Pueraria montana var. lobata (kudzu)
Index
- Pictures
- Identity
- Summary of Invasiveness
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Plant Type
- Distribution
- Distribution Table
- History of Introduction and Spread
- Risk of Introduction
- Habitat
- Habitat List
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Biology and Ecology
- Climate
- Rainfall
- Soil Tolerances
- Natural enemies
- Notes on Natural Enemies
- Means of Movement and Dispersal
- Pathway Causes
- Pathway Vectors
- Plant Trade
- Impact Summary
- Economic Impact
- Environmental Impact
- Impact: Biodiversity
- Threatened Species
- Risk and Impact Factors
- Uses
- Uses List
- Detection and Inspection
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Links to Websites
- Contributors
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Pueraria montana var. lobata (Willd.) Maesen & Almeida S.M. Almeida ex Sanjappa & Predeep
Preferred Common Name
- kudzu
Other Scientific Names
- Dioclea odorata Montrouzier 1860
- Dolichos hirsutus Thunb. 1794
- Dolichos japonica hort. nom. nud., Bailey 1924
- Dolichos lobatus Willd. 1802
- Dolichos trilobus Houtt 1779
- Neustanthus chinensis Benth. 1861
- Pachyrhizus thunbergianus Siebold & Zuccarini 1846
- Phaseolus trilobus (L.) 1789
- Pueraria argyi Lévl and Vaniot 1908
- Pueraria bodinieri Lévl and Vaniot 1908
- Pueraria caerulea Lévl and Vaniot 1908
- Pueraria harmsi Rech. 1910
- Pueraria hirsuta (Thunb.) Matsumura non Kurz 1902
- Pueraria koten Lévl and Vaniot 1908
- Pueraria lobata (Willd.) Ohwi 1965
- Pueraria lobata var. lobata Ohwi
- Pueraria neo-caledonica Harms 1906
- Pueraria novo-guineensis Warburg 1891
- Pueraria pseudo-hirsuta Tang & Wang nom. nud., Hu & Hsun 1955
- Pueraria thunbergiana (Sieb. & Zucc.) Benth. 1867
- Pueraria triloba (Houtt.) Makino in Iinuma 1912
- Pueraria triloba (Lour.) Backer in Heyne 1927
- Pueraria triloba Makino ex Backer 1963
- Pueraria volkensii Hosokawa 1938
International Common Names
- Spanish: kudzo ordinario; kudzu; kudzu comun
- French: koudsou; koudzou; kudzu; kudzu du Japon; vigne japonaise
Local Common Names
- China: fen ge teng; gue; ko; ko t'eng; koten
- Fiji: aka; wa-yake; yaka
- Germany: Kopoubohne
- Indonesia: bitok; ngu lok; tebi; tobi
- Italy: pueraria
- Japan: daisumame; fusi maki kadsura; in ken maki; katsi maki; kudzu; kuzu; saitzu mame
- Korea, DPR: cheulk; chik; chuk
- New Caledonia: magnana rkerku; quechoc
- Papua New Guinea: goruma; gosima; hgedafo; kagomba; kenangia; kohena; ko'pitu; korono; mapumb; mudja; muntamagana; nggaoka; nggondumu; ngko'ahi; ngko-ko; oka mapumb; oka moi; op; owitu; sifu; so'onea; wowitu
- Philippines: baai; tahaunon
- Solomon Islands: lebu
- Thailand: tum yaa krua
- Tonga: aka; fue alpuaka; fue'ae puaka
- USA: Japanese arrowroot; ko-hemp; kudzu bean; kudzu vine; Mason-Dixon vine; Thunberg kudzu vine
- Vietnam: cu nang; cu san day
EPPO code
- DOLTR (Dolichos trilobus)
- PUELO (Pueraria lobata)
Summary of Invasiveness
Top of pageP. montana, formerly known as P. lobata, is widely known in the USA as ‘kudzu’ is native to East Asia. However, it does not appear to be a significant problem anywhere except in south-eastern USA where it was extensively planted in the 1930s and 1940s for erosion control. Seed dispersal appears to be minor but vegetative growth in subtropical areas can be substantial, up to 18 m per growing season. It is a climbing vine and kills vegetation by completely smothering it, and it will also entirely cover telegraph poles and buildings if left to itself. Once introduced it is difficult to control, especially in forest and marginal habitats. There are three varieties, although only var. lobata is so far known to be invasive, in the USA.
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Plantae
- Phylum: Spermatophyta
- Subphylum: Angiospermae
- Class: Dicotyledonae
- Order: Fabales
- Family: Fabaceae
- Subfamily: Faboideae
- Genus: Pueraria
- Species: Pueraria montana var. lobata
Notes on Taxonomy and Nomenclature
Top of pageThe genus Pueraria has been revised twice, first with nine species by Bentham (1867) and later with 17 species by van der Maesen (1985). The widely dispersed species commonly known as ‘kudzu’ corresponds to van der Maesen's Puerarialobata. It is a very variable species that has been described many times resulting in extensive synonymy and many common names. Van der Maesen found it convenient to separate three varieties largely on the basis of size; P.lobata (Willd.) Ohwi var. lobata Ohwi, P.lobata (Willd.) Ohwi var. montana (Lour.) Maesen, and P.lobata var. thomsonii (Benth.) Maesen later revised to P.lobata var. chinensis (Ohwi) Maesen & Almeida. All three varieties are quite widespread in their native South-East Asia but van der Maesen (1985) suggests that var. lobata was the only variety to be widely exported outside its natural range. Although Puerarialobata (Willd.) Ohwi has been the commonly used Latin name for several decades, in the early 1990s the name Puerariamontana (Lour.) Merr. started to appear occasionally. There was some confusion until Ward (1998) wrote a clarifying note in which he explained that van der Maesen inexplicably chose the epithet lobata (1802) for kudzu even though montana (1790) had priority. Thus the correct scientific name for kudzu is Puerariamontana (Lour.) Merr. var. lobata (Willd.) Maesen & Almeida (1988). Many vernacular names are also given by van der Maesen (1985). This datasheet thus covers the entire species, but much of the information on it as an invasive in USA deal in large part only with the variety lobata.
Description
Top of pageKudzu is a perennial climbing vine that produces very large tubers up to 2 m long and 18-45 cm wide that can weigh as much as 180 kg on old plants. Stems or branches are strong, approximately 0.6-2.5 cm in diameter and up to 30 m in length. They can grow up to 25 cm per day or 18 m per growing season, and produce root crowns where nodes contact soil. Leaves are pinnately trifoliate, 8-20 cm long and 5-19 cm wide with leaflets ovate to orbicular and unlobed to trilobed. Leaves are pale green above and light to greyish green below. Purple to blue flowers, that smell of grapes, are borne on a mostly unbranched inflorescence 10-25 cm long. Seeds are borne in golden-haired, brown, flattened, oblong pods, 4-13 cm long and 0.6-1.3 cm wide. The seeds, visible through the pod, are flattened, ovoid and reddish brown with a black mosaic pattern. They are approximately 4-5 mm long by 4 mm wide and 2 mm thick (van der Maesen, 1985). For a more detailed description and a key to the three varieties, see van der Maesen (1985).
Plant Type
Top of pageHerbaceous
Perennial
Seed propagated
Vegetatively propagated
Vine / climber
Distribution
Top of pageThere appears to be some confusing surround the exact limits of the native range. The three varieties of Puerariamontana have overlapping but not identical distributions. Var. lobata is the most widespread, presumed to be native to China, Japan and other parts of South-East Asia, it has spread or been introduced to many tropical regions including Oceania, Central Europe, Central and South America and the continental USA where it is an aggressive and noxious weed. Var. montana and var. thomsonii have more limited ranges in China, Myanmar, Laos, Philippines, Taiwan, Thailand and Vietnam; with var. montana also in Japan (the Ryukyu Archipelago) and var. thomsonii in India, Bhutan and Hawaii (introduced). Kudzu is probably much more widespread in South and Central America but, as it is not considered a pest there, records are not widely reported. The distribution list refers to records of all the varieties and accepts a wider native range than noted by any single source, for example, accepting ILDIS (2007) noting a native range as far south as Queensland, Australia and as far west as Tonga and the Solomon Islands, apparently based on van der Maesen (1985).
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 12 May 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Sierra Leone | Present | Introduced | |||||
South Africa | Present, Few occurrences | ||||||
Asia |
|||||||
Bhutan | Present | Native | |||||
China | Present | ||||||
-Anhui | Present | Native | Original citation: van der Maesen (1985) | ||||
-Fujian | Present | Native | Original citation: van der Maesen (1985) | ||||
-Guangdong | Present | Native | Original citation: van der Maesen (1985) | ||||
-Guangxi | Present | Native | Original citation: van der Maesen (1985) | ||||
-Guizhou | Present | Native | Original citation: van der Maesen (1985) | ||||
-Hainan | Present | Native | Original citation: van der Maesen (1985) | ||||
-Hebei | Present | Native | Original citation: van der Maesen (1985) | ||||
-Heilongjiang | Present | Native | Original citation: van der Maesen (1985) | ||||
-Henan | Present | Native | Original citation: van der Maesen (1985) | ||||
-Hubei | Present | Native | Original citation: van der Maesen (1985) | ||||
-Hunan | Present | Native | Original citation: van der Maesen (1985) | ||||
-Jiangsu | Present | Native | Original citation: van der Maesen (1985) | ||||
-Jilin | Present | Native | Original citation: van der Maesen (1985) | ||||
-Liaoning | Present | Native | Original citation: van der Maesen (1985) | ||||
-Shandong | Present | Native | Original citation: van der Maesen (1985) | ||||
-Shanxi | Present | Native | Original citation: van der Maesen (1985) | ||||
-Sichuan | Present | Native | Original citation: van der Maesen (1985) | ||||
-Yunnan | Present | Native | Original citation: van der Maesen (1985) | ||||
-Zhejiang | Present | Native | Original citation: van der Maesen (1985) | ||||
Hong Kong | Present | Native | Original citation: van der Maesen (1985) | ||||
India | Present | Introduced | |||||
-Arunachal Pradesh | Present | Introduced | |||||
-Delhi | Present | Introduced | |||||
-Gujarat | Present | Introduced | |||||
-Karnataka | Present | Introduced | |||||
-Maharashtra | Present | Introduced | |||||
-Manipur | Present | Introduced | |||||
-Meghalaya | Present | Introduced | |||||
-Nagaland | Present | Introduced | |||||
-Sikkim | Present | Introduced | |||||
-West Bengal | Present | Introduced | |||||
Indonesia | Present | ||||||
-Irian Jaya | Present | Original citation: Verdcourt (1979) | |||||
-Java | Present | Original citation: van der Maesen (1985) | |||||
Japan | Present | ||||||
-Hokkaido | Present | Native | Original citation: van der Maesen (1985) | ||||
-Honshu | Present | Native | Original citation: van der Maesen (1985) | ||||
-Kyushu | Present | Native | Original citation: van der Maesen (1985) | ||||
-Ryukyu Islands | Present | Native | Original citation: van der Maesen (1985) | ||||
Laos | Present | Native | |||||
Malaysia | Present | ||||||
-Peninsular Malaysia | Present | Native | Original citation: van der Maesen (1985) | ||||
-Sarawak | Present | Native | Original citation: van der Maesen (1985) | ||||
North Korea | Present | Native | |||||
Pakistan | Present | Native | |||||
Philippines | Present | Native | |||||
South Korea | Present | Native | |||||
Taiwan | Present | Native | Original citation: van der Maesen (1985) | ||||
Thailand | Present | Native | |||||
Vietnam | Present | Native | |||||
Europe |
|||||||
Italy | Present, Few occurrences | ||||||
Portugal | |||||||
-Azores | Present | Introduced | 1999 | As: Pueraria lobata | |||
Russia | Present | Present based on regional distribution. | |||||
-Russian Far East | Present | Native | |||||
Slovenia | Present, Few occurrences | ||||||
Switzerland | Present, Few occurrences | Introduced | |||||
North America |
|||||||
Bermuda | Present | Introduced | |||||
Dominican Republic | Present | Introduced | |||||
Jamaica | Present | Introduced | |||||
Mexico | Present | Introduced | Invasive | ||||
Panama | Present | Introduced | |||||
United States | Present, Localized | ||||||
-Alabama | Present, Widespread | Introduced | Invasive | ||||
-Arkansas | Present, Widespread | Introduced | Invasive | ||||
-Connecticut | Present | Introduced | |||||
-Delaware | Present | Introduced | |||||
-District of Columbia | Present | Introduced | |||||
-Florida | Present, Widespread | Introduced | Invasive | Original citation: van der Maesen (1985) | |||
-Georgia | Present, Widespread | Introduced | Invasive | ||||
-Hawaii | Present | Introduced | |||||
-Illinois | Present | Introduced | Invasive | Original citation: van der Maesen (1985) | |||
-Indiana | Present | Introduced | |||||
-Kansas | Present | Introduced | Invasive | ||||
-Kentucky | Present | Introduced | Invasive | ||||
-Louisiana | Present, Widespread | Introduced | Invasive | ||||
-Maryland | Present | Introduced | |||||
-Massachusetts | Present | Introduced | |||||
-Mississippi | Present, Widespread | Introduced | Invasive | ||||
-Missouri | Present | Introduced | Invasive | Original citation: van der Maesen (1985) | |||
-Nebraska | Present | ||||||
-New Jersey | Present | Introduced | |||||
-New York | Present | Introduced | |||||
-North Carolina | Present | Introduced | Invasive | Original citation: van der Maesen (1985) | |||
-Ohio | Present | Introduced | Invasive | ||||
-Oklahoma | Present, Localized | ||||||
-Oregon | Present | Introduced | |||||
-Pennsylvania | Present | Introduced | Original citation: van der Maesen (1985) | ||||
-South Carolina | Present | Introduced | Invasive | Original citation: van der Maesen (1985) | |||
-Tennessee | Present, Widespread | Introduced | Invasive | Original citation: van der Maesen (1985) | |||
-Texas | Present, Widespread | Introduced | Invasive | Original citation: van der Maesen (1985) | |||
-Virginia | Present, Widespread | Introduced | Invasive | Original citation: van der Maesen (1985) | |||
-Washington | Present | Introduced | Invasive | ||||
-West Virginia | Present | Introduced | Invasive | ||||
Oceania |
|||||||
American Samoa | Present | ||||||
Australia | Present | Introduced | 1912 | As: Pueraria lobata | |||
-New South Wales | Present | Introduced | Original citation: Hnatiuk (1990) | ||||
-Northern Territory | Present | Introduced | |||||
-Queensland | Present | Introduced | Original citation: van der Maesen (1985) | ||||
-Victoria | Present | ||||||
Federated States of Micronesia | Present | Introduced | |||||
Fiji | Present | Introduced | |||||
French Polynesia | Present | Introduced | Invasive | ||||
New Caledonia | Present | Introduced | |||||
New Zealand | Present | ||||||
Niue | Present | Introduced | |||||
Norfolk Island | Present | Introduced | Invasive | ||||
Palau | Present | Native | |||||
Papua New Guinea | Present | Introduced | |||||
Samoa | Present | Introduced | Original citation: van der Maesen (1985) | ||||
Solomon Islands | Present | Introduced | |||||
Tonga | Present | Introduced | |||||
Vanuatu | Present | Introduced | |||||
Wallis and Futuna | Present | ||||||
South America |
|||||||
Brazil | Present | Introduced | |||||
Paraguay | Present | Introduced |
History of Introduction and Spread
Top of page
Van der Maesen (1985) suggests that kudzu was introduced to Papua New Guinea, New Caledonia and surrounding areas from the Orient in ancient times and that it was an important food source before yams, taro and sweet potatoes became dominant. However, in the distribution list, a broader native range of P. montana, based on ILDIS (2007), is accepted in this datasheet. Introduction of kudzu to the USA is much more recent, and can be traced to the Japanese Pavilion of the Philadelphia Centennial Exposition of 1876 where it was distributed as an ornamental vine, and then again at the New Orleans Exposition in 1883 (Shurtleff and Aoyagi, 1977). In the early 1900s, kudzu began to be used as a fodder crop. It was promoted and distributed by Mr CE Pleas, a Florida farmer, who noticed that it was both easy to grow and that many farm animals would eat it (Shurtleff and Aoyagi, 1977). Due to its incredible growth rate (up to 18 m per growing season) and the ability to produce new roots where nodes come into contact with the ground, it was selected for erosion control in the 1930s and 1940s. It was actively promoted and planted throughout south-eastern USA by the Agricultural Stabilization and Conservation Service in conjunction with the Soil Conservation Service and the Civilian Conservation Corps (Tabor and Susott, 1941; Stevens, 1976). During this period the Soil Erosion Service paid farmers up to US $8 per acre ($20 per hectare) to plant more than 1.2 million acres (3 million hectares) of kudzu to stabilize southern soils (Miller and Edwards, 1983; Britton et al., 2002). Unchecked by natural enemies, it was developing into a weedy pest by the 1950s. Unsuccessful attempts to eliminate it from land to be used for grazing prompted its removal in 1953 from the list of permissible cover plants under the Agricultural Conservation Program (Miller and Edwards, 1983). Eventually, the US Congress listed it as a Federal Noxious Weed in 1998 (Britton et al., 2002).
Currently, kudzu is a serious pest in south-eastern USA, extending as far north as New York, New Jersey, New England, Massachusetts, Pennsylvania and Illinois, and as far west as Texas, Oklahoma and Nebraska (McKee and Stephens, 1943; Shurtleff and Aoyagi, 1977; Snyder, 1987; Sorrie and Perkins, 1988; Frankel, 1989; Mitich, 2000). In Florida it has begun to invade the everglades (Virginia Native Plant Society, 1999) and small outbreaks have been reported in Oregon (Colquhoun, 2000).
Risk of Introduction
Top of pageHabitat
Top of pageKudzu is an opportunistic climbing vine that grows in numerous habitats including woods, plantation forests, along rivers and roads, on the borders of fields, in abandoned fields, on embankments and along fencerows. It is often seen draped over trees that it has killed, on telephone poles and wires, and on abandoned vehicles and buildings (USDA, 1976). Although kudzu grows well on many soil types including nutrient-poor, sandy and high clay soils, it is most suited to well-drained loamy soils. It does not favour very wet soils, perhaps explaining its absence from the Mississippi Delta, USA, nor soils with high pH (Mitich, 2000). In the USA, kudzu has a wide geographic and climatic range but grows best in areas with at least 1000 mm annual rainfall, mild winters (5-15°C) and hot summers (above 25°C). In China, kudzu is found on road embankments and in mountainous regions where cultivation of crops was not possible.
Habitat List
Top of pageCategory | Sub-Category | Habitat | Presence | Status |
---|---|---|---|---|
Terrestrial | ||||
Terrestrial | Managed | Cultivated / agricultural land | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed forests, plantations and orchards | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Managed grasslands (grazing systems) | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Disturbed areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Disturbed areas | Present, no further details | Natural |
Terrestrial | Managed | Rail / roadsides | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Urban / peri-urban areas | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Managed | Buildings | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural forests | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Natural forests | Present, no further details | Natural |
Terrestrial | Natural / Semi-natural | Natural grasslands | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Riverbanks | Present, no further details | Harmful (pest or invasive) |
Terrestrial | Natural / Semi-natural | Riverbanks | Present, no further details | Natural |
Freshwater |
Hosts/Species Affected
Top of pageKudzu kills plants by smothering, growing over them and blocking out all available light thus preventing photosynthesis. Kudzu kills all plants that it overgrows and is a significant pest in southern USA pine plantations.
Host Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Pinus sp. (pine) | Pinaceae | Main |
Biology and Ecology
Top of pageGenetics
Heider et al. (2007) found a high level of genetic variation between provenances of P. montana var. lobata in molecular RAPDs studies. An alloenzyme-based population genetics study of US populations showed unexpectedly high heterozygosity. This suggests that populations are the result of multiple introductions and that sexual reproduction probably occurs within populations (Pappert et al., 2000). Some populations with relatively few genotypes displayed an excess of heterozygotes suggesting selection for heterozygosity. A subsequent study showed that highly heterozygous individuals accumulated more biomass and leaf area than less heterozygous individuals (Pappert, 1998).
Physiology and Phenology
The dominant feature of kudzu is its ability to climb over other vegetation including trees. This allows it to maximize light capture for itself while shading its competitors. Kudzu's phenomenal growth is achieved by allocating more biomass to photosynthetic rather than structural tissues (Wechsler, 1974), and using diurnal leaf movements to modulate leaf temperatures, optimizing photosynthesis and reducing water loss (Forseth and Teramura, 1986; 1987). Although kudzu can be found underneath the canopy, it prefers open areas or edges where its photosynthetic rate is highest. Kudzu's climbing mechanism, twining, is adaptive for high light saturation conditions (Carter and Teramura, 1988a,b). When grown under increasing levels of carbon dioxide, kudzu produces more leaf biomass, has longer stems, more branches and the leaves expand sooner, suggesting that it will become even more dominant with increased atmospheric carbon dioxide (Sasek and Strain, 1988,1989).
Reproductive Biology
Most of the spread of kudzu in the USA is due to vegetative growth because seed production is poor. In fact, when kudzu was being planted for erosion control in 1935 it was necessary to import seed (160 kg) from Japan to satisfy the demand for seedlings (Tabor and Susott, 1941). Seed production is poor because flowers are limited to the vertically growing kudzu stems. When pods are formed, the seeds are often killed by native Hemiptera and, less commonly, by a naturalized Asian bruchid seed weevil, Borowiecius ademptus (Thornton, 2001).
In the USA, pollination appears to be adequate by native and naturalized Hymenoptera (Thornton, 2001). In Japan and China, a megachilid bee (Megachile sculpturalis) has been observed pollinating kudzu (Batra, 1998), which is now naturalized in the USA (Mangum and Brooks, 1997). In the 1930s, when seedlings were unavailable, farmers sold seed crowns, that formed wherever kudzu stem nodes contacted the soil, for US $5-7 per thousand (approximately $220 per hectare) (Tabor and Susott, 1941). Takahashi and Kikuchi (1986) noticed that kudzu was one of several species that repopulated Nanakita Hill (Honshu, Japan) after a forest fire. They showed that kudzu seeds germinated at a significantly higher rate than controls if they were soaked in hot water (90°C or 70°C) for 30 seconds.
Associations
Like many legumes, kudzu has a symbiotic relationship with nitrogen fixing bacteria. Erdman (1967) estimated that kudzu fixed 88 kg of nitrogen per hectare, a little less than half that fixed by lucerne (186 kg) and about twice the amount fixed by soyabeans (51 kg), groundnuts (42 kg) or Phaseolus vulgaris beans (40 kg). Nitrogen-fixing bacteria are functionally divided into seven groups. Kudzu is in the cowpea group with groundnuts, velvetbeans (Mucuna pruriens), lima beans (Phaseolus lunatus) and others (Erdman, 1967). Isolates from kudzu root nodules grown on YMA (Yeast Mannitol Agar), do not absorb Congo red and are Gram negative, all attributes consistent with Rhizobium spp. (AD Searle, Wake Forest University, North Carolina, USA, personal communication, 2002).
Climate
Top of pageClimate | Status | Description | Remark |
---|---|---|---|
C - Temperate/Mesothermal climate | Preferred | Average temp. of coldest month > 0°C and < 18°C, mean warmest month > 10°C | |
Cf - Warm temperate climate, wet all year | Preferred | Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year | |
Cs - Warm temperate climate with dry summer | Preferred | Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers | |
Cw - Warm temperate climate with dry winter | Preferred | Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters) |
Rainfall
Top of pageParameter | Lower limit | Upper limit | Description |
---|---|---|---|
Mean annual rainfall | 0 | 0 | mm; lower/upper limits |
Soil Tolerances
Top of pageSoil drainage
- free
Soil reaction
- acid
- neutral
Soil texture
- heavy
- light
- medium
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Myrothecium verrucaria | Pathogen | USA (Louisiana) | ||||
Pseudomonas savastanoi pv. phaseolicola | Pathogen | Alabama |
Notes on Natural Enemies
Top of page
Approximately 25 species of insect have been observed feeding on kudzu (Pemberton, 1988; Britton et al., 2002; and unpublished data from J DeLoach, ARS Grassland, Soil and Water Laboratory, Temple, Texas, USA; G Markin, USDA Forest Service, Bozeman Forestry Sciences, Montana, USA; NM Schiff, USDA Forest Service, Center for Bottomland Hardwoods Research, Stoneville, Mississippi, USA). Of these, seven species are not specific to kudzu (Deporaus sp., Alcidodes trifidus, Sagra femorata, Aristobia hispida, Paraleprodera diopthalma, Anomala corpulenta andEpicauta chinensis); the others are still under investigation and include sawflies, leaf beetles, weevils, longhorned beetles (Cerambycidae), scarab beetles (Scarabeidae) and flat headed borers (Buprestidae) (Britton et al., 2002). There are several reports of arthropods that can live on kudzu but are not considered potential control agents, including the soyabean looper Pseudoplusia includens [Chrysodeixis includens] (Kidd and Orr, 2001), the silver-spotted skipper Epargyreus clarus in the USA (Lind et al., 2001) and the velvetbean caterpillar Anticarsia gemmatalis (Fescemyer and Erlandson, 2003). In Japan, at least three Hemiptera, a parasitoid wasp and two mites develop on or are associated with kudzu (Takasu and Hirose, 1986;Tayutivutikul and Yano, 1989,1990; Shimoda et al., 1997).
In the USA, seeds are eaten by native Hemiptera and a naturalized Asian bruchid seed weevil, Borowiecius ademptus (Thornton, 2001).
Six fungal pathogens have been isolated from kudzu in Anhui Province, China, and may have potential for use as biological control agents for kudzu in the USA (Jiang et al., 2000). A common disease called 'imitation rust' is caused by the fungus Synchytrium puerariae. This pathogen can infect all plant tissues including leaves, stems, flowers and seedpods. Other pathogens included Pseudocercospora puerariicola, the cause of angular leafspot, Cercospora puerario-thomsona, the cause of brown spot, and Phomopsis sp., Colletotrichum lindemuthianum and Colletotrichum sp., causal agents of anthracnose. Virus disease such as leaf mottling and mosaic disease were also found in some parts of China (Jiang et al., 2000).
Soyabean rust (Phakopsora pachyrhizi) is common on kudzu in areas close to soyabean fields in Brazil and Paraguay (Poolpol and Pupipat, 1985; Morel, 2003). A Phytophthora species was isolated from infected root and foliar parts of kudzu in the Korea Republic (YW Lee, Department of Agricultural Biology and Research Center for New Biomaterials in Agriculture, College of Agriculture and Life Sciences, Seoul National University, Suwon, Korea Republic, personal communication, 2003).
Means of Movement and Dispersal
Top of pageDispersal of kudzu is primarily by man. Kudzu was introduced to the USA as an ornamental, then encouraged for livestock fodder, and finally actively planted for erosion control throughout the south-east. It is possible that it can be dispersed as seeds either via animals or by moving contaminated soil but these effects would be swamped by the earlier human aided dispersal. Kudzu has also been introduced to Central and South America but it was not as widely planted as in the USA and has not attained pest status.
Pathway Causes
Top of pageCause | Notes | Long Distance | Local | References |
---|---|---|---|---|
Animal production | As a fodder crop | Yes | Yes | Shurtleff and Aoyagi (1977) |
Habitat restoration and improvement | Yes | Yes | Stevens (1976) | |
Landscape improvement | Yes | Yes | Shurtleff and Aoyagi (1977) | |
Ornamental purposes | Yes | Yes | Shurtleff and Aoyagi (1977) |
Pathway Vectors
Top of pageVector | Notes | Long Distance | Local | References |
---|---|---|---|---|
Yes | ||||
Soil, sand and gravel | Yes |
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Bulbs/Tubers/Corms/Rhizomes |
Impact Summary
Top of pageCategory | Impact |
---|---|
Crop production | Negative |
Cultural/amenity | Negative |
Economic/livelihood | Negative |
Environment (generally) | Positive and negative |
Forestry production | Negative |
Livestock production | Positive |
Native flora | Negative |
Economic Impact
Top of pageIt is difficult to measure the economic impact of kudzu because of its non-direct effect of taking land out of production. Recent estimates of the kudzu infestation in south-eastern USA range from 809,000 to 3.2 million hectares (Everest et al., 1991; Corley et al., 1997). At 2002 prices a 25-year-old pine plantation in the southern USA is worth approximately US $1430 per hectare, and whereas costs of eliminating kudzu vary, they are not cost effective in forestry plantations (Britton et al., 2002).
Environmental Impact
Top of pageKudzu is typically a pest of disturbed habitats but when it does encroach on natural areas it kills trees and plants by growing over them. Kudzu is associated with nitrogen-fixing bacteria (Erdman, 1967) and improves the soil (Robertson, 1997) but once land is infested with kudzu nothing else can grow there without costly kudzu removal (Britton et al., 2002). Sharkey and Loreto (1993) studied isoprene emission in kudzu because the large acreage made it a source comparable to tree species. Isoprene contributes to the blue haze over some forests (Went, 1960) and its breakdown in the presence of nitrous oxide leads to ozone formation (Trainer et al., 1987). Sharkey and Loreto (1993) found that kudzu isoprene emission was more variable than that of oak or aspen and suggested it might complicate construction of isoprene emission inventories. They speculated that isoprene emission was adaptive for kudzu, even though it led to ozone formation, because it might help plants cope with stressful conditions.
Impact: Biodiversity
Top of pageThreatened Species
Top of pageThreatened Species | Conservation Status | Where Threatened | Mechanism | References | Notes |
---|---|---|---|---|---|
Platanthera integrilabia (white fringeless orchid) | NT (IUCN red list: Near threatened); USA ESA listing as threatened species | Alabama; Georgia; Kentucky; South Carolina; Tennessee; Virginia | Competition - monopolizing resources | US Fish and Wildlife Service (2013) | |
Sarracenia oreophila (green pitcherplant) | CR (IUCN red list: Critically endangered); USA ESA listing as endangered species | Alabama; Georgia; North Carolina | Competition (unspecified) | Schnell et al. (2000) | |
Sisyrinchium dichotomum (white irisette) | USA ESA listing as endangered species | North Carolina; South Carolina | Competition - monopolizing resources | US Fish and Wildlife Service (1995) |
Risk and Impact Factors
Top of page- Proved invasive outside its native range
- Has a broad native range
- Is a habitat generalist
- Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
- Pioneering in disturbed areas
- Long lived
- Fast growing
- Reproduces asexually
- Damaged ecosystem services
- Ecosystem change/ habitat alteration
- Infrastructure damage
- Modification of fire regime
- Modification of hydrology
- Modification of nutrient regime
- Modification of successional patterns
- Monoculture formation
- Negatively impacts agriculture
- Negatively impacts forestry
- Negatively impacts livelihoods
- Reduced amenity values
- Reduced native biodiversity
- Threat to/ loss of endangered species
- Threat to/ loss of native species
- Competition - monopolizing resources
- Competition - shading
- Competition - smothering
- Competition - strangling
- Competition (unspecified)
- Rapid growth
- Highly likely to be transported internationally deliberately
- Difficult/costly to control
Uses
Top of pageIn its native range in China and Japan, it is prized for its starch as a human food from the tubers and, as recently as 1977, Japanese production was approximately 338 tonnes annually (van der Maesen, 1985). However, the roots are laborious to collect and extract and a small starch factory in Anhui Province, China, failed in 1997 after only a few years' production although it is common in family gardens in many parts of China. Kudzu leaves, shoots and flowers can also be steamed or pickled and eaten as a vegetable (van der Maesen, 1985). Various parts of the plant are used as medicines and for the treatment of alcohol hangovers in China and Japan (Miller and Edwards, 1983; van der Maesen, 1985), and the tubers (or ‘radix’) are a common ingredient in Chinese herbal remedies.
As an exotic, kudzu was first introduced to the USA in 1876 as an ornamental plant for gardens (Shurtleff and Aoyagi, 1977). Later, kudzu was promoted as nutritious forage for livestock (Sturkie and Grimes, 1939; Dalal and Patnaik, 1963; Corley et al., 1997) but the yield is only 4-6 tonnes per hectare per year and it is difficult to cut and bale (Everest et al., 1991). In the 1930s and 1940s kudzu was actively planted as erosion control until it was recognized as a weed in the 1950s (Britton et al., 2002). However, when removed, soil nitrogen is higher than in uninvaded areas showing its ability as a green manure.
Uses List
Top of pageAnimal feed, fodder, forage
- Fodder/animal feed
- Forage
Environmental
- Amenity
- Erosion control or dune stabilization
- Revegetation
- Soil conservation
- Soil improvement
Fuels
- Fuelwood
Human food and beverage
- Flour/starch
- Vegetable
Materials
- Green manure
- Wood/timber
Medicinal, pharmaceutical
- Source of medicine/pharmaceutical
- Traditional/folklore
Detection and Inspection
Top of pageKudzu is widely established in eastern USA. It can be dispersed as seeds in soil or as an ornamental plant through mail order. A few small infestations have been eradicated in Oregon (Colquhoun, 2000) and kudzu is a quarantine-restricted plant for that state (USDA-NRCS, 2007). It has recently been recommended for phytosanitary measures in Europe as an A2 pest (EPPO, 2007), as small infestations have been noted from garden escapes in Switzerland. Also, there are concerns about potential future invasion in countries where it has been introduced but has not yet naturalised.
Similarities to Other Species/Conditions
Top of pageKudzu is quite distinctive in the field in the USA. To separate kudzu from other species of Pueraria see van der Maesen (1985).
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Control
The combination of extremely fast growth, ability to grow over other plants, root formation where nodes contact the ground, large storage tubers and few natural enemies in the USA makes kudzu a challenge to control. Treatment coverage is probably the most difficult problem. Due to the extreme growth rate, every root crown in the area must be killed or repopulation will occur (Miller and Edwards, 1983). Various cultural and chemical control methods have been attempted and, with intensive effort, it is possible to protect a limited area, however, the vast reservoir of kudzu on the edges of forests and marginal lands, where access is limited, makes it unlikely that kudzu will be permanently controlled by any means other than classical biological control.
Cultural control
Persistent application of cultural methods can be effective in certain situations. Monthly close mowing for two growing seasons effectively starving the roots, can be successful in flat open areas (Ball et al., 1979). Equally, heavy grazing by cows, pigs, horses or goats (Rhoden et al., 1991) can remove kudzu but there are associated problems: animals cannot eat vines growing over trees or in steep areas; they must be penned on the kudzu; watering holes must be provided; and there must be enough livestock to ensure 80% of the kudzu is continuously consumed (Ball et al., 1979; Miller and Edwards, 1983). Although kudzu is nutritious for livestock (Sturkie and Grimes, 1939; Dalal and Patnaik 1963; Corley et al., 1997), cattle do not favour it when it is trampled and horses need to become adapted to it (Hintz, 1993).
Combinations of cultural methods can be effective. The St Regis Paper Co. converted land in Stewart County, Georgia, USA which was partially overrun with kudzu, to a pine plantation in 1967 by burning the kudzu after it was killed by autumn frost, removing merchantable timber and knocking down unmarketable trees so kudzu couldn't grow over them, and then running cattle for 2 years until no kudzu remained on the flat areas. The kudzu that was growing in gullies where the cows could not reach it was chemically treated and loblolly pine (Pinus taeda) seedlings were planted in pasture areas. Yield from areas formerly covered by kudzu exceeded yield from adjacent areas that had no kudzu and soil samples from both areas showed that the kudzu soil was richer in organic matter and had higher levels of all elements tested except phosphorus (Robertson, 1997).
Mechanical control
Frequent close cutting will eventually exhaust the plants stored reserves leading to plant death (PIER, 2007).
Chemical control
Effective chemical control of kudzu is possible but it may require repeated application of herbicides over a period of 4-10 years (Nelson, 1997). Many herbicides have been tested against kudzu (Davis and Funderburk, 1964; Martin and Miller, 1981; Michael, 1982;Miller, 1982,1985,1986,1988; Miller and Edwards, 1983; Miller and True, 1986;Smith, 1988,1990; Kay and Hoyle, 1997). Selection of an appropriate treatment depends on several factors including age and vigour of the kudzu, roughness of the terrain, proximity to streams or ponds and the value of other crops or trees present on the site. As with cultural control, kudzu will return if even a single root crown is left untreated, though several procedures can improve the effectiveness of herbicide treatment. Prescribed burning early in the spring will kill small kudzu plants and sever stems draped over trees. It will also reveal application hazards, which can then be marked, and expose root crowns. The size of root crowns indicates the age of the kudzu patch. Typically, patches more than 10 years old require twice as much herbicide as younger patches (Miller, 1991). If possible, trees should be logged prior to treatment and draping stems should be severed. The recommended application technique includes outlining the area to be treated followed by back and forth overlapping swaths and then cross-wise spray swaths perpendicular to the initial swaths, and near streams, application should follow the stream shape using double overlapping swaths (Miller, 1991).
Biological control
Biological control is an important element of an integrated kudzu management system, and many pathogens have been isolated from kudzu and include microorganisms native and non-native to the USA. Those native to the USA include Pseudomonas syringae pv. phaseolicola [P. savastanoi pv. phaseolicola] which causes halo blight of legume plants such as beans and kudzu. The symptoms are described as small necrotic leaf spots surrounded by bright halos of chlorotic tissue. This pathogen was tested for its potential as a biological control agent of kudzu by Zidak and Backman (1996). They found it was capable of causing mortality on both young and old kudzu seedlings, however, secondary infections under dry conditions in the field were very limited.
Boyette et al. (2001,2002) tested the effectiveness of another US native fungus, Myrothecium verrucaria, as a biological control agent for kudzu. This fungus was isolated in 1997 from infected Senna obtusifolia, and showed dramatic potential for biological control of various weed species when formulated, even in the absence of environmental dew (Walker and Tilley, 1997). The USDA-ARS biological control team showed that M. verrucaria applied at a high spore rate of 2x108 conidia/ml caused greater than 90% mortality of both young and old kudzu seedlings. They also determined that the disease severity increased with an increase in temperature to 30-40°C, suggesting that this mycoherbicide could be very active in the summer in the southern USA. The virulence of M. verrucaria against kudzu was increased in formulation with an organosilicon surfactant to cause 100% mortality of kudzu in the greenhouse and in the field 2 weeks after spraying at a rate of 2x107. As fungal activity requires the surfactant, the risk of the fungus spreading beyond the sprayed field is minimal. Eight to ten toxic macrocyclic trichothecenes (Abbas et al., 2001,2002) were found in extracts of M. verrucaria, the specific number depending on the type of tissue used, growing conditions and type of growth medium (Abbas et al., 2001). In all cases at least two very potent toxins were produced, however, none of the mycotoxins were detected in target plant tissues (kudzu, Senna obtusifolia or soyabean) after spraying with M. verrucaria. The combination of surfactant-limited activity, high efficacy and lack of residual toxins add to the appeal of M. verrucaria as a potential biological central agent for kudzu. However, concerns about the toxicity of the macrocyclic trichothecenes to humans and livestock (Jarvis et al., 1985) and the high mammalian toxicity as noted by Abbas et al. (2002) indicate that extreme care should be exercised when handling mycelium, spores or any other type of formulation for field application. Further investigations may discover other strains and/or techniques for producing fungus inoculum free from potent toxins.
Some isolates of Colletotrichum gloeosporioides [Glomerella cingulata] are well established as biocontrol agents of various weeds including the mycoherbicide 'Collego' (Smith, 1986). A specific isolate of this fungus was obtained from kudzu in Houston County, Georgia, USA, and its virulence was increased by several selections for growth on a Czapek Dox medium amended with kudzu extract. This isolate showed dramatic effects on both leaves and vines and produced conidia in a pycnidium which could be used for secondary infection (Farris and Reilly, 2000). In the USA, several fungi, including Alternaria and Fusarium species, are being developed as potential biocontrol agents against a variety of weeds and have been tested against kudzu. In greenhouse and field experiments, kudzu seedling mortality has been achieved with preparations of A. helianthi, F. solani and F. polyphialidicum (Abbas et al., 1991; Abbas et al., 1995a,b,1996a,b; Abbas and Barrentine, 1995; Abbas and Boyette, 1996). Although an attempt was made to use the soyabean rust pathogen Phakopsora pachyrhizi for biological control of kudzu in the USA, there is a concern that it might affect soyabean crops (G Hartman, National Soybean Research Center, Urbana, Illinois, personal communication, 2003).
References
Top of pageAbbas HK, Duke SO, Shier WT, Badria FA, Ocamb OC, Woodward RP, Xie W, Mirocha CJ, 1996. Comparison of ceramide synthase inhibitors with other phytotoxins produced by Fusarium species. Journal of Natural Toxins, 6:163-181
Abbas HK, Tanaka T, Duke SO, 1995. Pathogenicity of Alternaria alternata and Fusarium moniliforme and phytotoxicity of AAL-toxin and fumonisin B1 on tomato cultivars. J. Phytopathology, 143:329-334
Ali SI, 1977. Papilion. In: Flora of West Pakistan, No. 100. Karachi, Pakistan: University of Karachi
Ball DM, Walker RH, Dickens R, 1979. Kudzu in Alabama - Uses and control. Forage Production Fact Sheet. Alabama Cooperative Extension Service, Auburn University, Auburn, Alabama Circ., ANR-65
Batra SWT, 1998. Biology of the giant resin bee, Megachile sculpturalis Smith, a conspicuous new immigrant in Maryland. The Maryland Naturalist, 42:1-3
Bentham G, 1867. Notes on Pueraria DC., correctly referred by the author to Phaseoleae. J. Linn. Soc. Lond. Bot. 9:121-125
Boyette CD, Abbas HK, Walker HL, 2001. Control of kudzu with a fungal pathogen derived from Myrothecium verrucaria. U.S. patent No. 6,274,534 B1, Aug. 14, 2001:1-6
Britton KO, Orr D, Sun J, 2002. Chapter 25, Kudzu. In: Van Driesche R, Blossey B, Hoddle M, Lyon S, Reardon R, eds. Biological control of invasive plants and weeds in the eastern United States. USDA Forest Service Publication FHTET-2002-04, 413 pp
Carter GA, Teramura AH, 1988. Vine photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany, 75:1011-1018
Colquhoun J, 2000. Another newcomer: Kudzu (Pueraria lobata) invades Oregon. Oregon State University Extension Service, Crop and Soil News/Notes 14:3
Corley RN, Woldeghebriel A, Murphy MR, 1997. Evaluation of the nutritive value of kudzu (Pueraria lobata) as a feed for ruminants. American Feed Science Technology, 68:183-188
Coulson JR, 2000. In: Coulson JR, Vail PV, Dix ME, Nordlund DA, Kauffman WC, eds. 100 years of biological control research and development in the United State Department of Agriculture: 1883-1993. Washington, DC, USA: USDA, ARS
Dalal SS, Patnaik N, 1963. Kudzu cultivation for soil conservation. Indian Forestry, 89:468-473
D'Arcy WG, 1987. Flora of Panama. St. Louis, USA: Missouri Botanical Garden
Davis DE, Funderburk HH Jr. , 1964. Eradication of kudzu. Weeds, 12:62-63
EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm
Erdman LW, 1967. Legume inoculation: What it is? What does it do? USDA Farmers' Bulletin, No. 2003
Everest JW, Miller JH, Ball DM, Patterson MG, 1991. Kudzu in Alabama: History, uses and control. Alabama Cooperative Extension Service, USA. http://www.aces.edu/department/ipm/kudzu.htm
Farris J, Reilly CC, 2000. The biological control of kudzu (Pueraria lobata). Proceedings of the American Association for the Advancement of Science, Washington DC, 116:AB2
Fescemyer HW, Erlandson CM, 2003. Influence of diet on the density-dependent phase polymorphism of velvetbean caterpillars (Lepidoptera: Noctuidae). Environmental Entomology, 22(5):933-941
Hepper FN, 1958. Papilionoideae. In: Keay RW, ed. Flora of West Tropical Africa. London, UK: Crown Agents
Hintz HF, 1993. Kudzu. Equine Practice, 15:5-6
Hnatiuk RJ, 1990. Census of Australian Vascular Plants. Australian Flora and Fauna Series Number 11. Canberra, Australia: Australian Government Publishing Service
Howard RA, Proctor GR, 1957. Vegn. Bauxitic Soils-Jamaica, II. J. Arnold Arbor, 38(2):151-169
Jarvis BB, Pavanasasivam G, Bean GA, 1985. Mycotoxin production from Myrothecium species, In: Lacey J, ed. Trichothecenes and Other Mycotoxins. New York, USA: John Wiley & Sons, 221-231
Jiang Z, Xi P, Sun J, Britton KO, 2000. Diseases of kudzu in China. Phytopathology, 90:S39
Kay SH, Hoyle ST, 1997. Comparison of herbicides for kudzu control. Southern Weed Science Society, 50:139
Liogier HA, 1985. La Flora de la Española, Vol. III. San Pedro de Macoris, Santa Domingo, Dominican Republic: Universidad Central del Este
Mangum WA, Brooks RW, 1997. First Records of Megachile (Callomegachile) sculpturalis Smith (Hymenoptera: Megachilidae) in the continental U.S. Journal of the Kansas Entomoloogical Society, 70:140-142
McKee R, Stephens JL, 1943. Kudzu as a farm crop. Washington DC. USDA Farmers' Bulletin 1923:13 pp
Michael JL, 1982. Some new possibilities to control kudzu. In: Proceedings of the Southern Weed Science Society, Atlanta, Georgia, January 19-21, 1982. Atlanta. Georgia, USA: Southern Weed Science Society, 237-240
Miller J, 1988. Kudzu eradication trials with new herbicides. Proceedings of the Southern Weed Science Society, 41:220-225
Miller JH, 1991. Control kudzu on your land. Forest Farmer, 51:7-11
Mitich LW, 2000. Kudzu [Pueraria lobata (Willd.) Ohwi]. Weed Technology, 14(1):231-235; 16 ref
Morel W, 2003. Soybean rust characteristics on kudzu. USDA APHIS PPQ, USA. http://www.aphis.usda.gov/ppq/ep/soybean_rust/detection4.html
Nelson LR, 1997. Kudzu eradication guidelines. Department of Forest Resources, Clemson University, South Carolina, USA. http://www.clemson.edu/extfor/publications/ec656/
Pappert RA, 1998. Population genetic variation and heterotic patterns of Pueraria lobata Ohwi (Kudzu). M.S. Thesis, University of Georgia, Athens, Georgia, USA
Pemberton RW, 1988. Northeast Asia as a source for biological control agents for North American weeds. In: Delfosse E, ed. Proceedings of the VII International Symposium on Biological Control of Weeds, Mar. 6-11, 1988. Rome, Italy: Instituto Sperimentale per la Patologia Vegetale, Ministero dell' Agricoltura e delle Foreste, 651-657
Rhoden EG, Woldeghebriel A, Small T, 1991. Kudzu as a feed for Angora goats. Tuskegee Horizons, 2:23
Robertson J, 1997. Return to the kudzu patch. Forest Landowner, Nov/Dec:32-34
Rosen A, 1982. Feasibility study: eradication of kudzu with herbicides and revegetation with native tree species in two National Parks. U.S. Dept. of the Interior, National Park Service, Southeast Region, Research/Resources Management Report, Ser-59:59 pp
Schnell D, Catling P, Folkerts G, Frost C, Gardner R, et al., 2000. IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2, www.iucnredlist.org
Schotman CYL, 1989. Plant pests of quarantine importance to the Caribbean. RLAC-PROVEG, No. 21:80 pp
Shurtleff W, Aoyagi A, 1977. The Book of Kudzu: A Culinary and Healing Guide. Brookline, Massachusetts, USA: Autumn Press
Smith AE, 1988. Evaluation of new herbicides for controlling kudzu. Proceedings of the Southern Weed Science Society, 41:260
Smith AE, 1990. Kudzu control in non-forested areas with herbicides. Georgia Agricultural Experiment Station Research Report, No. 591:7 pp
Snyder DB, 1987. Notes on some of New Jersey's USA adventive flora. Bartonia, 53:17-23
Sorrie BA, Perkins WD, 1988. Kudzu (Pueraria lobata) in New England. Rhodora, 90:341-343
Stevens L, 1976. King Kong Kudzu, menace to the South. Smithsonian Magazine, December:93-99
Sturkie DG, Grimes JC, 1939. Kudzu: its value and use in Alabama. Agricultural Experiment Station of the Alabama Polytechnic Institute Circular, 83:20 pp
Swiss Commission for Wild Plant Conservation, 2003. CPS/SKEW Grey List. Nyon Switzerland. http://www.cps-skew.ch/english/black_list.htm
Sykes W, 1970. Contributions to Flora of Niue. Lincoln, New Zealand: Manaaki Whenua Press
Tabor P, Susott AW, 1941. Zero to thirty million mile-a-minute seedlings. Soil Conservation, 7:61-65
Takahashi M, Kikuchi T, 1986. The heat effect on seed germination of some species in the initial stage of a post-fire vegetation. Ecological Review, 21:11-14
Tanaka T, Hatano K, Watanabe M, Abbas HK, 1996. Isolation of purification and identification of 2, 5-anhydro-D-glucitol as a phytotoxin from Fusarium solani. Journal of Natural Toxins, 5:317-329
Thornton MR, 2001. Arthropod fauna associated with kudzu (Pueraria lobata Willd.) in North Carolina. M.S. Thesis, North Carolina State University, Raleigh, North Carolina, USA
Trainer M, Williams EJ, Parrish DD, Buhr MP, Allwine EJ, Westberg HH, Fehsenfeld FC, Liu SC, 1987. Models and observations of the impact of natural hydrocarbons on rural ozone. Nature, 329:705-707
USDA, 1976. Selected weeds of the United States. Washington DC. USDA Agricultural Handbook, 366:463 pp
USDA-NRCS, 2002. The PLANTS Database, Version 3.5. National Plant Data Center, Baton Rouge, USA. http://plants.usda.gov
USDA-NRCS, 2012. The PLANTS Database. Baton Rouge, USA: National Plant Data Center. http://plants.usda.gov/
van der Maesen LGJ, 1985. Revision of the genus Pueraria DC with some notes on Teyleria Backer (Leguminosae). Agricultural University Wageningen Papers, 85-1:132 pp
van der Maesen LGJ, Almeida SM, 1988. Two corrections to the nomenclature in revision of Pueraria DC. Journal of the Bombay Natural History Society, 85:233-234
Verdcourt B, 1979. A Manual of New Guinea Legumes. Botany Bulletin 11. Lae, Papua New Guinea: Office of Forests, Division of Botany
Virginia Native Plant Society, 1999. Kudzu [Pueraria lobata (Willd.) Ohwi]. Richmond, Virginia, USA: Virginia Department of Conservation and Recreation, Division of Natural Heritage
Wechsler NR, 1974. Growth and Physiological characteristics of Kudzu, Pueraria lobata (Willd.) Ohwi, in relation to its competitive success. MA thesis. University of Georgia, Athens, Georgia, USA
Went FW, 1960. Blue hazes in the atmosphere. Nature, 187:641-643
Zidak NK, Backman PA, 1996. Biological control of Kudzu (Pueraria lobata) with the plant pathogen Pseudomonas syringae pv. phaseolica. Weed Science, 44:645-649
Distribution References
Ali SI, 1977. Papilion. In: Flora of West Pakistan, 100 Karachi, Pakistan: University of Karachi.
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI
CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Colquhoun J, 2000. Another newcomer: Kudzu (Pueraria lobata) invades Oregon. In: Oregon State University Extension Service, Crop and Soil News/Notes, 14 3.
D'Arcy WG, 1987. Flora of Panama., St. Louis, USA: Missouri Botanical Garden.
Hepper FN, 1958. (Papilionoideae). In: Flora of West Tropical Africa, [ed. by Keay RW]. London, UK: Crown Agents.
Howard RA, Proctor GR, 1957. (Vegn. Bauxitic Soils-Jamaica, II). In: J. Arnold Arbor, 38 (2) 151-169.
Liogier HA, 1985. (La Flora de la Española)., III San Pedro de Macoris, Santa Domingo, Dominican Republic: Universidad Central del Este.
McKee R, Stephens J L, 1943. Farmers' Bulletin, Washington DC, USA: USDA. 13 pp.
Morel W, 2003. Soybean rust characteristics on kudzu., USA: USDA APHIS PPQ. http://www.aphis.usda.gov/ppq/ep/soybean_rust/detection4.html
Schotman C Y L, 1989. Plant pests of quarantine importance to the Caribbean. In: RLAC-PROVEG, 80 pp.
Snyder DB, 1987. Notes on some of New Jersey's adventive flora. In: Bartonia, 53 17-23.
Sorrie BA, Perkins WD, 1988. Kudzu (Pueraria lobata) in New England. In: Rhodora, 90 341-343.
Swiss Commission for Wild Plant Conservation, 2003. CPS/SKEW Grey List., Nyon, Switzerland: http://www.cps-skew.ch/english/black_list.htm
Sykes W, 1970. Contributions to Flora of Niue., Lincoln, New Zealand: Manaaki Whenua Press.
USDA-NRCS, 2002. The PLANTS Database. Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov
USDA-NRCS, 2007. The PLANTS Database., Greensboro, North Carolina, USA: USA National Plant Data Team. https://plants.sc.egov.usda.gov
USDA-NRCS, 2012. The PLANTS Database. Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov
Links to Websites
Top of pageWebsite | URL | Comment |
---|---|---|
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway | https://doi.org/10.5061/dryad.m93f6 | Data source for updated system data added to species habitat list. |
Global register of Introduced and Invasive species (GRIIS) | http://griis.org/ | Data source for updated system data added to species habitat list. |
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/