Rumex obtusifolius (broad-leaved dock)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Risk of Introduction
- Habitat
- Habitat List
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Biology and Ecology
- Latitude/Altitude Ranges
- Air Temperature
- Rainfall
- Rainfall Regime
- Soil Tolerances
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Vectors
- Impact Summary
- Impact
- Environmental Impact
- Impact: Biodiversity
- Social Impact
- Risk and Impact Factors
- Uses
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Rumex obtusifolius L.
Preferred Common Name
- broad-leaved dock
International Common Names
- English: bitter dock
- Spanish: acedera de hojas obtusas; acedera obtusifolia; romaza de hoja grande
- French: patience à feuilles obtuses
- Portuguese: labaca-obtusa; manteigueira
Local Common Names
- Czech Republic: stovik tupolisty
- Germany: Stumfblättriger Ampfer
- Greece: lapatho
- Italy: lingua di capra; romice a foglie ottuse; romice comune; romice dei tetti
- Japan: ezonogishigishi
- Netherlands: zuring, ridder-
- Poland: Szczaw tepolistny
- Sweden: skraeppa, tomt-
EPPO code
- RUMOB (Rumex obtusifolius)
Summary of Invasiveness
Top of pageTaxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Polygonales
- Family: Polygonaceae
- Genus: Rumex
- Species: Rumex obtusifolius
Notes on Taxonomy and Nomenclature
Top of page- subsp. obtusifolius (subsp. agrestis) (Fries) Èelak - native in Western Europe
- subsp. subalpinus (Schur.) Èelak - occurring in the Carpathians and mountains of the Balkan peninsula and in Western Asia
- subsp. transiens (Simonk.) Rech. f. - native in Central Europe, where the areas of subsp. obtusifolius and subsp. sylvestris overlap
- subsp. sylvestris - native of Europe from Italy and Sweden eastwards and in the Caucasus.
Recently, Stace (1997) recommended a division into varieties for the British Isles:
- var. obtusifolius
- var. microcarpus Dierb. (subsp. sylvestris (Wallr.) Celak.)
- var. transiens (Simonk.) Kubat (subsp. transiens (Simonk.) Rech. f.)
Characteristic morphological features of plant leaves are reflected in the Latin word 'obtusifolius', which means 'with blunt leaves', and common names in many languages, such as French, Polish and Czech, are a translation of this word.
Description
Top of pageInflorescences are 15-50 cm long racemes, with alternate leaves without petioles among the branches. Flowers, arranged in whorls, are small, with 6 inner valves, sometimes called tepals, which are 3-6 mm long and 2-3 mm wide, triangular to oblong-ovate, on pedicels 5-10 mm long, green in the beginning and reddish-brown at maturity. Fruit is a triangular achene, enclosed within three inner perianth segments, up to 5-6 mm long and 3 mm wide, with three to five teeth. The seeds are polymorphic, differing in size.
Distribution
Top of pageDistribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 18 May 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Lesotho | Present | Introduced | Invasive | ||||
Namibia | Present | Introduced | Invasive | ||||
Réunion | Present | Introduced | 1985 | ||||
South Africa | Present | Introduced | Invasive | ||||
Asia |
|||||||
Afghanistan | Present | Native | Invasive | ||||
Armenia | Present | Native | Invasive | ||||
Azerbaijan | Present | Native | Invasive | ||||
China | Present | Introduced | Invasive | ||||
India | Present | Introduced | |||||
Indonesia | Present | Present based on regional distribution. | |||||
-Java | Present | Introduced | |||||
Iran | Present | ||||||
Iraq | Present | ||||||
Japan | Present, Widespread | Introduced | 1909 | Invasive | |||
-Hokkaido | Present | ||||||
North Korea | Present | Introduced | 1934 | ||||
Pakistan | Present | ||||||
South Korea | Present | Introduced | 1934 | ||||
Taiwan | Present | Introduced | 1996 | ||||
Turkey | Present | Native | |||||
Europe |
|||||||
Albania | Present | Native | Invasive | ||||
Austria | Present | Native | Invasive | ||||
Belarus | Present | Native | |||||
Belgium | Present, Widespread | There is conflicting information on whether it is native or introduced | |||||
Bosnia and Herzegovina | Present | Native | |||||
Bulgaria | Present | Native | Invasive | ||||
Croatia | Present | Native | |||||
Czechia | Present | ||||||
Czechoslovakia | Present | Native | Invasive | ||||
Federal Republic of Yugoslavia | Present | Native | Invasive | ||||
Denmark | Present | Native | Invasive | ||||
Estonia | Present | Native | |||||
Faroe Islands | Present | Native | |||||
Finland | Present | Introduced | |||||
France | Present | Native | Invasive | ||||
-Corsica | Present | Native | |||||
Germany | Present | Native | Invasive | ||||
Gibraltar | Present | Native | |||||
Greece | Present | Native | |||||
Hungary | Present | Native | Invasive | ||||
Iceland | Present | Introduced | 1955 | ||||
Ireland | Present | Native | Invasive | ||||
Italy | Present | Native | Invasive | ||||
Latvia | Present | Native | |||||
Lithuania | Present | Native | |||||
Luxembourg | Present | Native | |||||
Moldova | Present | Native | |||||
Monaco | Present | Native | |||||
Netherlands | Present | Native | Invasive | ||||
North Macedonia | Present | Native | |||||
Norway | Present | Native | |||||
Poland | Present | Native | Invasive | ||||
Portugal | Present | Native | |||||
-Azores | Present | Introduced | 1838 | ||||
-Madeira | Present | Introduced | 1894 | ||||
Romania | Present | Native | |||||
Russia | Present | Native | Invasive | ||||
-Central Russia | Present | Native | |||||
-Northern Russia | Present | Introduced | |||||
-Southern Russia | Present | Native | |||||
Serbia | Present | Native | |||||
Slovakia | Present | ||||||
Slovenia | Present | Native | |||||
Spain | Present | Native | Invasive | ||||
-Balearic Islands | Present | Native | |||||
Sweden | Present | conflicting information on whether it is native or introduced | |||||
Switzerland | Present | Native | Invasive | ||||
Ukraine | Present | Native | Invasive | ||||
United Kingdom | Present | Native | Invasive | ||||
-Channel Islands | Present | Native | |||||
North America |
|||||||
Canada | Present | Introduced | 1821 | Invasive | |||
-British Columbia | Present | Introduced | Invasive | ||||
Costa Rica | Present | ||||||
Greenland | Present | Introduced | |||||
Guatemala | Present | Introduced | |||||
Mexico | Present, Widespread | Introduced | Invasive | ||||
Saint Pierre and Miquelon | Present | Introduced | First reported: 1816 - 1819 | ||||
United States | Present, Widespread | Introduced | Invasive | ||||
-Alabama | Present | Introduced | Invasive | ||||
-Alaska | Present | Introduced | Invasive | ||||
-Arizona | Present | Introduced | Invasive | ||||
-Arkansas | Present | Introduced | Invasive | ||||
-California | Present | Introduced | Invasive | ||||
-Colorado | Present | Introduced | Invasive | ||||
-Connecticut | Present | Introduced | Invasive | ||||
-Delaware | Present | Introduced | Invasive | ||||
-Florida | Present | Introduced | Invasive | ||||
-Georgia | Present | Introduced | Invasive | ||||
-Hawaii | Present | Introduced | 1917 | Invasive | |||
-Idaho | Present | Introduced | Invasive | ||||
-Illinois | Present | Introduced | Invasive | ||||
-Indiana | Present | Introduced | Invasive | ||||
-Iowa | Present | Introduced | Invasive | ||||
-Kansas | Present | Introduced | Invasive | ||||
-Kentucky | Present | Introduced | Invasive | ||||
-Louisiana | Present | Introduced | Invasive | ||||
-Maine | Present | Introduced | Invasive | ||||
-Maryland | Present | Introduced | Invasive | ||||
-Massachusetts | Present | Introduced | Invasive | ||||
-Michigan | Present | Introduced | Invasive | ||||
-Minnesota | Present | Introduced | Invasive | ||||
-Mississippi | Present | Introduced | Invasive | ||||
-Missouri | Present | Introduced | Invasive | ||||
-Montana | Present | Introduced | Invasive | ||||
-Nebraska | Present | Introduced | Invasive | ||||
-New Hampshire | Present | Introduced | Invasive | ||||
-New Jersey | Present | Introduced | Invasive | ||||
-New Mexico | Present | Introduced | Invasive | ||||
-New York | Present | Introduced | Invasive | ||||
-North Carolina | Present | Introduced | Invasive | ||||
-Ohio | Present | Introduced | Invasive | ||||
-Oklahoma | Present | Introduced | Invasive | ||||
-Oregon | Present | Introduced | Invasive | ||||
-Pennsylvania | Present | Introduced | Invasive | ||||
-Rhode Island | Present | Introduced | Invasive | ||||
-South Carolina | Present | Introduced | Invasive | ||||
-South Dakota | Present | Introduced | Invasive | ||||
-Tennessee | Present | Introduced | Invasive | ||||
-Texas | Present | Introduced | Invasive | ||||
-Utah | Present | Introduced | Invasive | ||||
-Vermont | Present | Introduced | Invasive | ||||
-Virginia | Present | Introduced | Invasive | ||||
-Washington | Present | Introduced | Invasive | ||||
-West Virginia | Present | Introduced | Invasive | ||||
-Wisconsin | Present | Introduced | Invasive | ||||
-Wyoming | Present | Introduced | Invasive | ||||
Oceania |
|||||||
Australia | Present | Introduced | 1887 | ||||
-Tasmania | Present | Introduced | Invasive | ||||
New Zealand | Present | Native | |||||
-Kermadec Islands | Present | Introduced | 1888 | ||||
South America |
|||||||
Argentina | Present | Introduced | Invasive | ||||
Brazil | Present | Introduced | Invasive | ||||
-Parana | Present | ||||||
-Rio Grande do Sul | Present | ||||||
Chile | Present | Introduced | 1924 | Invasive | |||
Colombia | Present | Introduced | Invasive | ||||
Peru | Present | Introduced | Invasive | ||||
Uruguay | Present | Introduced | Invasive | ||||
Venezuela | Present | Introduced | Invasive |
History of Introduction and Spread
Top of pageRisk of Introduction
Top of pageHabitat
Top of pageHabitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Cultivated / agricultural land | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed forests, plantations and orchards | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed grasslands (grazing systems) | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Disturbed areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Rail / roadsides | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Urban / peri-urban areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural forests | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Riverbanks | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Wetlands | Present, no further details | Harmful (pest or invasive) |
Littoral | Coastal areas | Present, no further details | Harmful (pest or invasive) |
Hosts/Species Affected
Top of pageHost Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Brassica napus var. oleifera | Brassicaceae | Unknown | |
Triticum aestivum (wheat) | Poaceae | Unknown | |
Zea mays (maize) | Poaceae | Unknown |
Biology and Ecology
Top of pageThe chromosome number is 2n = 40. Hybridization between R. obtusifolius and other members of the subgenus Rumex occurs frequently (Cavers and Harper, 1964). The commonest hybrid is R. crispus x R. obtusifolius, described as R. acutus by Linnaeus and also as R. pratensis Mert & Koch. It can be recognized by intermediate leaves and tepals. This is the most fertile Rumex hybrid, and produces some viable seeds. Other hybrids, with R. longifolius, R. confertus, and R. patientia, are virtually sterile.
Physiology and Phenology
Germination of R. obtusifolius seeds can occur in any month of the year (Cavers and Harper, 1964), although it is concentrated in March-April and in August-October. The species shows very high sensitivity to light; germination of its seeds is controlled by phytochrome (Taylorson and Hendricks, 1972) and is more rapid in the presence of light (Milberg, 1997). Daylight or near-red light stimulates germination, whereas far-red light, increased by the presence of a leaf canopy, inhibits it (Takaki et al., 1981). Seeds can also germinate in the absence of light after an exposure to alternating temperatures (van Assche and Vanlerberghe, 1989); this accounts for the spring flush of germination when the temperature fluctuations in the soil are very large. Constant temperatures induce secondary dormancy (Roberts and Totterdell, 1981). Benvenuti et al. (2001) report that thermal optima for germination are between 20 and 25°C in light or in darkness. In their study seedlings did not emerge when seeds were buried at a depth of more than 8 cm. Seeds exhibit great within- and between-plant polymorphism, which enables germination under various environmental conditions (Honek and Martinkovà, 2002). Unlike seeds buried in the autumn in the soil that pass through annual dormancy/non-dormancy cycles, the seeds continuously shed from dry standing shoots of R. obtusifolius become germinable all year round, after a short period of burial.
In the seedling year most plants remain at the rosette stage and a long stout rootstock is produced, but flowering and seed set do not normally take place until the second year, unless competition from other plants is weak. A dense sward limits the juvenile growth and establishment of R. obtusifolius in grassland (Jeangros and Nösberger, 1990). The establishment of young plants is favoured by frequent mowing (Hongo, 1989). Adult R. obtusifolius plants in the close vicinity of the seedlings exert a negative influence on their survival (Makuchi and Kanda, 1980).
The plant is a hemicryptophyte and after overwintering regrowth from the rosette usually takes place in late February-March. New shoots are produced from buds on the underground stem. Inflorescences are first formed in early May and may be initiated until the first severe frost (Cavers and Harper, 1964). Flowering and seed set can occur twice in one growing season, first flowers appearing in May-June and the second, after cutting and regrowth of shoots, in August-September. Individual plants may live for at least 5 years. Inflorescences are produced every year under normal conditions and plants do not usually die after producing seed.
Reproductive Biology
Reproduction is amphimictic. Flowers have no nectar and are mainly wind-pollinated. Most individuals are highly self-fertile, although there is variation in this respect between plants.
Propagation is mainly by seeds, produced in very large numbers, varying from less than 100 to 60,000 per plant in a single year. Fruits can be blown for a considerable distance by wind, be carried floating on water, and be dispersed via the digestive system of birds and animals (Cavers and Harper, 1964). Spines on the fruit assist in long-distance distribution by animals, attached to fur or feathers, and by humans.
Seeds may remain viable for a long period when buried deeply in the soil; 83% germinated after burial for 21 years (Toole and Brown, 1946).
In a study carried out by Pino et al. (1995), R. obtusifolius plants showed a clonal growth system in which the roots branch after the first flowering and produce adventitious roots, which accumulate reserves over the next 2 years and separate from the original taproot in the fifth year. This 'phalanx' type of growth allows the plant to reproduce in areas where seedling establishment is inhibited by competition for space. It also has the capacity of vegetative propagation from fragments of root or underground stem split up by cultivation. This is a less important method of reproduction than through seeds; it can, however, significantly facilitate the spread of the species locally (Brock, 1972; Pino et al., 1995).
Environmental Requirements
Growth and development are promoted by climatic conditions typical for temperate regions. Cavers and Harper (1964) state that for the UK there does not seem to be any climatic limitation of the species. It is present inside the Arctic Circle in Northern Scandinavia, can be found at various altitudes and was recorded at 3200 m in Mexico.
R. obtusifolius can grow on a wide range of soils, except peat (Cavers and Harper, 1964). Ellenberg (1974) classifies it as indifferent to pH but its growth is inhibited on the most acid soils. It is a typically nitrophilous plant (Melzer et al., 1984) and shows high abundance on soils with high potassium concentrations (Humphreys et al., 1999). It is favoured by humid conditions, but mature plants with a well-established root system are capable of withstanding severe drought periods.
Associations
No mycorrhizal root symbionts have been recorded.
Latitude/Altitude Ranges
Top of pageLatitude North (°N) | Latitude South (°S) | Altitude Lower (m) | Altitude Upper (m) |
---|---|---|---|
0 | 0 | 0 | 0 |
Air Temperature
Top of pageParameter | Lower limit | Upper limit |
---|---|---|
Mean annual temperature (ºC) | 6 | 12 |
Mean maximum temperature of hottest month (ºC) | 12 | 24 |
Mean minimum temperature of coldest month (ºC) | -5 | 6 |
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Mean annual rainfall | 600 | 1800 | mm; lower/upper limits |
Soil Tolerances
Top of pageSoil drainage
- free
- impeded
- seasonally waterlogged
Soil reaction
- acid
- alkaline
- neutral
Soil texture
- heavy
- light
- medium
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Apion frumentarium | Herbivore | |||||
Armillaria mellea | Pathogen | |||||
Armillaria ostoyae | Pathogen | |||||
Chamaesphecia doryliformis | Herbivore | Plants|Roots; Plants|Stems | ||||
Gastrophysa atrocyanea | Herbivore | Plants|Leaves | ||||
Gastrophysa viridula | Herbivore | Plants|Leaves | ||||
Pegomya solennis | Herbivore | Plants|Leaves | ||||
Ramularia rubella | Pathogen | Plants|Leaves | ||||
Uromyces rumicis | Pathogen | Plants|Leaves | ||||
Venturia rumicis | Pathogen | Plants|Leaves |
Notes on Natural Enemies
Top of pageMeans of Movement and Dispersal
Top of pagePropagation is mainly by seeds produced in very large numbers. Long-distance dispersal is achieved by wind and water.
Vector Transmission (Biotic)
By humans and animals, attached with the spines on the fruit. Ingested seeds are resistant to digestion and are spread in the droppings (SAC, 1986).
Agricultural Practices
Cultivation, which causes root fragmentation, facilitates vegetative reproduction of the weed and aids its local spread. Nishida (2002) attributes invasion of R. obtusifolius into agricultural land in Japan to application of manure from cattle fed on imported feed contaminated with weed seeds.
Impact Summary
Top of pageCategory | Impact |
---|---|
Animal/plant collections | None |
Animal/plant products | None |
Biodiversity (generally) | None |
Crop production | Negative |
Environment (generally) | None |
Fisheries / aquaculture | None |
Forestry production | None |
Human health | None |
Livestock production | Negative |
Native fauna | None |
Native flora | None |
Rare/protected species | None |
Tourism | None |
Trade/international relations | None |
Transport/travel | None |
Impact
Top of pageEnvironmental Impact
Top of pageImpact: Biodiversity
Top of pageRisk and Impact Factors
Top of page- Invasive in its native range
- Proved invasive outside its native range
- Highly adaptable to different environments
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Highly mobile locally
- Has high reproductive potential
- Has propagules that can remain viable for more than one year
- Negatively impacts agriculture
- Reduced native biodiversity
- Competition - monopolizing resources
- Highly likely to be transported internationally accidentally
- Difficult/costly to control
Uses
Top of pageA study in Zealand (Waghorn and Jones, 1989) suggested that condensed tannin in R. obtusifolius prevents bloat in cattle.
Harada and Hatanaka (2001) report that it can be a useful plant for reducing thallium (Tl) concentration in the soil.
Similarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Cultural ControlIn Japan, Sakanoue et al. (1995) used mixed grazing by goats and cows on a permanent pasture, and after 3 years reported effective control of R. obtusifolius by goats through a process of defoliation, suppression of propagation, and population decrease. SAC (1986) recommend, as a preventive measure, maintaining a dense, well-managed grassland sward, which can minimise infestation since seedlings of R. obtusifolius are poor competitors and seed germination is inhibited in the presence of a dense leaf canopy. The choice of high-tillering and persistent grasses further reduces competition from R. obtusifolius. Moreover, excessive treading and poaching in pastures should be avoided.
In a study carried out in Austria, Poetsch and Krautzer (2002) obtained a significant reduction of seed germination within three weeks of composting of farmyard manure, and they state that it can therefore be seen as an efficient tool to interrupt the R. obtusifolius seed cycle on grassland farms. Storage in silage significantly reduces the viability of mature seeds (Masuda et al., 1984). Humphreys et al. (1997) report that after being subjected to 100 days in silage, seeds were non-viable. Humphreys et al. (1999) discuss the possibility of limiting the abundance of R. obtusifolius in grassland by maintaining moderate soil K concentration. Balanced fertilizer use, especially N and K, may prevent its spread (SAC, 1986).
Mechanical Control
Hand-pulling is not normally practicable and usually does not result in the complete removal of the root (SAC, 1986). Plants which have been pulled out should be burned to prevent seed dispersal. Dierauer and Thomas (1994) state that the only effective method is the removal of the entire root or cutting the root to at least 10 cm below ground. In grassland, the cutting frequency of the sward affects abundance of the weed. Courtney (1985), Niggli et al. (1993) and Hopkins and Johnson (2002) showed that under frequent defoliation (every 3-4 weeks) dock plants were less competitive and their herbage production was considerably lower than when cut every 6-7 weeks. The height of cut had no consistent effect on R. obtusifolius yields. Cavers and Harper (1964) suggest that a series of rotary cultivations may be effective for the elimination of the weed, however, the timing of land management practices has to be taken into account, as cultivation in late summer may promote the spread of the weed by shortening the length of time between germination and seed production (Weaver and Cavers, 1979). Ploughing followed by fallowing and repeated cultivation during spring and early summer is recommended by the SAC (1986) to exhaust the root reserves and provide control of young seedlings.
Chemical Control
Asulam is the most widely used herbicide for control of mature plants in grassland (Brock, 1972; Oswald and Haggar, 1976; SAC, 1986). Other recommended compounds include thifensulfuron, fluroxypyr, triclopyr, dicamba and mecoprop. Effective application of herbicides requires an adequate leaf area present. Spraying can be carried out in May before harvesting or in the following regrowth. For heavy infestations a follow-up spraying may be necessary 8 to 12 months later (SAC, 1986). Seedlings can be controlled by MCPA, MCPB, 2,4-D or mecoprop and are most readily killed at the two- to three-leaf stage. When the level of infestation is small and the plants are scattered, selective herbicide treatment with rope wick applicators can be used (SAC, 1986).
Biological Control
Gastrophysa viridula has been suggested as a possible agent of biological control (Speight and Whittaker, 1987). Although heavy grazing by this beetle reduces leaf area and overall biomass (Bentley and Whittaker, 1979) and affects the number and weight of seeds (Bentley et al., 1980), it is unlikely that G. viridula, acting alone, could be an effective control agent for the weed (Speight and Whittaker, 1987). In Tasmania the clearwing dock moth Chamaesphecia doryliphormis was introduced in 1997 at 2 sites to provide control of R. obtusifolius. However, there is no further information on the establishment and efficacy of this organism (TAS, 2003).
Studies involving fungal pathogens have not developed control methods, though the possibilities have been discussed for Uromyces rumicis (Schubiger et al., 1986) and Ramullaria rubella (Huber-Meinicke et al., 1989). Hughes et al. (1996) investigated the effects of infection of Armillaria mellea and A. ostoyae, which attack the root system, and reported that the taproots were extensively rotted. Moreover, there are complex interactions between the natural enemies. Hatcher and Paul (2000) showed that grazing by G. viridula reduces natural infection of R. obtusifolius by fungal pathogens, which attack leaves.
Integrated Control
A combination of different control practices and chemical techniques can be used to reduce infestation of mature plants. Repeated discing or rotary cultivation breaks up the taproots and the suppressed growth from root fragments allows more effective control by herbicides (SAC, 1986). An integrated programme of control involving single or repeated spraying with asulam or glyphosate, discing and sowing of grass-legume mixtures carried out in Poland is described by Biala (1998a, b) for heavily infested grassland.
References
Top of pageCavers P; Harper J, 1964. Rumex obtusifolius L. and Rumex crispus L. Journal of Ecology, 52:737-766.
Cranston R; Ralph D; Wikeem B, 2000. Field Guide to Noxious and Other Selected Weeds of British Columbia. BC Ministry of Agriculture, Food and Fisheries and Ministry of Forests.
DEFRA, 2002. Weeds Act 1959. http://www.defra.gov.uk/environ/weedsact/.
Ellenberg H, 1974. Zeigerwerte der Gefasspflanzen Mitteleuropas. Scripta Geobotanica 9. Gottingen: Goeltze.
Hultén E, 1950. Atlas of the Distribution of Vascular Plants in North-West Europe. Stockholm, Sweden: Esselte AB.
Klimes L; Kapahi BK, 1990. Rumex obtusifolius L. (Polygonaceae) - a new plant for India. Journal of Economic and Taxonomic Botany, 14:729-731.
Rechinger KH; Akeroyd JR, 1993. 8. Rumex L. In: Tutin TG, Burges NA, Chater AO, Edmundson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA, eds. Flora Europaea Volume 1 Psilotaceae to Platanaceae, 2nd Edition. Cambridge, UK: Cambridge University Press, 99-107.
SAC, 1986. The control of docks. UK, Scottish Agricultural Colleges, Publication No. 56.
Speight RI; Whittaker JB, 1987. Interactions between the chrysomelid beetle, Gastrophysa viridula, the weed Rumex obtusifolius and the herbicide asulam. Journal of Applied Ecology, 24:119-129.
Stace C, 1997. New Flora of the British Isles. 2nd edition. Cambridge, UK: Cambridge University Press.
TAD, 1974. Control of docks in lucerne. Australia, Tasmanian Department of Agriculture. Tasmanian Journal of Agriculture. 45:255-257.
TAS, 2003. Department of Primary Resources, Water and Environment. Weed Information Resources. http://www.dpiwe.tas.gov.au/inter.nsf/WebPages/RPIO-4ZW3NH?open#Identification.
Taylorson RB; Hendricks SB, 1972. Interactions of light and a temperature shift on seed germination. Plant Physiology, 49:127-130.
Toole EH; Brown E, 1946. Final results of the Duval buried seed experiment. Journal of Agricultural Research, 72:201-210.
Trichopoulou A; Vasilopoulou E; Hollman P; Chamalides C; Foufa E; Kaloudis T; Kromhout D; Miskaki P; Petrochilou I; Poulima E; Stafilakis K; Theophilou D, 2000. Nutritional composition and flavonoid content of edible wild greens and green pies: a potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chemistry, 70:319-323.
USDA-NRCS, 2002. The PLANTS Database, Version 3.5. National Plant Data Center, Baton Rouge, USA. http://plants.usda.gov.
Wells MJ; Balsinhas AA; Joffe H; Engelbrecht VM; Harding G; Stirton CH, 1986. A catalogue of problem plants in South Africa. Memoirs of the botanical survey of South Africa No 53. Pretoria, South Africa: Botanical Research Institute.
Distribution References
CABI, 2022. CABI Distribution Database: Status as determined by CABI editor. Wallingford, UK: CABI
CABI, Undated. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
Cranston R, Ralph D, Wikeem B, 2000. Field Guide to Noxious and Other Selected Weeds of British Columbia. In: BC Ministry of Agriculture, Food and Fisheries and Ministry of Forests,
Klimes L, Kapahi BK, 1990. Rumex obtusifolius L. (Polygonaceae) - a new plant for India. In: Journal of Economic and Taxonomic Botany, 14 729-731.
Rechinger KH, Akeroyd JR, 1993. (8. Rumex L). In: Flora Europaea Psilotaceae to Platanaceae, 1 (2nd) [ed. by Tutin TG, Burges NA, Chater AO, Edmundson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA]. Cambridge, UK: Cambridge University Press. 99-107.
TAS, 2003. Department of Primary Resources, Water and Environment. In: Weed Information Resources, http://www.dpiwe.tas.gov.au/inter.nsf/WebPages/RPIO-4ZW3NH?open#Identification
USDA-NRCS, 2002. The PLANTS Database. Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/