Biocontrol Science and Technology, 2(3):235-245

Easterbrook MA; Simpson DW, 1998. Resistance to two-spotted spider mite Tetranychus urticae in strawberry cultivars and wild species of Fragaria and Potentilla. Journal of Horticultural Science and Biotechnology, 73(4):531-535; 8 ref.

Elmoghazy MME, 2016. Survey and taxonomy of mites associated with fruit orchards trees from Sakaka governorate, Kingdom of Saudi Arabia. International Journal of Agriculture and Biosciences, 5(6):341-346. http://www.ijagbio.com/pdf-files/volume-5-no-6-2016/341-346.pdf

El-Saiedy EMA; Afifi AM; Ali FS; Ahmed MM, 2011. Susceptibility of four watermelon cultivars to infestation with Tetranychus urticae Koch. Acarines, 5(1):23-28. http://www.esaeg.org

Enohara K; Amano H, 1996. Simple method for discriminating six common species of red Tetranychus spider mites (Acari: Tetranychidae) in Japan. Japanese Journal of Applied Entomology and Zoology, 40(4):311-315; 14 ref.

Fatemikia S; Abbasipour H; Karimi J; Saeedizadeh A; Gorjan AS, 2014. Efficacy of Elettaria cardamomum L. (Zingiberaceae) essential oil on the two spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Archives of Phytopathology and Plant Protection, 47(8):1008-1014. http://www.tandfonline.com/loi/gapp20

Fathi SAA, 2013. Population abundance, prey consumption and body size of the predatory bug Orius minutus feeding on Tetranychus urticae on six on six potato cultivars. Iranian Journal of Plant Protection Science, 44(2):Pe191-Pe201. http://ijpps.ut.ac.ir/article_36670_4599.html

Flechtmann CHW; Etienne J, 2006. Further notes on plant associated mites (Acari) from Guadeloupe and Les Saintes, lesser antilles. International Journal of Acarology, 32(4):377-382.

Gardiner MM; Barbour JD; Johnson JB, 2003. Arthropod diversity and abundance on feral and cultivated Humulus lupulus (Urticales: Cannabaceae) in Idaho. Environmental Entomology, 32(3):564-574.

Ghoshal S; Gupta SK; Mukherjee B, 2004. Seasonal abundance of phytophagous and predatory mites on mangrove vegetation and agri-horticultural crops of Sundarban Biosphere Reserve. Acarina, 12(1):49-56.

Girish R; Srinivasa N; Shruthi HR, 2014. Occurrence and status of pests infesting chilli (Capsicum annuum L.). Environment and Ecology, 32(3):916-919. http://www.environmentandecology.com/

Goka K; Takafuji A, 1997. Identification among seven species of spider mites (Tetranychus) (Acari: Tetranychidae) based on enzyme differentiation detected by electrophoresis. Applied Entomology and Zoology, 32(1):127-134; 13 ref.

Gonzalez MQ de; Viloria Z, 1991. Tetranychus urticae Koch and Oligonychus bagdasariani Baker and Pritchard (Acari: Tetranychidae) phytophagous mites of importance on grapes (Vitis vinifera L.) in the state of Zulia: taxonomic description and damage. Revista de la Facultad de Agronomia, Universidad del Zulia, 8(1):1-14

Gore J; Cook DR; Catchot AL; Musser FR; Stewart SD; Leonard BR; Lorenz G; Studebaker G; Akin DS; Tindall KV; Jackson RE, 2013. Impact of twospotted spider mite (Acari: Tetranychidae) infestation timing on cotton yields. Journal of Cotton Science, 17(1):34-39. http://journal.cotton.org/journal/2013-17/1/34.cfm

Górski R; Eajfer B, 2003. Control of red spider mite on indoor crops using the ladybird Stethorus punctillum. (Mozliwosci wykorzystania biedronki stethorus punctillum weise w zwalczaniu przedziorków w roslinach uprawianych pod osonami.) Ochrona Roslin, 47(1):10-11.

Gotoh T; Kitashima Y; Sato T, 2013. Effect of hot-water treatment on the two-spotted spider mite, Tetranychus urticae, and its predator, Neoseiulus californicus (Acari: Tetranychidae, Phytoseiidae). International Journal of Acarology, 39(7):533-537. http://www.tandfonline.com/loi/taca20

Gotoh T; Tokioka T, 1996. Genetic compatibility among diapausing red, non-diapausing red and diapausing green forms of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Japanese Journal of Entomology, 64(1):215-225; 21 ref.

Greco NM; Liljesthröm GG; Ottaviano MFG; Cluigt N; Cingolani MF; Zembo JC; Sánchez NE, 2011. Pest management plan for the two-spotted spider mite, Tetranychus urticae, based on the natural occurrence of the predatory mite Neoseiulus californicus in strawberries. International Journal of Pest Management, 57(4):299-308.

He DaHan; Zhao XiaoPing; Jin QiaoHong; Zhang BeiBei; Liu Chao, 2001. Dispersion of two-spotted spider mite, Tetranychus urticae Koch, and its selection of host plants on farmland in Ningxia. Chinese Journal of Applied and Environmental Biology, 7(5):447-451.

Helle W; Sabelis MW (Editors), 1985. Spider mites. Their biology, natural enemies and control. Vol. 1A. Amsterdam, Netherlands: Elsevier, 405 pp.

Helle W; Sabelis MW (Editors), 1985. Spider mites. Their biology, natural enemies and control. Vol. 1B. Amsterdam, Netherlands: Elsevier, 458 pp.

Hluchy M; Pospisil Z, 1992. Damage and economic injury levels of eriophyid and tetranychid mites on grapes in Czechoslovakia. Experimental & Applied Acarology, 14(2):95-106.

Hou H; Zhao LL; Shi GL; Li ZH, 2004. Studies on acaricidal action of extracts from Bassia scoparia. Plant Protection, 30(3):42-45.

Hussey NW; Huffaker CB, 1976. Spider mites. In: Delucchi VL, ed. Studies in Biological Control. New York, USA: Cambridge University Press, 179-228.

Hussey NW; Parr WJ; Gould HJ, 1965. Observations on the control of Tetranychus urticae Koch on cucumbers by the predatory mite Phytoseiulus riegeli Dosse. Entomologia Experimentalis et Applicata, 8:271-281.

IIE, 1996. Distribution maps of pests, No. 562. Wallingford, UK: CAB International.

Jeyarani S; Banu JG; Ramaraju K, 2011. First record of natural occurrence of Cladosporium cladosporioides (Fresenius) de Vries and Beauveria bassiana (Bals.-Criv.) Vuill on two spotted spider mite, Tetranychus urticae Koch from India. Journal of Entomology, 8(3):274-279. http://scialert.net/fulltext/?doi=je.2011.274.279&org=10

Jin XF; Zhao HY; Zhang CZ; Ne HX; Li HH; Dai SW, 2001. The apple pests and diseases in Eastern Henan province and their control. China Fruits, (2):33-35.

Jyotika Kapur-Ghai; Bhullar MB, 2003. Population dynamics of mites infesting okra (Hibiscus esculentus) in Punjab during the period 2000-01. Annals of Agri Bio Research, 8(1):69-71; 6 ref.

Kamelmanesh MM; Hesami S; Namayandeh A; Ahmadi B; Dorri HR, 2010. Evaluation of resistance mechanism of some navy bean genotypes to two-spotted spider mite (Tetranychus urticae). Plant Protection Journal, 2(2):Pe111-Pe124, En125.

Kawka B, 2004. Effect of chamomile extracts on biology of Tetranychus urticae Koch. feeding on Algerian Ivy (Hedera canariensis L.). Annals of Warsaw Agricultural University, Horticulture Landscape Architecture, (25):75-79.

Kawka B; Tomczyk A, 2002. Influence of extracts from sage (Salvia officinalis L.) on some biological parameters of Tetranychus urticae Koch. feeding on Algerian Ivy (Hedera helix variegata L.). Bulletin OILB/SROP, 25(1):127-130; 9 ref.

Kharboutli MS; Allen CT; Norton C; Sites JW, 2000. Efficacy of selected acaricides against spider mites on cotton in southeast Arkansas. Special Report - Arkansas Agricultural Experiment Station, No. 198:154-157.

Kielkiewicz M; Vrie M van de, 1983. Histological studies on strawberry leaves damaged by the two-spotted spider mite (Tetranychus urticae): some aspects of plant self defence. Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent, 48(2):235-245

Knapp M, 1997. Research on integrated pest management of apples and peaches in the highlands of Yemen. Untersuchungen zum integrierten Pflanzenschutz im Apfel- und Pfirsichanbau des jemenitischen Hochlands., 176 pp.; Plits 15 (6); 19 pp. of ref.

Kohnic A; Ostojic I; Karic N, 2006. Vegetable pests in greenhouses in territory of Herzegovina. (Stetnici plodovitog povrca u zasticenim prostorima na podrucju Hercegovine.) Radovi Poljoprivrednog Fakulteta Univerziteta u Sarajevu (Works of the Faculty of Agriculture University of Sarajevo), 51(57(2)):139-140.

Lahiri S; Roy I; Podder S; Saha GK; Gupta SK, 2005. Notes on phytophagous and predatory mites of medicinal plants of Kolkata. Zoos’ Print Journal, 20(7):1931-1932.

Lancaster AL; Deyton DE; Sams CE; Cummins JC; Pless CD; Fare DC, 2002. Soybean oil controls two-spotted spider mites on burning bush. Journal of Environmental Horticulture, 20(2):86-92.

Lee KH; Chung SJ; Chung GH, 2005. Effectiveness of Bionatrol on control of two spotted spider mites (Tetranychus urticae), aphids (Aphis gossypii), and whiteflies (Trialeurodes vaporariorum) on greenhouse grown English cucumber (Cucumis ssp. kasa). Journal of the Korean Society for Horticultural Science, 46(4):241-245.

Lola-Luz T; MacNaidhe F; Dune R; Fitters P; Griffin C; Downes M, 2003. Integrated crop management in strawberries in Ireland: description, progress and future plans. Bulletin OILB/SROP [Proceedings of the IOBC/WPRS Working Group 'Integrated Plant Protection in Orchards' subgroup 'Soft Fruits', Dundee, Scotland, 18-21 September, 2001.], 26(2):19-21.

Lopez R; Levi A; Shepard BM; Simmons AM; Jackson DM, 2005. Sources of resistance to two-spotted spider mite (Acari: Tetranychidae) in Citrullus spp. HortScience, 40(6):1661-1663.

Marcic D; Prijovic M; Drobnjakovic T; MeÐo I; Peric P; Milenkovic S, 2012. Greenhouse and field evaluation of two biopesticides against Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pesticidi i Fitomedicina, 27(4):313-320. http://scindeks-clanci.ceon.rs/data/pdf/1820-3949/2012/1820-39491204313M.pdf

Mateeva AA; Christov C; Stratieva S; Palagatscheva N, 2003. Alternative plant protection means against Tetranychus urticae Koch. Second International Symposium on plant health in urban horticulture, Berlin, Germany, 27-29 August, 2003. Berlin, Germany: Biologische Bundesanstalt fur Land- und Forstwirtschaft.

McNab SC; Jerie PH, 1993. Flowering, fruit set, and yield response of 'Bartlett' pear to leaf-scorch damage by twospotted spider mite (Acari: Tetranychidae). Journal of Economic Entomology, 86(2):486-493

Mead HMI; El-Kawas HMG; Desuky WMH, 2010. Susceptibility of certain maize varieties to Tetranychus urticae Koch infestation in relation to leaf chemical contents. Acarines, 4:25-30. http://www.esaeg.org

Meck ED; Walgenbach JF; Kennedy GG, 2012. Association of Tetranychus urticae (Acari: Tetranychidae) feeding and gold fleck damage on tomato fruit. Crop Protection, 42:24-29. http://www.sciencedirect.com/science/journal/02612194

Meena-Thakur; Sangita-Sharma; Dinabandhoo CL, 2004. Phytophagous mites associated with temperate and sub-tropical fruit trees in Himachal Pradesh. Pest Management and Economic Zoology, 12(1):83-87.

Metwally AM; Abou-Awad BA; Al-Azzazy MMA, 2005. Life table and prey consumption of the predatory mite Neoseiulus cydnodactylon Shehata and Zaher (Acari: Phytoseiidae) with three mite species as prey. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 112(3):276-286.

Miao Hui; Hong XiaoYue; Xie Lin; Xue XiaoFeng; Zhang ChunLing, 2006. Sequencing and sequence analysis of the wsp gene of Wolbachia in Tetranychus urticae Koch (Acari: Tetranychidae). Acta Entomologica Sinica, 49(1):146-153.

Mifsud D, 1997. Biological control in the Maltese Islands - past initiatives and future programmes. Bulletin OEPP, 27(1):77-84; 25 ref.

Milek TM; Masten R, 2009. Eryophid and tetranychid mites (Arachnida: Acari) on grapevine. (Eriofidne i tetranihidne grinje (Arachnida: Acari) na vinovoj lozi.) Glasilo Biljne Za?tite, 9(5):343-351. http://www.hdbz.hr

Milenkovic S; Stanisavljevic M, 2003. Raspberry pests in Serbia. Bulletin OILB/SROP, 26(2):23-27.

Milevoj L; Osvald J, 1996. Methods for integrated cultivation and control of horticultural crops. Novi izzivi v poljedelstvu '96. Zbornik simpozija, Ljubljana, Slovenia 9-10 decembra 1996., 313-317; 9 ref.

MingGZ; Wang LJ; Xu JG; Zhu FG; Zhou SQ, 2002. The occurrence of two-spotted spider mite in the southwestern part of Shandong province and its control. China Fruits (1):40-41.

Mir AA, 1990. Problem of red spider mites in tea and its remedies. Pamphlet - Bangladesh Tea Research Institute, No. 13:12 pp.

Mitchell R, 1972. The sex ratio of the spider mite Tetranychus urticae. Entomologia Experimentalis et Applicata, 15(3):299-304.

Mobley KN; Marini RP, 1990. Gas exchange characteristics of apple and peach leaves infested by European red mite and twospotted spider mite. Journal of the American Society for Horticultural Science, 115(5):757-761

Mohammed AAA; Rodriguez JG, 1985. Resistance of selected soybean genotypes to the twospotted spider mite Tetranychus urticae Koch (Acarina: Tetranychidae). Transactions of the Kentucky Academy of Science, 46:92-98.

Monteiro LB; Belli L; Souza Ade; Werner AL, 2002. Effect of weed management on Neoseiulus californicus (Acari: Phytoseiidae) in apple orchards. Revista Brasileira de Fruticultura, 24(3):680-682; 17 ref.

Nagrare VS; Rampal, 2008. Responses of acaricides against two-spotted spider mites Tetranychus urticae Koch infesting Cymbidium under polyhouse in Sikkim. Journal of Ornamental Horticulture, 11(2):104-106.

Navajas M; Gutierrez J; Gotoh T, 1997. Convergence of molecular and morphological data reveals phylogenetic information on Tetranychus species and allows the restoration of the genus Amphitetranychus (Acari: Tetranychidae). Bulletin of Entomological Research, 87(3):283-288; 14 ref.

Nihoul P; Hance T; Impe G van; Marechal B, 1992. Physiological aspects of damage caused by spider mites on tomato leaflets. Journal of Applied Entomology, 113(5):487-492

Nyoike TW; Liburd OE, 2013. Effect of Tetranychus urticae (Acari: Tetranychidae), on marketable yields of field-grown strawberries in north-central Florida. Journal of Economic Entomology, 106(4):1757-1766. http://docserver.ingentaconnect.com/deliver/connect/esa/00220493/v106n4/s30.pdf?expires=1376557267&id=0000&titleid=10264&checksum=A698764E51D3636EBA7F543E6DF98CAC

Oatman ER; Sances FV; LaPre LF; Toscano NC; Voth V, 1982. Effects of different infestation levels of the twospotted spider mite on strawberry yields in winter plantings in southern California. Journal of Economic Entomology, 75(1):94-96

Olbricht K; Ludwig A; Ulrich D; Spangenberg R; Guenther M; Neinhuis C, 2014. Leaf morphology and anatomy in the genus Fragaria: implications for resistances. Acta Horticulturae [VII International Strawberry Symposium, Beijing, China.], No.1049:269-273. http://www.actahort.org/books/1049/1049_34.htm

Overmeer WPJ; Harrison RA, 1969. Notes on the control of the sex ratio in populations of the two-spotted spider mite Tetranychus urticae Koch (Acarina: Tetranychidae). New Zealand J. Sci., 12:920-928.

Pavela R, 2003. The effect of commercial botanical insecticides from Azadirachta indica on Tetranychus urticae in Czech Republic. Colloque international tomate sous abri, protection integree agriculture biologique, Avignon, France, 17-18 et 19 septembre 2003, 148-152.

Ponti OMB de, 1980. Breeding cucumber (Cucumis sativis) for resistance to the two-spotted spider mite (Tetranychus urticae). In: [eds??] Integrated Control of Insect Pests in the Netherlands. Wageningen, Netherlands: Pudoc, 191-195.

Popov S Ya, 2003. Long-term characteristics of seasonal development of spider mites of the genus Tetranychus Dufour, 1832 (Acariformes, Tetranychidae) on strawberry in Moscow Province. Entomologicheskoe Obozrenie, 82(1):71-85.

Puterka GJ; Farone W; Palmer T; Barrington A, 2003. Structure-function relationships affecting the insecticidal and miticidal activity of sugar esters. Journal of Economic Entomology, 96(3):636-644.

Rabindra Prasad; Sanjay Kumar; Devendra Prasad, 2006. An account of mite pest fauna associated with common vegetables grown in Ranchi. Journal of Plant Protection and Environment, 3(1):149-151.

Rabindra-Prasad, 2003. Abundance of red spider mite pest complex on leguminaceous vegetables. Insect Environment, 9(4):190-192.

Radonjic S; Hrncic S, 2011. An overview of invasive species on vegetables in greenhouses in southern part of Montenegro. IOBC/WPRS Bulletin [Proceedings of the IOBC/WPRS Working Group "Integrated Control in Protected crops, Temperate Climate", Sutton Scotney, UK, 18-22 September 2011.], 68:153-157. http://www.iobc-wprs.org/pub/bulletins/bulletin_2011_68_table_of_contents_abstracts.pdf

Rajkumar E; Hugar PS; Kattimani KN, 2005. Seasonal incidence of red spider mite, Tetranychus urticae Koch. (Acari: Tetranychidae) on jasmine. Karnataka Journal of Agricultural Sciences, 18(1):150-153.

Rajkumar M; Reddy KL; Gour TB, 2004. Thrips and mites infesting roses. Insect Environment, 10(1):27-28.

Rajpal S; Joshi AK, 2003. Pests of okra (Abelmoschus esculentus Moench.) in Paonta Valley, Himachal Pradesh. Insect Environment 9(4):173-174.

Rajpal S; Lakhanpal SC; Karkara BK, 2004. Pests of strawberry in Paonta Valley, Himachal Pradesh. Insect Environment, 10(2):81-82.

Rao SS; Rao SN; Azam KM, 1990. Occurrence of Tetranychus urticae Koch on greengram (Vigna radiata). Indian Journal of Entomology, 52(1):158-159

Rasikari HL; Leach DN; Waterman PG; Spooner-Hart RN; Basta AH; Banbury LK; Forster PI, 2005. Acaricidal and cytotoxic activities of extracts from selected genera of Australian Lamiaceae. Journal of Economic Entomology, 98(4):1259-1266. HTTP://www.esa.catchword.org

Rasikari HL; Leach DN; Waterman PG; Spooner-Hart RN; Basta AH; Banbury LK; Forster PI, 2005. Acaricidal and cytotoxic activities of extracts from selected genera of Australian Lamiaceae. Journal of Economic Entomology, 98(4):1259-1266. HTTP://www.esa.catchword.org

Raworth DA, 1986. Sampling statistics and a sampling scheme for the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on strawberries. Canadian Entomologist, 118(8):807-814

Reddy GVM; Srinivasa N; Muralidhara MS, 2014. Potentiality of Cinnamomum extracts to two spotted spider mite, Tetranychus urticae Koch and its predator Neoseiulus longispinosus (Evans). Journal of Biopesticides, 7(1):11-14. http://www.jbiopest.com

Roggia S; Guedes JVC; Kuss RCR; Arnemann JA; Návia D, 2008. Spider mites associated to soybean in Rio Grande do Sul, Brazil. Pesquisa Agropecuária Brasileira, 43(3):295-301. http://www.scielo.br/pab

Roggia S; Guedes JVC; Kuss-Roggia RCR; Vasconcelos GJNde; Navia D; Delalibera Junior I, 2009. Predatory mites and the fungus Neozygites floridana associated with spider mites on soybean, in Rio Grande do Sul, Brazil. (Âcaros predadores e o fungo Neozygites floridana associados a tetraniquídeos em soja no Rio Grande do Sul.) Pesquisa Agropecuária Brasileira, 44(1):107-110. http://www.scielo.br/pab

Rubeiz IG; Nadi KM; Farran MT; Freiwat MM, 1997. Rowcover effects on growth and yield of strawberry cultivars grown in a Mediterranean climate. Journal of Small Fruit & Viticulture, 5(2):47-56; 13 ref.

Saber SA, 2004. Influence of Artemisia monosperma Del. extracts on repellency, oviposition deterrence and biological aspects of the two-spotted spider mite, Tetranychus urticae Koch. Egyptian Journal of Biological Pest Control, 14(2):345-348.

Saeidi Z; Mallik B, 2012. Entrapment of two-spotted spider mite, Tetranychus urticae (Acari: Prostigmata: Tetranychidae), by type IV glandular trichomes of Lycopersicon species. Journal of Entomological Society of Iran, 31(2):15-27. http://www.entsociran.org.ir/publication.htm

Sances FV; Toscano NC; LaPre LF; Oatman ER; Johnson MW, 1982. Spider mites can reduce strawberry yields. California Agriculture, 36(1/2):14-15

Sances FV; Wyman JA; Ting IP, 1979. Morphological responses of strawberry leaves to infestations of twospotted spider mite. Journal of Economic Entomology, 72(5):710-713

Saranya S; Ramaraju K; Jeyarani S; Roseleen SSJ, 2013. Natural epizootics of Cladosporium cladosporioides on Tetranychus urticae Koch. (Acari.: Tetranychidae) in Coimbatore. Journal of Biological Control, 27(2):95-98. http://journalofbiologicalcontrol.com/index.php/jbc/article/view/45549/36890

Seiedy M; Saboori A; Allahyari H; Talaei-Hassanloui R; Tork M, 2012. Functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) on untreated and Beauveria bassiana - treated adults of Tetranychus urticae (Acari: Tetranychidae). Journal of Insect Behavior, 25(6):543-553. http://www.springerlink.com/link.asp?id=104914

Shabalta OM; Nguen Tkhi Chat; Shirinyan OM, 1992. Injuriousness of spider mite to soybean in relation to the mineral nutrition of the plants. Agrokhimiya, No. 8:125 126.

Shanks CH; Moore PP, 1995. Resistance to two-spotted spider mite and strawberry aphid in Fragaria chiloensis, F. virginiata and F. x ananassa clones. Hortscience, 30:596-599.

Shivaprakash THM; Ghosh SH; Khan HK, 2004. Occurrence of an entomopathogenic fungus, Beauveria bassiana (Bals.) Vuillemin on red spider mites, Tetranychus urticae Koch (Acari: Tetranychidae) in India. Insect Environment, 10(3):103-104.

Shoorooei M; Lotfi M; Nebipour A; Mansouri AI; Kheradmand K; Zalom FG; Madadkhah E; Parsafar A, 2013. Antixenosis and entibiosis of some melon (Cucumis melo) gentotypes to the two-spotted spider mite (Tetranychus urticae) and a possible mechanism for resistance. Journal of Horticultural Science and Biotechnology, 88(1):73-78.

Silva-Flores MA; Rodriguez-Maciel JC; Diaz-Gomez O; Bautista-Martinez N, 2005. Biological effectiveness of a fatty acid derivative for the control of Macrosiphum rosae L. (Homoptera: Aphididae) and Tetranychus urticae Koch (Acari: Tetranychidae). Agrociencia-Montecillo, 39(3):319-325.

Simova S; Draganova S, 2003. Virulence of isolates of entomopathogenic fungi to Tetranychus urticae Koch (Tetranychidae, Acarina). Rasteniev’ dni Nauki, 40(1):87-90.

Singh OP, 1988. Assessment of losses to soybean by red spider mite in Madhya Pradesh. Agricultural Science Digest (Karnal), 8(3):129-130

Singh OP; Singh KJ; Kapoor KN, 1990. Seasonal incidence and chemical control of red spider mite, Tetranychus telarius Linn. on soybean in Madhya Pradesh, India. Indian Journal of Entomology, 52(1):57-62

Sirvi SL; Singh RN, 2014. Biology and predation potential of Coccinella septempunctata L. against Tetranychus urticae (Koch). Indian Journal of Entomology, 76(1):25-28. http://www.indianjournals.com/ijor.aspx?target=ijor:ije&type=home

Soares MA; Castro BMC; Andrade Júnior VC; Assis Júnior SL; Pires EM, 2012. Attack of two new spider mites on sweet potato (Ipomoea batatas) in Diamantina, Minas Gerais State, Brazil. Brazilian Journal of Biology, 72(4):971. http://www.bjb.com.br

Suekane R; Degrande PE; Melo EPde; Bertoncello TF; Lima Junior Idos Sde; Kodama C, 2012. Damage level of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in soybeans. (Nível de dano de ácaro-rajado Tetranychus urticae Koch (Acari: Tetranychidae) em soja.) Revista Ceres, 59(1):77-81. http://www.ceres.ufv.br

Thwaite WG, 1991. Acaricide resistance in Australian deciduous fruit crops. Resistant Pest Management, 3(1):22-23

Tzeng CC; Kao SS, 1996. Evaluation on the safety of pesticides to green lacewing, Mallada basalis larvae. Plant Protection Bulletin (Taipei), 38(3):203-213; 36 ref.

Wahundeniya KB; Wahundeniya I; Ariyaratne I; Silva YKKde, 2005. Control of pests and diseases of commercial leafy vegetables by farmers in the western province. Annals of the Sri Lanka Department of Agriculture, 7:401.

Watanabe MA; Moraes GJde; Gastaldo IJr; Nicolella G, 1994. Biological control of two spotted spider mite with predatory phytoseiids (Acari: Tetranychidae, Phytoseiidae) on cucumber and strawberry. Scientia Agricola, 51(1):75-81; 15 ref.

Waterhouse DF, 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. ACIAR Monograph No. 21. Canberra, Australia: Australian Centre for International Agricultural Research, 141 pp.

Wege PJ; Leonard PK, 1994. Insecticide resistance action committee (IRAC) fruit crops spider mite resistance management guidelines 1994. Proceedings - Brighton Crop Protection Conference, Pests and Diseases, 1994, vol. 1., 427-430; 14 ref.

Wilson LJ, 1993. Spider mites (Acari: Tetranychidae) affect yield and fiber quality of cotton. Journal of Economic Entomology, 86(2):566-585

Wold SJ; Hutchison WD, 2003. Varietal resistance to Tetranychus urticae Koch (Acari: Tetranychidae) in Minnesota strawberries and control with bifenthrin. Journal of Entomological Science, 38(4):692-695.

Yanagita H; Morita S; Kunimaru K; Takemoto H, 2014. Capability of Scolothrips takahashii (Thysanoptera: Thripidae) as a control agent of Tetranychus urticae (Acari: Tetranychidae) for protecting strawberry plug plants in summer. Applied Entomology and Zoology, 49(3):437-441. http://rd.springer.com/article/10.1007/s13355-014-0268-9

Yano S, 2004. Does Tetranychus urticae (Acari: Tetranychidae) use flying insects as vectors for phoretic dispersal? Experimental and Applied Acarology, 32(4):243-248.

Young GR; Zhang L, 2001. The IPM of snake bean, Vigna unguiculata ssp. sesquipedalis, in the Top End of the Northern Territory. Technical Bulletin - Department of Primary Industry and Fisheries, Northern Territory of Australia, No. 288:95-100; 10 ref.

Zhang BaoXiang; Du XiangGe, 2007. Effects of different amount of organic fertilizer on populations of Aphis gossypii Glover and Tetranychus urticae Koch and the yield of cucumber. China Vegetables, No.2:22-24.

Zhang BingWang; Wang XiangYang; Zhu ShiHua; Tang XueYou; Xia Feng; Li KaiQiu; Luo DingRong, 2008. Investigation on the main insect pests in the transgenic Bt cotton fields in Anhui Province. Journal of Anhui Agricultural University, 35(4):571-576.

Zhang ZhiQiang; Jacobson RJ, 2000. Using adult female morphological characters for differentiating Tetranychus urticae complex (Acari: Tetranychidae) from greenhouse tomato crops in UK. Systematic and Applied Acarology, 5: 69-76.

Zhang ZQ, 2003. Mites of Greenhouses: Identification, Biology and Control. Wallingford, UK: CAB International.

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.

Distribution Maps

Top of page
You can pan and zoom the map
Save map