Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Bactericera cockerelli
(tomato/potato psyllid)

Toolbox

Datasheet

Bactericera cockerelli (tomato/potato psyllid)

Summary

  • Last modified
  • 27 September 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Vector of Plant Pest
  • Preferred Scientific Name
  • Bactericera cockerelli
  • Preferred Common Name
  • tomato/potato psyllid
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • B. cockerelli is one of the most destructive potato pests in the western hemisphere. It was recognized in the early 1900s that B. cockerelli had the potential to be an invasive and harmful insect, part...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Bactericera cockerelli (tomato, potato psyllid); fully developed adult. B. cockerelli is one of the most destructive potato pests in the western hemisphere, being a vector of the Candidatus Liberibacter solanacearum bacterium (zebra chip).
TitleAdult
CaptionBactericera cockerelli (tomato, potato psyllid); fully developed adult. B. cockerelli is one of the most destructive potato pests in the western hemisphere, being a vector of the Candidatus Liberibacter solanacearum bacterium (zebra chip).
Copyright©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); fully developed adult. B. cockerelli is one of the most destructive potato pests in the western hemisphere, being a vector of the Candidatus Liberibacter solanacearum bacterium (zebra chip).
AdultBactericera cockerelli (tomato, potato psyllid); fully developed adult. B. cockerelli is one of the most destructive potato pests in the western hemisphere, being a vector of the Candidatus Liberibacter solanacearum bacterium (zebra chip).©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); newly emerged adults.
TitleNewly emerged adults
CaptionBactericera cockerelli (tomato, potato psyllid); newly emerged adults.
Copyright©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); newly emerged adults.
Newly emerged adultsBactericera cockerelli (tomato, potato psyllid); newly emerged adults.©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); 5th instar nymph on leaf surface. Note developing wing buds.
Title5th instar nymph
CaptionBactericera cockerelli (tomato, potato psyllid); 5th instar nymph on leaf surface. Note developing wing buds.
Copyright©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); 5th instar nymph on leaf surface. Note developing wing buds.
5th instar nymphBactericera cockerelli (tomato, potato psyllid); 5th instar nymph on leaf surface. Note developing wing buds.©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); 3rd and 4th instar nymphs on leaf surface.
Title3rd and 4th instar nymphs
CaptionBactericera cockerelli (tomato, potato psyllid); 3rd and 4th instar nymphs on leaf surface.
Copyright©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); 3rd and 4th instar nymphs on leaf surface.
3rd and 4th instar nymphsBactericera cockerelli (tomato, potato psyllid); 3rd and 4th instar nymphs on leaf surface.©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); fully developed adult, with eggs (yellow) and excrement (white) on leaf surface.
TitleAdult with eggs
CaptionBactericera cockerelli (tomato, potato psyllid); fully developed adult, with eggs (yellow) and excrement (white) on leaf surface.
Copyright©Joseph E. Munyaneza/USDA-ARS
Bactericera cockerelli (tomato, potato psyllid); fully developed adult, with eggs (yellow) and excrement (white) on leaf surface.
Adult with eggsBactericera cockerelli (tomato, potato psyllid); fully developed adult, with eggs (yellow) and excrement (white) on leaf surface.©Joseph E. Munyaneza/USDA-ARS

Identity

Top of page

Preferred Scientific Name

  • Bactericera cockerelli (Šulc) 1909

Preferred Common Name

  • tomato/potato psyllid

Other Scientific Names

  • Paratrioza cockerelli (Šulc) 1909
  • Trioza cockerelli (Šulc) 1909

International Common Names

  • English: potato, psyllid; tomato psyllid; tomato, psyllid
  • Spanish: pulgon saltador de la papa (mexico); pulgon saltador de la tomato (mexico)
  • French: psylle de la pomme de terre; psylle de la tomate

Local Common Names

  • Germany: Blattsauger, Amerikanischer Kartoffel-; Blattsauger, Tomaten-

EPPO code

  • PARZCO (Paratrioza cockerelli)

Summary of Invasiveness

Top of page

B. cockerelli is one of the most destructive potato pests in the western hemisphere. It was recognized in the early 1900s that B. cockerelli had the potential to be an invasive and harmful insect, particularly in western United States and Mexico (Šulc, 1909; Crawford, 1914; Compere, 1915; 1916; Essig, 1917). By the 1920s and 1930s, B. cockerelli had become a serious and destructive pest of potatoes in most of the southwestern United States, giving rise to the description of a new disease that became known as ‘psyllid yellows’ (Richards, 1928; 1931; 1933; Binkley, 1929; Richards and Blood, 1933; List and Daniels, 1934; Pletsch, 1947; Wallis, 1955).

In recent years, other solanaceous crops, including tomato, pepper, eggplant, tobacco and tamarillo in a number of geographic areas have suffered extensive economic losses associated with B. cockerelli outbreaks (Trumble, 2008, 2009; Munyaneza et al., 2007a,b; 2008; 2009a,b,c,d; Liefting et al., 2008; 2009; Secor et al., 2009; Espinoza, 2010; Munyaneza, 2010; Crosslin et al., 2010; Rehman et al., 2010; Crosslin et al., 2012a,b; Munyaneza, 2012).

Despite being a native of North America, B. cockerelli is also found in Central America and has recently invaded New Zealand, where it has caused extensive damage to indoor and outdoor solanaceous crops (Teulon et al., 2009; Thomas et al., 2011). B. cockerelli has recently been placed on the list of quarantine pest in EPPO region (EPPO, 2012).

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Hemiptera
  •                         Suborder: Sternorrhyncha
  •                             Unknown: Psylloidea
  •                                 Family: Triozidae
  •                                     Genus: Bactericera
  •                                         Species: Bactericera cockerelli

Notes on Taxonomy and Nomenclature

Top of page

A brief history on the taxonomy and nomenclature of Bactericera cockerelli was recently provided by Butler and Trumble (2012).

B. cockerelli was originally described as Trioza cockerelli by Šulc (1909). In 1910, Crawford erected a new psyllid genus Paratrioza (Crawford, 1910) and Trioza cockerelli was assigned to this genus in 1911 (Crawford, 1911). In 1997, when the genus Paratrioza was reviewed and synonymized with the genus Bactericera, B. cockerelli also changed families from Psyllidae, subfamily Triozinae, to Triozidae (Burckhardt and Lauterer, 1997; Hodkinson, 2009). The subfamily Triozinae was elevated to family status as Triozidae.

Morphological descriptions of B. cockerelli can be found in Crawford (1911, 1914), Essig (1917), Ferris (1925) and Tuthill (1945). Also, a list of the synonyms of B. cokerelli is provided by Tuthill (1945) and Burckhardt and Lauterer (1997). Furthermore, a revised classification of pysllids was recently provided by Burckhardt and Ouvrard (2012).

Description

Top of page

B. cockerelli adults are small, measuring about 2.5-2.75 mm long. The adults generally resemble tiny cicadas, largely because they hold their wings angled and roof-like over their body. B. cockerelli adults possess two pairs of clear wings; the front wings bear conspicuous veins and are considerably larger than the hind wings. The antennae are moderately long, extending almost half the length of the body. The overall body colour ranges from pale green at emergence to dark green or brown within 2-3 days, and eventually becomes grey or black thereafter. Prominent white or yellow lines are found on the head and thorax, and dorsal whitish bands are located on the first and terminal abdominal segments. These white markings are spot characteristics of the psyllid, particularly the broad, transverse white band on the first abdominal segment and the inverted ‘V’-shaped white mark on the last abdominal segment (Pletsch, 1947; Wallis, 1955), along with the raised white line around the circumference of the head. Adults are active in contrast to the largely sedentary nymphal stages. These insects are good fliers and readily jump when disturbed.

The pre-oviposition period is normally about 10 days, with oviposition lasting up to 50 days. Total adult longevity ranges from 20 to 60 days, and females usually live two to three times longer than males (Pletsch, 1947; Abernathy, 1991; Abdullah, 2008; Yang and Liu, 2009). Females lay 300 to 500 eggs over their lifetime (Knowlton and Janes, 1931; Pletsch, 1947; Abdullah, 2008; Yang and Liu, 2009).

The eggs of B. cockerelli are deposited singly, principally on the lower surface of leaves and usually near the leaf edge, but some eggs can be found throughout suitable host plants. Often, females will lay numerous eggs on a single leaf. The eggs are initially light yellow and become dark yellow or orange with time. The eggs measure about 0.32-0.34 mm long, 0.13-0.15 mm wide, and are mounted on a stalk of about 0.48-0.51 mm. Eggs hatch 3-7 days after oviposition (Pletsch, 1947; Wallis, 1955; Capinera, 2001; Abdullah, 2008). Because nymphs prefer sheltered and shaded locations, they are mostly found on the lower surfaces of leaves and usually remain sedentary during their entire development. Nymphs and adults produce large quantities of whitish excrement particles, which may adhere to foliage and fruit.

Nymphs are elliptical when viewed from above, but are very flattened in profile, appearing almost scale-like. Potato psyllid nymphs may be confused with the nymphs of whiteflies, although the former move when disturbed. There are five nymphal instars, with each instar possessing very similar morphological features besides size. The size of the developing wingpads increases with each instar. Nymphal body widths are variable, ranging from 0.23 to 1.60 mm, depending on different instars (Rowe and Knowlton, 1935; Pletsch, 1947; Wallis, 1955). Initially, the nymphs are orange, but they become yellowish-green and then green as they mature. The compound eyes are reddish and quite prominent. During the third instar, the wing pads, light in colour, are evident and become more pronounced with each subsequent molt. A short fringe of wax filaments is present along the lateral margins of the body. Total nymphal development time depends on temperature and host plant and has been reported to have a range of 12 to 24 days (Knowlton and Janes, 1931; Abdullah, 2008; Yang and Liu, 2009).

Distribution

Top of page

B. cockerelli is native to North America and occurs mainly in the Great Plains region of the United States, from Colorado, New Mexico, Arizona and Nevada, north to Utah. More recently, its range has expanded to include Wyoming, Idaho, Montana, California, Oregon, Washington, Alberta and Saskatchewan (Pletsch, 1947; Wallis, 1955; Cranshaw, 1993; Ferguson and Shipp, 2002; Ferguson et al., 2003). This insect pest is common in southern and western Texas and has also been documented in Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota and as far west as California and British Columbia. Contrary to reports in the older literature (Pletsch 1947; Wallis 1955; Cranshaw 1993, 2001), the potato psyllid does indeed occur in Washington and Oregon, where it appears to overwinter locally (Jensen, 2012) and usually colonizes potato fields in late June and early July (Munyaneza et al., 2009a; Munyaneza 2010; Crosslin et al., 2012a; Munyaneza, 2012). Murphy et al. (2013) reported B. cockerelli overwintering in the Pacific Northwest (north east Oregon, south east Washington state and southwestern Idaho).

Overwintering in areas north of the Texan or Mexican border is a recent development, as is psyllid infestation in southern Idaho and other northern parts of the current range. Before about 2004, potato psyllid was a migratory species, overwintering in northern Mexico and southern Texas and migrating into the Great Plains each summer. Texas, New Mexico, Arizona, Colorado and Nevada saw populations every year. Places farther north were colonized intermittently.

B. cockerelli also occurs in Mexico and Central America, including Guatemala and Honduras (Pletsch, 1947; Wallis, 1955; Rubio-Covarrubias et al., 2006; Trumble, 2008; 2009; Crosslin et al., 2010; Espinoza, 2010; Munyaneza, 2010; Rehman et al., 2010; Rubio-Covarrubias et al., 2011; Aguilar et al., 2013a; Angilar et al., 2013b; Munyaneza et al., 2013b; Munyaneza et al., 2014), and most recently was reported from Nicaragua (Munyaneza, 2012; Bextine et al., 2013b; Munyaneza et al., 2013a). B. cockerelli is also suspected to be present in neighbouring countries, including El Salvador (Bextine et al., 2012; Bextine et al., 2013a). There are no early records of B. cockerelli in Central America, and it is possible that Central America, as well as the northern portions of its current North American range, represents a newly-colonized area.

B. cockerelli is also widespread in New Zealand (Teulon et al., 2009).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

North America

CanadaRestricted distributionEPPO, 2014; CABI/EPPO, 2015
-AlbertaPresent, few occurrencesIntroduced Not invasive Pletsch, 1947; EPPO, 2014; CABI/EPPO, 2015
-British ColumbiaPresent, few occurrencesIntroduced Not invasive Pletsch, 1947; EPPO, 2014; CABI/EPPO, 2015
-ManitobaPresent, few occurrencesIntroduced Not invasive Henne et al., 2010a; CABI/EPPO, 2015
-OntarioPresent only under cover/indoorsIntroduced Not invasive Ferguson and Shipp, 2002; Ferguson et al., 2003; EPPO, 2014; CABI/EPPO, 2015
-QuebecPresent only under cover/indoorsIntroduced Not invasive Ferguson et al., 2003; EPPO, 2014; CABI/EPPO, 2015
-SaskatchewanPresent, few occurrencesIntroduced Not invasive Pletsch, 1947; EPPO, 2014; CABI/EPPO, 2015
MexicoPresentNative Invasive Tuthill, 1945; Trumble, 2008; Rubio-Covarrubias et al., 2011; EPPO, 2014; CABI/EPPO, 2015
USAPresentEPPO, 2014; CABI/EPPO, 2015
-ArizonaWidespreadNative Invasive Brown et al., 2010; EPPO, 2014; CABI/EPPO, 2015
-CaliforniaWidespreadNative Invasive Trumble, 2008; EPPO, 2014; CABI/EPPO, 2015
-ColoradoWidespreadNative Invasive Cranshaw, 1993; EPPO, 2014; CABI/EPPO, 2015
-IdahoWidespreadNative Invasive Crosslin et al., 2012b; EPPO, 2014; CABI/EPPO, 2015
-IowaPresentEPPO, 2014; CABI/EPPO, 2015
-KansasWidespreadNative Invasive Goolsby et al., 2012; EPPO, 2014; CABI/EPPO, 2015
-MinnesotaPresent, few occurrencesNativeHenne et al., 2012; EPPO, 2014; CABI/EPPO, 2015
-MontanaWidespreadNativePletsch, 1947; EPPO, 2014; CABI/EPPO, 2015
-NebraskaWidespreadNative Invasive Goolsby et al., 2012; EPPO, 2014; CABI/EPPO, 2015
-NevadaWidespreadNative Invasive Munyaneza et al., 2007a; EPPO, 2014; CABI/EPPO, 2015
-New MexicoWidespreadNative Invasive Henne et al., 2012; EPPO, 2014; CABI/EPPO, 2015
-North DakotaPresent, few occurrencesNativeHenne et al., 2012; EPPO, 2014; CABI/EPPO, 2015
-OklahomaPresent, few occurrencesNativePletsch, 1947; EPPO, 2014; CABI/EPPO, 2015
-OregonWidespreadNative Invasive Crosslin et al., 2012a; EPPO, 2014; CABI/EPPO, 2015
-South DakotaPresent, few occurrencesNativePletsch, 1947; EPPO, 2014; CABI/EPPO, 2015
-TexasWidespreadNative Invasive Munyaneza et al., 2007a; EPPO, 2014; CABI/EPPO, 2015
-UtahWidespreadNative Invasive Pletsch, 1947; EPPO, 2014; CABI/EPPO, 2015
-WashingtonWidespreadNative Invasive Munyaneza et al., 2009a; EPPO, 2014; CABI/EPPO, 2015
-WisconsinPresent, few occurrencesIntroducedHenne et al., 2012; CABI/EPPO, 2015
-WyomingWidespreadNative Invasive Wallis, 1955; EPPO, 2014; CABI/EPPO, 2015

Central America and Caribbean

El SalvadorPresentNativeBextine et al., 2012; Bextine et al., 2013; EPPO, 2014; CABI/EPPO, 2015
GuatemalaWidespreadNative Invasive Munyaneza, 2012; EPPO, 2014; CABI/EPPO, 2015
HondurasWidespreadNative Invasive Espinoza, 2010; Aguilar et al., 2013; Aguilar et al., 2013; Munyaneza et al., 2013; EPPO, 2014; Munyaneza et al., 2014; CABI/EPPO, 2015
NicaraguaWidespreadNative Invasive Munyaneza, 2012; Bextine et al., 2013; Munyaneza et al., 2013; EPPO, 2014; CABI/EPPO, 2015

Oceania

AustraliaPresent, few occurrencesIntroducedEPPO, 2017
-Western AustraliaPresent, few occurrencesIntroducedEPPO, 2017
New ZealandWidespreadIntroduced Invasive Gill, 2006; Teulon et al., 2009; Thomas et al., 2011; EPPO, 2014; CABI/EPPO, 2015
Norfolk IslandPresentCABI/EPPO, 2015

History of Introduction and Spread

Top of page

In North America, driven primarily by wind and hot temperatures in late spring, B. cockerelli annually migrates from its overwintering and breeding areas in southern and western Texas, southern New Mexico, Arizona, California, Idaho and northern Mexico (Pletsch, 1947; Wallis, 1955). The migration occurs especially through the midwestern states and Canadian provinces along the Rocky Mountains (Romney, 1939; Pletsch, 1947; Jensen, 1954; Wallis, 1955). In these regions, damaging outbreaks of potato psyllid in potatoes and tomatoes occurred at regular intervals beginning in the late1800s and extending into the 1940s (List, 1939; Wallis, 1946; Pletsch, 1947). In more recent years, psyllid outbreaks have also occurred in regions outside of the midwestern United States, including southern California, Baja California, Oregon, Washington, Idaho, and Central America (Trumble, 2008; 2009; Munyaneza et al., 2009a; Wen et al., 2009; Crosslin et al., 2010; Munyaneza, 2010; Espinoza, 2010; Butler and Trumble, 2012; Crosslin et al., 2012a,b; Munyaneza, 2012). Information about migration of B. cockerelli within Mexico and Central America is lacking. In the southwestern United States, potato psyllids reappear in overwintering areas between October and November, presumably dispersing southward from northern locations (Capinera, 2001); however, their origin has not been determined.

In countries and regions where there are no significant seasonal changes during the winter, temperature is relatively cool, and where suitable host plants are available (e.g. Mexico, Central America), the potato psyllid is able to reproduce and develop all year round (Espinoza, 2010; Rubio-Covarrubias et al., 2011).

B. cockerelli was accidentally introduced into New Zealand, apparently sometime in the early 2000s (Gill, 2006; Liefting et al., 2009; Teulon et al., 2009; Thomas et al., 2011), and is now established on both North and South Island where it causes extensive damage to potato, tomato, pepper and tamarillo crops (Teulon et al., 2009). It is not clear how B. cockerelli arrived in New Zealand; however, it has been suggested that the psyllid was introduced from the western United States, probably through smuggled primary host plant material (Thomas et al., 2011).

Introductions

Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
New Zealand USA 2000-2006 Smuggling (pathway cause) Yes Thomas et al. (2011) Smuggled primary host plants

Risk of Introduction

Top of page

B. cockerelli is a serious and economically important pest of potatoes, tomatoes and other solanaceous crops in the western United States, southern Canada, Mexico, Central America and New Zealand (Munyaneza, 2012). Suitable host plants are widespread in almost any part the world and, given its current distribution in the Americas and New Zealand, it is thought that B. cockerelli could establish and overwinter outdoors in areas with warm climate and mild winters. It could also establish under protected conditions in many regions.

If introduced into a new area, the migratory behavior of B. cockerelli, which favours quick and long distance dispersal, would put both the site of introduction and surrounding regions at risk.

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedCultivated / agricultural land Principal habitat Harmful (pest or invasive)
Cultivated / agricultural land Principal habitat Natural
Protected agriculture (e.g. glasshouse production) Principal habitat Harmful (pest or invasive)
Protected agriculture (e.g. glasshouse production) Principal habitat Natural

Hosts/Species Affected

Top of page

B. cockerelli is found primarily on plants within the family Solanaceae. The psyllid attacks, reproduces and develops on a variety of cultivated and weedy plant species (Essig, 1917; Knowlton and Thomas, 1934; Pletsch, 1947; Jensen, 1954; Wallis, 1955), including crop plants such as potato (Solanum tuberosum), tomato (Solanumlycopersicon), pepper (Capsicum annuum), eggplant (Solanum melongena) and tobacco (Nicotiana tabacum) as well as non-crop species such as nightshade (Solanum spp.), groundcherry (Physalis spp.) and matrimony vine (Lycium spp.).

Adults have been collected from plants in numerous families, including Pinaceae, Salicaceae, Polygonaceae, Chenopodiaceae, Brassicaceae, Asteraceae, Fabaceae, Malvaceae, Amaranthaceae, Lamiaceae, Poaceae, Menthaceae and Convolvulaceae, but this is not the complete host range of this psyllid (Pletch, 1947; Wallis, 1955; Cranshaw, 1993). Beside solanaceous species, B. cockerelli has been shown to reproduce and develop on some Convolvulaceae species, including field bindweed (Convolvulus arvensis) and sweet potato (Ipomoea batatas) (Knowlton and Thomas, 1934; List, 1939; Wallis, 1955; Puketapu and Roskruge, 2011; Munyaneza, unpublished data).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Capsicum annuum (bell pepper)SolanaceaeMain
Convolvulus arvensis (bindweed)ConvolvulaceaeWild host
Ipomoea batatas (sweet potato)ConvolvulaceaeMain
Lycium (boxthorn)SolanaceaeWild host
Medicago sativa (lucerne)FabaceaeOther
Nicotiana tabacum (tobacco)SolanaceaeOther
Physalis (Groundcherry)SolanaceaeWild host
PurshiaRosaceaeOther
Solanum (nightshade)SolanaceaeWild host
Solanum capsicastrumSolanaceaeOther
Solanum lycopersicum (tomato)SolanaceaeMain
Solanum melongena (aubergine)SolanaceaeOther
Solanum tuberosum (potato)SolanaceaeMain
Thuja occidentalis (Eastern white cedar)CupressaceaeOther

Growth Stages

Top of page Flowering stage, Fruiting stage, Seedling stage, Vegetative growing stage

Symptoms

Top of page

B. cockerelli has historically been associated with ‘psyllid yellows’ disease of potato and tomato (Richards and Blood, 1933). Psyllid yellows disease is thought to be associated with feeding by psyllid nymphs (List, 1925) and may be caused by a toxin associated with the insect (Carter, 1939), although the actual etiology of the disease is yet to be determined (Sengoda et al., 2010). More recently, this psyllid has been found to be associated with the bacterium ‘Candidatus Liberibacter’ (Hansen et al., 2008; Liefting et al., 2009; Crosslin et al., 2010; Munyaneza, 2010; Munyaneza, 2012; Munyaneza and Henne, 2012) (see ISC datasheet on ‘Candidatus Liberibacter solanacearum’ for details).

The characteristic above-ground plant symptoms of infestation by B. cockerelli in potatoes and tomatoes include retarded growth, erectness of new foliage, chlorosis and purpling of new foliage with basal cupping of leaves, upward rolling of leaves throughout the plant, shortened and thickened terminal internodes resulting in rosetting, enlarged nodes, axillary branches or aerial potato tubers, disruption of fruit set and production of numerous, small, and poor quality fruits (List, 1939; Pletsch, 1947; Daniels, 1954; Wallis, 1955; Munyaneza, 2012; Munyaneza and Henne, 2012).

The below-ground symptoms on potato include the setting of an excessive number of tiny misshapen potato tubers, production of chain tubers and early breaking of dormancy of tubers (List, 1939; Pletsch, 1947; Wallis, 1955). Additional potato tuber symptoms include collapsed stolons, browning of vascular tissue concomitant with necrotic flecking of internal tissues and streaking of the medullary ray tissues, all of which can affect the entire tuber. Upon frying, these symptoms become more pronounced and chips or fries processed from affected tubers show very dark blotches, stripes, or streaks, rendering them commercially unacceptable (Munyaneza et al., 2007a,b; 2008; Secor et al., 2009; Crosslin et al., 2010; Miles et al., 2010; Munyaneza, 2012; Munyaneza and Henne, 2012); see the ISC datasheet on 'Candidatus Liberibacter solanacearum' for details.

List of Symptoms/Signs

Top of page
SignLife StagesType
Fruit / abnormal shape
Fruit / reduced size
Growing point / dwarfing; stunting
Growing point / wilt
Leaves / abnormal colours
Leaves / abnormal forms
Leaves / leaves rolled or folded
Leaves / necrotic areas
Leaves / wilting
Leaves / yellowed or dead
Roots / hairy root
Stems / fasciation
Stems / internal discoloration
Stems / stunting or rosetting
Stems / wilt
Stems / witches broom
Vegetative organs / internal rotting or discoloration
Vegetative organs / surface cracking
Whole plant / discoloration
Whole plant / distortion; rosetting
Whole plant / dwarfing
Whole plant / early senescence
Whole plant / plant dead; dieback

Biology and Ecology

Top of page

Genetics

Recent outbreaks of B. cockerelli in Baja California and coastal California led to the discovery that potato psyllid in those regions is genetically distinct from psyllids that overwinter in southern Texas and eastern Mexico, which suggests there exists two different potato psyllid biotypes, referred to elsewhere as ‘western’ and ‘central’ biotypes (Liu et al., 2006; Jackson et al., 2009). The western biotype differs from southern Texas populations in several life history traits (Liu and Trumble, 2007) and possibly overwinters in different geographic areas to those used by psyllids of the midwestern United States (Trumble, 2008).

Following the 2011 reports of zebra chip in Idaho, Oregon, and Washington (Munyaneza, 2012; Crosslin et al., 2012a,b), a genetic study by Swisher et al. (2012), using high resolution melting analysis of the mitochondrial Cytochrome C Oxidase subunit I-like gene of B. cockerelli, led to the identification of a third biotype (referred to as ‘northwestern haplotype’), so far known only from the Pacific Northwest. This northwestern potato psyllid biotype is genetically different from the central and western biotypes (Swisher et al., 2012). In addition, a recent study by Swisher et al. (2014) identified a fourth biotype of the psyllid, which appears to be distributed in New Mexico and parts of Colorado and referred to as a “southwestern haplotype”. Furthermore, potato psyllids in Mexico, Honduras, El Salvador, and Nicaragua were identified as the central haplotype (Swisher et al., 2013).

Reproductive Biology

In an effort to identify and develop a sex pheromone and other attractants that can be used to develop improved integrated pest management programs for B. cockerelli, its reproductive biology and the role of chemical signals in sex attraction were studied by Guédot et al. (2010; 2012). It was determined for the first time that the potato psyllid possesses a female-produced pheromone that attracts males (Guédot et al., 2010). Guédot et al. (2012) also showed that adult potato psyllids reach reproductive maturity within 48 hours post-eclosion, with females being mature on the day of eclosion and males at one day post-eclosion. In addition, oviposition generally began two days after mating but was delayed when females mated within two days post-eclosion.

Optimum psyllid development occurs at approximately 27°C, whereas oviposition, hatching, and survival are reduced at 32°C and cease at 35°C (List, 1939; Pletsch, 1947; Wallis, 1955; Cranshaw, 2001; Abdullah, 2008; Yang and Liu, 2009; Yang et al., 2010a; Butler and Trumble, 2012). A single generation may be completed in three to five weeks, depending on temperature. The number of generations varies considerably among regions, usually ranging from three to seven. However, once psyllids colonize an area, prolonged oviposition causes the generations to overlap, making it difficult to distinguish between generations (Pletsch, 1947; Wallis, 1955; Munyaneza et al., 2009a). Both adults and nymphs are very cold tolerant, with nymphs surviving temporary exposure to temperatures of -15°C and 50% of adults surviving exposure to -10°C for over 24 hours (Henne et al., 2010a).

Environmental Requirements

Updated information on the biology and ecology of B. cockerelli was recently provided by Munyaneza (2012), Munyaneza and Henne (2012) and Butler and Trumble (2012). Weather is an important element governing the biology of B. cockerelli and its damage potential; B. cockerelli seems to be adapted for warm, but not hot, temperatures. Cool weather during migrations, or at least the absence of elevated temperatures, has been associated with outbreaks of this insect (Pletsch, 1947; Wallis, 1955; Capinera, 2001; Cranshaw, 2001).

Associations

Identification of symbionts associated with B. cockerelli is currently being investigated. ‘Candidatus Carsonella ruddii’, the obligate and primary endosymbiont of psyllids, has been confirmed in the potato psyllid (Nachappa et al., 2011; Hail et al., 2012). Beside Candidatus Liberibacter solanacearum, several other secondary endosymbionts associated with the potato psyllid have recently been reported, including the bacteria Wolbachia, Acinetobacter, Methyllibium, Rhizobium, Gordonia, Mycobacterium and Xanthomonas (Nachappa et al., 2011; Hail et al., 2012; Butler and Trumble, 2012; Arp et al., 2014). Currently, little information is available on the interactions and symbiont relationship between these microorganisms and the potato psyllid.

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Erynia radicans Pathogen Acosta et al., 2016
Tamarixia triozae Parasite

Notes on Natural Enemies

Top of page

B. cockerelli is attacked by a number of natural enemies, including chrysopid larvae, coccinellids, geocorids, anthocorids, mirids, nabids, syrphid larvae and the parasitoids Tamarixia triozae (Hymenoptera: Eulophidae) and Metaphycus psyllidis (Hymenoptera: Encyrtidae), but little is known about their effects on psyllid populations (Pletsch, 1947; Wallis, 1955; Cranshaw, 1993; Al-Jabar, 1999; Butler et al., 2010; Butler and Trumble, 2012a; Liu et al., 2012). In addition, several entomopathogenic fungi, including Beauveria bassiana, Metarhizium anisopliae and Isaria fumosorosae, have been determined to be effective natural enemies of B. cockerelli, causing psyllid mortality up to 99 and 78% under laboratory and field conditions, respectively (Lacey et al., 2009; 2011).

Means of Movement and Dispersal

Top of page

Natural Dispersal

Adult potato psyllids are good fliers and can disperse over considerable long distances, especially with the onset of wind and hot temperatures. Adults have been shown to migrate en masse to northern western states of the United States and southern Canadian provinces in the spring from the insect overwintering sites in the southwestern United States and northern Mexico (a distance of several hundred kilometers). Immature stages of B. cockerelli are essentially sedentary and do not actively disperse.

Accidental Introduction

Long distance transport of different life stages of this insect pest is possible, particularly by commercial trade of plant material for propagation and produce in the family Solanaceae, which constitute major hosts for B. cockerelli. Based on the discovery of at least four haplotypes of potato psyllid in North and Central America, seasonal dispersal of this insect into potato crops was recently reviewed and discussed by Nelson et al. (2014)

This insect was introduced into New Zealand, where it was recently found established in tomato glasshouses and several outdoors solanaceous crops (Gill, 2006; Liefting et al., 2009; Teulon et al., 2009; Thomas et al., 2011). It is not clear on how the insect arrived in New Zealand, but it was most likely transported with plant material, possibly as eggs (Crosslin et al., 2010; Thomas et al., 2011).

Entry on fruits of host species (e.g. tomato, pepper, eggplant) is possible, especially when they are associated with green parts (e.g. truss tomato). Entry on potato tuber is more unlikely.

Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Crop production Yes
Horticulture Yes
Nursery trade Yes

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Host and vector organisms Yes
Plants or parts of plants Yes
Wind Yes

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Flowers/Inflorescences/Cones/Calyx adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Fruits (inc. pods) eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Leaves adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Seedlings/Micropropagated plants adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye
Stems (above ground)/Shoots/Trunks/Branches adults; eggs; nymphs Yes Pest or symptoms usually visible to the naked eye

Impact Summary

Top of page
CategoryImpact
Economic/livelihood Negative
Environment (generally) Negative
Human health Negative

Economic Impact

Top of page

Detailed information on the economic impact of B. cockerelli is provided by Munyaneza (2012). Historically, the extensive damage to solanaceous crops that was observed during the outbreak years of the early 1900s is thought to have been due to B. cockerelli’s association with a physiological disorder in plants referred to as ‘psyllid yellows’ (Richards and Blood, 1933), presumably caused by a toxin that is transmitted during the insect’s feeding activities, especially nymphs (Eyer and Crawford, 1933; Eyer, 1937). However, the nature of this toxin has not yet been identified. ‘Psyllid yellows’ is characterized by yellowing and curling of foliage, stunting or death of plants and a loss in yield (Richards and Blood, 1933; Eyer, 1937). Infected tomato plants produce few or no marketable fruits (List, 1939; Daniels, 1954). In potatoes, psyllid yellows results in yellowing or purpling of foliage, the early death of plants and low yields of marketable tubers (Eyer, 1937; Pletsch, 1947; Daniels, 1954; Wallis, 1955). In areas of outbreaks of psyllid yellows, the disorder was often present in 100% of plants in affected fields, with yield losses exceeding 50% in some areas (Pletsch, 1947).

In recent years, potato, tomato, and pepper growers in a number of geographic areas have suffered extensive economic losses associated with outbreaks of potato psyllid (Trumble, 2008, 2009; Munyaneza et al., 2009b,c,d; Crosslin et al., 2010; Munyaneza, 2010). This increased damage is due to a previously undescribed species of the bacterium liberibacter, tentatively named ‘Candidatus Liberibacter solanacearum’ (syn. Ca. L. psyllaurous) (Hansen et al., 2008; Liefting et al., 2009), now known to be vectored by potato psyllid (Munyaneza et al., 2007a,b; Buchman et al., 2011a,b); see the ISC datasheet on 'Candidatus Liberibacter solanacearum' for details. Potato psyllids acquire and spread the pathogen by feeding on infected plants (Munyaneza et al., 2007a,b). The bacterium is also transmitted transovarially in the psyllid (Hansen et al., 2008), which contributes to the spread of the disease between geographic regions by dispersing psyllids. It also helps maintain the bacterium in geographic regions during the insect’s overwintering period (Crosslin et al., 2010; Munyaneza, 2012).

Symptoms associated with liberibacter in tomatoes and pepper include chlorosis and purpling of leaves, leaf scorching, stunting or death of plants, and production of small, poor-quality fruit (Liefting et al., 2009; McKenzie and Shatters, 2009; Munyaneza et al., 2009c,d; Brown et al., 2010; Crosslin et al., 2010). During the outbreaks of 2001-2003, tomato growers in coastal California and Baja California suffered losses exceeding 50-80% of the crop (Trumble, 2009). In potatoes, foliar symptoms closely resemble those caused by psyllid yellows and purple top diseases (Munyaneza et al., 2007a,b; Sengoda et al., 2009). However, tubers from liberibacter-infected plants develop a defect referred to as ‘zebra chip’, which is not induced by the potential toxin causing psyllid yellows (Munyaneza et al., 2007a,b; 2008; Sengoda et al., 2009). Tubers show a striped pattern of necrosis, which is particularly noticeable when the tuber is processed for chips or fries (Munyaneza et al., 2007a,b; 2008; Miles et al., 2010). Chips or fries from affected plants are not marketable. The defect was of sporadic importance until 2004, when it began to cause millions of dollars in losses to potato growers in the United States, Central America and Mexico (Rubio-Covarrubias et al., 2006; Munyaneza et al., 2007a; 2009b; Crosslin et al., 2010; Munyaneza, 2010). In some regions, entire fields have been abandoned because of zebra chip (Secor and Rivera-Varas, 2004; Munyaneza et al., 2007a; Crosslin et al., 2010; Munyaneza, 2010). The potato industry in Texas estimates that zebra chip could affect over 35% of the potato acreage in Texas, with potential losses annually to growers exceeding 25 million dollars (CNAS, 2006). Finally, quarantine issues have begun to emerge in potato psyllid-affected regions, because some countries now require that shipments of solanaceous crops from certain growing regions be tested for the pathogen before the shipments are allowed entry (Crosslin et al., 2010; Munyaneza, 2012).

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Tolerant of shade
  • Capable of securing and ingesting a wide range of food
  • Highly mobile locally
  • Long lived
  • Fast growing
  • Has high reproductive potential
  • Gregarious
  • Has high genetic variability
Impact outcomes
  • Host damage
  • Negatively impacts agriculture
  • Negatively impacts trade/international relations
Impact mechanisms
  • Pest and disease transmission
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect as a commodity contaminant
  • Difficult to identify/detect in the field
  • Difficult/costly to control

Prevention and Control

Top of page

Management of B. cockerelli has extensively been discussed by Munyaneza (2012), Munyaneza and Henne (2012) and Butler and Trumble (2012).

Monitoring B. cockerelli is essential for its effective management. Early season management of this insect is crucial to minimize damage and psyllid reproduction in the field. The adult populations are commonly sampled using sweep nets or vacuum devices, but egg and nymphal sampling requires visual examination of foliage. The adults can also be sampled with yellow water-pan traps. Typically, psyllid populations are highest at field edges initially, but, if not controlled, the insects will eventually spread throughout the crop (Workneh et al., 2012; Butler and Trumble, 2012).

B. cockerelli control is currently dominated by insecticide applications (Goolsby et al., 2007; Gharalari et al., 2009; Berry et al., 2009; Butler et al., 2011; Guenthner et al., 2012), but psyllids have been shown to develop insecticide resistance due to the high fecundity and short generation times (McMullen and Jong, 1971). Therefore, alternative strategies should be considered to limit the impact of the potato psyllid and its associated diseases. Even with conventional insecticides, B. cockerelli tends to be difficult to manage. It has been determined that liberibacter is transmitted to potato very rapidly by the potato psyllid, and that a single psyllid per plant can successfully transmit this bacterium to potato in as little as 6 hours, ultimately causing zebra chip (Buchman et al., 2011a,b). This observed low psyllid density, coupled with a short inoculation access period, represents a substantial challenge for growers in controlling the potato psyllid and preventing zebra chip transmission. Just a few infective psyllids feeding on potato for a short period could result in substantial spread of the disease within a potato field or region (Henne et al., 2010b). Most importantly, conventional pesticides may have limited direct disease control, as they may not kill the potato psyllid quick enough to prevent liberibacter and zebra chip transmission, although they may be useful for reducing the overall population of psyllids.

The most valuable and effective strategies to manage zebra chip would likely be those that discourage vector feeding, such as use of plants that are resistant to psyllid feeding or less preferred by the psyllid. Unfortunately, no potato variety has so far been shown to exhibit sufficient resistance or tolerance to zebra chip or potato psyllid (Munyaneza et al., 2011). However, some conventional and biorational pesticides, including plant and mineral oils and kaolin, have shown some substantial deterrence and repellency to potato psyllid feeding and oviposition (Gharalari et al., 2009; Yang et al., 2010b; Butler et al., 2011; Peng et al., 2011) could be useful tools in integrated pest management programs to manage zebra chip and its psyllid vector.

Information on products used to control B. cockerelli is provided by Munyaneza (2012), Munyaneza and Henne (2012) and Butler and Trumble (2012). Good insecticide coverage or translaminar activity is important because psyllids are commonly found on the underside of the leaves. Also, the different life stages require use of specific insecticides as it has been shown that chemicals controlling adults do not necessarily controls nymphs or eggs. Because several generations often overlap, caution should be taken when selecting and applying insecticides targeted against the potato psyllid in relation to which life stages are present in the crop and timing of insecticide applications. Several predators and parasites of B. cockerelli are known, though there is little documentation of their effectiveness. In some areas such as southern Texas, early planted potato crops are more susceptible to psyllid injury than crops planted mid- to late season (Munyaneza et al., 2012).

Gaps in Knowledge/Research Needs

Top of page

At least four haplotypes of B. cockerelli have so far been identified (Swisher et al., 2012; Swishet et al., 2014) and more may be discovered. Although these psyllid haplotypes have been shown to be different genetically, little is known of their differences in biological traits. This information is essential, especially for pest management purposes. In addition, information on overwintering of B. cockerelli, particularly in the regions with temperate climate (Jensen, 2012; Murphy et al., 2013), is lacking. Furthermore, accurate information on long distance movement and dispersal of B. cockerelli is crucial for predicting temporal and spatial colonization of field crops by this insect. Therefore, it is imperative that studies are conducted to further clarify the biology, ecology, movement and dispersal of B. cockerelli, in order to develop effective management strategies for this insect pest.

References

Top of page

Abdullah NMM, 2008. Life history of the potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) in controlled environment agriculture in Arizona. African Journal of Agricultural Research, 3(1):060-067. http://www.academicjournals.org/ajar/abstracts/abstracts/abstracts2008/Jan/Abdullah.htm

Abernathy RL, 1991. Investigation into the nature of the potato psyllid toxin. Fort Collins, Colorado, USA: Colorado State University.

Acosta RIT; Humber RA; Sánchez-Peña SR, 2016. Zoophthora radicans (Entomophthorales), a fungal pathogen of Bagrada hilaris and Bactericera cockerelli (Hemiptera: Pentatomidae and Triozidae): prevalence, pathogenicity, and interplay of environmental influence, morphology, and sequence data on fungal identification. Journal of Invertebrate Pathology, 139:82-91. http://www.sciencedirect.com/science/article/pii/S0022201116301021

Aguilar E; Sengoda VG; Bextine B; McCue KF; Munyaneza JE, 2013. First report of "Candidatus Liberibacter solanacearum" on tobacco in Honduras. Plant Disease, 97(10):1376-1377. http://apsjournals.apsnet.org/loi/pdis

Aguilar E; Sengoda VG; Bextine B; McCue KF; Munyaneza JE, 2013. First report of "Candidatus Liberibacter solanacearum" on tomato in Honduras. Plant Disease, 97(10):1375-1376. http://apsjournals.apsnet.org/loi/pdis

Al-Jabr AM, 1999. Ph.D Dissertation. Fort Collins, Colorado, USA: Colorado State University.

Arp A; Munyaneza JE; Crosslin JM; Trumble J; Bextine B, 2014. A global comparison of Bactericera cockerelli (Hemiptera: Triozidae) microbial communities. Environmental Entomology, 43(2):344-352. http://esa.publisher.ingentaconnect.com/content/esa/envent/2014/00000043/00000002/art00011

Berry NA; Walker MK; Butler RC, 2009. Laboratory studies to determine the efficacy of selected insecticides on tomato/potato psyllid. New Zealand Plant Protection [Proceedings of the New Zealand Plant Protection Society's Annual Conference, Otago Museum Conference Centre, Dunedin, New Zealand, 11-13 August 2009.], 62:145-151. http://www.nzpps.org/journal/62/nzpp_621450.pdf

Bextine B; Aguilar E; Rueda A; Caceres O; Sengoda VG; McCue KF; Munyaneza JE, 2013. First report of "Candidatus Liberibacter solanacearum" on tomato in El Salvador. Plant Disease, 97(9):1245. http://apsjournals.apsnet.org/loi/pdis

Bextine B; Arp A; Flores E; Aguilar E; Lastrea L; Gomez FS; Powell C; Rueda A, 2013. First report of zebra chip and 'Candidatus Liberibacter solanacearum' on potatoes in Nicaragua. Plant Disease, 97(8):1109. http://apsjournals.apsnet.org/loi/pdis

Bextine B; Powell C; Arp A; Alvarez E; Ramon F; Gomez S; Florez E; Schindler L; Rueda A, 2012. Zebra chip developments in Central America. In: Proceedings of the 2012 Annual Zebra Chip reporting Session [ed. by Workneh, F. \Rashed, A. \Rush, C. M.].

Binkley AM; 1929, December 20th. Transmission Studies with the new Psyllid-Yellows Disease of solanaceous Plants. American Association for the Advancement of Science. Science, 70(1825):615 p.

Brown JK; Rehman M; Rogan D; Martin RR; Idris AM, 2010. First report of 'Candidatus Liberibacter psylaurous' (syn. 'Ca. solanacearum') associated with the 'tomato vein-greening' and 'tomato psyllid yellows' diseases in commercial greenhouse in Arizona. Plant Disease, 94:376.

Buchman JL; Heilman BE; Munyaneza JE, 2011. Effects of liberibacter-infective Bactericera cockerelli (Hemiptera: Triozidae) density on zebra chip potato disease incidence, potato yield, and tuber processing quality. Journal of Economic Entomology, 104(6):1783-1792. http://docserver.ingentaconnect.com/deliver/connect/esa/00220493/v104n6/s4.pdf?expires=1325831012&id=0000&titleid=10264&checksum=6F9A56DFFCB75A5F83A66F0B3D3CDA99

Buchman JL; Sengoda VG; Munyaneza JE, 2011. Vector transmission efficiency of liberibacter by Bactericera cockerelli (Hemiptera: Triozidae) in zebra chip potato disease: effects of psyllid life stage and inoculation access period. Journal of Economic Entomology, 104(5):1486-1495. http://esa.publisher.ingentaconnect.com/content/esa/jee/2011/00000104/00000005/art00006

Burckhardt D; Lauterer P, 1997. A taxonomic reassessment of the triozid genus Bactericera (Hemiptera: Psylloidea). Journal of Natural History, 31(1):99-153.

Burckhardt D; Ouvrard D, 2012. A revised classification of the jumping plant-lice (Hemiptera: Psylloidea). Zootaxa, 3509:1-34. http://www.mapress.com/zootaxa/2012/f/z03509p034f.pdf

Butler CD; Byrne FJ; Keremane ML; Lee RF; Trumble JT, 2011. Effects of insecticides on behavior of adult Bactericera cockerelli (Hemiptera: Triozidae) and transmission of Candidatus Liberibacter psyllaurous. Journal of Economic Entomology, 104(2):586-594. http://docserver.ingentaconnect.com/deliver/connect/esa/00220493/v104n2/s34.pdf?expires=1304641278&id=0000&titleid=10264&checksum=60987A5FFF14CEF1A45838749F2373F0

Butler CD; Trumble JT, 2012. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terrestrial Arthropod Reviews, 5(2):87-111. http://www.ingentaconnect.com/content/brill/tar/2012/00000005/00000002/art00001

CABI/EPPO, 2015. Bactericera cockerelli. [Distribution map]. Distribution Maps of Plant Pests, No.June. Wallingford, UK: CABI, Map 793.

Capinera JL, 2001. Handbook of vegetable pests. Handbook of vegetable pests, xiv + 729 pp.

Carter W, 1939. Injuries to plants caused by insect toxins. Botanical Review, 5:273-326.

CNAS, 2006. Economic impacts of zebra chip on the Texas potato industry. Texas, USA: Center for North American Studies (online). http://cnas.tamu.edu/zebra%20chip%20impacts%20final.pdf

Compere H, 1915. Paratrioza cockerelli (Sulc). Monthly Bulletin of California State Commission of Horticulture, 4:574.

Compere H; 1916, May. Notes on the Tomato Psylla. Monthly Bulletin. California Commission of Horticulture, 5(5):189-191 pp.

Cranshaw WS, 1993. An annotated bibliography of potato/tomato psyllid, Paratrioza cockerelli (Sulc) (Homptera: Psyllidae). Colorado State University Agricultural Experiment Station Bulletin.

Cranshaw WS, 2001. Diseases caused by insect toxin: psyllid yellows. In: Compendium of potato diseases (2nd Ed.) [ed. by Stevenson, W. R. \Loria, L. \Franc, G. D. \Weingartner, D. P.]. St Paul, Minnesota, USA: APS Press, 73-74.

Crawford DL, 1910. American Psyllidae I. (Triozinae). Pomona Journal of Entomology, 2:228-237.

Crawford DL, 1910. American Psyllidae III (Triozinae). Pomona Journal of Entomology, 3:421-453.

Crawford DL, 1914. A monography of the jumping plant-lice of the new world. United States National Museum Bulletin:186 pp.

Crosslin JM; Hamm PB; Eggers JE; Rondon SI; Sengoda VG; Munyaneza JE, 2012. First report of zebra chip disease and "Candidatus Liberibacter solanacearum" on potatoes in Oregon and Washington State. Plant Disease, 96(3):452. http://apsjournals.apsnet.org/loi/pdis

Crosslin JM; Munyaneza JE; Brown JK; Liefting LW, 2010. Potato zebra chip disease: a phytopathological tale. Plant Health Progress, No.March:PHP-2010-0317-01-RV. http://www.plantmanagementnetwork.org/php/elements/sum.aspx?id=8676&photo=4859

Crosslin JM; Olsen N; Nolte P, 2012. First report of zebra chip disease and "Candidatus Liberibacter solanacearum" on potatoes in Idaho. Plant Disease, 96(3):453. http://apsjournals.apsnet.org/loi/pdis

Daniels LB, 1954. Ph.D. Dissertation. Minnesota, USA: University of Minnesota.

EPPO, 2012. Pests and Diseases, No 9. EPPO Reporting Service. Paris, France: EPPO.

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

EPPO, 2017. EPPO Global database (available online). Paris, France: EPPO. https://gd.eppo.int/

Espinoza HR, 2010. Proceedings of the 2010 Annual Zebra Chip Reporting Session.

Essig EO; 1917, August. The Tomato and Laurel Psyllids. Journal of Economic Entomology, 10(4):433-444 pp.

Eyer JR; 1937, December. Physiology of Psyllid Yellows of Potatoes. Journal of Economic Entomology, 30(6):891-898 pp.

Eyer JR; Crawford RF; 1933, August. Observations on the Feeding Habits of the Potato Psyllid (Paratrioza cockerelli Sulc) and the Pathological History of the " Psyllid Yellows " which it produces. Journal of Economic Entomology, 26(4):846-850 pp.

Ferguson G; Banks E; Fraser H, 2003. Potato Psyllid - A new pest in greenhouse tomatoes and peppers. OMAF fact sheet. Ontario, Canada: Ontario Ministry of Agriculture and Food (online). http://www.omafra.gov.on.ca/english/crops/facts/potato_psyllid.htm

Ferguson G; Shipp L, 2002. New pests in Ontario greenhouse vegetables. Bulletin OILB/SROP [Proceedings of the joint IOBC/WPRS Working Group "Integrated Control in Protected Crops, Temperate Climate" and IOBC/NRS "Greenhouse, Nursery, & Ornamental Landscape IPM Working Group" at Victoria (British Columbia), Canada, 6-9 May 2002.], 25(1):69-72.

Ferris GF; 1925, February. Observations on the Chermidae (Hemiptera ; Homoptera). Part ii. Canadian Entomologist, Ivii(2):46-50 pp.

Gharalari AH; Nansen C; Lawson DS; Gilley J; Munyaneza JE; Vaughn K, 2009. Knockdown mortality, repellency, and residual effects of insecticides for control of adult Bactericera cockerelli (Hemiptera: Psyllidae). Journal of Economic Entomology, 102(3):1032-1038. http://docserver.ingentaconnect.com/deliver/connect/esa/00220493/v102n3/s22.pdf?expires=1264482520&id=0000&titleid=10264&checksum=8BFA0C5D3BB3283AC77009B57DA0C4D7

Gill G, 2006. Tomato psyllid detected in New Zealand. Biosecurity, No.69:10-11.

Goolsby JA; Adamczyk J; Bextine B; Lin D; Munyaneza JE; Bester G, 2007. Development of an IPM program for management of the potato psyllid to reduce incidence of zebra chip disorder in potatoes. Subtropical Plant Science, 59:85-94.

Goolsby JA; Adamczyk JJ Jr; Crosslin JM; Troxclair NN; Anciso JR; Bester GG; Bradshaw JD; Bynum ED; Carpio LA; Henne DC; Joshi A; Munyaneza JE; Porter P; Sloderbeck PE; Supak JR; Rush CM; Willett FJ; Zechmann BJ; Zens BA, 2012. Seasonal population dynamics of the potato psyllid (Hemiptera: Triozidae) and its associated pathogen "Candidatus Liberibacter solanacearum" in potatoes in the Southern Great Plains of north America. Journal of Economic Entomology, 105(4):1268-1276. http://esa.publisher.ingentaconnect.com/content/esa/jee/2012/00000105/00000004/art00022

Guédot C; Horton DR; Landolt PJ, 2010. Sex attraction in Bactericera cockerelli (Hemiptera: Triozidae). Environmental Entomology, 39(4):1302-1308. http://docserver.ingentaconnect.com/deliver/connect/esa/0046225x/v39n4/s26.pdf?expires=1281597971&id=0000&titleid=10265&checksum=C2CF471207ABDD25ECCB8A687BDB6FA3

Guédot C; Horton DR; Landolt PJ, 2012. Age at reproductive maturity and effect of age and time of day on sex attraction in the potato psyllid Bactericera cockerelli. Insect Science, 19(5):585-594. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1744-7917

Guenthner J; Goolsby J; Greenway G, 2012. Use and cost of insecticides to control potato psyllids and zebra chip on potatoes. Southwestern Entomologist, 37(3):263-270. http://sswe.tamu.edu/

Hail D; Dowd SE; Bextine B, 2012. Identification and location of symbionts associated with potato psyllid (Bactericera cockerelli) lifestages. Environmental Entomology, 41(1):98-107. http://esa.publisher.ingentaconnect.com/content/esa/envent/2012/00000041/00000001/art00011

Hansen AK; Trumble JT; Stouthamer R; Paine TD, 2008. A new huanglongbing species, "Candidatus Liberibacter psyllaurous," found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology, 74(18):5862-5865. http://aem.asm.org

Henne DC; Anciso J; Bradshaw J; Whipple S; Carpio L; Schuster G; Richmond J; Walker S; Porter P; Barrett S; Willett J; Mathews K; DerooK; Seger P; Crosslin J; Hamlin L; Goolsby J, 2012. Overview of the 20122-2012 potato psyllid area wide monitoring program. Rashed, and C. Rush (eds. In: Proceedings of the 2012 Annual Zebra Chip Reporting Session [ed. by Workneh, F. \Rashed, A. \Rush, C. M.].

Henne DC; Paetzold L; Workneh F; Rush CM, 2010. Evaluation of potato psyllid cold tolerance, overwintering survival, sticky trap sampling and effects of liberibacter on potato psyllid alternate host plants. In: Proceedings of the 2010 Annual Zebra Chip Reporting Session [ed. by Workneh, F. \Rush, C. M.]. 149-153.

Henne DC; Workneh F; Rush CM, 2010. Movement of Bactericera cockerelli (Heteroptera: Psyllidae) in relation to potato canopy structure, and effects on potato tuber weights. Journal of Economic Entomology, 103(5):1524-1530. http://esa.publisher.ingentaconnect.com/content/esa/jee/2010/00000103/00000005/art00002

Hodkinson ID, 2009. Life cycle variation and adaptation in jumping plant lice (Insecta: Hemiptera: Psylloidea): a global synthesis. Journal of Natural History, 43(1/4):65-179.

Jackson BC; Goolsby J; Wyzykowski A; Vitovksy N; Bextine B, 2009. Analysis of genetic relationship between potato psyllid (Bactericera cokerelli) populations in the United States, Mexico and Guatemala using ITS2 and inter simple sequence repeat (ISSR) data. Subtropical Plant Science, 61:1-5.

Jensen A, 2012. Updates on potato psyllid and zebra chip. Potato Progress, 12(10):1-6.

Jensen DD, 1954. Notes on the potato psyllid, Paratrioza cockerelli (Sulc) (Hemiptera: Psyllidae). Pan-Pacific Entomologist, 30:161-165.

Knowlton GF; Janes MJ, 1931 June. Studies on the Biology of Paratrioza cockerelli (Sulc). Annals of the Entomological Society of America, 24(2):283-291 pp.

Knowlton GF; Thomas WL; 1934, April. Host Plants of the Potato Psyllid. Journal of Economic Entomology, 27(2):547 p.

Lacey LA; Liu TX; Buchman JL; Munyaneza JE; Goolsby JA; Horton DR, 2011. Entomopathogenic fungi (Hypocreales) for control of potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biological Control, 56(3):271-278. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WBP-51JPWT0-1&_user=10&_coverDate=03%2F31%2F2011&_rdoc=10&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%236716%232011%23999439996%232856782%23FLA%23display%23Volume)&_cdi=6716&_sort=d&_docanchor=&_ct=10&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=cd47e17b67cff196a2c86bafd3047089&searchtype=a

Lacey LA; Rosa Fde la; Horton DR, 2009. Insecticidal activity of entomopathogenic fungi (Hypocreales) for potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae): development of bioassay techniques, effect of fungal species and stage of the psyllid. Biocontrol Science and Technology, 19(9/10):957-970. http://journalsonline.tandf.co.uk/link.asp?id=100635

Liefting LW; Perez-Egusquiza ZC; Clover GRG; Anderson JAD, 2008. A new 'Candidatus Liberibacter' species in Solanum tuberosum in New Zealand. Plant Disease, 92(10):1474. HTTP://www.apsnet.org

Liefting LW; Sutherland PW; Ward LI; Paice KL; Weir BS; Clover GRG, 2009. A new 'Candidatus Liberibacter' species associated with diseases of solanaceous crops. Plant Disease, 93(3):208-214. http://apsjournals.apsnet.org/loi/pdis

List GM, 1925. The tomato psyllid, Paratrioza cockerelli Sulc. Colorado State Entomologist Circular, 47.

List GM, 1939. The Effect of Temperature upon Egg Deposition, Egg Hatch and Nymphal Development of Paratrioza cockerelli (Sulc). Journal of Economic Entomology, 32(1):30-36 pp.

LIST GM; DANIELS LB, 1934. A promising control for psyllid yellows of Potatoes. American Association for the Advancement of Science. Science, 79(2039):79 p.

Liu DG; Trumble JT, 2007. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomologia Experimentalis et Applicata, 123(1):35-42. http://www.blackwell-synergy.com/loi/eea

Liu DG; Trumble JT; Stouthamer R, 2006. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomologia Experimentalis et Applicata, 118(3):177-183. http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code=eea

Liu TongXian; Zhang YongMei; Peng LiNian; Rojas P; Trumble JT, 2012. Risk assessment of selected insecticides on Tamarixia triozae (Hymenoptera: Eulophidae), a parasitoid of Bactericera cockerelli (Hemiptera: Trizoidae). Journal of Economic Entomology, 105(2):490-496. http://esa.publisher.ingentaconnect.com/content/esa/jee/2012/00000105/00000002/art00024

McKenzie CL; Shatters RG Jr, 2009. First report of "Candidatus Liberibacter psyllaurous" associated with psyllid yellows of tomato in Colorado. Plant Disease, 93(10):1074. http://apsjournals.apsnet.org/loi/pdis

McMullen RD; Jong C, 1971. Dithiocarbamate fungicides for control of pear psylla. Journal of Economic Entomology, 64(5):1266-1270.

Miles GP; Samuel MA; Chen J; Civerolo EL; Munyaneza JE, 2010. Evidence that cell death is associated with zebra chip disease in potato tubers. American Journal of Potato Research, 87(4):337-349. http://springerlink.com/content/w5q82185232p364u/

Munyaneza JE, 2010. Psyllids as vectors of emerging bacterial diseases of annual crops. Southwestern Entomologist, 35(3):471-477. http://sswe.tamu.edu/

Munyaneza JE, 2012. Zebra chip disease of potato: biology, epidemiology, and management. American Journal of Potato Research, 89(5):329-350. http://www.springerlink.com/content/214325p66x6155n8/

Munyaneza JE; Buchman JL; Sengoda VG; Fisher TW; Pearson CC, 2011. Susceptibility of selected potato varieties to zebra chip potato disease. American Journal of Potato Research, 88(5):435-440. http://www.springerlink.com/content/k57l013l44525644/fulltext.html

Munyaneza JE; Buchman JL; Sengoda VG; Goolsby JA; Ochoa AP; Trevino J; Schuster G, 2012. Impact of potato planting time on incidence of potato zebra chip disease in the Lower Rio Grande Valley of Texas. Southwestern Entomologist, 37(3):253-262. http://sswe.tamu.edu/

Munyaneza JE; Buchman JL; Upton JE; Goolsby JA; Crosslin JM; Bester G; Miles GP; Sengoda VG, 2008. Impact of different potato psyllid populations on zebra chip disease incidence, severity, and potato yield. Subtropical Plant Science, 60:27-37.

Munyaneza JE; Crosslin JM; Buchman JL, 2009. Seasonal occurrence and abundance of the potato psyllid, Bactericera cockerelli, in south central Washington. American Journal of Potato Research, 86(6):513-518. http://www.springerlink.com/content/9010q22666j6j4px/

Munyaneza JE; Crosslin JM; Upton JE, 2007. Association of Bactericera cockerelli (Homoptera: Psyllidae) with "zebra chip," a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology, 100(3):656-663. http://www.bioone.org/doi/full/10.1603/0022-0493%282007%29100%5B656%3AAOBCHP%5D2.0.CO%3B2

Munyaneza JE; Goolsby JA; Crosslin JM; Upton JE, 2007. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science, 59:30-37.

Munyaneza JE; Henne DC, 2012. Leafhopper and psyllid pests of potato. In: Insect Pests of Potato: Global Perspectives on Biology and Management [ed. by Giordanengo, P. \Vincent, C. \Alyokhin, A.]. San Diego, California, USA: Academic Press, 65-102.

Munyaneza JE; Sengoda VG; Aguilar E; Bextine B; McCue KF, 2013. First report of "Candidatus Liberibacter solanacearum" associated with psyllid-infested tobacco in Nicaragua. Plant Disease, 97(9):1244-1245. http://apsjournals.apsnet.org/loi/pdis

Munyaneza JE; Sengoda VG; Aguilar E; Bextine B; McCue KF, 2014. First report of 'Candidatus Liberibacter solanacearum' on pepper in Honduras. Plant Disease, 98(1):154. http://apsjournals.apsnet.org/loi/pdis

Munyaneza JE; Sengoda VG; Aguilar E; Bextine BR; McCue KF, 2013. First report of 'Candidatus Liberibacter solanacearum' infecting eggplant in Honduras. Plant Disease, 97(12):1654. http://apsjournals.apsnet.org/loi/pdis

Munyaneza JE; Sengoda VG; Crosslin JM; Garzón-Tiznado JA; Cardenas-Valenzuela OG, 2009. First report of "Candidatus Liberibacter solanacearum" in pepper plants in México. Plant Disease, 93(10):1076. http://apsjournals.apsnet.org/loi/pdis

Munyaneza JE; Sengoda VG; Crosslin JM; Garzón-Tiznado JA; Cardenas-Valenzuela OG, 2009. First report of "Candidatus Liberibacter solanacearum" in tomato plants in México. Plant Disease, 93(10):1076. http://apsjournals.apsnet.org/loi/pdis

Munyaneza JE; Sengoda VG; Crosslin JM; Rosa-Lozano Gde la; Sanchez A, 2009. First report of 'Candidatus Liberibacter psyllaurous' in potato tubers with zebra chip disease in Mexico. Plant Disease, 93(5):552. http://apsjournals.apsnet.org/loi/pdis

Murphy AF; Rondon SI; Jensen AS, 2013. First report of potato psyllids, Bactericera cockerelli, overwintering in the Pacific Northwest. American Journal of Potato Research, 90(3):294-296. http://rd.springer.com/article/10.1007/s12230-012-9281-0

Nachappa P; Levy J; Pierson E; Tamborindeguy C, 2011. Diversity of endosymbionts in the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), vector of zebra chip disease of potato. Current Microbiology, 62(5):1510-1520. http://springerlink.metapress.com/content/g7v543232k54134h/

Nelson WR; Swisher KD; Crosslin JM; Munyaneza JE, 2014. Seasonal dispersal of the potato psyllid, Bactericera cockerelli, into potato crops. Southwestern Entomologist, 39(1):177-186. http://sswe.tamu.edu/

O'Connell DM; Wratten SD; Pugh AR; Barnes AM, 2012. 'New species association' biological control? Two coccinellid species and an invasive psyllid pest in New Zealand. Biological Control, 62(2):86-92. http://www.sciencedirect.com/science/article/pii/S1049964412000758

Peng LiNian; Trumble JT; Munyaneza JE; Liu TongXian, 2011. Repellency of a kaolin particle film to potato psyllid, Bactericera cockerelli (Hemiptera: Psyllidae), on tomato under laboratory and field conditions. Pest Management Science, 67(7):815-824. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1526-4998

Pletsch DJ, 1947. The potato psyllid, Paratrioza cockerelli (Sulc), its biology and control. Bull. Mont. agric. Exp. Stn, 446:95 pp.

Puketapu A; Roskruge N, 2011. The tomato-potato psyllid lifecycle on three traditional Maori food sources. Agronomy New Zealand [Proceedings of the 41st Agronomy Society of New Zealand Conference, Gisborne, New Zealand, 8-10 November 2011.], 41:167-173. http://www.agronomysociety.org.nz/2011-journal-papers.html

Rehman M; Melgar JC; Rivera C JM; Idris AM; Brown JK, 2010. First report of "Candidatus Liberibacter psyllaurous" or "Ca. Liberibacter solanacearum" associated with severe foliar chlorosis, curling, and necrosis and tuber discoloration of potato plants in Honduras. Plant Disease, 94(3):376-377. http://apsjournals.apsnet.org/loi/pdis

Richards BL; 1928, January. A new and destructive Disease of the Potato in Utah and its Relation to the Potato Psylla. (Abstract). Phytopathology, 18(1):140-141 pp.

Richards BL; 1931, January. Further Studies with Psyllid Yellows of the Potato. Phytopathology, 21(1):103 p.

Richards BL; Blood HL, 1933. Psyllid yellows of the Potato. Journal of Agricultural Research, 46(3):189-216 pp.

Romney VE, 1939. Breeding Areas of the Tomato Psyllid, Paratrioza cockerelli (Sule). Journal of Economic Entomology, 32(1):150-151 pp.

Rowe JA; Knowlton GF, 1935. Studies upon the Morphology of Paratrioza cockerelli (Sulc). Proceedings of the Utah Academy of Sciences, 12:233-239 pp.

Rubio Covarrubias OÂ; Almeyda León IH; Ireta Moreno J; Sánchez Salas JA; Fernanndez Sosa R; Borbón Soto JT; Díaz Hernández C; Garzón Tiznado JA; Rocha Rodríguez R; Cadena Hinojosa MA, 2006. Distribution of potato purple top and Bactericera cockerelli Sulc. in the main potato production zones in Mexico. (Distribución de lapunta morada y Bactericera cockerelli Sulc. en las principales zonas productoras de papaen México.) Agricultura Técnica en México, 32(2):201-211.

Rubio-Covarrubias OÂ; Almeyda-León IH; Cadena-Hinojosa MA; Lobato-Sánchez R, 2011. Relation between Bactericera cockerelli and presence of Candidatus Liberibacter psyllaurous in commercial fields of potato. Revista Mexicana de Ciencias Agrícolas, 2(1):17-28. http://www.inifap.gob.mx/revistas/ciencia_agricola.html

Secor GA; Rivera VV; Abad JA; Lee IM; Clover GRG; Liefting LW; Li X; Boer SHde, 2009. Association of 'Candidatus Liberibacter solanacearum' with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease, 93(6):574-583. http://apsjournals.apsnet.org/loi/pdis

Secor GA; Rivera-Varas V, 2004. Emerging diseases of cultivated potato and their impact on Latin America. Revista Latinoamericana de la Papa, Suplemento (Latin American Potato Journal, supplement), 1:1-8.

Sengoda VG; Munyaneza JE; Crosslin JM; Buchman JL; Pappu HR, 2010. Phenotypic and etiological differences between psyllid yellows and zebra chip diseases of potato. American Journal of Potato Research, 87(1):41-49. http://springerlink.com/content/t138r20768347115/fulltext.html

Sulc K, 1909. Trioza cockerelli n.sp, a novelty from North America, being also of economic importance. Acta Societatis Entomologicae Bohemiae, 6:102-108.

Swisher KD; Arp AP; Bextine BR; Aguilar Álvarez EY; Crosslin JM; Munyaneza JE, 2013. Haplotyping the potato psyllid, Bactericera cockerelli, in Mexico and Central America. Southwestern Entomologist, 38(2):201-208. http://sswe.tamu.edu/

Swisher KD; Henne DC; Crosslin JM, 2014. Identification of a fourth haplotype of the potato psyllid, Bactericera cockerelli, in the United States. Journal of Insect Science, 14(161):1-7.

Swisher KD; Munyaneza JE; Crosslin JM, 2012. High resolution melting analysis of the cytochrome oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environmental Entomology, 41(4):1019-1028. http://docserver.ingentaconnect.com/deliver/connect/esa/0046225x/v41n4/s33.pdf?expires=1345024214&id=0000&titleid=10265&checksum=B3EB8A13ED2A1C580F240CFB7998D743

Teulon DAJ; Workman PJ; Thomas KL; Nielsen MC, 2009. Bactericera cockerelli: incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand Plant Protection [Proceedings of the New Zealand Plant Protection Society's Annual Conference, Otago Museum Conference Centre, Dunedin, New Zealand, 11-13 August 2009.], 62:136-144. http://www.nzpps.org/journal/62/nzpp_621360.pdf

Thomas KL; Jones DC; Kumarasinghe LB; Richmond JE; Gill GSC; Bullians MS, 2011. Investigation into the entry pathway for tomato potato psyllid Bactericera cockerelli. New Zealand Plant Protection [New Zealand Plant Protection Society's Annual Conference, Rotorua, New Zealand, 9-11 August 2011.], 64:259-268. http://www.nzpps.org/journal/abstract.php?paper=642590

Trumble J, 2008. The tomato psyllid: a new problem on fresh market tomatoes in California and Baja Mexico. University of California Cooperative Extension. http://ceventura.ucdavis.edu/Vegetable_Crops/Tomato_Psyllid.htm

Trumble J, 2009. Potato psyllid. Center for Invasive Species Research. California, USA: University of California Riverside (online).

Tuthill LD, 1945. Contributions to the knowledge of the Psyllidae of Mexico. Journal of the Kansas Entomological Society, 18:1-29.

Wallis RL, 1946. Seasonal Occurrence of the Potato Psyllid in the North Platte Valley. Journal of Economic Entomology, 39(6):689-694 pp.

Wallis RL, 1955. Technical Bulletin. United States Department of Agriculture, 1107. Washington, D.C., 1 +] 25 pp.

Wen A; Mallik I; Alvarado VY; Pasche JS; Wang X; Li W; Levy L; Lin H; Scholthof HB; Mirkov TE; Rush CM; Gudmestad NC, 2009. Detection, distribution, and genetic variability of 'Candidatus Liberibacter' species associated with zebra complex disease of potato in North America. Plant Disease, 93(11):1102-1115. http://apsjournals.apsnet.org/loi/pdis

Working Group International Control in Protected Crops, 2001. Working Group International Control in Protected Crops, Temperate Climate. Bulletin OILB/SROP, 25:69-72.

Workneh F; Henne DC; Childers AC; Paetzold L; Rush CM, 2012. Assessments of the edge effect in intensity of potato zebra chip disease. Plant Disease, 96(7):943-947. http://apsjournals.apsnet.org/loi/pdis

Yang XB; Zhang YM; Hua L; Peng LN; Munyaneza JE; Trumble JT; Liu TX, 2010. Repellency of selected biorational insecticides to potato psyllid, Bactericera cockerelli (Hemiptera: Psyllidae). Crop Protection, 29(11):1320-1324. http://www.sciencedirect.com/science/journal/02612194

Yang XiangBing; Liu TX, 2009. Life history and life tables of Bactericera cockerelli (Homoptera: Psyllidae) on eggplant and bell pepper. Environmental Entomology, 38(6):1661-1667. http://esa.publisher.ingentaconnect.com/content/esa/envent/2009/00000038/00000006/art00019

Yang XiangBing; Zhang YongMei; Hua Lei; Liu TongXian, 2010. Life history and life tables of Bactericera cockerelli (Hemiptera: Psyllidae) on potato under laboratory and field conditions in the Lower Rio Grande Valley of Texas. Journal of Economic Entomology, 103(5):1729-1734. http://esa.publisher.ingentaconnect.com/content/esa/jee/2010/00000103/00000005/art00026

Links to Websites

Top of page
WebsiteURLComment
Halbert SE, Munyaneza JE, 2012. Potato psyllids and associated pathogens: a diagnostic aid. Florida http://www.fsca-dpi.org/Homoptera_Hemiptera/Potato_psyllids_and_associated_pathogens.pdf

Contributors

Top of page

04/10/2014 Updated by:

Joseph E Munyaneza, USDA-ARS, USA

19/11/12 Original text by:

Joseph E Munyaneza, USDA-ARS, USA

Distribution Maps

Top of page
You can pan and zoom the map
Save map