Cookies on Invasive Species Compendium

Like most websites we use cookies. This is to ensure that we give you the best experience possible.


Continuing to use  means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.


Alternaria japonica (pod spot of radish)


  • Last modified
  • 22 November 2017
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Alternaria japonica
  • Preferred Common Name
  • pod spot of radish
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Fungi
  •     Phylum: Ascomycota
  •       Subphylum: Pezizomycotina
  •         Class: Dothideomycetes
  • Summary of Invasiveness
  • A. japonica is a seed-borne pathogen of plants in the Brassicaceae. No sexual state is known for the fungus, and identification based on conidial and cultural morphology is difficult. The production of chlamydosp...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
Chain of conidia from cornmeal-dextrose agar, original X400. Note scale bar.
TitleChain of conidia
CaptionChain of conidia from cornmeal-dextrose agar, original X400. Note scale bar.
CopyrightUSDA-ARS/Systematic Mycology & Microbiology Laboratory
Chain of conidia from cornmeal-dextrose agar, original X400. Note scale bar.
Chain of conidiaChain of conidia from cornmeal-dextrose agar, original X400. Note scale bar.USDA-ARS/Systematic Mycology & Microbiology Laboratory
Conidia from cornmeal-dextrose agar, original X400. Note scale bar.
CaptionConidia from cornmeal-dextrose agar, original X400. Note scale bar.
CopyrightUSDA-ARS/Systematic Mycology & Microbiology Laboratory
Conidia from cornmeal-dextrose agar, original X400. Note scale bar.
ConidiaConidia from cornmeal-dextrose agar, original X400. Note scale bar.USDA-ARS/Systematic Mycology & Microbiology Laboratory
Chlamydospores from cornmeal-dextrose agar, original X200. Note scale bar.
CaptionChlamydospores from cornmeal-dextrose agar, original X200. Note scale bar.
CopyrightUSDA-ARS/Systematic Mycology & Microbiology Laboratory
Chlamydospores from cornmeal-dextrose agar, original X200. Note scale bar.
ChlamydosporesChlamydospores from cornmeal-dextrose agar, original X200. Note scale bar.USDA-ARS/Systematic Mycology & Microbiology Laboratory
Chlamydospores from cornmeal-dextrose agar, original X200. Note scale bar.
CaptionChlamydospores from cornmeal-dextrose agar, original X200. Note scale bar.
CopyrightUSDA-ARS/Systematic Mycology & Microbiology Laboratory
Chlamydospores from cornmeal-dextrose agar, original X200. Note scale bar.
ChlamydosporesChlamydospores from cornmeal-dextrose agar, original X200. Note scale bar.USDA-ARS/Systematic Mycology & Microbiology Laboratory


Top of page

Preferred Scientific Name

  • Alternaria japonica Yoshii 1941

Preferred Common Name

  • pod spot of radish

Other Scientific Names

  • Alternaria brassicae var. macrospora Sacc. pro parte
  • Alternaria matthiolae Neergaard 1945
  • Alternaria raphani J.W. Groves & Skolko 1944

International Common Names

  • English: Alternaria black spot (and wirestem); alternaria black spot of radish; black pod blotch of radish; black spot of crucifers; leaf spot of radish

Local Common Names

  • Germany: Blattfleckenkrankheit: Rettich

EPPO code

  • ALTERP (Alternaria japonica)

Summary of Invasiveness

Top of page

A. japonica is a seed-borne pathogen of plants in the Brassicaceae. No sexual state is known for the fungus, and identification based on conidial and cultural morphology is difficult. The production of chlamydospores, structures that should allow it to survive in soil or plant debris, does distinguish it from similar species. It is known to occur in certain regions on all continents, but is generally a minor pathogen compared to other species on the same hosts. Its major impact consists of reduced germination of contaminated seeds and disease and death of seedlings. It is not listed as being of concern by phytosanitary agencies, but imported seed lots can be and are rejected due to its presence, because once introduced, it can persist and then spread by means of airborne conidia.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Fungi
  •         Phylum: Ascomycota
  •             Subphylum: Pezizomycotina
  •                 Class: Dothideomycetes
  •                     Subclass: Pleosporomycetidae
  •                         Order: Pleosporales
  •                             Family: Pleosporaceae
  •                                 Genus: Alternaria
  •                                     Species: Alternaria japonica

Notes on Taxonomy and Nomenclature

Top of page

A. japonica had been known since the 1890s as Alternaria brassicae var. macrospora (Joly, 1964; Simmons, 1995) the name that Yoshii (1933) used when he first discussed leaf spot of radish (Raphanus sativus). However, it was not until the 1940s that the fungus was recognized at species level and then three separate workers did so in quick succession. The earliest species name, A. japonica Yoshii, was long ignored (except by Joly, 1964) in favour of Alternaria raphani Groves & Skolko, published 3 years after Yoshii's name. Neergaard (1945) published the name Alternaria matthiolae for the fungus occurring both on Matthiola and Raphanus. It was quickly realised to be a synonym of A. raphani, the name by which this fungus is often referred to in the literature. Groves and Skolko (1944) noted that their fungus was the same as Yoshii's A. brassicae var. macrospore, but were not, apparently, aware of his later publication of another name at species rank. Simmons (1995) demonstrated that A. japonica is the correct name for the fungus, and resolved the problem of its typification that had been confused in the determination by Tohyama and Tsuda (1990) that the two species reported on Raphanus, A. japonica and A. raphani, could not be distinguished by morphology and pathogenicity.

Within the genus, A. japonica has been placed in what is called either the Alternaria cheiranthi species-group (Simmons, 1995) or the Alternaria radicina species-group (Simmons, 2007) based on morphological criteria. On the other hand, some recent molecular phylogeny studies (Jasalavich et al., 1995; Pryor and Gilbertson, 2000; Berbee et al., 2003; Pryor and Bigelow, 2003; Xue and Zhang, 2007) associate A. japonica with Alternaria brassicicola, another leafspot pathogen of crucifers in a separate morphological species-group (Simmons, 2007). An earlier analysis involving an A. raphani strain did not place it near A.brassicicola (Cooke et al., 1998).

Studies examining polymorphisms in the genomes among related fungi do not separate A. japonica from other small-spored species in the genus (Sharma and Tewari, 1998; Wang and Zhang, 2003) and in one, different results were obtained for each of two isolates, only one of them grouping with A. brassicicola (Sharma and Tewari, 1998). Hong et al. (2005a) concluded that the position of the species with respect to the A. brassicicola species group was not resolved, because analyses of sequences for two different genes did not agree. Nevertheless, their results did not place A. japonica close to either A. cheiranthi or A. radicina. A further study using restriction site mapping of the IGS region of DNA likewise did not yield a firm position for A. japonica, although it did put significant distance between that species and both A.brassicicola and A. radicina (Hong et al., 2005b).


Top of page

In culture on potato-carrot agar, colonies pale to olive-grey, occasionally becoming darker, mycelium forming a loose, cobweb-like network. Hyphae septate, branched, colourless to pale-olive, 2-5(-7) µm diameter. Chlamydospores numerous, intercalary, irregular in shape, one-celled at first, becoming multicellular, cells swollen, thick-walled, heavily pigmented, usually in a series in the hypha rather than in a dense cluster, walls becoming ornamented. Conidiophores olive-brown, arising from surface or aerial hyphae, unbranched or sometimes branched, variable in length, but usually 4-7 µm diameter, slightly enlarged at apical conidiogenous cell. Conidia solitary or in short chains of 2-4, 55-70 µm long, beakless.

On host plants, conidia broadly ellipsoid to ovoid or obclavate, with a bluntly rounded apical cell that may develop through an abrupt transition into a broad, short, 1- to 2-celled secondary conidiophore; initially smooth-walled, becoming slightly roughened (punctate) at maturity, 80-100 x 20-30 µm. Transverse septa 7-10, longitudinal septa 0-3 per segment. Conidia in culture short- to long-ovoid, beakless, strongly constricted at transverse septa, smooth-walled, mid-brown, only darkening slightly when mature, size and septation variable: some with 2-3 transverse septa and 1-2 longitudinal septa in one or more transverse segments, 35-45 x 20-24 µm, others with 5-7 transverse septa and 1-2 longitudinal septa in the segments, spore body 55-70 x 18-22 µm.

For additional details, see Tohyama and Tsuda (1990), Corlett and Corlett (1999), Simmons (1995, 2007) and Yu (2001).


Top of page

This species has been reported from areas on all continents, and is, or has been, found often in Europe, the Middle East and North America (CABI/EPPO, 2002). Due to the fact that it is seedborne, the pathogen may occur wherever the hosts are grown from imported seed. Neergaard (1945) found it in seed produced in several European countries, Japanese seed tested in Finland was found to be infected (Valkonen and Kopenen, 1990), and Agarwal et al. (2004) detected the fungus in one of four shipments of seed from Australia.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


BangladeshPresentRazia and Shamim, 2010
BhutanPresentIMI Herbarium, undated; CABI/EPPO, 2002
ChinaPresentTai, 1979; Zhang, 2000; CABI/EPPO, 2002; Wang and Zhang, 2003; Xiao et al., 2004
-GansuPresentGuo, 2005
-JilinPresentTai, 1979; CABI/EPPO, 2002
-NingxiaPresentGuo, 2005
-SichuanPresentTai, 1979; CABI/EPPO, 2002
IndiaPresentRAO, 1966; CABI/EPPO, 2002
-DelhiAbsent, intercepted onlyIntroduced Invasive Agarwal et al., 2004In seeds from Australia
-Madhya PradeshPresentCABI/EPPO, 2002
-MaharashtraPresentRAO, 1966; RAO, 1969; CABI/EPPO, 2002
-OdishaPresentCABI/EPPO, 2002
-SikkimPresentGupta and Chaudhury, 1992; CABI/EPPO, 2002
-Uttar PradeshPresentDhyani et al., 1990; CABI/EPPO, 2002
-UttarakhandPresentKhulbe and Sati, 1987; CABI/EPPO, 2002
-West BengalPresentVerma, 1964; CABI/EPPO, 2002
IranPresentCABI/EPPO, 2002
IraqPresentIMI Herbarium, undated; CABI/EPPO, 2002
IsraelPresentIMI Herbarium, undated; CABI/EPPO, 2002
JapanPresentYoshii, 1941; Tohyama and Tsuda, 1990; Valkonen and Koponen, 1990; Tohyama and Tsuda, 1995; CABI/EPPO, 2002
Korea, Republic ofPresentYu, 2001; Cho and Shin, 2004
MyanmarPresentMaung Mya Thaung, 2008
PakistanPresentAhmad et al., 1997
Saudi ArabiaPresentSheir et al., 1981; CABI/EPPO, 2002
TaiwanPresentSawada, 1959; Anon., 1979; CABI/EPPO, 2002
ThailandPresentIMI Herbarium, undated


EgyptPresentEllis, 1971; Michail et al., 1979; CABI/EPPO, 2002
South AfricaPresentHoltzhausen and Knox-Davies, 1974; Holtzhausen, 1978; Crous et al., 2000; CABI/EPPO, 2002
TunisiaPresentBensassi et al., 2009
ZimbabwePresentWhiteside, 1966; CABI/EPPO, 2002

North America

CanadaWidespreadClear, 1992; Corlett and Corlett, 1999; CABI/EPPO, 2002
-AlbertaWidespreadBerkenkamp, 1972; Clear, 1992; Rude et al., 1999; CABI/EPPO, 2002
-British ColumbiaPresentToms, 1964; Mortensen and Molloy, 1993; CABI/EPPO, 2002
-ManitobaWidespreadPetrie, 1978; Clear and Patrick, 1995; Corlett and Corlett, 1999; CABI/EPPO, 2002
-OntarioPresentClear and Patrick, 1995; CABI/EPPO, 2002
-Prince Edward IslandPresentMortensen and Molloy, 1993; CABI/EPPO, 2002
-QuebecPresentCorlett and Corlett, 1999
-SaskatchewanWidespreadTaber et al., 1968; Petrie, 1973; Clear, 1992; Rude et al., 1999; CABI/EPPO, 2002
USAPresentGreathead Greathead, 1992; CABI/EPPO, 2002
-ArizonaPresentCotty and Alcorn, 1984; CABI/EPPO, 2002
-CaliforniaPresentDavis et al., 1949; French, 1989; CABI/EPPO, 2002; Tidwell et al., 2014
-FloridaPresentChangsri, 1961; Changsri and Weber, 1963; Miller, 1992; CABI/EPPO, 2002
-MassachusettsPresentSimmons, 1995; CABI/EPPO, 2002
-MichiganPresentMcLean, 1947; USDA, 1960; CABI/EPPO, 2002
-MinnesotaPresentPreston and Dosdall, 1955; USDA, 1960; CABI/EPPO, 2002
-MississippiPresentCABI/EPPO, 2002
-New JerseyPresentUSDA, 1960; CABI/EPPO, 2002
-OhioPresentUSDA, 1960; CABI/EPPO, 2002
-PennsylvaniaPresentUSDA, 1960; CABI/EPPO, 2002

Central America and Caribbean

BarbadosPresentNorse, 1974; CABI/EPPO, 2002
CubaPresentArnold, 1986; CABI/EPPO, 2002

South America

BrazilPresentCrochemore and Piza, 1994; Mendes et al., 1998; CABI/EPPO, 2002
-ParanaPresentCrochemore and Piza, 1994; CABI/EPPO, 2002


AustriaPresentBedlan, 1989; Richardson, 1990; CABI/EPPO, 2002
Czech RepublicPresentLaska and Rod, 1985; CABI/EPPO, 2002
DenmarkPresentNeergaard, 1945; CABI/EPPO, 2002
FinlandPresentTahvonen, 1979; CABI/EPPO, 2002
FrancePresentChampion et al., 1979; CABI/EPPO, 2002
GermanyPresentNeergaard, 1945; Richardson, 1990; CABI/EPPO, 2002
GreecePresentCritopoulos, 1953; Pantidou, 1973; CABI/EPPO, 2002
HungaryPresentNeergaard, 1945; CABI/EPPO, 2002
ItalyPresentMannerucci et al., 1982; Vannacci and Pecchia, 1988; CABI/EPPO, 2002
NetherlandsPresentNeergaard, 1945; CABI/EPPO, 2002
Russian FederationPresentCABI/EPPO, 2002
-Russian Far EastPresentNelen, 1959; CABI/EPPO, 2002
SpainPresentBassimba et al., 2013
UKPresentWare, 1936; Moore, 1959; CABI/EPPO, 2002


AustraliaPresentCunnington, 2003; Agarwal et al., 2004
French PolynesiaPresentCABI/EPPO, 2002
New CaledoniaPresentHuguenin, 1966; CABI/EPPO, 2002
New ZealandPresentDingley, 1969; Pennycook, 1989; CABI/EPPO, 2002
Papua New GuineaPresentShaw, 1984; CABI/EPPO, 2002


Top of page
Introduced toIntroduced fromYearReasonIntroduced byEstablished in wild throughReferencesNotes
Natural reproductionContinuous restocking
Finland Japan 1988 Seed trade (pathway cause) No No Valkonen and Koponen, 1990 in seed
India Australia 2002 Seed trade (pathway cause) No No Agarwal et al., 2004 intercepted in seed

Risk of Introduction

Top of page

There are no known quarantine restrictions on A. japonica. However, the distribution of locations where it has been reported (CABI/EPPO, 2002), indicate that it is capable of infecting plants in many additional temperate and tropical areas. Its common transmission in and on seeds (see Seedborne Aspects) provides a direct route of introduction to populations of susceptible hosts.

Habitat List

Top of page
Cultivated / agricultural land Present, no further details Harmful (pest or invasive)

Hosts/Species Affected

Top of page

Yoshii (1933; 1941) reported A. japonica to occur on radish (Raphanus sativus), cabbage and cauliflower (Brassica oleracea) and Chinese cabbage (Brassica chinensis) (Brassica rapa Chinensis Group). Groves and Skolko (1944) recorded it from R. sativus, and Neergaard (1945) based his species on material from Matthiola incana. These hosts are the most common ones for A. japonica. In general, the species seems to be confined to Brassicaceae (Cruciferae) with occasional reports of it on parts of other hosts such as flax seeds (Linum usitatissimum) (Petrie, 1974), pecan [Carya illinoinensis] (Huang and Hanlin, 1975), rice [Oryza sativa] (Tai, 1979), tomato [Solanum lycopersicum] (Khulbe and Sati, 1987) and cowpea [Vigna unguiculata] (Mendes et al., 1998). Whether these are cases of infection from nearby brassicaceous crops or of misidentifications is uncertain. There is no clear host preference at the subfamilial level. Most records are from members of tribe Brassiceae, but this may reflect the preponderance of cultivated plants within the tribe rather than the natural range of the fungus. Within Brassica, there are reports of A. japonica on B. oleracea (Botrytis and Capitata Groups), Brassica napus (Napobrassica Group), Brassica nigra, and Brassica rapa (Chinensis, Pekinensis and Rapifera Groups, as well as subsp. campestris). There are a few records of A. japonica from Araliaceae, although these may well be misidentifications of Alternaria pathogens specific to that host family, such as Alternaria panax.

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Brassica napus var. napus (rape)BrassicaceaeMain
Brassica nigra (black mustard)BrassicaceaeOther
Brassica oleracea (cabbages, cauliflowers)BrassicaceaeMain
Brassica oleracea var. botrytis (cauliflower)BrassicaceaeOther
Brassica oleracea var. capitata (cabbage)BrassicaceaeOther
Brassica oleracea var. gemmifera (Brussels sprouts)BrassicaceaeOther
Brassica oleracea var. gongylodes (kohlrabi)BrassicaceaeOther
Brassica oleracea var. viridis (collards)BrassicaceaeOther
Brassica rapa subsp. campestrisBrassicaceaeOther
Brassica rapa subsp. chinensis (Chinese cabbage)BrassicaceaeMain
Brassica rapa subsp. oleifera (turnip rape)BrassicaceaeMain
Brassica rapa subsp. pekinensisBrassicaceaeOther
Brassica rapa subsp. rapa (turnip)BrassicaceaeOther
Brassicaceae (cruciferous crops)BrassicaceaeMain
Cicer arietinum (chickpea)FabaceaeHabitat/association
Diplotaxis tenuifoliaBrassicaceaeWild host
Eruca vesicaria (purple-vein rocket)BrassicaceaeOther
Erysimum cheiri (wallflower)BrassicaceaeOther
Iberis (candytuft)BrassicaceaeOther
Iberis amaraBrassicaceaeWild host
Lepidium (pepperweed)BrassicaceaeWild host
Matthiola incana (stock)BrassicaceaeOther
Raphanus sativus (radish)BrassicaceaeMain
Raphanus sativus var. hortensisBrassicaceaeMain
Sinapis alba subsp. albaBrassicaceaeOther
Sinapis arvensis (wild mustard)Other
Sinapis arvensis subsp. arvensisBrassicaceaeOther
Solanum lycopersicum (tomato)SolanaceaeOther
Thlaspi arvense (field pennycress)BrassicaceaeWild host
Triticum turgidum (durum wheat)PoaceaeOther

Growth Stages

Top of page Flowering stage, Fruiting stage, Post-harvest, Pre-emergence, Seedling stage, Vegetative growing stage


Top of page

A. japonica is known to affect most parts of infected plants depending upon growth stage. There are reports of it on the hypocotyls and cotyledons of seedlings and on the leaves, petioles, stem, inflorescence, fruits (siliquae) and seeds of adult plants. Leaf lesions are small (1-10 mm diameter), black to grey, dry, with a raised margin, and they are often surrounded by a translucent yellow halo (Atkinson, 1950). Similar black spots can be found on the siliquae, which presumably are the means of infection of the seeds; these spots can coalesce to cover the entire pod (McLean, 1947). Neergaard (1945) noted that infection of seeds by A. japonica (as Alternaria matthiolae) caused seed discolouration from the normal brown to grey. In radish [Raphanus sativus], when the whole fruit is affected, the seeds are small and shrivelled (Atkinson, 1950). Disease developing from infected seeds produced black stripes or dark brown sharp-edged lesions on seedling hypocotyls in Brassica oleracea var. pekinensis, and some seedlings were killed (Valkonen and Koponen, 1990). There appears to be some variation according to host: on Raphanus the lesions are as described above, and initially black in the centre due to sporulation, but later the centre dries up and may drop out. On Matthiola, on the other hand, the lesions are pale greyish-green with concentric zones, the centre becoming dark brown to black with sporulation (Neergaard, 1945; Atkinson, 1950). Lesions on stems and flowers may have water-soaked margins (Davis et al., 1949).

Su et al. (2005) reported that A. japonica infection of harvested radishes in cold storage caused black and brown patches on the skin that were closely associated with skin wounds and damaged root hairs.

List of Symptoms/Signs

Top of page


  • lesions: on pods


  • lesions; flecking; streaks (not Poaceae)


  • abnormal colours
  • fungal growth
  • necrotic areas
  • wilting
  • yellowed or dead


  • discolorations
  • lesions on seeds
  • rot
  • shrivelled


  • necrosis

Vegetative organs

  • surface lesions or discoloration

Whole plant

  • damping off
  • seedling blight

Biology and Ecology

Top of page

Life Cycle

A. japonica grows well between 17 and 29°C (Changsri and Weber, 1963) and these are the optimum temperatures for infection (Degenhardt et al., 1982). The optimum temperature for sporulation is in the middle of this range. Conidia are produced abundantly in wet weather, but high humidity restricts dispersal such that air spore concentration shows a distinct diurnal periodicity, with a maximum in the early afternoon and a minimum in the early morning. The conidia germinate in free water on the leaf surface (such as that resulting from dew) and penetrate host tissues through stomata or ordinary healthy tissues. Germination can take between 5 and 8 hours, and infection of the host can occur within 24 hours at 15°C or above (Verma and Saharan, 1994).


Three main sources of inoculum have been identified: infected seeds, diseased plant debris, and conidia spreading from related wild host plants (Verma and Saharan, 1994). A. japonica occurs in all parts of radish [Raphanus sativus] seed. Its presence in the embryo can result in seed death, but in milder infections it will affect seedlings after germination, causing seedling blight ('damping-off'), both before and after emergence. However, both time and temperature deleteriously affect the fungus: where temperatures are above 35°C, seed can become free of infection. It can survive up to 5 years in soil culture without any loss of viability or virulence, although tests failed to show evidence of survival in unsterilized soil (Atkinson, 1950; 1953). It can also persist as chlamydospores, which are produced on the host plant and can survive prolonged freezing. Once established on a host plant, the fungus will spread through dispersal of conidia in the air or over short distances by rain splash (Verma and Saharan, 1994).


Under field conditions, A. japonica infection progresses rapidly at 22-26°C. In the boreal-temperate zones, where the affected crops are most commonly grown, the most severe outbreaks are in the summer period. In Canadian canola [rape, Brassica napus var. oleifera] production, disease severity varies from year to year, depending upon weather conditions. The greatest losses are sustained when there is frequent rain or dew during pod formation (Seidle et al., 1995).

Physiology and Phenology

Atkinson (1950) observed variation in culture growth and pathogenicity to several hosts among single-spore isolates from radish. Based on culture morphology, 312 isolates could be sorted into 13 groups. In contrast with the nearly uniform virulence of A.brassicicola isolates in Japan, isolates of A. japonica induced varied reactions in different host plants or plant parts in inoculation tests (Tohyama and Tsuda, 1995).


Top of page
Am - Tropical monsoon climate Tolerated Tropical monsoon climate ( < 60mm precipitation driest month but > (100 - [total annual precipitation(mm}/25]))
BS - Steppe climate Tolerated > 430mm and < 860mm annual precipitation
BW - Desert climate Tolerated < 430mm annual precipitation
Cf - Warm temperate climate, wet all year Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)
Df - Continental climate, wet all year Preferred Continental climate, wet all year (Warm average temp. > 10°C, coldest month < 0°C, wet all year)

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Trichoderma harzianum Antagonist
Trichoderma koningii Antagonist

Notes on Natural Enemies

Top of page

Tsuneda and Skoropad (1980) showed that Nectria inventa, a fungal phylloplane inhabitant of canola [rape, Brassica napus var. oleifera], can attack a number of conidial fungi including A. japonica. It is able to penetrate and parasitize the hyphae, causing granulation and vacuolation of host cytoplasm. Fungi isolated from crucifer seeds that were able to antagonize or parasitize the pathogen in vitro included Chaetomium globosum and species of Fusarium, Myrothecium and Trichoderma (Vannacci and Harman, 1987).

Means of Movement and Dispersal

Top of page

Natural Dispersal

Conidia of the fungus are disseminated primarily by wind and rain splash (Verma and Saharan, 1994; Tewari and Buchwaldt, 2007). The fungus may also be moved in infested debris and by any natural dispersal of infected seeds. The role of the chlamydospores in survival in the debris or in soil is undetermined.

Accidental Introduction

The fungus is most likely to be transported in and on seeds (see Seedborne Aspects), although infected seedlings could carry it locally if transplanted.

Seedborne Aspects

Top of page


Petrie (1974) isolated A. japonica frequently from turnip-rape seeds (Brassica campestris), but less from rape (Brassica napus). It was also found in 30% of seed lots of radish and black radish (Raphanus sativus var. major) seed in Finland (Tahvonen, 1979). Vannacci and Pecchia (1988) detected the fungus on 80% of seeds in one radish lot. A high rate of occurrence of the pathogen on radish seeds was also reported in Michigan, USA (McLean, 1947). In South Africa and Egypt, the pathogen was isolated from seeds of other brassicaceous plants (Holtzhausen and Knox-Davies, 1974; Michail et al., 1979). Many Japanese seed lots of Chinese cabbage (Brassica rapa subsp. pekinensis) tested in Finland were infected with A. japonica (Valkonen and Koponen, 1990).

The fungus was found in all parts of radish seeds, with conidia present on the seed coat. The amount of inoculum decreased with depth in the seed (Vannacci and Pecchia, 1988). Vannacci and Harman (1987) also found that the fungus was present on seeds both internally and externally.

Effect on Seed Quality

Neergaard (1945) stated that infection by A. japonica affects the colour of the seed in radish, but this has not been substantiated in more recent literature.

In a Canadian study (Rude et al., 1999), surface-sterilized seed samples of Brassica rapa subsp. campestris from Saskatchewan and Alberta, were assessed for seed infection by Alternaria spp. and for seed germination. Infection by Alternaria brassicae and A. japonica significantly reduced seed germination, whereas Alternaria alternata had no effect; as many as 30% of seeds in a lot failed to germinate.

Pathogen Transmission

Evidence for transmission of A. japonica by seeds is based on germination tests of radish seeds in which the pathogen colonized the growing seedling structures, resulting in infection of all the epicotyl-hypocotyl axes and of most cotyledons. Most seed coats remained adherent to the hypocotyl base, enabling some cotyledons to escape infection. In another test, in which infected radish seeds were planted in soil, a large proportion of diseased seedlings died before emergence (Vannacci and Pecchia, 1988). Petrie (1974), on the other hand, found no relation between levels of Brassica seed infestation by Alternaria spp. and seedling emergence and survival. Most of the A. raphani present was determined to be on the seed surface, because surface sterilization removed 90% of it.

Infection of seeds of Brassica rapa subsp. pekinensis (Chinese cabbage) reduced germination in plate tests, produced stripes or sharp-edged lesions on seedling hypocotyls, and killed other seedlings (Valkonen and Koponen, 1990). Germination was reduced by 7% in a seed lot in which 35% of seeds carried the fungus internally and/or externally.

Seed Treatments

Seed dressings with a wide range of different fungicides have been shown to give effective control of A. japonica (Mondal et al., 1989; Verma and Saharan, 1994). Champion et al. (1979) found iprodione to be especially effective (Valkonen and Koponen, 1990). Vannacci and Harman (1987) found that treatment with some antagonistic fungi resulted in an increase in the number of healthy seedlings and in the number of seedlings germinating from infected radish seeds. These fungi were strains of Chaetomium globosum, Trichoderma harzianum, Trichoderma koningii and Fusarium sp.. Several of these were observed to be mycoparasites on the Alternaria hyphae. However, it was concluded that treatment with iprodione was more effective than with any of the fungi. Hot water treatment has also been recommended for control of Alternaria and other pathogens in brassicaceous vegetable seeds (Tewari and Buchwaldt, 2007).

Seed Health Tests

Blotter Test (Vannacci and Pecchia, 1988)

1. Place untreated seeds on damp blotters.

2. Incubate at 18-20°C under a near UV light 12 h/dark 12 h cycle for 7 days.

3. Examine for brown spots on cotyledons, containing light- to dark-brown conidia, with longitudinal and transverse septa.

Culture Plate (Vannacci and Pecchia, 1988)

1. Pre-treat the seed in 1% chlorine solution for 10 minutes

2. Incubate on PDA at 20°C under a near-UV light 12 h/dark 12 h cycle for 5 days.

3. Examine daily for characteristic dark mycelium and conidia, and possibly chlamydospores, in colonies.

Valkonen and Koponen (1990) preferred use of 4% water agar to slow fungal growth in plate tests.

PCR (Iacomi-Vasilescu et al., 2002)

A PCR-based diagnostic technique has been developed for the detection of some seedborne Alternaria species. Specific primer pairs were designed from DNA sequences in the internal transcribed spacer (ITS) region of nuclear rDNA and used in PCR reactions containing DNA extracted from seed macerates. After only 2 days of incubation, the assay successfully revealed the presence of A. brassicicola and A. japonica in seeds of crucifers at levels of infection as low as 10%.


Pathway Causes

Top of page
CauseNotesLong DistanceLocalReferences
Seed tradeinfected seed Yes Yes Neergaard, 1945; Petrie, 1978; Tahvonen, 1979; Tohyama and Tsuda, 1990; Tohyama and Tsuda, 1995

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Fruits (inc. pods) hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
Leaves hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
Roots hyphae Yes Pest or symptoms usually visible to the naked eye
Seedlings/Micropropagated plants hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
Stems (above ground)/Shoots/Trunks/Branches hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
True seeds (inc. grain) hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Growing medium accompanying plants

Impact Summary

Top of page
Economic/livelihood Negative

Economic Impact

Top of page

Although widespread and occurring on a range of brassicaceous hosts, infections by A.japonica are seldom severe, only causing minor damage to established crops (Neergaard, 1945; Petrie, 1985; Petrie et al., 1985). In Canada, the fungus is often found on crops affected by other more serious pathogens, such as Leptosphaeria maculans, Albugo candida and Sclerotiniasclerotiorum. Degenhardt et al. (1974) reported that A. japonica, in association with A. brassicae can cause yield losses in certain rapeseed cultivars (Brassica rapa subsp. campestris 'Span' and Brassica napus 'Zephyr') of between 40 and 70%; alone it caused yield losses of 34-42%. Reduction in oil content was noted for 'Span' and reduction in protein content was found in 'Zephyr'. The main economic impacts of A. japonica result from the effect on germination and the subsequent seedling blight (Neergaard, 1945). Seed with reduced germination due to infection may not be saleable as certified (Rude et al., 1999). The level of shrivelled seed may also reduce the price the grower receives for canola [rape, Brassica napus var. oleifera] (Seidle et al., 1995). Tohyama et al. (1991) noted that this and other Alternaria species can pose a threat to the production of food items such as young seedlings of Chinese radish (Raphanus sativus var. hortensis), which is a popular food garnish in Japan. Likewise, in the USA, Alternaria spot on the edible leaves, heads and other parts of vegetables can make them unsaleable (Kucharek, 1994).

Social Impact

Top of page

A. japonica is not known to be pathogenic to humans or animals, but medical species identifications in the genus may be imprecise (de Hoog et al., 2000). Alternaria spores are known to be allergenic (Marks and Bush, 2007). Workers in Canadian fields have attributed skin and eye irritation to high spore levels of A. brassicae spores on plants at harvest (Petrie, 1973). A. japonica is not one of the species most frequently found in the air (Infante et al., 1987), but the gene for the Alt a allergen has been found in one strain (Hong et al., 2005a).

Risk and Impact Factors

Top of page


Top of page

If the fungus cannot be detected directly on field material, it should produce conidiophores and conidia following incubation of infected plant parts in a damp chamber for up to 24 hours. The fungus can also be isolated into culture from the infected parts. Optimum growth is obtained at 24-28°C and pH 7.1-8.0, with the best standard medium being PDA, although better results were achieved with brassicaceous leaf decoction agar. Sporulation is best achieved by incubating the culture at between 23 and 25°C, under near-UV light for 12 hour alternating light/dark periods (Verma and Saharan, 1994).

Schleier et al. (1997) found amplified taxon-specific DNA fragments for A. japonica and other fungi that could be used as hybridization probes for the diagnosis of rape-seed pathogens. A number of sequences of the ITS and other regions of DNA are now available in GenBank for comparison (NCBI, 2009).

Detection and Inspection

Top of page

The disease symptoms (see Symptoms) are conspicuous enough to be detected in the field. It appears that the lower leaves are the first parts of the plant to be affected (if infection is from airborne spores) and then spread to the upper leaves, stems and flowers occurs.

Severity of infection in the field can be assessed by a range of methods, but the most frequently used is a visual assessment by means of descriptive keys or by standard area diagrams. Verma and Saharan (1994) suggest a number of other possible methods including inoculum-disease intensity relationships and video image analysis. Keys for the assessment of Alternaria disease severity on crucifers have been produced by Mayee and Datar (1986) and Saharan (1991); and schematic drawings of infected crucifer leaves and fruits by Conn et al. (1990).

Similarities to Other Species/Conditions

Top of page

A. japonica was treated by Simmons (1995) as a member of the Alternaria cheiranthi group, characterized by generally beakless conidia, and the usually dense pigmentation of the conidial septa. However, secondary conidiophores, also known as “false beaks”, are often produced by the conidia. Within this group, A. japonica is distinct in producing chains of hyphal chlamydospores. Two possible confusions may have arisen in the past: first, because A. japonica and A. cheiranthi both occur on hosts in the Brassicaceae, these two species may be mistaken for each other. The hyphal chlamydospores should allow them to be distinguished easily, but, in addition, the conidia of A. cheiranthi are typically in longer chains (up to six), which may be branched through the production of lateral secondary conidiophores and, further, their septation is more complex. There are reports of A. japonica on Cheiranthus cheiri (Conners, 1967); Neergaard (1945) was able to obtain infection of the seedlings with some of his isolates. A second confusion, reflected in the reports of A.japonica on araliaceous hosts, is with a species that may have different morphology in culture from that on host plants. Alternariapanax can be distinguished, apart from its lack of hyphal chlamydospores, in that the conidia generally have a greater range of length, up to 175 mm, particularly in nature (Simmons, 2007). A key to the A. cheiranthi group was published by Simmons (1995).

Currently, Simmons (2007) separates A. cheiranthi from the other species in what he now calls the A. radicina species-group. Again, within the group, only A. japonica produces chlamydospores. All the other species are found on plants in the Umbelliferae (Apiaceae).

Two other species of Alternaria also cause black-spotting of crucifers: Alternaria brassicae and Alternaria brassicicola. Neither produces hyphal chlamydospores. The conidia of A. brassicae are much longer, and usually have long true beaks, being produced singly on the conidiophores in nature (Simmons, 2007). Conidia of A. brassicicola are similar in length to those of A. japonica, but have fewer longitudinal septa, are not constricted at the transverse septa, and are produced in longer chains (Tewari and Buchwaldt, 2007). Both species are more common and more damaging pathogens of crucifers than is A. japonica; A. brassicicola is more prevalent in warmer climates (Atkinson, 1950; Tewari and Buchwaldt, 2007).

Prevention and Control

Top of page


SPS Measures

Because the fungus is readily transmitted in and on seed, the use of certified fungus-free seed is a necessity to prevent its introduction into new areas and to avoid elsewhere the initiation of a possible serious level of disease starting at seedling emergence. Neergaard (1945) detected A. japonica (as Alternaria matthiolae) in seed lots from Germany, Hungary and the Netherlands. Many Japanese seed lots of Chinese cabbage (Brassica rapa subsp.pekinensis) tested in Finland were infected with A. japonica (Valkonen and Koponen, 1990). Recently, one of four seed shipments from Australia to India was determined through phytosanitary inspection to contain the fungus (Agarwal et al., 2004) (see Seed Health Tests under Seedborne Aspects, for methods of detection).


Cultural Control and Sanitary Measures

The nature of the main sources of inoculum (infected seeds, infested plant debris, and conidia spreading from related wild host plants) generally preclude effective cultural control. Atkinson (1953) showed that A. japonica can survive and reinfect susceptible crops after 5 years in dried soil cultures. Furthermore, it is also known that chlamydospores can withstand severe freezing. This means that once present, the pathogen may be able to survive in the field for a long time. Nevertheless, some cultural methods that have been recommended are crop rotations of several years, eradication of wild and volunteer crucifers, and incorporation of debris into the soil (Tewari and Buchwaldt, 2007) as well as selection of a planting date that avoids favourable conditions for disease at sowing or pod fill, and prompt harvesting to avoid deposits of rain or dew on the pods (Seidle et al., 1995).

Physical/Mechanical Control

Because infection can cause canola [rape, Brassica napus var. oleifera] seeds to be small or shrivelled, Seidle et al. (1995) suggest that vigorous cleaning by various methods, including screening and winnowing, may reduce the infection level in the harvest. Petrie (1974) found that storage of Brassica seeds for 6 to 8 months at 25°C substantially reduced the level of infestation by viable conidia on the seed surface.

Biological Control

Vannacci and Harman (1987) investigated biological control of A. japonica using a range of fungi. Isolates of Chaetomium globosum, Trichoderma harzianum, Trichodermakoningii and Fusarium sp. gave significant improvement in seed germination and numbers of healthy radish seedlings, and reduced disease on pods and the infection of seeds, but they were found to be no more effective than iprodione. The lack of complete control by either the fungicide or the fungi is likely due to the deep-seated nature of seed infection by A. japonica (Vannacci and Harman, 1987). Tsuneda and Skoropad (1977; 1980) have shown that Nectria inventa, a fungal phylloplane inhabitant of canola, can parasitize the hyphae of A. japonica and infect the conidia of A. brassicae. This provides a prospect for natural control of these pathogens on the above-ground parts of cruciferous crops.

Chemical Control

Many fungicides applied as a seed dressing are effective  in reducing disease caused by A. japonica (Laska and Rod, 1985). There is little evidence that chemical control is necessary, although it is known that captan, carbendazim, iprodione, mancozeb, thiophanate-methyl and zineb are effective against Alternaria species on seedlings (Mondal et al., 1989; Dhyani et al., 1990).

Host Resistance

Although sources of resistance to Alternaria infection in some brassicaceous crops have been identified, breeding efforts are at an early stage and few data are available (see Tewari and Buchwaldt, 2007).


Kharbanda and Tewari (1996) discussed the value of crop rotation, weed control, and high cutting for integrated management of Alternaria pathogens of canola in Canada.

Gaps in Knowledge/Research Needs

Top of page

The precise relationship of strains identified as A. japonica and Alternaria raphani from different continents, and their relationships to other species within the genus, should be examined by molecular means, using more than one strain of each species and considering more than one region of DNA.

The role of the chlamydospores in the survival of A. japonica in crop debris and soil in different climates should be investigated.

The promising studies on biological control of Alternaria species on crucifer seeds and plants should be followed up for the possible inclusion of biological agents in integrated control programmes.

Efforts to identify sources of resistance and incorporate resistance into usable cultivars should continue. This may necessitate additional exploration of variation within the pathogen, so that resistance can be made durable over time.


Top of page

Agarwal PC, Baleshwar Singh, Usha Dev, Indra Rani, Dinesh Rai, Joshi KD, Dinesh Chand, Maurya AK, Khetarpal RK, 2004. Interception of seed-borne pathogens in introduced planting material. Indian Journal of Microbiology, 44(1):37-42.

Ahmad S, Iqbal SH, Khalid AN, 1997. Fungi of Pakistan. Lahore, Pakistan: Sultan Ahmad Mycological Society of Pakistan, 248 pp.

Anon., 1979. List of plant diseases in Taiwan. List of plant diseases in Taiwan. Plant Protection Society. Taichung Taiwan, 404 pp.

Arnold GRW, 1986. Lista de hongos fitopatógenos de Cuba (List of plant pathogenic fungi of Cuba.). Havana, Cuba: Editorial Científico-Técnico, 207 pp.

Atkinson RG, 1950. Studies on the parasitism and variation of Alternaria raphani. Canadian Journal of Research, Section C, 28:288-317.

Atkinson RG, 1953. Survival and pathogenicity of Alternaria raphani after five years in dried soil cultures. Canadian Journal of Botany, 31:542-547.

Bassimba DDM, Mira JL, Vicent A, 2013. First report of Alternaria japonica causing black spot of turnip in Spain. Plant Disease, 97(11):1505-1506.

Bedlan G, 1989. Alternaria on radishes. Pflanzenschutz (Wien), No. 3:4

Bensassi F, Zid M, Rhouma A, Bacha H, Hajlaoui MR, 2009. First report of Alternaria species associated with black point of wheat in Tunisia. Annals of Microbiology, 59(3):465-467.

Berbee ML, Payne BP, Zhang GuoJuan, Roberts RG, Turgeon BG, 2003. Shared ITS DNA substitutions in isolates of opposite mating type reveal a recombining history for three presumed asexual species in the filamentous ascomycete genus Alternaria. Mycological Research, 107(2):169-182.

Berkenkamp B, 1972. Diseases of rapeseed in central and northern Alberta in 1971. Canadian Plant Disease Survey, 52:62-63.

CABI/EPPO, 2002. Alternaria japonica. Distribution Maps of Plant Diseases, No. 862. Wallingford, UK: CAB International.

Champion R, Brunet D, Anselme C, Bourdin J, Berthier G, 1979. Fungicidal seed disinfection of market garden plants: carrot (Daucus carota); cabbage (Brassica oleracea bullata); Valerianella olitoria; and radish (Raphanus sativus). Revue Horticole, No.196:23-34

Changsri W, 1961. Studies of Alternaria spp. pathogenic on Cruciferae. Dissertations Abstracts, 21:1698.

Changsri W, Weber GF, 1963. Three Alternaria species pathogenic on certain cutivated crucifers. Phytopathology, 53:643-648.

Cho WD, Shin HD, 2004. List of plant diseases in Korea. Fourth edition. Seoul, Republic of Korea: Korean Society of Plant Pathology, 779 pp.

Clear RM, 1992. Frequency and distribution of seedborne fungal pathogens in western Canadian canola - 1989 and 1990. Canadian Plant Disease Survey, 72(1):21-27

Clear RM, Patrick SK, 1995. Frequency and distribution of seedborne fungi infecting canola seed from Ontario and western Canada 1989 to 1993. Canadian Plant Disease Survey, 75(1):9-17

Conn KL, Tewari JP, Awasthi RP, 1990. A disease assessment key for Alternaria blackspot in rapeseed and mustard. Canadian Plant Disease Survey, 70(1):19-20

Conners IL, 1967. An annotated index of plant diseases in Canada and fungi recorded on plants in Alaska, Canada and Greenland. Publ. Res. Br. Canada Dept Agric, 1251:381 pp.

Cooke DEL, Forster JW, Jenkins PD, Jones DG, Lewis DM, 1998. Analysis of intraspecific and interspecific variation in the genus Alternaria by the use of RAPD-PCR. Annals of Applied Biology, 132(2):197-209.

Corlett M, Corlett ME, 1999. Alternaria japonica. Canadian Journal of Plant Pathology, 21(3):298-300.

Cotty PJ, Alcorn SM, 1984. Alternaria raphani on turnip in Arizona. Plant Disease, 68(8):732

Critopoulos PD, 1953. A contribution to the fungus flora of Greece. Bulletin of the Torrey Botanical Club, 80:325-341.

Crochemore ML, Piza SM de T, 1994. Germinacao e sanidade de sementes de nabo forrageiro conservadas em diferentes embalagens. Pesquisa Agropecuária Brasileira, 29:677-680.

Crous PW, Phillips AJL, Baxter AP, 2000. Phytopathogenic fungi from South Africa. Stellenbosch, Western Cape, South Africa: University of Stellenbosch, Department of Plant Pathology Press, 546 pp.

Cunnington J, 2003. Pathogenic fungi on introduced plants in Victoria. A host list and literature guide for their identification. Knoxfield, Victoria, Australia: Department of Primary Industries, State of Victoria, 57 pp.

Davis LH, Sciaroni RH, Pritchard F, 1949. Alternaria leaf spot of garden stock in California. Plant Disease Reporter, 33:432-433.

Degenhardt KJ, Petrie GA, Morrall RAA, 1982. Effects of temperature on spore germination and infection of rapeseed by Alternaria brassicae, A. brassicicola, and A. raphani. Canadian Journal of Plant Pathology, 4(2):115-118

Degenhardt KJ, Skoropad WP, Kondra ZP, 1974. Effects of Alternaria blackspot on yield, oil content and protein content of rapeseed. Canadian Journal of Plant Science, 54(4):795-799

Dhyani AP, Sati MC, Khulbe RD, 1990. Seed-plant transmission and control of Alternaria spp. in Lahi (Brassica napus L.) in Kumaun Hills, India. Madras Agricultural Journal, 77(3-4):137-142

Dingley JM, 1969. Records of plant diseases in New Zealand. Bulletin of the New Zealand Department of Scientific and Industrial Researches Bulletin, 192, 298 pp.

Ellis MB, 1971. Dematiaceous Hyphomycetes. Wallingford, UK: CAB International.

French AM, 1989. California plant disease host index. Sacramento, California, USA: California Department of Food and Agriculture, 394 pp.

Garibaldi A, Gilardi G, Bertoldo C, Gullino ML, 2011. First report of leaf spot of wild (Diplotaxis tenuifolia) and cultivated (Eruca vesicaria) rocket caused by Alternaria japonica in Italy. Plant Disease, 95(10):1316.

Gilardi G, Bertoldo C, Gullino ML, Garibaldi A, 2012. Alternaria leaf spot: a new disease caused by Alternaria japonica on cultivated and wild rocket in Italy. (Una nuova malattia della rucola coltivata e selvatica causata da Alternaria japonica in Italia.) Protezione delle Colture, No.1:26-28.

Greathead DJ, Greathead AH, 1992. Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News and Information, 13(4):61N-68N.

Groves JW, Skolko AJ, 1944. Notes on seed-borne fungi. Canadian Journal of Research, 22:217-234.

Guo YL, 2005. Anamorphic fungi. In: Fungi of Northwestern China [ed. by Zhuang, W. Y.]. Ithaca, New York, USA: Mycotaxon Ltd., 125-232.

Gupta DK, Chaudhury KCB, 1992. Occurrence and prevalence of Alternaria species in crucifers grown in Sikkim. Indian Journal of Hill Farming, 5(2):129-131

Holtzhausen MA, 1978. Seed-borne fungal pathogens and diseases of Japanese radish and their control in South Africa. Phytophylactica, 10(4):107-113.

Holtzhausen MA, Knox-Davies PS, 1974. Pathogens of cruciferous vegetable crops in commercial seed samples in South Africa. Phytophylactica, 6(4):289-294

Hong SG, Cramer RA, Lawrence CB, Pryor BM, 2005. Alt a1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genetics and Biology, 42:119-129.

Hong SG, Liu DR, Pryor BM, 2005. Restriction mapping of the IGS region in Alternaria spp. reveals variable and conserved domains. Mycological Research, 109(1):87-95.

Hoog GS de, Guarro J, Gene J, Figueras MJ, 2000. Atlas of clinical fungi. Second edition. Utrecht, The Netherlands: Centraalbureau voor Schimmelcultures, 1126 pp.

Huang LH, Hanlin RT, 1975. Fungi occurring in freshly harvested and in-market pecans. Mycologia, 67(4):689-700.

Huguenin B, 1966. Micromycétes of the S. Pacific. V. Urédinales of New Caledonia. I. (Micromycètes du Pacifique Sud. Y. Urédinales de Nouvelle-Calédonie. I.) Bull. trimest. Soc. mycol. Fr, 82(2):248-273.

Iacomi-Vasilescu B, Blancard D, Guénard M, Molinero-Demilly V, Laurent E, Simoneau P, 2002. Development of a PCR-based diagnostic assay for detecting pathogenic Alternaria species in cruciferous seeds. Seed Science and Technology, 30(1):87-95; 20 ref.

IMI Herbarium, undated. Herbarium specimen. International Mycological Institute (now CABI Bioscience) Herbarium. Egham, UK: CABI Bioscience.

Infante F, Domínguez E, Ruiz de Clavijo E, Galán C, 1987. Incidence of Alternaria Nees ex Fries in dwellings of Córdoba City (Spain). Allergologia et Immunopathologia, 15(4):221-224.

Jasalavich CA, Morales VM, Pelcher LE, Séguin-Swartz G, 1995. Comparison of nuclear ribosomal DNA sequences from Alternaria species pathogenic to crucifers. Mycological Research, 99(5):604-614.

Joly P, 1964. Le Genre Alternaria. Encyclopedic Mycologique, Vol. 33. Paris, France: P. Lechevalier.

Kharbanda PD, Tewari JP, 1996. Integrated management of canola diseases using cultural methods. Canadian Journal of Plant Pathology, 18(2):168-175; 77 ref.

Khulbe RD, Sati MC, 1987. Seed transmission of Alternaria raphani in tomato. Indian Phytopathology, 40(1):106-107

Kucharek T, 1994. Alternaria diseases of Crucifers. Fact sheet P-34. Gainesville, Florida, USA: Cooperative Extension Service, University of Florida, 3 pp.

Laska P, Rod J, 1985. Seed dressing of radish against pests and diseases. Annals of Applied Biology, 106(Supplement, Tests of Agrochemicals and Cultivars,):62-63

Mannerucci GF, Gambogi P, Vannacci G, 1982. Detection of pathogenic fungi on seeds of market garden plants. Informatore Fitopatologico, 32(5):47-54

Marks GB, Bush RK, 2007. It's blowing in the wind: new insights into thunderstorm-related asthma. Journal of Allergy and Clinical Immunology, 120:530-532.

Maung Mya Thaung, 2008. A list of hyphomycetes (and agonomycetes) in Burma. Australasian Mycologist, 27(3):149-172.

Mayee CD, Datar VV, 1986. Phytopathometry. Parbhani, India; Marathwada Agric. Univ., 146 + 68 + vi pp.

McLean DM, 1947. Alternaria blight and seed infection a cause of low germination in certain radish seed crops. Journal of Agricultural Research, 75:71-79.

Mendes MAS, Silva VLda, Dianese JC(et al), 1998. Fungos em plants no Brasil., Brasilia: Embrapa-SPI/Embrapa-Cenargen, 555 pp.

Michail SH, Al-Menoufi OA, Abo-Taleb EA, 1979. Seed health testing, leaf spot and damping-off of certain crucifers in Egypt. Acta Phytopathologica Academiae Scientiarum Hungaricp, 14(1/2):41-48

Miller JW, 1992. Bureau of plant pathology. Bureau of plant pathology, 31. Florida, USA: Division of Plant Industry, 3. [Tri-ology Technical Report .]

Mondal SN, Rashid MA, Monowar SM, Abdullah AM, 1989. Efficacy of fungicides in controlling Alternaria blight of radish seed crop. Thai Journal of Agricultural Science, 22(3):191-196

Moore WC, 1959. British parasitic fungi. Cambridge, UK: Cambridge University Press, 430 pp.

Mortensen K, Molloy MM, 1993. Survey for seed-borne diseases on weed species from screening samples obtained from seed cleaning plants across Canada in 1987/88. Canadian Plant Disease Survey, 73(2):129-136; 24 ref.

NCBI, 2009. Entrez cross-database search engine. Maryland, USA: National Center for Biotechnology Information.

Neergaard P, 1945. Communication from the Phytopathological Laboratory of J. E. Ohlsens Enke, Copenhagen. Humphrey Milíford, Oxford University Press, London, 560 pp.

NEERGAARD P, 1945. Danish species of Alternaria and Stemphylium. Copenhagen, E. Munksgaard; London, Oxford University Press, 560 pp.

Nelen ES, 1959. Alternariosis or blackspot of crucifer seed plants in the Primorskii Krai. Soobshcheniya dal'nevostoksaya Filiala Sibirskogo Otdeleniya Akademii Nauk SSSR, 11: 77-83.

Norse D, 1974. Plant diseases in Barbados. Phytopathological Papers, No. 18:38 pp.

Pantidou ME, 1973. Fungus-host index for Greece. Athens, Greece: Benaki Phytopathological Institute., 378 pp.

Pennycook SR, 1989. Plant diseases recorded in New Zealand. Vol. 2. Auckland, New Zealand: Plant Diseases Division, Department of Scientific and Industrial Research, 502 pp.

Petrie GA, 1973. Diseases of Brassica species in Saskatchewan, 1970-1972. II. Stem, pod and leaf spots. Canadian Plant Disease Survey, 53:83-87.

Petrie GA, 1974. Fungi associated with seeds of rape, turnip rape, flax, and safflower in western Canada, 1968-73. Canadian Plant Disease Survey, 54(4):155-165

Petrie GA, 1978. Prevalence of six fungal pathogens associated with seeds of rape and turnip rape in Western Canada in 1976. Canadian Plant Disease Survey, 58(4):99-103

Petrie GA, 1985. Yield losses in Saskatchewan rapeseed/canola crops from basal stem cankers of blackleg (Leptosphaeria maculans) in 1982, with notes on other diseases. Canadian Plant Disease Survey, 65(2):43-46; 1 ref.

Petrie GA, Mortensen K, Dueck J, 1985. Blackleg and other diseases of rapeseed in Saskatchewan, 1978 to 1981. Canadian Plant Disease Survey, 65(2):35-41; 18 ref.

Preston DA, Dosdall L, 1955. Minnesota plant diseases. Spec. Publ. agric. Res. Serv, 8:184 pp.

Pryor BM, Bigelow DM, 2003. Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia, 95(6):1141-1154.

Pryor BM, Gilbertson RL, 2000. Molecular phylogenetic relationships amongst Alternaria species and related fungi based upon analysis of nuclear ITS and mt SSU rDNA sequences. Mycological Research, 104(11):1312-1321.

RAO VG, 1966. An account of the market and storage diseases of fruits and vegetables in Bombay-Maharashtra (India). Mycopathologia et Mycologia Applicata, 28(1-2):165-176.

RAO VG, 1969. The genus Alternaria-from India. Nova Hedwigia, 17(1-4):219-258.

Razia Sultana, Shamim Shamsi, 2010. Association of fungi with symptomatic plant parts of chickpea (Cicer arietinum L.) from Bangladesh. Bangladesh Journal of Plant Pathology, 26(1/2):69-75.

Richardson MJ, 1990. An annotated list of seed-borne diseases. Zurich, Switzerland: The International Seed-Testing Association.

Rude SV, Duczek LJ, Seidle E, 1999. The effect of Alternaria brassicae, Alternaria raphani and Alternaria alternata on seed germination of Brassica rapa canola. Seed Science and Technology, 27(2):795-798; 6 ref.

Saharan GS, 1991. Assessment of losses, epidemiology and management of black spot disease of rapeseed-mustard. In: Proceedings of the GCIRC 8th Inst. Rapeseed Congress, July 9-11, Saksatoon, Canada. Vol. 2, 465-470.

Sawada K, 1959. Descriptive catalogue of Taiwan (Formosan) fungi. Part XI. Spec. Publ Coll. Agric. Taiwan Univ, 8:268 pp.

Schleier S, Voigt K, Wöstemeyer J, 1997. RAPD-based molecular diagnosis of mixed fungal infections on oilseed rape (Brassica napus): evidence for genus- and species-specific sequences in the fungal genomes. Journal of Phytopathology, 145(2/3):81-87; 24 ref.

Seidle E, Rude S, Petrie A, 1995. The effect of Alternaria blackspot of canola on seed quality and seed yield, and studies on disease control. Saskatoon, Canada; Agriculture and Agri-Food Canada, ii + 41 pp.

Sharma TR, Tewari JP, 1998. RAPD analysis of three Alternaria species pathogenic to crucifers. Mycological Research, 102(7):807-814.

Shaw DE, 1984. Microorganisms in Papua New Guinea. Research Bulletin, Department of Primary Industry, Papua New Guinea, No.33:vii + 344 pp.

Sheir HM, Kassim MY, Abou-Heilah AN, Khan S, 1981. Leaf spot diseases in Saudi Arabia. I. Studies on leaf spots of certain cruciferous plants. J. Coll.-Sci. Univ. Riyadh, 12:101-111.

Simmons EG, 1995. Alternaria themes and variations (112-144). Mycotaxon, 55:55-163

Simmons EG, 2007. Alternaria - an identification manual. Washington D.C., USA: American Society of Microbiology, 775 pp. [CBS Biodiversity Series.]

Su XJ, Yu H, Zhou T, Li XZ, Gong J, Chu CL, 2005. First report of Alternaria raphani causing black patches on Chinese radish during postharvest storage in Canada. Plant Disease, 89(9):1015. HTTP://

Taber RA, Vanterpool TC, 1963. Alternaria species on rape in Western Canada. Proceedings of the Canadian Phytopathological Society, 30: 9.

Taber RA, Vanterpool TC, Willard AT, 1968. A comparative nutritional study of Alternaria raphani, A brassicae and A. brassicicola with special reference to A. japonica. Phytopathology, 58:609-616.

Tahvonen R, 1979. Seed-borne fungi on cruciferous cultivated plants in Finland and their importance in seedling raising. Journal of the Scientific Agricultural Society of Finland, 51(5):327-379

Tai FL, 1979. Sylloge fungorum Sinicorum. Sylloge fungorum Sinicorum. Peking, China: Science Press, Academia Sinica, 1527 pp.

Tewari JP, Buchwaldt L, 2007. Alternaria diseases. In: Compendium of Brassica Diseases [ed. by Rimmer, S. R.\Shattuck, V. I.\Buchwaldt, L.]. St. Paul, Minnesota, USA: American Phytopathological Society, 15-18.

Tidwell TE, Blomquist CL, Rooney-Latham S, 2014. Leaf spot of Arugula, caused by Alternaria japonica, in California. Plant Disease, 98(9):1272.

Tohyama A, Kohmoto K, Yu SH, Tsuda M, 1991. Alternaria on cruciferous plants 2. Alternaria species on seed of chinese radish and their pathogenicity. Transactions of the Mycological Society of Japan, 32:247-258.

Tohyama A, Tsuda M, 1990. Alternaria on cruciferous plants. 1. Identity of Alternaria japonica and A. raphani. Transactions of the Mycological Society of Japan, 31:501-509.

Tohyama A, Tsuda M, 1995. Alternaria on cruciferous plants. 4. Alternaria species on seed of some cruciferous crops and their pathogenicity. Mycoscience, 36(3):257-261; 13 ref.

Toms HNW, 1964. Plant Diseases in Southern British Columbia. Canadian Plant Disease Survey, 44:143-225.

Tsuneda A, Skoropad WP, 1977. The Alternaria brassicae - Nectria inventa host-parasite interface. Canadian Journal of Botany, 55(4):448-454

Tsuneda A, Skoropad WP, 1980. Interactions between Nectria inventa, a destructive mycoparasite, and fourteen fungi associated with rapeseed. Transactions of the British Mycological Society, 74(3):501-507

USDA, 1960. Index of Plant Diseases in the United States. Agriculture Handbook No. 165. Washington, USA: United States Department of Agriculture.

USDA, 1960. Plant Pests of Importance to North American Agriculture. Index of Plant Diseases in the United States. Agriculture Handbook, No. 165. Washington, USA: United States Department of Agriculture.

Valkonen JPT, Koponen H, 1990. The seed-borne fungi of Chinese cabbage (Brassica pekinensis), their pathogenicity and control. Plant Pathology, 39(3):510-516.

Vannacci G, Harman GE, 1987. Biocontrol of seed-borne Alternaria raphani and A. brassicicola.. Canadian Journal of Microbiology, 33(10):850-856; 23 ref.

Vannacci G, Pecchia S, 1988. Location and transmission of seed-borne Alternaria raphani Groves and Skolko in Raphanus sativus L.: a case study. Archiv fur Phytopathologie und Pflanzenschutz, 24(4):305-315

Verma JP, 1964. Studies in the enzyme make-up of Alternaria V. Aldolase activity. Mycologia, 56:909-918.

Verma PR, Saharan GS, 1994. Saskatoon Research Station Technical Bulletin 1994-6E. Monograph on Alternaria diseases of crucifers. Saskatoon, Canada: Agriculture Canada Research Station, 162 pp.

Wang HongKai, Zhang TianYu, 2003. RAPD analysis on small-spored Alternaria species. Mycosystema, 22(1):35-41.

Ware WM, 1936. Alternaria leaf-spot of Stock (Matthiola). Gardeners' Chronicle C, 2596:236-237.

Whiteside JO, 1966. A revised list of plant diseases in Rhodesia. Kirkia, 5:87-196.

Whiteside JO, 1966. A revised list of plant diseases in Rhodesia. Kirkia, 5:87-196.

Xiao ChangKun, Wu XueHong, Li JianQiang, Heng JianQiu, Zhang WenHua, Bolkan H, 2004. Comparison of culture conditions for three Alternaria species causing black spot of cabbage. Mycosystema, 23(4):573-579.

Xue F, Zhang XG, 2007. Ulocladium capsicuma, a new species identified by morphological and molecular phylogenetic data. Sydowia, 59(1):161-178.

Yoshii H, 1933. On three species of Alternaria parasitic on cruciferous plants. Represajo de la Bulteno Scienca de lu Fakultato Terkultura, Kjusu Imperia Universitato, 5(3):221-235.

Yoshii H, 1941. On the black spot of Asiatic crucifers and the black mould of cabbage. Journal of Plant Protection, 28:14-18.

Yu SH, 2001. Korean species of Alternaria and Stemphylium. Suwon, Republic of Korea: National Institute of Agricultural Science and Technology, 212 pp.

Zhang TY, 2000. Flora Fungorum Sinicorum. Vol. 16. Beijing, China: Science Press, 284 pp.


Top of page

29/01/10 Updated by:

Systematic Mycology & Microbiology Laboratory, USDA-ARS, 10300 Baltimore Ave., Beltsville, MD 20705, USA


Distribution Maps

Top of page
You can pan and zoom the map
Save map
Download KML file Download CSV file
Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT