Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Sitotroga cerealella
(grain moth)



Sitotroga cerealella (grain moth)


  • Last modified
  • 08 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Animal
  • Preferred Scientific Name
  • Sitotroga cerealella
  • Preferred Common Name
  • grain moth
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Head, thorax and filiform antennae pale brown, forewing elongate, pale brown or ochreous-brown with black scales, wing fringes concolorous with wing or a little paler, with a central black band.
CaptionHead, thorax and filiform antennae pale brown, forewing elongate, pale brown or ochreous-brown with black scales, wing fringes concolorous with wing or a little paler, with a central black band.
CopyrightMark Cook/CABI BIOSCIENCE
Head, thorax and filiform antennae pale brown, forewing elongate, pale brown or ochreous-brown with black scales, wing fringes concolorous with wing or a little paler, with a central black band.
AdultHead, thorax and filiform antennae pale brown, forewing elongate, pale brown or ochreous-brown with black scales, wing fringes concolorous with wing or a little paler, with a central black band. Mark Cook/CABI BIOSCIENCE


Top of page

Preferred Scientific Name

  • Sitotroga cerealella (Olivier)

Preferred Common Name

  • grain moth

Other Scientific Names

  • Alucita cerealella (Olivier)
  • Anacampsis cerealella (Olivier)
  • Gelechia cerealella (Olivier)
  • Gelechia pyrophagellas

International Common Names

  • English: angoumois grain moth; rice grain moth; rice moth
  • Spanish: alucita de los cereales; palomilla de los cereales; palomilla de los graneros (Mexico); palomilla de los granos; palomita de los cereales (Argentina); polilla de los cereales
  • French: alucite des cereales; alucite des grains; mite angoumoise du grain; papillon de l' angoumois
  • Portuguese: traca dos cereais (Brazil)

Local Common Names

  • Brazil: traça dos cereais
  • Denmark: fransk kornmøl
  • Germany: Motte, Franzoesische Korn-; Motte, Getreide-
  • Israel: ash hatevua
  • Italy: alucite dei cereali; tignola vera del grano
  • Japan: bakuga
  • Netherlands: grauwe rijstmot
  • Norway: maismoll
  • Turkey: arfa guvesi

EPPO code

  • SITTCE (Sitotroga cerealella)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Lepidoptera
  •                         Family: Gelechiidae
  •                             Genus: Sitotroga
  •                                 Species: Sitotroga cerealella

Notes on Taxonomy and Nomenclature

Top of page Although originally described in Alucita by Olivier (1789), this species was re-allocated to Sitotroga by Heinemann (1870) as the type species of this new genus.


Top of page Egg

The eggs are laid singly or in clumps of variable numbers. They are white when first laid and quickly change to a reddish colour. The egg is oval with the anterior (micropylar) end truncate and bearing longitudinal ridges and weaker transverse ridges (Carter, 1984).


The larva is rarely seen, because it completes its development within a single grain. The head is small and yellowish-brown and retracted into the thorax. The body of the larva is stout and yellowish-white, the peritreme of spiracles is brown. The prothoracic and anal plates are weakly developed and concolorous with the integument. The abdominal prolegs are weakly developed, each with no more than three crotchets. The anal comb is absent.


The final-instar larva spins a silken cocoon and changes to a reddish-brown pupa. The abdominal spiracles are slightly raised and the pupal cremaster has one dorsal and two lateral, short, stout spines.


The moth is small, pale brown, 5-7 mm long with wings folded, wingspan 10-16 mm. The head, thorax and filiform antennae are pale brown; labial palpi are long, slender, sharply pointed and upcurved, pale brown with dark tips, terminal segment longer than second, second segment rough-scaled beneath. The forewing is elongate, pale brown or ochreous-brown, with a few black scales at the base of the dorsum and a concentration of black scales towards the apex. The wing fringes are concolorous with the wing or a little paler, with a central black band. Vein CuP is absent, and veins R4, R5 and M1 are stalked. The hindwing is greyish-brown, apex greatly produced. Abdomen brown.


Top of page Many sources state that S. cerealella is cosmopolitan (e.g. ARS, USDA, 1978). The distribution map is based on evidence published in the past 20 years.

The moth has also been found on imported products in the UK, but has not become established there (Carter, 1984).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


BangladeshPresentHowlander and Matin, 1988
ChinaWidespreadChamp and Dyte, 1977; Dunkel et al., 1985; Zhu, 1987
-FujianPresentHe et al., 2002
IndiaWidespreadChamp and Dyte, 1977; Ramashrit and Mishra, 1989
-Andaman and Nicobar IslandsPresentGupta, 1983
-Andhra PradeshPresentVisalakshi et al., 2005
-Arunachal PradeshPresentPathak and Jha, 2003
-AssamPresentBorah and Mohon, 1982
-BiharPresentSinha and Sinha, 1992
-DelhiPresentKishore & Jotwani, 1982; Pajni and Mehta, 1986
-GujaratPresentUpadhyay et al., 1979
-HaryanaPresentMahla, 2001
-Himachal PradeshPresentJitender et al., 2001
-Indian PunjabWidespreadBhardwaj et al., 1977; Dhaliwal et al., 1989
-KarnatakaPresentMajumder and Singh, 1989
-KeralaPresentSaradamma et al., 1973
-MaharashtraPresentPadwal-Desai et al., 1987
-ManipurPresentPande and Bimal-Singh, 1983
-MeghalayaPresentPathak et al., 2002; Pathak and Jha, 2003
-MeghalayaPresentPathak et al., 2002; Pathak and Jha, 2003
-MizoramPresentPathak and Jha, 2003
-NagalandPresentPathak and Jha, 2003; Jamir et al., 2008
-NagalandPresentPathak and Jha, 2003; Jamir et al., 2008
-OdishaPresentIlyasa et al., 1983; Prakash and Kauraw, 1982
-RajasthanPresentMahla and Ameta, 2001
-SikkimPresentPathak and Jha, 2003
-Tamil NaduPresentDakshinamurthy and Regupathy, 1988
-TripuraPresentPathak and Jha, 2003
-Uttar PradeshPresentGirish et al., 1974
-West BengalPresentSingh, 1979
IndonesiaPresentSuryoadikusumo, 1981
IsraelPresentChamp and Dyte, 1977
JapanPresentYoshida, 1984; Takeshita and Imura, 1990
LebanonPresentChamp and Dyte, 1977
MalaysiaWidespreadChamp and Dyte, 1977; Muda, 1985
-Peninsular MalaysiaPresentMuda, 1985
PakistanPresentBaloch,1976; Champ & Dyte,1977; Ahmed et al., 1992
PhilippinesPresentChamp and Dyte, 1977
Saudi ArabiaPresentMostafa et al., 1981
Sri LankaPresentGanesalingam and Krishnarajah, 1979
TaiwanPresentHung & Hwang,1992; Yao, 1992; Peng, 1984; Lo, 1986
ThailandPresentSukprakarn, 1985


AlgeriaPresentChamp and Dyte, 1977
BotswanaWidespreadChamp and Dyte, 1977
EgyptPresentChamp and Dyte, 1977
EritreaPresentHaile, 2006
EthiopiaPresentChamp and Dyte, 1977
GambiaPresentChamp and Dyte, 1977
GhanaPresentAyertey, 1979
KenyaPresentChamp & Dyte,1977; De-Lima, 1978; De-Lima, 1979
LibyaPresentChamp and Dyte, 1977
MalawiPresentBaker, 1986
MozambiqueWidespreadChamp and Dyte, 1977
NamibiaPresentStejskal et al., 2006
NigeriaWidespreadChamp and Dyte, 1977
SenegalPresentSeck, 1991a; Seck, 1991b; Seck, 1991c; Champ and Dyte, 1977
SomaliaWidespreadAbukar et al., 1986; Lavigne, 1991
South AfricaWidespreadChamp and Dyte, 1977
SudanPresentSeifelnasr, 1992
SwazilandPresentWalker, 1979
TanzaniaPresentHenckes, 1992
ZambiaWidespreadChamp and Dyte, 1977; Hindmarsh and MacDonald, 1980
ZimbabwePresentGiga and Katerere, 1986; Giga et al., 1991

North America

MexicoPresentTigar et al., 1994
USAPresentStorey et al., 1983
-FloridaPresentVick et al., 1987
-GeorgiaPresentArbogast and Mullen, 1987; Arbogast and Mullen, 1988
-KentuckyPresentWeston et al., 1993
-South CarolinaPresentArbogast, 2005
-TexasPresentCogburn and Vick, 1981

Central America and Caribbean

Dominican RepublicWidespreadChamp and Dyte, 1977

South America

ArgentinaPresentChamp and Dyte, 1977
BrazilPresentDa-Cruz, 1980; Rebelles-Reis, 1989
-MaranhaoPresentDas-Chagas et al., 1982
-Rio Grande do SulPresentDe-Oliveira et al., 1990
-Sao PauloPresentDa-Cruz, 1980
ColombiaWidespreadChamp and Dyte, 1977
GuyanaWidespreadChamp and Dyte, 1977; Rambajan, 1981
ParaguayWidespreadChamp and Dyte, 1977


AustriaPresentFaber, 1978; Faber, 1982
BulgariaPresentTsvetkov, 1980
CroatiaPresentManojlovic, 1987; Kalinovic et al., 1990
CyprusWidespreadChamp and Dyte, 1977
Czechoslovakia (former)PresentChamp and Dyte, 1977
GreecePresentBuchelos, 1980; Levinson and Buchelos, 1981
HungaryPresentBalazs, 1975
ItalyPresentTrematerra and Gentile, 2002
NetherlandsPresentChamp and Dyte, 1977
Russian FederationPresentVechtomova, 1983
-Russia (Europe)PresentVechtomova, 1983
SpainPresentChamp and Dyte, 1977
SwitzerlandPresentChamp and Dyte, 1977
UkrainePresentUstinov et al., 1986


AustraliaPresentChamp and Dyte, 1977; Greening, 1979; Goodyer, 1982

Risk of Introduction

Top of page S. cerealella is a quarantine pest in Germany (Wohlgemuth and Reichmuth, 1983), but is not listed as a quarantine pest by EPPO (Smith et al., 1992).

Habitat List

Top of page

Hosts/Species Affected

Top of page S. cerealella is a pest of stored products (grains). Some varieties are resistant to attack by this moth; varietal resistance in rice has been the subject of much research.

S. cerealella has also been found to infest stored spices, bell pepper (Capsicum annuum), coriander (Coriandrum sativum), black pepper (Piper nigrum), ginger (Zingiber officinale), turmeric (Curcuma longa) (Padwal-Desai et al., 1987) and the weed Echinochloa colonum (Dakshinamurthy and Regupathy, 1988), although there are fewer documented cases of this.

Plants are attacked at a postharvest stage, although some are also attacked at the fruiting stage.

Dakshinamurthy and Regupathy (1988) studied the infestation of various food plants by S. cerealella in Tamil Nadu, India, in order to determine possible sources of infestation for the next rice crop. S. cerealella was found to infest rice, sorghum, maize, pearl millet and the weed E. colonum.

Growth Stages

Top of page Fruiting stage, Post-harvest


Top of page Larval infestation initially leaves no visible symptoms on the grains because larval development occurs within a single grain. Before pupation, the larva constructs a chamber just below the grain seed coat, forming a small, circular, translucent 'window'.

List of Symptoms/Signs

Top of page
SignLife StagesType
Seeds / internal feeding

Biology and Ecology

Top of page Infestations of S. cerealella occur during storage, or preharvest (Howlander and Matin, 1988) or postharvest (Seck, 1991a). In the field, S. cerealella is able to attack whole (undamaged) grains (Evans, 1987), which poses a greater problem in tropical and subtropical countries than elsewhere (ARS, USDA, 1978).

There are about five generations per year in southern Europe, but in warmer climates S. cerealella is continuously brooded with up to 12 generations per year. In temperate countries, it overwinters in the larval stage in stored grain kernels or in scattered wheat in litter, straw piles or baled straw.

The eggs are laid at night on the outside of cereal grains, in cracks, grooves or holes made by other insects (Hammad et al., 1967). Eggs are laid singly or in clumps; the number laid is variable. The adult lifespan may be up to 15 days (Mondragon and Almeida, 1988) and one female may lay up to 200 eggs (Dobie et al., 1984) although 40 is a more average number (ARS, USDA, 1978).

Larvae bore into the grain after hatching, entering sorghum kernels primarily in the germ end and its periphery (Wongo, 1990). Larvae complete their development in a single grain; two or three larvae may develop in single grains of maize, but only one adult is produced from single grains of other hosts (Cox and Bell, 1981).

The rate of development is dependent on temperature. Mondragon and Almeida (1988) found that development was favoured at 25°C, and that at this temperature, with 70±2% RH and a diet of maize, the mean period of development for the larval stage was 29.4 days. Although larvae will hatch at temperatures down to 12°C and up to 36°C (Cox and Bell, 1981), 16°C and 30% RH are cited as the minimum conditions for population increases (Evans, 1987) and the upper temperature limit is 35°C (Dobie et al., 1984). Humidity in the range 50-90% RH has little effect on the development rate (Boldt, 1974).

The nature of the host may also affect the rate of larval development, with development times of 20 days reported for wheat (Cocurt X-71) and 22.4 days for barley (Cleaper) (Mahdi et al., 1988). Even under laboratory conditions, there may be wide variation in life cycles, with adults emerging after 20 to 90 days (Grinberg and Palii, 1981).

Before pupation, the larva extends the anterior of its chamber to just beneath the surface of the grain, forming a small circular 'window' of translucent seed coat, which is the first visible sign of infestation. Mondragon and Almeida (1988) recorded an average pupal stage of 10.4 days, but this may be as short as 5 days (Dobie et al., 1984). In very small grains (e.g. some sorghum grains), pupation may occur between two or more grains held together by the silken threads of a thin cocoon.

The newly emerged adult pushes through the window of the seed coat, leaving a small, but characteristic, round hole, usually in the crown end of the grain (Wongo, 1990). Part of the window often remains at the edge of the hole in the form of a 'trapdoor' or shallow cone. At 30°C and 80% RH, the complete life cycle can take as little as 25 to 28 days, although at 25°C, the total life cycle was found to last 48.6 days (Mondragon and Almeida, 1988). Under optimal conditions, the estimated intrinsic rate of increase of the population is 50 times per lunar month.

The effect of different rearing temperatures (21, 24, 27 and 30°C) at 65% RH and different relative humidities (30, 40, 50, 60, 70, 80 and 90%) at 26°C on the biology of S. cerealella reared on wheat grains was investigated in Egypt. The duration of the egg stage, preoviposition, oviposition and postoviposition periods, and adult lifespan was negatively correlated with temperature. The highest number of eggs were laid at 27°C (155/female).

Adults are strong fliers and cross-infestation occurs easily. However, they are also delicate and cannot penetrate far into closely packed grain. Because the larvae also stay in the same grain throughout their development, infestations in bulk grain are usually confined to the outermost exposed layers.

In temperate countries, the pest overwinters mainly in the larval form in stored grain kernels or in scattered wheat in litter, straw piles or baled straw. In the USA, the adults emerge in May (ARS, USDA, 1978).

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Anomalochrysa maclachlani Predator
Anthocoris nemorum Predator
Bacillus thuringiensis Pathogen
Bacillus thuringiensis kurstaki Pathogen
Bacillus thuringiensis thuringiensis Pathogen
Beauveria bassiana Pathogen
Blattisocius tarsalis Predator Eggs
Bracon hebetor Parasite Larvae
Ceraeochrysa cubana Predator
Chelonus inanitus Parasite
Chrysopa abbreviata Predator
Chrysopa pallens Predator
Chrysoperla carnea Predator
Chrysoperla carnea Predator
Chrysoperla exotera Predator
Chrysoperla rufilabris Predator
Chrysoperla zastrowi Predator
Collops vittatus Predator
Cryptolaemus montrouzieri Predator
Dibrachys carus Parasite Larvae
Doru taeniatum Predator
Geocoris punctipes Predator
Habrocytus lineatipes Parasite
Mesopolobus Parasite
Mesopolobus sp. Parasite Larvae
Nabis ferus Predator
Nabis pseudoferus Predator
Orius minutus Predator
Paratriphleps laeviusculus Predator
Pteromalus cerealellae Parasite
Pteromalus semotus Parasite
Pyemotes tritici Parasite Adults/Eggs/Larvae/Nymphs/Pupae
Trichogramma Parasite Eggs
Trichogramma achaeae Parasite Eggs Chile grain
Trichogramma aurosa Parasite Eggs
Trichogramma cacoeciae Parasite Eggs
Trichogramma chilonis Parasite Eggs
Trichogramma daumalae Parasite Eggs
Trichogramma dendrolimi Parasite Eggs
Trichogramma evanescens Parasite Eggs
Trichogramma exiguum Parasite Eggs
Trichogramma fasciatum Parasite Eggs Chile grain
Trichogramma galloi Parasite
Trichogramma ingricum Parasite Eggs
Trichogramma ivelae Parasite Eggs
Trichogramma japonicum Parasite Eggs
Trichogramma lopezandinensis Parasite Eggs
Trichogramma maidis Parasite Eggs
Trichogramma minutum Parasite Eggs
Trichogramma mwanzai Parasite Eggs
Trichogramma ostriniae Parasite Eggs
Trichogramma pallidum Parasite Eggs
Trichogramma perkinsi Parasite Eggs
Trichogramma pintoi Parasite Eggs
Trichogramma platneri Parasite Eggs
Trichogramma pretiosum Parasite Eggs
Trichogramma principium Parasite Eggs
Trichogramma semblidis Parasite Eggs
Trichogramma semifumatum Parasite Eggs
Trichogramma silvestre Parasite Eggs
Trichogramma telengai Parasite Eggs
Trichogrammatoidea australicum Parasite Eggs
Xylocoris flavipes Predator

Notes on Natural Enemies

Top of page S. cerealella larvae are parasitized by the hymenopteran Pteromalus cerealellae. Bracon hebetor has also been reported to parasitize larvae in the former USSR (Astanov, 1980) and Saudi Arabia (Mostafa et al., 1981).

Trichogramma spp. have been reported to parasitize eggs in the former USSR (Zil'berg and Filipchuk, 1976) and Poland (Olszak and Bakowski, 1976). Blattisocius tarsalis is a predatory mite of the eggs.

S. cerealella is widely used in the former USSR to rear Trichogramma spp. for the biological control of other lepidopteran pests.

Sitophilus spp. and Rhyzopertha dominica compete with S. cerealella populations, although the weight loss caused by S. cerealella combined with these may be greater than that due to S. cerealella alone (Irsad and Talpur, 1993).

Cotesia ruficrus, found in Mythimna separata, may also have potential as a biological control agent of S. cerealella (Mundiwale et al., 1984) but has not yet been recorded in the field.

For further information on natural enemies of S. cerealella, see Haines (1998) and Schöller (1998).


Top of page Introduction

According to Schulten (1973) there are two kinds of factors implicated in the onset and spread of infestation by S. cerealella: (1) conditions in the field; and (2) conditions during storage.

S. cerealella is a major pest of stored grains, causing weight loss to grains by hollowing them out. Its impact is greater in the tropics and subtropics where it attacks grain in the field as well as in storage. In the tropics, cereal and leguminous grains need continual protection against insect attack at all stages from the growing plant in the field up to the time of consumption, since field-to-storage infestation is common by stored grain insects such as S. cerealella and Sitophilus oryzae (on growing and stored rice), Sitophilus zeamais (on growing and stored maize), Rhyzopertha dominica (on growing and stored wheat and other cereals) and Callosobruchus maculatus (on growing and stored cowpeas). Inadequate storage methods immediately after harvest and before processing add to the problem, and infestation continues to increase during processing, transportation and long-term or seasonal storage, causing an estimated overall yield loss of up to 30% (Singh and Benazet, 1975).

Weight loss may be negligible at infestations below 5% (Omar and Kamel, 1980) and rises in proportion to the degree of infestation and to time.

S. cerealella is often found alongside other pests, with which it may act synergistically. For example, in laboratory trials in Pakistan, S. cerealella was found to cause greater weight loss of wheat grains in combined rearings with R. dominica (2.57% loss), than in single rearings of S. cerealella alone (1.69%) (Irshad and Talpur, 1993). In Tanzania, a complex of pests was responsible for dry weight loss of 31.8% for maize cobs and 7.85% for grains after 9 months of storage (Henckes, 1992).


Larvae of S. cerealella, Plodia interpunctella and Ephestia have been recorded feeding on developing sorghum grains in India, causing considerable damage (Agarwal and Nadkarni, 1974). Also in India, field infestation of various food plants by Sitotroga was studied to determine possible sources of re-infestation of the next rice crop (Dakshinamurthy and Regupathy, 1988). The pest was found to infest rice, sorghum, maize, pearl millet and the weed Echinochloa colonum. Adult emergence was highest on pearl millet (26-32 adults/panicle), followed by sorghum (18-20) and maize (6-12). Losses due to pests (including S. cerealella) in the Sudan were found to range between 2.5 and 7.6% (Seifelnasr, 1992).

The structural components and physical characteristics of sorghum kernels as factors of resistance were studied by Wongo (1990). In laboratory studies, unthreshed sorghum was more suitable than threshed sorghum for the development of Sitotroga (Wongo and Pedersen, 1990). Percentage weight loss estimates were 0.44 (apparent) or 0.51 (real) for large grains and 0.60 (apparent) or 0.70 (real) for small grains (Shazali, 1987).


S. cerealella causes a considerable amount of damage to unhusked stored rice in Bangladesh. The studies reported by Shahjahan (1974) showed that 3-12% of rice kernels are attacked over a period of 6-9 months. This causes a total weight loss varying from 4.2 to 11.9%. In the same country during 4 months of infestation, S. cerealella caused 4-5% weight loss in husked rice and 1% in unhusked rice (Bhuiyah et al., 1992). This is similar to losses reported from Malaysia, where losses due to insects (including Sitotroga) were estimated at 3-7 and 5-14% in paddy and milled rice, respectively (Muda, 1985) and to reports from Thailand, where losses ranged from 1-25% (Sukprakam, 1985).

Insect species (including S. cerealella) and population densities in stored japonica rice in Taiwan were reported by Yao and Lo (1992). Stored rice (unhusked) samples drawn from India were found infested with S. cerealella to the extent of 88%, R. dominica (76.38%), S. oryzae (69%), Tribolium confusum (13.88%) and Oryzaephilus surinamensis (2.78%). Seed germination was also affected (to a maximum of 71.88%) and the average weight loss in storage was in the range 1.09-3.10% (Thakur and Sharma, 1996).

In laboratory studies, the effect of S. cerealella attack on stored grain of 9 rice genotypes was evaluated by Ferreira et al. (1997). After 14 months, the percentage of infested seeds and weight loss ranged from 10.5-61.5% and 5.5-26.1%, respectively. Genotype and level of infestation had significant effects on seed germination.

Grain from commercially grown varieties of rice from the USA, France and the Philippines showed significantly different levels of infestibility (Russell, 1976). In India, the resistance of 20 varieties was evaluated (Chatterji et al., 1977). The data showed that insect infestation and subsequent weight loss increased with the moisture content during storage. Varieties with a low protein content or a strong odour were the most resistant. Upadhyay et al. (1979) reported a study carried out on the relative resistance of grains of 12 rice varieties grown in the same country; a correlation was found between numbers of damaged seeds and percentage weight loss. In tests undertaken by Pandey et al. (1980) at Kanpur on 10 different rice varieties, the results indicated that none of the varieties was completely immune to Sitotroga.

In the USA, losses caused by S. cerealella, S. oryzae and R. dominica in 6 commercial varieties of rough rice were assessed as weight loss of rough rice, loss of milling yield, and loss of monetary value (Cogburn, 1977). Over three insect generations, damage attributable to S. cerealella or R. dominica was approximately equal; S. oryzae caused the least damage.

In Bangladesh, the populations of S. cerealella, S. oryzae and R. dominica in stored rice, and the percentage weight loss due to infestation by each species was studied over a 12-month period (Rubbi and Begum, 1986). The population of S. cerealella was highest, followed by S. oryzae and then R. dominica, and the percentage loss in weight of the rice followed the same order.

Resistance to S. cerealella was also assessed in 38 genotypes by Irshad et al. (1989); Wu (1990) reported that of 38 hybrid rice combinations evaluated, one was resistant and 8 were moderately resistant. Medina and Heinrichs (1986) reported that the susceptibility indices and grain weight loss differed significantly among varieties. According to Ragumoorthy and Gunathilagaraj (1988), in general resistant varieties had thick husks, low alkali values, coarse grain, higher 100-grain weight, and high silica, total protein and total amylose contents compared with less resistant ones.


In Malawi, infestation by S. cerealella, S. zeamais and S. oryzae began in the field and built up slowly in stored maize. After the onset of the rains, Sitotroga populations decreased and Sitophilus populations increased rapidly. Considerable differences were observed in susceptibility between maize varieties, varying from 10% damage in local varieties to 70-90% in varieties with soft grains and poor husk cover, after storage for 9 months (Schulten, 1975).

Also in Malawi, the high-protein opaque varieties (except for those that had been selected for kernel hardness from kernels rejected by ovipositing females of S. zeamais) were found to be much more susceptible than the more common varieties (Dobie, 1975). Again in Malawi, when the traditional stores were plastered with mud to minimise moisture uptake during the rainy season, this treatment resulted in less than 6% loss of grain weight over the 10 months of the experiment, compared with 19-28% for untreated stores (Golob and Muwalo, 1984).

In southern Somalia, average post-harvest losses to maize caused by stored-grain insects were reported as weight losses of 24.35-31.85% for cobs and 2-4% in individual grains (Abukar et al., 1986). Losses of stored subsistence maize due to insects in Kenya have been estimated at 4.54% (De-Lima, 1979).

Losses in storage in Zimbabwe were mainly caused by S. cerealella and S. zeamais (Giga and Katerere, 1986). Damage and losses in untreated and pesticide-treated maize stored on-farm were estimated by Giga et al. (1991). After 8 months, damage to untreated grain and grain treated with malathion, pirimiphos-methyl and methacrifos was 76, 36, 17 and 10%, respectively, and the weight losses estimated were approximately 13, 6, 4 and 2%.

In Tanzania, the most important pests of cobs were species of Sitophilus, followed by Prostephanus truncatus, Tribolium castaneum, S. cerealella and species of Carpophilus (Henckes, 1992). The most damage to shelled maize grains was caused by species of Sitophilus, followed by S. cerealella and T. castaneum, while the greatest grain losses were caused by species of Sitophilus, T. castaneum, S. cerealella and species of Carpophilus.

The susceptibility of grain of 11 maize varieties to attack by S. cerealella was determined in laboratory studies in India (Singh and Pandey, 1975). Highly significant positive relations were found between insect populations, percentage damage and grain weight loss. According to Khare et al. (1974) the loss in protein content in damaged grain varied from 8.76 to 50.85 mg/g.

In Brazil, tests to compare various chemical treatments as measures to protect stored maize in the husk from attack by S. cerealella and S. zeamais were carried out in Sao Paulo by Bitran et al. (1976, 1979). At the start of the test, about 1-2% of the grains were infested by these two species. By the end of the 10 month test period, these percentages were 3.03 and 29.38, respectively, in untreated maize. A significant correlation was found between the percentage weight loss of maize and the level of infestation by S. cerealella and S. zeamais. The effect of damage by one generation of S. cerealella on the weight, germination and humidity of maize grain was evaluated by Almeida and Murta (1995). Infestation resulted in 13.21% weight loss of grain. The percentage of grains germinating normally was significantly reduced, and abnormal germination and ungerminated grains were significantly increased following infestation.

The studies reported by Tigar et al. (1994) showed that the most numerous and most damaging primary pests in Mexico were S. zeamais, S. cerealella and P. truncatus.

In laboratory studies of resistance to S. cerealella in 15 varieties of maize, the contents of protein, sugars, starch, ash and oil in healthy maize grains were not correlated with a growth index for the pest and the loss in weight of the grains (Pandey and Pandey, 1983). Sinha and Sinha (1992) examined the impact of stored grain pests on seed deterioration and aflatoxin contamination in maize.

The resistance of 84 inbred lines of maize to S. cerealella was evaluated in the laboratory by Acharyulu and Chaudhary (1992).


In India, stored wheat had weight losses of 2.5% (Bhardwaj et al., 1977). A field survey was carried out in 12 districts of Haryana, India. The species recorded during the survey were S. oryzae, R. dominica, T. granarium, T. castaneum, Ephestia cautella, S. cerealella, Corcyra cephalonica and O. surinamensis. During 6 months of storage, a 2.03% weight loss was recorded by Dharam-Singh and Yadav (1995).

In Egypt, the relationship between total infestation and external infestation, weight loss, the number of insect fragments in milled grain and the moisture content of the kernels were investigated in local varieties of wheat, millet and maize in storage (Omar and Kamel, 1980). Weight loss was negligible unless infestation exceeded 5%.

Fifteen wheat varieties were tested for their susceptibility to S. cerealella during storage. None of the varieties tested were completely resistant to attack but their susceptibility varied considerably (Tirmzy et al., 1989). Similar results were recorded by Khattak et al. (1996). A study on the relationship of infestation of the Angoumois grain moth to wheat cultivars was reported by Wu and Duan (1998).

Observations on the combined infestation and losses caused by S. cerealella, R. dominica and T. castaneum in wheat grain have been conducted under laboratory conditions (Iqbal et al., 1988; Irshad and Talpur, 1993). Loss in weight of the grains was greater in combined rearings of S. cerealella and R. dominica (2.57%) and R. dominica and T. castaneum (2.25%), than in single rearings of R. dominica and S. cerealella (2.15 and 1.69%, respectively).


The effects of four barley cultivars on the fecundity, adult emergence and sex ratio of S. cerealella were observed in laboratory studies undertaken in Bulgaria (Germanov and Barov, 1981).

Stored Products

In India, a survey of the losses of grain that occurred during storage, due to insect pests including S. cerealella, S. oryzae, R. dominica, T. castaneum, O. surinamensis, T. granarium and E. cautella is reported by Girish et al. (1974). The loss in weight after storage for six months varied from 0.06 to 9.7%, and the loss in viability from 7.0 to 22.0%.

Stored wheat of 10 varieties was assessed for susceptibility to S. cerealella in Pakistan (Khattak and Shafique, 1981). Resistance was studied in 8 varieties by Gillani and Irshad (1990), while 15 hybrids were tested by Wu (1991). None of the varieties was completely immune to infestation by this pest, but susceptibility varied significantly.

According to Pandey and Pandey (1978), contents of protein, total and reducing sugars, starch, ash and oil of damaged grain of 15 varieties and on losses caused by S. cerealella indicated that the chemical constituents of the grain were not related to losses. It is thought that the losses in the different varieties may be related to the combined effects of the chemical and physical properties of the grain.

Role in Rearing Biological Control Agents

The eggs of S. cerealella have been used extensively to rear the predatory chrysopid Ceraeochrysa cubana (Vargas-Serrano et al., 1988) and species of Trichogramma (Ashraf et al., 1993) for biologica1 control of other pests.

In studies reported by Bichao and Araujo (1989), the total quantity of eggs of S. cerealella required to complete larval development in the predator Chrysoperla carnea, and the portions consumed in each larval instar, were determined, together with larval densities in standard mass-rearing containers.

Detection and Inspection

Top of page S. cerealella larvae complete their development inside a single grain; damage is therefore not visible externally until the late stages of the infestation when translucent windows appear in the grain as the larva carves out a chamber beneath the surface of the grain.

Food-bait traps have proved the most effective method of detecting pests of stored-food products in the Ukrainian SSR (Ustinov et al., 1986). Adult males can be also detected using sticky traps baited with synthetic, female sex-attractant (Vick et al., 1979). Detection using X-ray imaging (Keagy and Schatzki, 1991) and sound detection (Vick et al., 1988) has also been investigated.

S. cerealella can be readily trapped by Z,E-7-11-hexadecadien-1-yl acetate (or HDA). Cogburn and Vick (1981) monitored the distribution of S. cerealella in rice fields and rice stores in Texas, USA, using pheromone-baited adhesive traps. The use of pheromones in monitoring S. cerealella adults has been reported in flour mills (Buchelos, 1980; Levinson and Buchelos, 1981) and in storage and field situations (Vick et al., 1987). Stockel and Sureau (1981) determined the optimum dose of pheromone for sex trapping applications in maize. Majumder and Singh (1989) studied the factors affecting the efficiency of sticky traps for capture of S. cerealella.

Similarities to Other Species/Conditions

Top of page The seed damage caused by S. cerealella is similar to that caused by the rice weevil Sitophilus oryzae. They can be distinguished by the form of the adult emergence holes on the infested seeds and the presence of adult feeding damage by S. oryzae.

Prevention and Control

Top of page

Chemical Control

Standard insecticide and fumigation treatments are usually effective against S. cerealella. The choice of insecticide applied depends on the length of storage and the relative safety of the compound to the applicators, the consumer and the environment.

Phoxim and pirimiphos-methyl were found to give protection against S. cerealella in bagged rice for up to 6 months during trials in Guyana (Rai and Croal, 1973).

Methacrifos was compared with malathion for the protection of maize stored in the husk against S. cerealella and Sitophilus zeamais in Brazil (Bitran et al., 1980). The best results were obtained with a combination of fumigation (with phosphine) and treatment with methacrifos. In further studies on the use of decamethrin against S. cerealella and S. zeamais, fumigation followed by treatment with deltamethrin afforded the best protection. Deltamethrin was superior to malathion when the cobs were not also fumigated. A significant correlation was found between the weight loss of maize and the level of infestation by the two pests.

Fenvalerate and malathion have been found to be effective against S. cerealella on rice in India (Dakshinamurthy and Regupathay, 1992). Deltamethrin and permethrin are also reported to give good levels of protection against a number of stored-grain pests including S. cerealella (Hung et al., 1990). Repeated sprayings of carbaryl dust and tetrachlorvinphos have been used to control S. cerealella in Bangladesh (Bhuiyah et al., 1992). Fenoxycarb prevents reproduction of S. cerealella (Cogburn, 1988).

However, S. cerealella appears to have developed some resistance to malathion and phoxim in Taiwan (Kao and Tzeng, 1992). Weaving (1981) found that fenitrothion, fenthion and pirimiphos-methyl did not give satisfactory control of S. cerealella in Zimbabwe (Weaving, 1981).

Natural Products

A number of natural products have also been used to control S. cerealella. These include biogas derived from cattle manure (Jin and Pan, 1983), consisting of 60% methane, 30-35% carbon dioxide and traces of other gases (Palaniswamy and Dakshinamurthy, 1986). Dried leaves of wild sage (Lippia geminata) have also been found to be an effective repellent against S. cerealella for rice stored in India for up to 9 months (Prakash and Rao, 1984).

Cultural Control and Sanitary Methods

In Malawi, plastering stores with mud to reduce water uptake was effective, resulting in less than 6% loss in grain weight over 10 months, compared with 19-28% without treatment (Golob and Mulawo, 1984). Periodic inspection and removal of any infestations is also recommended.

Hermetic storage at low humidity (12% or less) gave excellent control of insect pests including S. cerealella in maize and sorghum grain without the need for chemical treatment for up to 8 months and without adversely affecting germination and vigour; grain stored in this way was suitable for seed.

The influence of planting date, harvest date, and maize hybrid on preharvest infestation of maize was investigated by Weston (1994). Late planting and early harvest are potentially useful methods for averting pre-harvest infestation of maize by Sitotroga.

Results from the USA indicate that early planting of maize or leaving it in the field after drying increase the chances of infestation (Weston et al., 1993). A weak correlation has been found between moisture content and infestation, which suggests that storing grain in a dry place can reduce the chances of infestation. Strangely, Weson et al. (1993) also found that grains with a moisture content of more than 31% were virtually uninfested by S. cerealella.

Hermetic storage at low humidity also gives good levels of control (Mantovani et al., 1986), especially when combined with low levels of phosphine (De-Lima, 1984). Polythene sacks are the most effective container (Hsieh et al., 1985). Some more technological approaches have been the use of microwave heating and partial vacuum which was shown to be effective in a laboratory study (Tilton and Vardell, 1982) and irradiation with gamma-radiation (Huque, 1972).

Varietal resistance is also important for some crops (e.g. Chellappa and Chelliah, 1976; Dhawaliwal et al., 1989).


Top of page

Abukar MM; Burgio G; Tremblay E, 1986. Evaluation of post-harvest losses caused by insects to maize in three districts of southern Somalia. Bollettino del Laboratorio di Entomologia Agraria "Filippo Silvestri", 43:51-58

Acharyulu BSS; Chaudhary RN, 1992. Screening of some maize inbred lines to Sitotroga cerealella (Olivier). Indian Journal of Entomology, 54(3):248-254

Adler C, 1998. Protection of stored products with nitrogen and carbon dioxide. Mitt. Biol. Bundesanst. Land-Forstwirtsch., 342:277-293.

Agarwal RK; Nadkarni P, 1974. Assessment of grain yield losses by earhead caterpillars in sorghums. JNKVV Research Journal, 8(3/4):280-282

Agricultural Research Service United States Department of Agriculture, 1978. Stored-grain insects, Agriculture Handbook No. 500. Washington, DC: Agricultural Research Service.

Ahmed M; Shaukat SS; Ahmed A, 1992. A comparison of quality characteristics of Pakistan wheat with the existing FAQ specifications: a proposal for a new grading system. Tropical Science, 32(1):11-20

Almeida AAde; Murta RCC, 1995. Variations in weight, germination and humidity of maize grain, caused by one generation of Sitotroga cerealella (Olivier, 1819) (Lepidoptera, Gelechiidae). Revista Brasileira de Entomologia, 39(1):95-102; 15 ref.

Arbogast RT, 2005. Seasonal flight activity of stored-product moths (Lepidoptera: Pyralidae, Gelechiidae) in South Carolina, U.S.A. Entomological News, 116(4):197-208.

Arbogast RT; Mullen MA, 1987. Dynamics of Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) and Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) populations in a small bulk of stored corn. Researches on Population Ecology, 29(1):1-15

Arbogast RT; Mullen MA, 1988. Insect succession in a stored-corn ecosystem in southeast Georgia. Annals of the Entomological Society of America, 81(6):899-912.

Ashraf M; Fatima B; Nasrullah, 1993. Control of sugarcane borers by inundative releases of Trichogramma chilonis (Ishii). Pakistan Journal of Zoology, 25(1):23-25

Astanov T, 1980. A kolkhoz laboratory rears insect enemies. Zashchita Rastenii, No. 11:13

Ayertey JN, 1979. The growth of single and mixed laboratory populations of Sitophilus zeamais Motschulsky and Sitotroga cerealella (Olivier) on stored maize. Researches on Population Ecology, 21(1):1-11

Baker AA, 1986. Crop storage. Annual report for the year 1st October, 1978 to 30th September, 1979, Bvumbwe Agricultural Research Station Malawi; Ministry of Agriculture, 96-149

Balazs K, 1975. Damage of the angoumois grain moth (Sitotroga cerealella Oliv.) to different stored products. Novenyvedelmi Kutato Intezet Evkonyve, 13:7-31

Baloch UK, 1976. Wheat pests in Pakistan. Report, CENTO Scientific Programme, 10-14

Barney RJ; Weston PA, 1994. Grain storage in a small-farm ecosystem: Angoumois grain moth movement and management. Proc. 6th Int. Work. Conf. Stored-product Prot., Canberra, 1:383-384.

Bhardwaj AK; Srivastava PK; Girish GK, 1977. Assessment of storage losses in wheat due to insect damage in Punjab. Bulletin of Grain Technology, 15(2):126-129

Bhuiyah MIM; Alam S; Karim ANMR, 1992. Losses to stored rice caused by rice weevil and angoumois grain moth, and their control in Bangladesh. Bangladesh Journal of Agricultural Sciences, 19(1):13-18

Bichao MH; Araujo J, 1989. Mass-rearing of Chrysoperla carnea (Stephens) (Neuroptera, Chrysopidae) larvae: optimization of rearing unit yield. Boletim da Sociedade Portuguesa de Entomologia, 113:117-124

Bitran EA; Campos TB; Oliveira DA; Araujo JBM, 1976. Test on the protection of stored maize in the husk, in relation to attack by Sitophilus zeamais Motschulsky, 1855 and Sitotroga cerealella (Oliver, 1819). Arquivos do Instituto Biologico, 43(1/2):57-63

Bitran EA; Campos TB; Oliveira DA; Araujo JBM, 1979. Experiment on the protection of maize stored in cribs by the use of malathion and pirimiphos-methyl applied alone or in conjunction with fumigation. Anais da Sociedade Entomologica do Brasil, 8(1):29-38

Bitran EA; Campos TB; Oliveira DA; Araujo JBM, 1980. Assessment of the action of the experimental product CGA-20168 (methacrifos) for the protection of maize stored in cribs. Biologico, 46(5/6):85-96

Bitran EA; Campos TB; Oliveira DA; Araujo JBM, 1981. Experimental evaluation of the action of the pyrethroid decamethrin in the treatment and conservation of unhusked maize in cribs. Anais da Sociedade Entomologica do Brasil, 10(1):105-117

Boldt PE, 1974. Effects of temperature and humidity on development and oviposition of Sitotroga cerealella (Lepidoptera: Gelechiidae). Journal of the Kansas Entomological Society, 47(1):30-36

Borah B; Mohon B, 1982. Relative susceptibility of some promising local paddy varieties to certain stored grain insect pests. Journal of Research, Assam Agricultural University, 3(2):226-227

Buchelos CT, 1980. Moth populations at a typical flour mill. Annales de l'Institut Phytopathologique Benaki, 12(2):188-197

Carter DJ, 1984. Pest Lepidoptera of Europe with special reference to the British Isles. Dordrecht, Netherlands: Dr. W. Junk.

Champ BR; Dyte CE, 1977. FAO Global Survey of Pesticide Susceptibility of Stored Grain Pests. FAO Plant Protection Bulletin, 25(2):49-67

Chatterji SM; Dani RC; Govindaswami W, 1977. Evaluation of rice varieties for resistance to Sitotroga cerealella Oliv. (Lepidoptera: Gelechiidae). Journal of Entomological Research, 1(1):74-77

Chellappa K; Chelliah S, 1976. Varietal susceptibility of rice to infestation by Sitotroga cerealella Oliv., and Rhizopertha dominica Fab. Madras Agricultural Journal, 63(3):190-192

Cogburn RR, 1977. Susceptibility of varieties of stored rough rice to losses caused by storage insects. Journal of Stored Products Research, 13(1):29-34

Cogburn RR, 1988. Fenoxycarb as a long term protectant for stored rough rice. Journal of Economic Entomology, 81(2):722-726

Cogburn RR; Vick KW, 1981. Distribution of Angoumois grain moth, almond moth, and Indian meal moth in rice fields and rice storages in Texas as indicated by pheromone-baited adhesive traps. Environmental Entomology, 10(6):1003-1007

Cox PD; Bell CH, 1981. A Review of the Biology of Moth Pests on Stored Products. Slough, UK: ADAS.

Da-Cruz FZ, 1980. Chaves para identificacao de alguns microlepidopteros que danificam produtos agricolas armazenados, com base nos caracteres da genitalia. Agronomia Sulriograndense, 16:347-361.

Dakshinamurthy A; Regupathy A, 1988. Alternate ricefield hosts of the Angoumois grain moth. International Rice Research Newsletter, 13(3):42-43

Dakshinamurthy A; Regupathy A, 1992. Pre-harvest spray of insecticides for the management of Sitotroga cerealella Olivier on rice. Bioecology and control of insect pests: Proceedings of the National Symposium on Growth, Development & Control Technology of Insect Pests [edited by Goel, S. C.] Muzaffarnagar, India; Uttar Pradesh Zoological Society, 218-224

Das-Chagas EF; Coelho IP; Rodrigues FJO, 1982. Insetos nocivos do Maranhao. 1. Entomofauna de produtos alimenticios armazenados. Anais da Sociedade Entomologica do Brasil, 11:221-226.

De-Lima CPF, 1979. The assessment of losses due to insects and rodents in maize stored for subsistence in Kenya. Tropical Stored Products Information, 38:21-26.

De-Oliveira JV; Loeck AE; Dutra JLV, 1990. Levantamento dos insetos que ocorrem em arroz armazenado no Rio Grande do Sul. Lavoura Arrozeira, 43:3-4.

Dhaliwal GS, 1977. Incidence of storage insect pests in rural areas. Indian Journal of Entomology, 39(2):114-116

Dhaliwal HS; Deol GS; Randhawa AS, 1989. A new technique for large scale screening of wheat varieties against Angoumois grain moth, Sitotroga cerealella Oliver (Gelechiidae: Lepidoptera). Indian Journal of Entomology, 51(1):94-95

Dharam-Singh; Yadav TD, 1995. Studies on the incidence of insect pests, practices and losses in stored wheat in Haryana. Indian Journal of Entomology, 57:107-115.

Dobie P, 1975. The susceptibility of different types of maize to post-harvest infestation by Sitophilus zeamais and Sitotroga cerealella, and the importance of this factor at the small-scale farm level. Brady, E. U.; Brower, J. H.; Hunter, P. E.; Jay, E. G.; Lum, P. T. M.; Lund, H. O.; Mullen, M. A.; Davis, R. (Organisers): Proceedings of the First International Working Conference on Stored-Product Entomology, Savannah, Georgia, USA, October 7-11, 1974. Stored-Product Insects Research and Development Laboratory, ARS, USDA & Department of Entomology, Georgia University. Savannah & Athens, Georgia USA, 98-113

Dobie P; Haines CP; Hodges RJ; Prevett PF; Rees DP, 1984. Insects and Arachnids of Tropical Stored Products: Their Biology and Identification. Chatham, UK: Natural Resources Insitute.

Dunkel FV; Pu ZL; Chuan L, 1985. Wheat grain storage by rural producers in southern China. Tropical Science, 25(2):103-115

El-Hassan Sharzali M; Reichmuth C, 1998. The relative toxicity of phosphine to eggs of the Angoumois grain moth Sitotroga cerealella (Oliv.) (Lepidoptera: Gelechiidae) and the almond moth Ephestia cautella (Walker) (Lepidoptera: Pyralidae). Proc. 7th Intern. Work. Conf. Stored-product Prot., Beijing, 1:326-330.

El-Nahal AK; Ismail II; Kamel AH; Moustafa TS, 1978. Effect of temperature and relative humidity on the development of Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae). Proceedings of the Fourth Conference of Pest Control, September 30 - October 3, 1978. (Part I). Academy of Scientific Research and Technology and National Research Centre. Cairo Egypt, 148-155

Evans DE, 1987. Stored Products. In: Burn AJ, Coaker TH, Jepson PC, eds. Integrated Pest Management. London: Academic Press.

Faber B, 1982. Important prophylactic measures for the recognition and prevention of pest infestation in stored grain. Pflanzenarzt, 35(5):46-49

Faber W, 1978. The grain moth (Sitotroga cerealella Oliv.) now also a field pest in Austria. Pflanzenarzt, 31(2):10

Ferreira E; Vieira NR; Castro E da M de, 1997. Intensity of the attack of Sitotroga cerealella (Olivier) in rice genotypes and its effect on seedling emergence. International Rice Research Notes, 22:25.

Ganesalingam VK; Krishnarajah SR, 1979. Infestation of Sitotroga cerealella (Oliver) under field conditions and storages in northern Sri Lanka. Ceylon Journal of Science, Biological Sciences, 13(1/2):159-165

Germanov A; Barov V, 1981. Effect of four barley varieties on fertility, imago production and sex index in Sitotroga cerealella Oliv. Rasteniev"dni-Nauki, 18:149-155.

Giga DP; Katerere Y, 1986. Rural grain storage in Zimbabwe. Problems, loss assessment and prevention. Harare, Zimbabwe: Crop Science Department, University of Zimbabwe, 96 pp.

Giga DP; Mutemerewa S; Moyo G; Neeley D, 1991. Assessment and control of losses caused by insect pests in small farmers' stores in Zimbabwe. Crop Protection, 10(4):287-292

Gillani WA; Irshad M, 1990. Reactions of rice varieties to rice moth Sitotroga cerealella. International Rice Research Newsletter, 15(6):8

Girish GK; Tripathi BP; Tomer RPS; Krishnamurthy K, 1974. Studies on the assessment of losses. IV. Conventional grain storage practices and losses in rural areas in Uttar Pradesh. Bulletin of Grain Technology, 12(3):199-210

Golob P; Muwalo E, 1984. Pirimiphos-methyl as a protectant of stored maize cobs in Malawi. International Pest Control, 26(4):94-96

Goodyer G, 1982. Insect pests of maize. Agfacts, No. P3.p.2:6 pp.

Greening HG, 1979. Observations on the occurrence of insect pests of stored grain in New South Wales. In: Evans DE, ed. Australian contributions to the symposium on the protection of grain against insect damage during storage, Moscow, 1978. Division of Entomology, Commonwealth Scientific and Industrial Research Organization. Canberra Australia, 15-22

Grinberg ShM; Palii MV, 1981. Increasing the yield of eggs of the grain moth. Zashchita Rastenii, No. 12:32-33

Gupta GP, 1983. Losses to stored grains by insects in Andamans. Bulletin of Grain Technology, 21(1):79-82

Haile A, 2006. On-farm storage studies on sorghum and chickpea in Eritrea. African Journal of Biotechnology, 5(17):1537-1544.

Haines CP, 1998. Arthropod natural enemies in stored product - overlooked and under-exploited. Proc. 7th Int. Work. Conf. Stored-product Prot., Beijing, 2:1205-1226.

Hammad SM; Shenouda MGH; El-Deeb AL, 1967. Studies on the biology of Sitotroga cerealella. Bulletin Societe Entomologique d'Egypte, 51:257-268.

He RongBin; Chen QianJin; Zhang YuZhen; Chen JiaHua, 2002. Investigations on tobacco storage pests and their enemies in Fujian Province. Acta Agriculturae Universitatis Jiangxiensis, 24(5):612-616.

Heinemann HV, 1870. Die Schmetterlinge Deutschlands und der Schweiz. Zweite Abtheilung. Braunschweig (Heft) I.

Henckes C, 1992. Investigations into insect population dynamics, damage and loss of stored maize: an approach to IPM on small farms in Tanzania with special reference to Prostephanus truncatus (Horn). Thesis, Deutsche Gesellschaft fur Technische Zusammenarbeit, Projekt fur Nacherntefragen (GTZ), Hamburg, Germany, xiv + 124 pp.

Hindmarsh PS; MacDonald IA, 1980. Field trials to control insect pests of farm-stored maize in Zambia. Journal of Stored Products Research, 16(1):9-18

Howlander AJ; Matin ASMA, 1988. Observations on the pre-harvest infestation of paddy by stored grain pests in Bangladesh. Journal of Stored Products Research, 24(4):229-231

Hsieh FK; Hsu SL; Hung CC, 1985. Evaluation of various control measures for controlling storage insects in the model grain bin. Plant Protection Bulletin, Taiwan, 27(4):359-370.

Hung CC; Hsieh FK; Hwang JS, 1990. Stored grain insects monitoring and their chemical control. Chinese Journal of Entomology, 10(2):169-179

Hung CC; Hwang JS, 1992. Insect pests in rough rice, brown rice and chaff stored in different kinds of bin in Taiwan. Chinese Journal of Entomology, 12(4):269-276

Huque H, 1972. Application of radio-isotopes and radiation for the control of rice pests. Japan Pesticide Information, 37-39

Ilyas SM; Pasalu IC; Sahay MN, 1983. Performance evaluation of some low capacity storage structures. Oryza, 20(2/3):104-111

Iordanou N, 1976. Control of stored grain insects in Cyprus. Technical Bulletin, Cyprus Agricultural Research Institute, No. 20:20 pp.

Iqbal M; Khattak SUK; Khalil SK; Hussain N; Hamed M, 1988. Combined infestation and losses caused by three storage insects in Pak-81 wheat variety. Nucleus (Karachi), 25(1-2):23-26

Irshad M; Talpur S, 1993. Interaction among three coexisting species of stored grain insect pests. Pakistan Journal of Zoology, 25(2):131-133

Irshad M; Talpur S; Gillani WA, 1989. Resistance in different rice genetic lines to rice moth Sitotroga cerealella (Oliv.). International Rice Research Newsletter, 14(5):16

Jamir ITA; Ao MA; Khaund JN, 2008. Evaluation of storage structures against infestation of angoumois grain moth, Sitotroga cerealella (Olivier) in stored paddy. Journal of Applied Zoological Researches, 19(2):187-192.

Jembere B; Obeng-Ofori D; Hassanali A; Nyamasyo GNN, 1995. Products derived from the leaves of Ocimum kilimandscharicum (Labiatae) as post-harvest grain protectants against the infestation of three major stored product insect pests. Bulletin of Entomological Research, 85(3):361-367; 13 ref.

Jin LZ; Pan XF, 1983. A new measure on the control of grain storage insects by marsh gas. Insect Knowledge (Kunchong Zhishi), 20(3):118-119

Jitender Kumar; Kashyap NP; Sharma SD, 2001. Pests of maize and their management in Himachal Pradesh - a review. Agricultural Reviews, 22(1):47-51.

Kalinovic I; Horvat S; Jancic B; Grubac B, 1990. Pest control (Plodia interpunctella Hbn. and Sitotroga cerealella Oliv.) on stored corn seed. Semenarstvo, 7(1):11-16

Kao SS; Tzeng CC, 1992. A survey of the susceptibility of rice moth (Corcyra cephalonica) and Angoumois grain moth (Sitotroga cerealella) to malathion and phoxim. Chinese Journal of Entomology, 12(4):239-245

Karan Singh; Majumder SK, 1989. Factors affecting the efficiency of sex pheromone sticky traps to capture Angoumois grain moth (Sitotroga cerealella Olivier). Crop Research (Hisar), 2(2):185-189

Keagy PM; Schatzki TF, 1991. Effect of image resolution on insect detection in wheat radiographs. Cereal Chemistry, 68(4):339-343

Khare BP; Chaudhary RN; Singh KN; Sengar CS, 1974. Loss of protein due to insect feeding in maize (Zea mays L.). Indian Journal of Entomology, 36(4):312-315

Khattak SU; Hamed M; Shahjahan IA; Khatoon R, 1991. Post-harvest damage and losses caused by Sitotroga cerealella (Olivier) in different wheat cultivars. Bangladesh Journal of Zoology, 19(1):29-33

Khattak SU; Munaf A; Khalil SK; Hussain A; Hussain N, 1996. Relative susceptibility of wheat cultivars to Sitotroga cerealella (Oliver). Pakistan Journal of Zoology, 28(2):115-118; 15 ref.

Khattak SUK; Shafique M, 1981. Susceptibility of some wheat varieties to Angoumois grain moth, Sitotroga cerealella Oliv. (Lepidoptera: Gelechiidae). Pakistan Journal of Zoology, 13(1/2):99-103

Kishore P; Jotwani MG, 1982. Estimation of avoidable losses caused by the earhead caterpillars on sorghum and their control. Entomon, 7(1):65-69

Lavigne RJ, 1991. Stored grain insects in underground storage pits in Somalia and their control. Insect Science and its Application, 12(5-6):571-578.

Levinson HZ; Buchelos CT, 1981. Surveillance of storage moth species (Pyralidae, Gelechiidae) in a flour mill by adhesive traps with notes on the pheromone-mediated flight behaviour of male moths. Zeitschrift fur Angewandte Entomologie, 92(3):233-251

Lima CPFDe, 1978. A study of the bionomics and control of Sitophilus zeamais (Motschulsky) and Sitotroga cerealella (Olivier), and associated fauna in stored maize, under laboratory and field conditions in Kenya. A study of the bionomics and control of Sitophilus zeamais (Motschulsky) and Sitotroga cerealella (Olivier), and associated fauna in stored maize, under laboratory and field conditions in Kenya. London University. UK, 240 pp.

Lima CPFde, 1984. Minimal fumigant requirements for long-term air-tight storage of grain. Controlled atmosphere and fumigation in grain storages. Proceedings of an international symposium 'Practical aspects of controlled atmosphere and fumigation in grain storages' held from 11 to 22 April 1983 in Perth, Western Australia [edited by Ripp, B.E.] Amsterdam, Netherlands; Elsevier, 665-671

Lo PK, 1986. Recognition and control of insect pests in stored grains. Post-harvest prevention of paddy/rice loss Taipei, China; Council of Agriculture, Executive Yuan, 171-186

Mahdi MT; El-Najjar SJT, 1988. The effect of certain varieties of wheat and barley on the biology of the laboratory reared first generation of Angoumois grain moth, Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae). Arab Journal of Plant Protection, 6(2):64-70

Mahla JC, 2001. Population dynamics of storage pests and their incidence in wheat grain under different climatic zones of Haryana. Annals of Agri Bio Research, 6(2):151-154.

Mahla MK; Ameta OP, 2001. Grain infestation in stored wheat in arid zone of Rajasthan. Insect Environment, 7(3):127-128.

Manojlovic B, 1987. The influence of wheat and maize grain weight and number of larvae on the harmfulness, survival and fertility of the Angoumois grain moth Sitotroga cerealella Oliv. (Lepidoptera: Gelechiidae). Zastita Bilja, 38(3):207-224

Mantovani BHM; Fontes R de A; Cajueiro IV de M, 1986. Alternative methods for hermetic storage of grain. Resumos, Congresso Nacional de Milho e Sorgo, No.16:36-37

Medina EB; Heinrichs EA, 1986. Reaction of IR varieties to Angoumois grain moth. International Rice Research Newsletter, 11(2):10

Mondragon I; Almeida AA de, 1988. Influencia de dos temperaturas en el desarrollo de Sitotroga cerealella (Olivier, 1819) (Lepidoptera, Gelechiidae) en maiz almacenado. Anais da Sociedade Entomologica do Brasil, 17:397-407.

Mostafa SAS; Dabbour AI; Nassif MA; Aziz MIA, 1981. Insects damaging stored products in Saudi Arabia. Anzeiger fur Schadlingskunde Pflanzenschutz Umweltschutz, 54(12):184-187

Muda AR, 1985. Pest problems and the use of pesticides in grain storage in Malaysia. ACIAR Proceedings Series, Australian Centre for International Agricultural Research, No. 14:11-16

Mundiwale SK; Men UB; Borle MN, 1984. A record of new parasite on armyworm. Indian Journal of Entomology, 46(2):247-248

Olivier M, 1789. Encyclopédie Méthodique, Tome quatrieme, Insectes. Paris.

Olszak R; Bakowski G, 1976. Mass rearing of the Angoumois grain moth - Sitotroga cerealella Oliv. (Lepidoptera, Gelechiidae). Polskie Pismo Entomologiczne, 46(1):187-200

Omar EE; Kamel AH, 1980. Assessment of damage in some stored cereal grains due to insect attack. Bulletin de la Societe Entomologique d'Egypte, No. 63:119-127

Padwal-Desai SR; Sharma A; Amonkar SV, 1987. Disinfestation of whole and ground spices by gamma radiation. Journal of Food Science and Technology, India, 24(6):321-322

Pajni HR; Mehta D, 1986. A report on the Gelechiidae (Lepidoptera) of Chandigarh and adjoining areas. Research Bulletin of the Panjab University, Science, 37(1-2):161-165

Palaniswamy PT; Dakshinamurthy A, 1986. Biogas to control rice storage pests. International Rice Research Newsletter, 11(6):25

Pande YD; Bimal Singh N, 1983. Relative host-preference of Sitotroga cerealella Olivier (Lepidoptera : Gelechiidae) for rice varieties during storage in Manipur. Indian Journal of Agricultural Sciences, 53(9):866-867

Pandey V; Nigam PM; Awasthi BK; Ram S, 1980. Comparative resistance of paddy varieties to Sitotroga cerealella Olivier. Bulletin of Entomology, 21(1/2):132-134

Pandey V; Pandey ND, 1978. Relation between the chemical constituents of damaged grains of maize varieties and losses caused by Sitotroga cerealella Oliver. Indian Journal of Entomology, 40(3):339-341

Pandey V; Pandey ND, 1983. Chemical factors in resistance of maize varieties to Sitotroga cerealella Olivier. Bulletin of Grain Technology, 21(3):197-201

Pathak KA; Jha AN, 2003. Survey of insect pests of stored maize and paddy in north eastern region. Indian Journal of Entomology, 65(1):127-133.

Pathak KA; Jha AN; Singh JP, 2002. Efficacy of fabric treatment of jute and polypropylene bags with some insecticides on maize and paddy stored at Delhi and Meghalaya. Shashpa, 9(1):61-70.

Peng WK, 1984. Population changes of stored-product insects in warehouses of bagged rice and the effect of phoxim treatment on the populations suppression. NTU Phytopathologist and Entomologist, No. 11:105-114

Prakash A; Kauraw LP, 1982. Studies on insects, mites and fungal infestation in rural and farm stored rice in Orissa. Journal of Research, Assam Agricultural University, 3(2):190-196; 13 ref.

Prakash A; Rao J, 1984. Wild sage, Lippia geminata: a paddy grain protectant in storage. Oryza, 21(4):209-212

Ragumoorthy KN; Gunathilagaraj K, 1988. Field incidence of and host resistance to Angoumois grain moth (AGM). International Rice Research Newsletter, 13(4):12

Rahman SMM; Gupta CP; Sidik M, 1995. Application of neem oil and Bacillus thuringiensis preparations to control insects in stored paddy. Proc. Symp. pest manag. stored food and feed, Bogor, 59:173-197.

Rai BK; Croal K, 1973. Chemical control of Sitotroga cerealella (Olivier) infesting paddy stored in bags. Indian Journal of Entomology, 35(1):57-62

Raju P, 1984. The staggering storage losses - causes and extent. Pesticides, 18(1):35-37.

Ramashrit S; Mishra SB, 1989. Insect pests of rice and paddy in storage and their control. Seeds and Farms, 15:16-19.

Rambajan I, 1981. Major insect pests of paddy in Guyana. International Rice Research Newsletter, 6(6):16-17.

Rebelles-Reis P, 1989. Principais pragas do arroz de sequeiro. Informe Agropecuario Belo Horizonte, 14:44-58.

Rojas-Leon JC, 1988. Notes on the insects that cause damage to stored maize in La Frailesca, Chiapas, Mexico. Folia Entomologica Mexicana, No. 76:187-193

Rubbi SF; Begum SS, 1986. Effect of insect infestation on stored IRRI-8 paddy. Bangladesh Journal of Zoology, 14(2):181-182

Russell MP, 1976. Resistance of commercial rice varieties to Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae). Journal of Stored Products Research, 12(2):105-109

Saradamma K; Pillai KS; Das NM, 1973. Relative susceptibility of the rice variety 'Rohini' grown under different levels of nitrogen, to the storage pests. Agricultural Research Journal of Kerala, 11(2):182-183

Schulten GGM, 1973. Beginning and progression of maize infestation. Tropical Stored Products Information., 25:16-17.

Schulten GGM, 1975. Losses in stored maize in Malawi (C. Africa) and work undertaken to prevent them. Bulletin, Organisation Europeenne et Mediterraneenne pour la Protection des Plantes, 5(2):113-120

Schöller M, 1998. Biological control of arthropod pests in stored product protection with predators and parasitoids - Review and bibliography. Mitt. Biol. Bundesanst. Land-Forstwirtsch., 342:85-189.

Seck D, 1991. Economic importance and development of an integrated control approach against insect pests of stores of maize, millet and cowpea in farming areas. Sahel PV Info, (33):15-20.

Seck D, 1991. Preliminary observations on the seasonal fluctuations of populations of insect pests of stored millet in traditional granaries in Senegal. Tropicultura, 9(2):92-94

Seck D, 1991. Study of the initial infestation of Sitotroga cerealella Oliv. (Lepidoptera, Gelechiidae) as a function of the location of fields of millet, Pennisetum typhoides (L.) Leeke. Insect Science and its Application, 12(5-6):507-509

Seifelnasr YE, 1992. Stored grain insects found in sorghum stored in the central production belt of Sudan and losses caused. Tropical Science, 32(3):223-230

Shahjahan M, 1974. Extent of damage of unhusked stored rice by Sitotroga cerealella Oliv. (Lepidoptera, Gelechiidae) in Bangladesh. Journal of Stored Products Research, 10(1):23-26

Shazali MEH, 1987. Weight loss caused by development of Sitophilus oryzae (L.) and Sitotroga cerealella (Oliv.) in sorghum grains of two size classes. Journal of Stored Products Research, 23(4):233-238

Singh K, 1979. Pre-harvest spray of malathion and DDVP for controlling the insect infestation of stored grains. International Pest Control, 21:66-67.

Singh KN; Agrawal RK; Srivastava PK, 1978. Infestation of grain moth Sitotroga cerealella Oliv. and maize weevil Sitophilus zeamais Mots. on standing crops in the field. Bulletin of Grain Technology, 16(2):125-127

Singh LN; Pandey ND, 1975. Correlation studies between insect population, percentage of damage and loss in weight of maize varieties due to Rhizopertha dominica F. and Sitotroga cerealella Oliv. Indian Journal of Entomology, 37(3):239-242

Singh SR; Benazet J, 1975. Chemical intervention on all stages and on all scales of tropical storage practice. Brady, E. U.; Brower, J. H.; Hunter, P. E.; Jay, E. G.; Lum, P. T. M.; Lund, H. O.; Mullen, M. A.; Davis, R. (Organisers): Proceedings of the First International Working Conference on Stored-Product Entomology, Savannah, Georgia, USA, October 7-11, 1974. Stored-Product Insects Research and Development Laboratory, ARS, USDA & Department of Entomology, Georgia University. Savannah & Athens, Georgia USA, 41-46

Sinha KK; Sinha AK, 1992. Impact of stored grain pests on seed deterioration and aflatoxin contamination in maize. Journal of Stored Products Research, 28(3):211-219; 29 ref.

Skaria BP; Nadarajan L; Nair R, 1989. Efficacy of deltamethrin against pests of stored rice by direct spraying. Oryza, 26(3):320-322

Smith IM; McNamara DG; Scott PR; Harris KM(Editors), 1992. Quarantine pests for Europe: data sheets on quarantine pests for the European Communities and for the European and Mediterranean Plant Protection Organization. Wallingford, UK; CAB International, ix + 1032 pp.

Stejskal V; Kosina P; Kanyomeka L, 2006. Arthropod pests and their natural enemies in stored crops in northern Namibia. Journal of Pest Science, 79(1):51-55.

Stockel J, 1973. Variation in the reproductive power of males of Sitotroga cerealella Oliv. in relation to the order of emission and volume of the spermatophores (Lep. Gelechiidae). Bulletin de la Societe Entomologique de France, 78(5/6):178-192

Stockel J; Sureau F, 1981. Monitoring for the Angoumois grain moth in corn. In: Mitchell ER, Ed. Management of Insects Pest with Semiochemicals. New York, USA: Plenum Press, 63-67.

Storey CL; Sauer DB; Walker D, 1983. Insect populations in wheat, corn, and oats stored on the farm. Journal of Economic Entomology, 76(6):1323-1330

Sukprakarn C, 1985. Pest problems and the use of pesticides in grain storage in Thailand. ACIAR Proceedings Series, Australian Centre for International Agricultural Research, No. 14:31-35

Sundararaj R; Sundararajan R, 1990. Susceptibility of rice (Oryza sativa) to angoumois grain moth (Sitotroga cerealella) and its field incidence in Tamil Nadu. Indian Journal of Agricultural Sciences, 60(10):703-704

Suryoadikusumo DR, 1981. Preliminary study on pests of animal feed in central Java. Pests of stored products. Proceedings of BIOTROP Symposium on Pests of Stored Products, Bogor, Indonesia, 24-26 April 1978 BIOTROP Bogor Indonesia, 231-232

Takeshita H; Imura O, 1990. Loss assessment of stored rice infested by Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae). Applied Entomology and Zoology, 25(2):239-249

Thakur AK; Sharma JK, 1996. Assessment of storage losses in rice in Himachal Pradesh. Pest Management and Economic Zoology, 4(1/2):97-100; 5 ref.

Tigar BJ; Key GE; Flores-S ME; Vazquez-A M, 1994. Field and post-maturation infestation of maize by stored product pests in Mexico. Journal of Stored Products Research, 30(1):1-8

Tilton EW; Vardell HH, 1982. Combination of microwaves and partial vacuum for control of four stored-product insects in stored grain. Journal of the Georgia Entomological Society, 17(1):106-112

Tirmzy SH; Munshi GH; Abro GH, 1989. Relative susceptibility of different commercial wheat varieties to Sitotroga cerealella (Olivier) during storage. Proceedings of Pakistan Congress of Zoology, No. 9:255-258

Trematerra P; Gentile P, 2002. Stored insect pests in traditional cultivated hulled wheat crop areas of Central-Southern Italy with emphasis on Sitotroga cerealella (Olivier). Bulletin OILB/SROP [Proceedings of the IOBC/WPRS Working Group "Integrated Protection in Stored Products", Lisbon, Portugal, 3-5 September, 2001.], 25(3):27-32.

Tsvetkov D, 1980. Storage pests in the home and in food stores. Rastitelna Zashchita, 28(10):39-45

Turner JW, 1976. Resistance of maize to field infestation by Sitophilus zeamais Motschulsky and Sitotroga cerealella (Olivier). Queensland Journal of Agricultural and Animal Sciences, 33(2):155-159

Upadhyay VR; Shah AH; Desai ND, 1979. Varietal resistance of paddy varieties to Sitotroga cerealella Oliv. Indian Journal of Entomology, 41(2):190-192

Ustinov ID; Dudarenko GP; Lunochkin SM, 1986. For the detection of pests of food stores. Zashchita Rastenii, No. 2:35

Vargas-Serrano C; Luque JE; Villaneuva A, 1988. Uso de dietas artificiales para la cria de larvas y adultos de Ceraeochrysa cubana (Hagen) (Neuroptera: Chrysopidae). Agronomia Colombiana, 5:60-68.

Vechtomova TN, 1983. Forecasting - a basis for plant protection. Zashchita Rastenii, No. 8:35-36.

Vick KW; Coffelt JA; Weaver WA, 1987. Presence of four species of stored-product moths in storage and field situations in north-central Florida as determined with sex pheromone-baited traps. Florida Entomologist, 70(4):488-492

Vick KW; Kvenberg J; Coffelt JA; Steward C, 1979. Investigation of sex pheromone traps for simultaneous detection of Indianmeal moths and Angoumois grain moths. Journal of Economic Entomology, 72(2):245-249

Vick KW; Webb JC; Weaver BA; Litzkow C, 1988. Sound detection of stored-product insects that feed inside kernels of grain. Journal of Economic Entomology, 81(5):1489-1493

Visalakshi Mahanthi; Gour TB; Ramulu MS, 2005. Relative abundance of stored grain pests in maize. Journal of Research ANGRAU, 33(4):96-102.

Walker DJ, 1979. Insects associated with stored maize and other harvested food crops in Swaziland. Journal of the Entomological Society of Southern Africa, 42(2):331-335

Warui CM; Kega VM; Onyango R, 1990. Evaluation of an improved pyrethrum formulation in the control of maize pests in Kenya. Pyrethrum Post, 18(1):15-17

Weaver DK; Throne JE, 1994. Life history data for Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) in farm-stored corn and the importance of sub-optimal environmental conditions in insect population modelling for bulk commodities. Proc. 6th Int. Work. Conf. Stored-product Prot., Canberra, 1:599-604.

Weaving AJS, 1981. Grain protectants for use under tribal storage conditions in Zimbabwe (Rhodesia). 3. Evaluation of admixtures with maize stored in traditional grain bins. Zimbabwe Journal of Agricultural Research, 19(2):205-224

Weston PA, 1994. Influence of planting date, harvest date, and maize (corn) hybrid on preharvest infestation of maize by Sitotroga cerealella. Proc. 6th Int. Work. Conf. Stored-product Prot., Canberra, 1:605-607.

Weston PA; Barney RJ; Sedlacek JD, 1993. Planting date influences preharvest infestation of dent corn by Angoumois grain moth (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 86(1):174-180

Wohlgemuth R; Reichmuth C, 1983. Zusammenfassung der Erhebungen uber den Befall von Importgutern durch Vorratsschadlinge bei der Einfuhr in die Bundesrepublik Deutschland der Jahre 1975/76 bis 1979. Mitteilungen aus der Biologischen Bundesanstalt fur Land und Forstwirtschaft, 212:1-156.

Wongo LE, 1990. Factors of resistance in sorghum against Sitotroga cerealella (Oliv.) and Sitophilus oryzae (L.). Insect Science and its Application, 11(2):179-188

Wongo LE; Pedersen JR, 1990. Effect of threshing different sorghum cultivars on Sitotroga cerealella (Oliv.) and Sitophilus oryzae (L.) (Lepidoptera: Gelechiidae and Coleoptera: Curculionidae). Journal of Stored Products Research, 26(2):89-96

Wu JT, 1991. Evaluation of brown planthopper (BPH)- and whitebacked planthopper (WBPH)-resistant hybrid rices for resistance to Angoumois grain moth (AGM). International Rice Research Newsletter, 16(1):12

Wu JX; Duan YP, 1998. Study on relationship of infestation of the Angoumois grain moth, Sitotroga cerealella (Lepidoptera: Gelechiidae) to wheat cultivars. Proc. 7th Intern. Work. Conf. Stored-product Prot., Beijing, 2:1354-1357.

Wu RZ, 1990. Evaluation of hybrid rice combinations for resistance to Sitotroga cerealella Olivier in stored grain. Chinese Journal of Rice Science, 4(2):63-68

Yao MC; Lo KC, 1992. Insect species and population densities in stored japonica rice in Taiwan. Chinese Journal of Entomology, 12(3):161-169

Yoshida T, 1984. Historical change in the status of stored product insect pests especially in Japan. Proceedings of the Third International Working Conference on Stored-Product Entomology. October 23-28, 1983, Kansas State University, Manhattan, Kansas USA Manhattan, Kansas, USA; Kansas State University, 655-668

Zhu DS, 1987. A survey of stored grain insects in Ningxia. Ningxia Agricultural and Forestry Science and Technology, No. 5:13-15

Zil'berg LP; Filipchuk IM, 1976. Applicator for the distribution of Trichogramma. Zashchita Rastenii, No. 9:20-21

Distribution Maps

Top of page
You can pan and zoom the map
Save map