Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Sesbania punicea
(red sesbania)

Toolbox

Datasheet

Sesbania punicea (red sesbania)

Summary

  • Last modified
  • 20 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Sesbania punicea
  • Preferred Common Name
  • red sesbania
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • Sesbania punicea is a Category 1 invasive plant in South Africa (Stirton, 1980;

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
S. punicea shoot with flowers.
TitleFlowers
CaptionS. punicea shoot with flowers.
CopyrightJohn H. Hoffmann
S. punicea shoot with flowers.
FlowersS. punicea shoot with flowers.John H. Hoffmann
S. punicea, thicket of trees in full bloom.
TitleHabit
CaptionS. punicea, thicket of trees in full bloom.
CopyrightJohn H. Hoffmann
S. punicea, thicket of trees in full bloom.
HabitS. punicea, thicket of trees in full bloom.John H. Hoffmann
S. punicea branches covered with ripe seed pods.
TitleSeed pods
CaptionS. punicea branches covered with ripe seed pods.
CopyrightJohn H. Hoffmann
S. punicea branches covered with ripe seed pods.
Seed podsS. punicea branches covered with ripe seed pods.John H. Hoffmann
S. punicea seedlings in river bed.
TitleSeedlings
CaptionS. punicea seedlings in river bed.
CopyrightJohn H. Hoffmann
S. punicea seedlings in river bed.
SeedlingsS. punicea seedlings in river bed. John H. Hoffmann
S. punicea infestation choking a perennial river.
TitleInfestation
CaptionS. punicea infestation choking a perennial river.
CopyrightJohn H. Hoffmann
S. punicea infestation choking a perennial river.
InfestationS. punicea infestation choking a perennial river.John H. Hoffmann
Trichapion lativentre: a bud-feeding weevil on Sesbania punicea.
TitleAdult
CaptionTrichapion lativentre: a bud-feeding weevil on Sesbania punicea.
CopyrightJohn H. Hoffmann
Trichapion lativentre: a bud-feeding weevil on Sesbania punicea.
AdultTrichapion lativentre: a bud-feeding weevil on Sesbania punicea.John H. Hoffmann
Rhyssomatus marginatus: a seed-feeding weevil on S. punicea.|Rhyssomatus marginatus: a seed-feeding weevil on Sesbania punicea.
TitleAdult|Natural enemy
CaptionRhyssomatus marginatus: a seed-feeding weevil on S. punicea.|Rhyssomatus marginatus: a seed-feeding weevil on Sesbania punicea.
CopyrightJohn H. Hoffmann
Rhyssomatus marginatus: a seed-feeding weevil on S. punicea.|Rhyssomatus marginatus: a seed-feeding weevil on Sesbania punicea.
Adult|Natural enemyRhyssomatus marginatus: a seed-feeding weevil on S. punicea.|Rhyssomatus marginatus: a seed-feeding weevil on Sesbania punicea.John H. Hoffmann
S. punicea pods split to show damage caused by Rhyssomatus marginatus.
TitleDamage symptoms on pods
CaptionS. punicea pods split to show damage caused by Rhyssomatus marginatus.
CopyrightJohn H. Hoffmann
S. punicea pods split to show damage caused by Rhyssomatus marginatus.
Damage symptoms on podsS. punicea pods split to show damage caused by Rhyssomatus marginatus.John H. Hoffmann
Neodiplogrammus quadrivittatus: a stem boring weevil on S. punicea.|Neodiplogrammus quadrivittatus: a stem boring weevil on Sesbania punicea.
TitleAdult|Natural enemy
CaptionNeodiplogrammus quadrivittatus: a stem boring weevil on S. punicea.|Neodiplogrammus quadrivittatus: a stem boring weevil on Sesbania punicea.
CopyrightJohn H. Hoffmann
Neodiplogrammus quadrivittatus: a stem boring weevil on S. punicea.|Neodiplogrammus quadrivittatus: a stem boring weevil on Sesbania punicea.
Adult|Natural enemyNeodiplogrammus quadrivittatus: a stem boring weevil on S. punicea.|Neodiplogrammus quadrivittatus: a stem boring weevil on Sesbania punicea.John H. Hoffmann
Damage to a stump of S. punicea caused by Neodiplogrammus quadrivittatus.|Damage to a stump of Sesbania punicea caused by Neodiplogrammus quadrivittatus.
TitleDamage symptoms|Natural enemy damage
CaptionDamage to a stump of S. punicea caused by Neodiplogrammus quadrivittatus.|Damage to a stump of Sesbania punicea caused by Neodiplogrammus quadrivittatus.
CopyrightJohn H. Hoffmann
Damage to a stump of S. punicea caused by Neodiplogrammus quadrivittatus.|Damage to a stump of Sesbania punicea caused by Neodiplogrammus quadrivittatus.
Damage symptoms|Natural enemy damageDamage to a stump of S. punicea caused by Neodiplogrammus quadrivittatus.|Damage to a stump of Sesbania punicea caused by Neodiplogrammus quadrivittatus.John H. Hoffmann
S. punicea infestation before biological control (1987).
TitlePre bio-control
CaptionS. punicea infestation before biological control (1987).
CopyrightJohn H. Hoffmann
S. punicea infestation before biological control (1987).
Pre bio-controlS. punicea infestation before biological control (1987).John H. Hoffmann
S. punicea infestation after biological control (1992).
TitlePost bio-control
CaptionS. punicea infestation after biological control (1992).
CopyrightJohn H. Hoffmann
S. punicea infestation after biological control (1992).
Post bio-controlS. punicea infestation after biological control (1992).John H. Hoffmann

Identity

Top of page

Preferred Scientific Name

  • Sesbania punicea (Cav.) Benth.

Preferred Common Name

  • red sesbania

Other Scientific Names

  • Daubentonia punicea (Cav.) DC.
  • Daubentonia tripetii Poit.
  • Emerus puniceus (Cav.) Kuntze
  • Ormocarpum elegans G. Don
  • Piscidia ovalifolia D.A. Larranaga
  • Piscidia ovalis D.A. Larranaga
  • Piscidia punicea Cav.
  • Sesbania tripetii Hubb.

International Common Names

  • English: black acacia; Brazil rattlebox; Brazilian glory pea; coffee of the coast; coffee weed; false poinciana; purple sesbane; purple sesbania; rattle box; rattlebush; red seine bean; tame acacia
  • Spanish: acacia de bañado; acacia mansa; rama negra

Local Common Names

  • USA: Chinese wisteria; rattle pod

EPPO code

  • SEBPU (Sesbania punicea)

Summary of Invasiveness

Top of page Sesbania punicea is a Category 1 invasive plant in South Africa (Stirton, 1980; Wells et al., 1986b; Henderson, 2001), which means that it may not be cultivated, sold or transported between regions. S. punicea is already proclaimed as a pest species in the USA and, though not yet present, in Australia it is listed as a prohibited species.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Fabales
  •                         Family: Fabaceae
  •                             Subfamily: Faboideae
  •                                 Genus: Sesbania
  •                                     Species: Sesbania punicea

Notes on Taxonomy and Nomenclature

Top of page Some of the common names listed (e.g. sesban) are used for a variety of other Sesbania species as well as for S. punicea.

Description

Top of page Sesbania punicea is a deciduous shrub or small tree up to 5 m high with many slender, thornless branches. The bark is smooth and green on young growth, turning reddish and then brown with age. The leaves are dark green above and somewhat paler below, drooping, 100-200 mm long and pinnate. The leaflets are oblong, ending in tiny pointed tips. The flowers are red or orange in colour, approximately 20 mm long and produce showy, dense sprays up to 250 mm long that droop or project outwards. Flowering is predominantly in spring and early summer. The fruits are brown pods that have four characteristic longitudinal wings. They are oblong in shape, 60-80 mm long by 10 mm wide with distal tips that are sharply pointed. Each pod contains up to 10 seeds (each approximately 6 mm long) born in cavities separated by cross partitions (Henderson, 2001).

The plants are generally more shrubby in the native range, where pod and viable seed production is moderated by phytophagous natural enemies (Erb, 1980). In South Africa, historically, S. punicea grew into large trees up to 6 m tall, with basal stem diameters reaching 180 mm (occasionally somewhat more) and producing copious numbers of pods and viable seeds each season (Hoffmann and Moran, 1988).

Distribution

Top of page Historically, S. punicea seems to have had a relatively limited natural distribution and was probably confined to the banks and islands of the Parana and Uruguay Rivers of the Entre Rios Province of Argentina and of western Uruguay and southern Brazil. The plants have been cultivated widely, and escaped from cultivation, within these and neighbouring countries, so the true extent of its natural range is currently somewhat obscure (Erb, 1980). It now has some temperate as well as tropical and sub-tropical distribution in Africa and North America.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasivePlantedReferenceNotes

Africa

Congo Democratic RepublicPresentIntroducedLock, 1989
LesothoPresentIntroducedLock, 1989
MalawiPresentIntroducedLock, 1989
MauritiusPresentIntroduced1980s Invasive Polhill, 1990
NamibiaPresentIntroduced Not invasive Brown and Gubb, 1986
South AfricaWidespreadIntroduced1858 Invasive Hoffmann and Moran, 1991a
SwazilandPresentIntroduced Invasive Wells et al., 1986b
ZambiaPresentIntroducedLock, 1989
ZimbabwePresentIntroduced Not invasive Wells et al., 1986b

North America

USAPresent Natural
-AlabamaPresentIntroduced Invasive
-ArkansasPresentIntroduced Invasive
-CaliforniaWidespreadIntroduced Invasive
-FloridaWidespreadIntroduced Invasive
-GeorgiaWidespreadIntroduced Invasive
-LouisianaPresentIntroduced Invasive
-MississippiPresentIntroduced Invasive
-North CarolinaPresentIntroduced Invasive
-South CarolinaPresentIntroduced Invasive
-TexasPresentIntroduced Invasive

South America

ArgentinaPresentNative Not invasive Natural Erb, 1980
BrazilPresent Natural
-Rio Grande do SulPresentNative Not invasive Erb, 1980
-Sao PauloPresentSánchez-Soto et al., 2003
ParaguayPresent Natural
UruguayPresentNative Not invasive Natural Erb, 1980
VenezuelaPresentIzaguirre, 2005

Europe

FrancePresent, few occurrencesEPPO, 2014
-CorsicaPresentIntroducedTison, 2013
ItalyPresentEPPO, 2014
-SardiniaPresentEPPO, 2014
-SicilyPresentEPPO, 2014

History of Introduction and Spread

Top of page Sesbania punicea is a popular ornamental species that has been planted widely in gardens in many countries around the world (Wells et al., 1986a). It was first recorded in South Africa in a catalogue of plants growing in the Company Gardens in Cape Town in 1858 (McGibbon, 1858) but reports of it being invasive only surfaced some 100 years later (e.g. Pienaar, 1977, 1980; Hoffmann and Moran, 1988). By that time the plant was widespread and was readily forming dense thickets in many areas.

In the USA, S. punicea has raised concerns in recent years as an invasive species (Cuda et al., 1996).

Unpublished records show that S. punicea has recently become naturalised and is spreading on the Indian Ocean island of Mauritius. No doubt additional records will arise about invasions of this species in other countries because of its popularity as a garden ornamental and the ease with which it spreads from cultivation.

Risk of Introduction

Top of page The popularity of S. punicea as an ornamental species (beauty, easy propagation and quick growth) make it a high risk species for movement between countries by horticulturalists. Seeds are readily available, and easily transported, from suppliers through mail order and are readily available through the internet. The small size and hardiness of seeds renders them easy to carry across international borders without detection.

Habitat

Top of page S. punicea is predominantly associated with areas where soil moisture levels are consistently high. Seedlings are especially vulnerable to desiccation when soil moisture levels decline.

In its natural range in South America, S. punicea is most frequently encountered as isolated plants or small clumps of plants on river banks, drainage ditches and depressions, where moisture accumulates (Erb, 1980). In the southwestern regions of South Africa, which experience a Mediterranean climate (i.e. dry summers and wet winters), S. punicea is largely confined to river banks and wetlands. In the summer rainfall regions it is predominantly associated with moist habitats but it also occurs in dryland habitats (especially grasslands and disturbed areas), presumably establishing itself in these areas during periods of unusually prolonged and above average rainfall (Hoffmann and Moran, 1988). In the USA, S. punicea is "a weed of humid pastures and natural areas" (Cuda et al., 1996).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedCultivated / agricultural land Present, no further details
Managed forests, plantations and orchards Present, no further details
Managed grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Disturbed areas Present, no further details Harmful (pest or invasive)
Rail / roadsides Present, no further details Harmful (pest or invasive)
Urban / peri-urban areas Present, no further details Harmful (pest or invasive)
Terrestrial ‑ Natural / Semi-naturalNatural grasslands Present, no further details Harmful (pest or invasive)
Riverbanks Present, no further details Harmful (pest or invasive)
Wetlands Present, no further details Harmful (pest or invasive)

Hosts/Species Affected

Top of page S. punicea has not been recorded as a pest of crops and is mainly a problem in riparian systems and occasionally in pastures. Other Sesbania species are recorded as pests of crops, competing for light, nutrients and moisture (Evans and Rotar, 1987). These species are predominantly annuals and it is possible that the perennial species such as S. punicea have not become pests because they cannot thrive under continuous disturbance associated with agricultural practices. Several Sesbania species are used for various agricultural purposes including nitrogen fixation, fodder and as a green leaf manure (Evans and Rotar, 1987) so there are risks that weedy perennial species, including S. punicea, may be inadvertently introduced into agricultural lands during such operations and thus become problematic.

Biology and Ecology

Top of page Genetics

In its natural range S. punicea breeds true and there are no closely related species to give it the opportunity to hybridize. In North America it reportedly hybridizes readily with S. drummondii, a close congeneric from that region (Cuda et al., 1996). As with 15 of the 26 species of Sesbania where the ploidy level is known (Gill and Husaini, 1985; Evans and Rotar, 1987), S. punicea is diploid. It has a chromosome number 2n=12 (Evans and Rotar, 1987).

Physiology and Phenology

Sesbania punicea is a deciduous shrub or small tree up to 5 m high with many slender, thornless branches. The first leaf is simple, with subsequent leaves being pinnate. The plants are deciduous but some leaves are retained in regions with mild winters. Maximum growth of shoots, leaves and flowers occurs in spring and early summer.

Reproductive Biology

Seeds of S. punicea are hard-coated but they have no inherent dormancy and germinate as soon as imbibition occurs when moisture is available (Graaff and van Staden, 1984). As a result, there is no substantial accumulation of seeds in the soil, and seedlings sprout in large numbers soon after seed fall. Some seedlings fail to emerge from seeds buried at depths >70 mm and no seeds produced seedlings from below 120 mm (Graaff and van Staden, 1984). Reproduction is entirely sexual although rootstocks can be transplanted manually with some success.

The flowers are pollinated by generalist insect pollinators (usually bees) (Evans and Rotar, 1987) and give rise to clusters of three or four (rarely ten) seed pods on the original stalks of the inflorescences. The characteristically winged pods ripen in mid to late summer so that by autumn, in the absence of natural enemies, the branches of the trees appear mottled brown due to the mantle of pods. Some pods dehisce while still hanging on the trees and expel their seeds but most of the pods dislodge from the plants while still intact and containing seeds. Long-range dispersal of seeds occurs through the buoyant water-borne pods being carried downstream and seeds are released as the pods become weathered and disintegrate.

Environmental Requirements

S. punicea has high moisture requirements, especially for seed germination and seedling survival, so the plants only become naturalised in areas where soils remain moist for relatively long periods. In regions with predominantly summer rainfall, S. punicea plants are sometimes found in open areas away from water but most occur in the vicinity of rivers and streams (Henderson and Wells, 1986). In dry regions, and in winter-rainfall regions, S. punicea plants are almost always confined to banks and islands of perennial rivers (Brown and Gubb, 1986), streams, depressions, roadsides or other mesic sites. Periodic high-rainfall seasons allow S. punicea to form thickets away from water courses in low-rainfall areas, but the extent to which this happens is limited.

The plants grow over a wide range of altitudes from sea level upwards and are tolerant of periodic sub-zero temperature conditions. Seeds fail to germinate when incubated at 40°C (Graaff and van Staden, 1984).

Associations

In common with most leguminous plants, S. punicea has nitrogen-fixing bacteria, Rhizobium sp., associated with its roots (Evans and Rotar, 1987).

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
0 0 0 0

Air Temperature

Top of page
Parameter Lower limit Upper limit
Absolute minimum temperature (ºC) -10
Mean annual temperature (ºC) 8 30
Mean maximum temperature of hottest month (ºC) 27 33
Mean minimum temperature of coldest month (ºC) -2 12

Rainfall

Top of page
ParameterLower limitUpper limitDescription
Dry season duration6number of consecutive months with <40 mm rainfall
Mean annual rainfall4141228mm; lower/upper limits

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Apion decipiens Herbivore Leaves/Seeds
Astraptes fulgerator Herbivore Leaves
Diplogrammus quadrivittatus Herbivore
Eudiagogus episcopalis Herbivore Leaves/Roots
Neodiplogrammus quadrivittatus Herbivore Leaves/Roots/Stems South Africa
Rhyssomatus marginatus Herbivore Leaves/Seeds South Africa
Trichapion lativentre Herbivore Inflorescence/Leaves South Africa
Urodera fallax Herbivore Leaves

Notes on Natural Enemies

Top of page A comprehensive list of insect herbivores associated with S. punicea in Argentina was compiled during surveys to identify potential biological control agents for use against S. punicea in South Africa (Erb, 1980).

Means of Movement and Dispersal

Top of page Natural Dispersal (Non-Biotic)

Sesbania punicea relies almost exclusively on flowing water for dispersal. The seeds are retained in the pods which fall from the trees and float downstream, dispersing the seeds which sink as the pods disintegrate with time.

Vector Transmission (Biotic)

The propagules have no specific adaptations for biotic dispersal. The seeds are toxic and not attractive to birds or animals.

Agricultural Practices

There is no evidence that S. punicea is dispersed to any great extent by agricultural practices. S. punicea seldom encroaches on crops so there is no source of seeds to contaminate and be transported with harvest. Irrigation channels may serve to some extent as conduits for moving seeds from river systems to adjacent areas.

Accidental Introduction

Accidental introductions of seeds between sites at a national level occur through deliberate movement of soils, especially collection of builder's sand from river beds, and, inadvertently, on soil adhering to vehicles and implements. Accidental introductions internationally are probably not common but could happen when related Sesbania species are promoted for useful purposes including nitrogen fixation, fodder, green manure and gum production (Evans and Rotar, 1987).

Intentional Introduction

The abundance of showy flowers, and pleasing size and shape, have made S. punicea a very popular ornamental garden species which has been moved extensively within and between countries by horticulturalists. Seeds are readily available from distributors in many parts of the world and this process will undoubtedly foster invasions of S. punicea in regions where the plants are not yet naturalised.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Fruits (inc. pods) seeds
True seeds (inc. grain)

Impact Summary

Top of page
CategoryImpact
Animal/plant collections None
Animal/plant products None
Biodiversity (generally) Negative
Crop production Negative
Environment (generally) Negative
Fisheries / aquaculture None
Forestry production None
Human health None
Livestock production Negative
Native fauna Negative
Native flora Negative
Rare/protected species Negative
Tourism Negative
Trade/international relations None
Transport/travel Negative

Impact

Top of page Sesbania punicea seldom impacts directly on agriculture or industry and is mainly an environmental problem. Indirect economic affects arise from reduced water availability in invaded rivers due to increased transpiration rates through the plants in dense thickets of the weed. Although reports of poisoning are scarce, S. punicea, and in particular the seed, is toxic to livestock and fowl (Terblanche et al., 1966).

Environmental Impact

Top of page Environmental impacts resulting from invasions of S. punicea include degradation of stream and river banks where the plants form thickets within the water channels and impede water flow, forcing the rivers to overflow and causing lateral erosion of the banks (Macdonald and Richardson, 1986; Hoffmann and Moran, 1988). In the process natural habitats are altered, agricultural lands are encroached upon and water quality and quantity downstream declines. In addition, the shading effect of trees hanging over the water channel reduces sunlight penetration and lowers temperatures with detrimental affects on the development and composition of the native aquatic biota. Though not specifically documented for S. punicea, nitrifying bacteria associated with invasive legume species could be responsible for raised nitrogen levels in the soil to the detriment of native plant species which are adapted to nitrogen-poor soils.

Impact: Biodiversity

Top of page The main impact of S. punicea on biodiversity in South Africa is displacement of native flora and its associated fauna in dense thickets of the weed. Most habitats that have been invaded are characterised by assemblages of low-growing plant species (grasses and riverine shrubs). The greater height of the closed canopy that develops in S. punicea infestations rapidly eliminates low-growing indigenous plants leaving predominantly bare soil under the trees and exacerbating erosion during flood events.

Social Impact

Top of page S. punicea impacts socially in three main ways: firstly, it impedes access to rivers and lakes, affecting aquatic recreational pastimes (e.g. fishing, boating); secondly, the greater biomass of plants in dense infestations of the weed extracts more water than natural vegetation in pristine rivers reducing water availability for domestic consumption, agriculture and industry (this indirectly raises the costs of water to consumers because alternative, less available sources need to be tapped); and thirdly, invaded rivers are aesthetically displeasing with adverse effects on tourism, especially in natural parks where visitors expect to experience pristine natural habitats.

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Highly adaptable to different environments
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Highly mobile locally
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
Impact outcomes
  • Damaged ecosystem services
  • Ecosystem change/ habitat alteration
  • Negatively impacts agriculture
  • Negatively impacts animal health
  • Negatively impacts tourism
  • Reduced amenity values
  • Reduced native biodiversity
Impact mechanisms
  • Competition - monopolizing resources
Likelihood of entry/control
  • Highly likely to be transported internationally deliberately
  • Difficult to identify/detect as a commodity contaminant
  • Difficult/costly to control

Uses

Top of page Apart from its horticultural value, S. punicea has not been used for other purposes to any great extent.

Similarities to Other Species/Conditions

Top of page Although there are approximately 50 species of Sesbania distributed pantropically around the world (Evans and Rotar, 1987), the only similar congeneric to S. punicea is the North America indigenous species, S. drummondii. The two species have hybridized readily since S. punicea has become naturalised in North America, raising doubts that they are distinct species (Cuda et al., 1996). Most Sesbania species are annuals, so S. punicea fits into the small group of short-lived perennials (Evans and Rotar, 1987).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Cultural Control

In general, S. punicea is not amenable to cultural control methods. The plants occur predominantly in habitats that are moist and do not ignite easily or burn intensely enough to kill the plants. Prescribed burning can be used to regulate S. punicea in grasslands when conditions are dry, but only seedlings and small plants are killed outright. Large plants are mostly only scorched and usually re-sprout. The weed has no real agroforestry value, although the wood is used opportunistically in South Africa on a small scale for firewood. Browsing on the foliage is rare because of the toxicity of the plants (Terblanche et al., 1966).

Mechanical Control

This is the predominant manual method of control for S. punicea. Seedlings and small plants can be pulled, by hand or with implements (Pienaar, 1980). Large plants must be felled and the stumps treated with triclopyr to prevent coppicing. Mechanical control operations in well-established infestations usually disturb the soil and promote seed germination, so frequent follow-up operations are required to ensure sustained control of the weed.

Chemical Control

In South Africa, herbicides are applied as a foliar spray with either triclopyr or glyphosate, or as a cut stump treatment with triclopyr, or as soil treatment with clopyralid and tebuthiuron (Wyat, 1997). The use of herbicides as foliar sprays and soil treatment against S. punicea is not common because other control methods (mechanical and biological) are preferred.

Biological Control

A very successful biological control programme has kept S. punicea under control in many parts of South Africa since the 1980s (Hoffmann and Moran, 1991a; Hoffmann and Moran, 1999). The programme relies on three introduced agent species: Trichapion lativentre, a bud-feeding weevil which feeds on the leaflets as adults and develops within the flower buds as larvae; Rhyssomatus marginatus, a weevil whose larvae destroy the ripening seeds within the pods and whose adults feed on the leaves, flowers and meristems of the plants; and Neodiplogrammus quadrivittatus, a large stem-boring weevil whose larvae tunnel in the stems and branches causing structural damage, especially to vascular tissues, which eventually kills the plants. A root-feeding weevil, Eudiagogus episcopalis, was also considered for introduction into South Africa, but was not pursued because of difficulties with handling the beetles in quarantine and because the effectiveness of the other three species rendered it superfluous.

All three beetles act in combination to effect control (Hoffmann, 1990; Hoffmann and Moran, 1991b, 1998). The bud feeder destroys almost all (>98%) of the flowers and reduces seed production dramatically (Hoffmann, 1988; Moran and Hoffmann, 1989; Hoffmann et al., 1990; Hoffmann and Moran, 1992a). The seed feeder destroys 84% of the seeds that are produced in spite of damage caused by the bud feeder (Hoffmann and Moran, 1992b). Together these two species reduce seed production by >99.8%, rendering the plants almost sterile. The invasive potential of S. punicea is much reduced by these two weevils and populations of the weed are unable to recover as readily as happened before the introduction of the weevils. The bud feeder and seed feeder together have reduced the density of the weed in some situations (Hoffmann and Moran, 1998). The stem borer on its own is seemingly unable to bring S. punicea under biological control because recruitment from seedlings outstrips mortality due to the borer and the net loss is insufficient to cause a decline in the weed populations (Hoffmann, 1990). It is the combined action of all three weevils acting simultaneously which ensures that the reproductive capacity and survival of the weed are curtailed sufficiently to reduce its density and keep it in check.

Integrated Control

Although no deliberate integrated control programme has been mounted against S. punicea in South Africa, mechanical control operations have proved much more effective since the introduction of Trichapion lativentre and Rhyssomatus marginatus and the drastic reduction in seed production of the weed. The lack of seeds due to damage caused by these two beetles ensures that recruitment of seedlings is minimal following mechanical or chemical clearing operations. Follow-up treatments to combat the weed successfully need not be as rigorous or frequent as was necessary before these agents were introduced.

Under some circumstances mechanical control may negate the effectiveness of biological control because the insect agents are unable to persist in areas where the S. punicea is removed entirely. The weed may then re-invade such areas and flourish until the agents are re-introduced or re-colonize naturally. There are also documented examples of insecticide drift from adjacent citrus orchards detrimentally affecting the biological control agents of S. punicea (Hoffmann and Moran, 1995).

References

Top of page

Brown CJ; Gubb AA, 1986. Invasive alien organisms in the Namib desert, upper Karoo and the arid and semi-arid savannas of western southern Africa. In: The ecology and management of biological invasions in southern Africa, Macdonald IAW, Kruger FJ, Ferrar AA, eds. Cape Town, South Africa: Oxford University Press, 93-108.

Cuda JP; Logarzo GA; Casalinuovo MA; DeLoach CJ, 1996. Prospects for biological control of weedy sesbanias (Fabaceae) in the southeastern United States of America. Proceedings of the 9th international symposium on biological control of weeds, Stellenbosch, South Africa, 19-26 January 1996., 137-142; 44 ref.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Erb HE, 1980. The natural enemies and distribution of Sesbania punicea (Cav.) Benth. in Argentina. In: Neser S, Cairns ALP, ed. Proceedings of the third National Weeds Conference of South Africa. A. A. Balkema. Cape Town South Africa, 205-210

Evans DO; Rotar PP, 1987. Sesbania in agriculture. ^italic~Sesbania ^roman~in agriculture., 192 pp.; [^italic~Tropical Agriculture Series^roman~]; 38 pp. of ref.

Gill LS; Husaini WH, 1985. Cyto-geographical studies of the genus Sesbania Scop. (Leguminosae) from Nigeria. Bulletin du Museum National d'Histoire Naturelle, 4e Serie 7, Section B, Adansonia, No. 3:331-336.

Graaff JL; van Staden J, 1984. The germination characteristics of two Sesbania species. South African Journal of Botany, 3: 59-62.

Henderson L, 2001. Alien Weeds and Invasive Plants. Plant Protection Research Institute Handbook No. 12. Cape Town, South Africa: Paarl Printers.

Henderson L; Wells MJ, 1986. Alien plant invasions in grassland and savanna biomes. In: Macdonald IAW, Kruger FJ, Ferrar AA, eds. The ecology and management of biological invasions in southern Africa. Cape Town, South Africa: Oxford University Press, 109-117.

Hoffmann JH, 1988. An early assessment of Trichapion lativentre (Coleoptera: Apionidae) for biological control of the weed Sesbania punicea (Fabaceae) in South Africa. Journal of the Entomological Society of Southern Africa, 51(2):265-273

Hoffmann JH, 1990. Interactions between three weevil species in the biocontrol of Sesbania punicea (Fabaceae): the role of simulation models in evaluation. Agriculture, Ecosystems & Environment, 32(1-2):77-87

Hoffmann JH; Moran VC, 1988. The invasive weed Sesbania punicea in South Africa and prospects for its biological control. South African Journal of Science, 84(9):740-742

Hoffmann JH; Moran VC, 1989. Novel graphs for depicting herbivore damage on plants: the biocontrol of Sesbania punicea (Fabaceae) by an introduced weevil. Journal of Applied Ecology, 26(1):353-360

Hoffmann JH; Moran VC, 1991. Biocontrol of a perennial legume, Sesbania punicea, using a florivorous weevil, Trichapion lativentre: weed population dynamics with a scarcity of seeds. Oecologia, 88(4):574-576

Hoffmann JH; Moran VC, 1991. Biological control of Sesbania punicea (Fabaceae) in South Africa. Agriculture, Ecosystems & Environment, 37(1-3):157-173

Hoffmann JH; Moran VC, 1992. Oviposition patterns and the supplementary role of a seed-feeding weevil, Rhyssomatus marginatus (Coleoptera: Curculionidae), in the biological control of a perennial leguminous weed, Sesbania punicea. Bulletin of Entomological Research, 82(3):343-347

Hoffmann JH; Moran VC, 1992. The influence of host-plant location on the incidence and impact of Trichapion lativentre (Coleoptera: Apionidae), a biocontrol agent of Sesbania punicea (Fabaceae). Journal of the Entomological Society of Southern Africa, 55(2):285-287

Hoffmann JH; Moran VC, 1995. Localized failure of a weed biological control agent attributed to insecticide drift. Agriculture, Ecosystems & Environment, 52(2/3):197-203

Hoffmann JH; Moran VC, 1998. The population dynamics of an introduced tree, Sesbania punicea, in South Africa, in response to long-term damage caused by different combinations of three species of biological control agents. Oecologia, 114(3):343-348; 36 ref.

Hoffmann JH; Moran VC, 1999. A review of the agents and factors that have contributed to the successful biological control of Sesbania punicea (Cav.) Benth. (Papilionaceae) in South Africa. Biological control of weeds in South Africa (1990-1998)., 75-79; [^italic~African Entomology Memoir^roman~, No. 1]; 18 ref.

Hoffmann JH; Moran VC; Underhill LG, 1990. Relationships between the history of colonization and abundance of Trichapion lativentre (Coleoptera: Apionidae) in the suppression of growth and reproduction of a weed, Sesbania punicea (Fabaceae). Environmental Entomology, 19(6):1866-1872

Izaguirre ML, 2005. Geographical distribution, nodulation and agronomical behavior of three native species of Sesbania of flood areas in Venezuela. (Distribución geográfica, nodulación y comportamiento agronómico de tres especies de Sesbania nativas de zonas inundables en Venezuela.) Agronomía Tropical (Maracay), 55(1):63-81. http://www.ceniap.gov.ve/pbd/RevistasCientificas/Agronomia%20Tropical/volumen_ano.htm

Lock JM, 1989. Legumes of Africa, a check list. Kew, UK: Royal Botanic Gardens, 619 pp.

Macdonald IAW; Richardson DM, 1986. Alien species in terrestrial ecosystems of the fynbos biome. In: Macdonald IAW, Kruger FJ, Ferrar AA, eds. The ecology and management of biological invasions in southern Africa. Cape Town, South Africa: Oxford University Press, 77-91.

McGibbon J, 1858. Catalogue of problem plants in the botanic garden, Cape Town, Cape of Good Hope. Cape Town, South Africa: Solomon.

Moran VC; Hoffmann JH, 1989. The effects of herbivory by a weevil species, acting alone and unrestrained by natural enemies, on growth and phenology of the weed Sesbania punicea. Journal of Applied Ecology, 26(3):967-977

Pienaar KV, 1977. Sesbania punicea (Cav.) Benth. the handsome plant terrorist. Veld and Flora, 63: 17-18.

Pienaar KV, 1980. Sesbania. In: Stirton CH ed. Plant invaders, beautiful but dangerous. Department of Nature and Environmental Conservation of the Cape Provincial Administration, Cape Town, 2nd edition, 136-139.

Polhill RM, 1990. Legumineuses. In: Bosser J, Cadet TH, Gueho J, Marais W, eds, Flore des Mascareignes- La Reunion, Maurice, Rodrigues, 235 pp.

Sánchez-Soto S; Guedes JC; Nakano O, 2003. Neodiplogrammus quadrivittatus (Olivier) (Coleoptera: Curculionidae) in the State of São Paulo, Brazil. (Neodiplogrammus quadrivittatus (Olivier) (Coleoptera: Curculionidae) no Estado de São Paulo.) Neotropical Entomology, 32(3):511-512.

Stirton CH, ed. , 1978. Plant invaders; beautiful, but dangerous. Plant invaders; beautiful, but dangerous. The Department of Nature and Environmental Conservation of the Cape Provincial Administration. Cape Town South Africa, 175 pp.

Strathie LW; Hoffmann JH, 1993. Pre-winter settling by prepupae of a seed-feeding weevil Rhyssomatus marginatus Fahraeus (Coleoptera: Curculionidae), a biocontrol agent of Sesbania punicea (Cav.) Benth. (Fabaceae) in South Africa. African Entomology, 1(2):141-144

Terblanche M; de Klerk WA; Smit JD; Adelaar TF, 1966. A toxicological study of the plant Sesbania punicea Benth. Journal of the South African Veterinary Medical Association, 37: 109-111.

Tillman PG, 2015. First record of Sesbania punicea (Fabales: Fabaceae) as a host plant for Chinavia hilaris (Hemiptera: Pentatomidae). Florida Entomologist, 98(3):989-990. http://www.bioone.org/loi/flen

Tison JM, 2013. Establishment of Sesbania punicea (Cav.) Benth. in Corsica. Bulletin OEPP/EPPO Bulletin, 43(1):193-194. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2338

USDA; NRCS, 2002. The PLANTS Database, Version 3.5. National Plant Data Center, Baton Rouge, USA. http://plants.usda.gov.

Wells MJ; Balsinhas AA; Joffe H; Engelbrecht VM; Harding G; Stirton CH, 1986. A catalogue of problem plants in South Africa. Memoirs of the botanical survey of South Africa No 53. Pretoria, South Africa: Botanical Research Institute.

Wells MJ; Poynton RJ; Balsinhas AA; Musil KJ; Joffe H; van Hoepen E; Abbott SK, 1986. The history of introduction of invasive alien plants to southern Africa. In: Macdonald IAW, Kruger FJ, Ferrar AA, eds. The ecology and management of biological invasions in southern Africa. Cape Town, South Africa: Oxford University Press, 21-35.

Wyat J, 1997. Alien plant control guide. Rennies Wetlands Project, Part. 6, http//:psybergate.com/wetfix/WetlandFix/WetlandFix6/wfPart6.htm.

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.
Global register of Introduced and Invasive species (GRIIS)http://griis.org/Data source for updated system data added to species habitat list.

Distribution Maps

Top of page
You can pan and zoom the map
Save map