Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Lobesia botrana
(European grapevine moth)

Toolbox

Datasheet

Lobesia botrana (European grapevine moth)

Summary

  • Last modified
  • 20 December 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Host Animal
  • Preferred Scientific Name
  • Lobesia botrana
  • Preferred Common Name
  • European grapevine moth
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • Lobesia botrana should be regarded as a potentially serious pest on a worldwide scale for all the vine-growing areas that are presently unaffected.

    L. botrana could be...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Lobesia botrana (grape berry moth); 'Sangiovese' grape variety severley damaged by a third generation larva. Tuscany, Italy. September 2005.
TitleLarval damage
CaptionLobesia botrana (grape berry moth); 'Sangiovese' grape variety severley damaged by a third generation larva. Tuscany, Italy. September 2005.
Copyright©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); 'Sangiovese' grape variety severley damaged by a third generation larva. Tuscany, Italy. September 2005.
Larval damageLobesia botrana (grape berry moth); 'Sangiovese' grape variety severley damaged by a third generation larva. Tuscany, Italy. September 2005.©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); two grapes damaged by a second generation larva. Tuscany, Italy. July 2003.
TitleLarval damage
CaptionLobesia botrana (grape berry moth); two grapes damaged by a second generation larva. Tuscany, Italy. July 2003.
Copyright©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); two grapes damaged by a second generation larva. Tuscany, Italy. July 2003.
Larval damageLobesia botrana (grape berry moth); two grapes damaged by a second generation larva. Tuscany, Italy. July 2003.©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); grape vine affected by Botrytis cinerea. Tuscany, Italy. September 2004.
TitleBotrytis cinerea
CaptionLobesia botrana (grape berry moth); grape vine affected by Botrytis cinerea. Tuscany, Italy. September 2004.
Copyright©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); grape vine affected by Botrytis cinerea. Tuscany, Italy. September 2004.
Botrytis cinereaLobesia botrana (grape berry moth); grape vine affected by Botrytis cinerea. Tuscany, Italy. September 2004.©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); 'nest' (arrowed) made by a single larva on a grapevine inflorescence. Tuscany, Italy. May 2007.
TitleLarval retreat
CaptionLobesia botrana (grape berry moth); 'nest' (arrowed) made by a single larva on a grapevine inflorescence. Tuscany, Italy. May 2007.
Copyright©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); 'nest' (arrowed) made by a single larva on a grapevine inflorescence. Tuscany, Italy. May 2007.
Larval retreatLobesia botrana (grape berry moth); 'nest' (arrowed) made by a single larva on a grapevine inflorescence. Tuscany, Italy. May 2007.©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); egg, in the phenological stage of visible eyes. Tuscany, Italy.
TitleEgg
CaptionLobesia botrana (grape berry moth); egg, in the phenological stage of visible eyes. Tuscany, Italy.
Copyright©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); egg, in the phenological stage of visible eyes. Tuscany, Italy.
EggLobesia botrana (grape berry moth); egg, in the phenological stage of visible eyes. Tuscany, Italy.©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); 5th instar larva on a grape. Tuscany, Italy. August 2015.
TitleLarva
CaptionLobesia botrana (grape berry moth); 5th instar larva on a grape. Tuscany, Italy. August 2015.
Copyright©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); 5th instar larva on a grape. Tuscany, Italy. August 2015.
LarvaLobesia botrana (grape berry moth); 5th instar larva on a grape. Tuscany, Italy. August 2015.©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); larva on a vine inflorescence.
TitleLarva
CaptionLobesia botrana (grape berry moth); larva on a vine inflorescence.
Copyright©P. del Estal
Lobesia botrana (grape berry moth); larva on a vine inflorescence.
LarvaLobesia botrana (grape berry moth); larva on a vine inflorescence.©P. del Estal
Lobesia botrana (grape berry moth); pupa. Tuscany, Italy. March 2007.
TitlePupa
CaptionLobesia botrana (grape berry moth); pupa. Tuscany, Italy. March 2007.
Copyright©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); pupa. Tuscany, Italy. March 2007.
PupaLobesia botrana (grape berry moth); pupa. Tuscany, Italy. March 2007.©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); adult female, dorsal view. Tuscany, Italy. March 2007.
TitleAdult
CaptionLobesia botrana (grape berry moth); adult female, dorsal view. Tuscany, Italy. March 2007.
Copyright©Andrea Lucchi/Università di Pisa, Italy
Lobesia botrana (grape berry moth); adult female, dorsal view. Tuscany, Italy. March 2007.
AdultLobesia botrana (grape berry moth); adult female, dorsal view. Tuscany, Italy. March 2007.©Andrea Lucchi/Università di Pisa, Italy

Identity

Top of page

Preferred Scientific Name

  • Lobesia botrana Denis & Schiffermüller, 1776

Preferred Common Name

  • European grapevine moth

Other Scientific Names

  • Coccyx botrana Praun 1869
  • Cochylis botrana Herrich-Schaffer, 1843
  • Cochylis vitisana Audouin, 1842
  • Eudemis botrana Frey, 1880
  • Eudemis rosmarinana Millière, 1866
  • Grapholita botrana Heinemann, 1863
  • Noctua romani O. Costa, 1840
  • Polychrosis botrana Ragonot, 1894
  • Polychrosis botrana flavosquamella Dufrane, 1960 (form)
  • Tortrix botrana Denis & Schiffermüller, 1776
  • Tortrix romaniana O. Costa, 1840
  • Tortrix vitisana Jacquin, 1788

International Common Names

  • English: European grape vine moth; grape fruit moth; grape leaf-roller; grape moth; grape vine moth; vine moth
  • Spanish: arañuelo de la vid; barrenillo de la uva; gusano de las uvas; hilandero de la vid; polilla de las uvas; polilla del racimo
  • French: eudémis de la vigne; insect du midi; tordeuse de la grappe; ver de la grappe; ver du raisin
  • Portuguese: trac-da-uva eudemis
  • German: Bekreuzten Traubenwickler; Bunter Traubenwickler; Gelbkoepfiger Sauerwurm

Local Common Names

  • Bulgaria: variegated grape moth (translation); variegated vine moth (translation)
  • Croatia: grozdanog moljca
  • Hungary: tarka szolomoly
  • Israel: ash haeshkol
  • Italy: baco dell'uva; tignola a bruco verde de la vite; tignola verde de la vite; tignoletta della vite; tignoletta dell'uva; tortrice dei grappoli; verme dell'uva
  • Romania: moliei strugurilor
  • Serbia: grozdanog moljca
  • Slovakia: ovaca mramorovaneho
  • Spain: corc del raïm (Catalonia and Valencia); cuc del raïm (Catalonia and Valencia)
  • Turkey: salkim guvesi

EPPO code

  • POLYBO (Lobesia botrana)

Summary of Invasiveness

Top of page

Lobesia botrana should be regarded as a potentially serious pest on a worldwide scale for all the vine-growing areas that are presently unaffected.

L. botrana could be introduced as larvae or pupae on infested propagation material from the Old World and Latin America (Chile and Argentina) and especially on imported table grapes for consumption. It could also be introduced through the movement of unsanitized machinery. Thus L. botrana must have a strict quarantine status in all countries still unaffected.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Lepidoptera
  •                         Family: Tortricidae
  •                             Genus: Lobesia
  •                                 Species: Lobesia botrana

Notes on Taxonomy and Nomenclature

Top of page

The systematics of the Tortricidae is controversial. The taxonomy used here follows Zerny and Beier (1936-1938), Forster and Wohlfart (1954)Horak and Brown (1991), Gilligan et al. (2014) and de Jong et al. (2014)Lobesia botrana, described from Austria by Denis and Schiffermüller (1776) as Tortrix botrana, has had a complex taxonomic history. At present, the species is included in the genus Lobesia Guenée, 1845, having been discarded from the genus Polychrosis Ragonot, 1894, largely used in the older literature. A laboratory-derived melanic mutant has been described, of which the inheritance is controlled by a single, recessive, no-sex-linked gene (Torres-Vila et al., 1996b).

Description

Top of page

Eggs

The egg of L. botrana is of the so-called flat type, with the long axis horizontal and the micropile at one end. Elliptical, with a mean eccentricity of 0.65, the egg measures about 0.65-0.90 x 0.45-0.75 mm. Freshly laid eggs are pale cream, later becoming light grey and translucent with iridescent glints. The chorion is macroscopically smooth but presents a slight polygonal reticulation in the border and around the micropile. The time elapsed since egg laying may be estimated by observing the eggs: there are five phases of embryonic development - visible embryo, visible eyes, visible mandibles, brown head and black head (Feytaud, 1924). As typically occurs in the subfamily Olethreutinae, eggs are laid singly, and more rarely in small clusters of two or three.

Larvae

There are usually five larval instars. Neonate larvae are about 0.95-1 mm long, with head and prothoracic shield deep brown, nearly black, and body light yellow. Mature larvae reach a length between 10 and 15 mm, with the head and prothoracic shield lighter than neonate larvae and the body colour varying from light green to light brown, depending principally on larval nourishment.
Older larvae are characterized by a typical dark border at the rear edge of the prothoracic shield (Varela et al., 2010) and by the black colour of the second antennal segment. The width of the head capsule is used to distinguish larval instars (Savopoulou-Sultani and Tzanakakis, 1990; Delbach et al., 2010) as well as mandible length (Pavan et al., 2010).

Pupae

Female pupae are larger (5-9 mm) than males (4-7 mm). Freshly formed pupae are usually cream or light brown but also light green or blue, and a few hours later become brown or deep brown. Pupal age may be estimated as a function of tegument transparency and colouring. For this purpose, Lalanne-Cassou (1977) differentiated 10 phases of pupal development, with the lengths of time indicated at 20°C and 75% RH: transparent eyes (>150 h), brown eyes (40 h), black eyes (24 h), complete appendix (24 h), silver wings (40 h), brown antennae (20 h), wing pigmentation beginning (5 h), incomplete wing pigmentation (8 h), complete wing pigmentation (22 h) and visible scales (6 h). The sexes may be distinguished by the position of genital sketches that are placed in the IX and VIII abdominal sternites in males and females, respectively. Moreover, the male genital orifice is placed between two small lateral prominences. When emergence is imminent, the adult splits the chrysalis ventrally and dorsally at the anterior end and crawls out, resting the pupal exuvia fixed outwardly in a characteristic position by cremaster spines.

Adult

Adults are 6-8 mm long with a wingspan of about 10-13 mm. Adult size is greatly affected by larval food quality (Torres-Vila, 1995). The head and abdomen are cream coloured; the thorax is also cream with black markings and a brown ferruginous dorsal crest. The legs have alternate pale cream and brown bands. Forewings have a mosaic-shaped pattern with black, brown, cream, red and blue ornamentation. The ground colour is bluish grey and fasciae brown, shaped by a pale cream border; scales lining the costa, termen and dorsum are darker than the wing ground colour. Cilia are brown with a paler apical tip and a cream basal line along the termen. The underside is brownish grey, gradually darker towards the costa and apex. Hindwings are light brownish grey, darker towards the apex. Cilia and cubital tuft are greyish brown with a paler basal line. The underside is a uniform light grey. There is no clear sexual dimorphism, but the sexes may be easily separated by their general morphology and behaviour: as in the pupal stage, males are smaller than females, they have a narrower abdomen with an anal fine comb of modified scales (hair pencils), and when disturbed they exhibit movements more quick and nervous than those of females.

Distribution

Top of page

The original geographic distribution of L. botrana follows a clear Palaearctic pattern. The presence of the moth in central Africa (Ethiopia, Eritrea and Kenya) is surely accidental, and probably due to introductions by man. Records from northern Europe (Finland and Sweden) must be considered as incidental.

Records of L. botrana in Japan published in previous versions of the Compendium are now thought to be due to misidentification (Bae and Komai, 1991). No voucher specimens of L. botrana have been found in the collection of the Entomological Institute, Hokkaido University (Ministry of Agriculture, Forestry and Fisheries (MAFF), 2012, Yokohama, Kanagawa, Japan).

With regard to Mediterranean areas, the moth is no longer present in the Balearic Islands (Spain), the only record being from 50 years ago (Ruíz-Castro, 1943). The lack of available records from Tunisia suggests an unexpected circum-Mediterranean discontinuity, however it is not unlikely that L. botrana also occurs in this magrebian country.

In recent years, L. botrana was accidentally introduced and found in the vineyards of Chile (2008), California (2009) and Argentina (2010) (Ioriatti et al., 2012). It was declared eradicated from California in 2016 (NAPPO, 2016).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

ArmeniaPresentVasilyan et al., 1978; Azaryan et al., 1980; Manukyan, 1980; CABI/EPPO, 2012; EPPO, 2014
AzerbaijanPresentParkhomenko & Kurvanova, 1986; Parkhomenko & Kurvanova, 1988; Khalilov, 1972; Davydov, 1976; Agaeva and Nuraddinov, 1988; CABI/EPPO, 2012; EPPO, 2014
Georgia (Republic of)PresentDzhivladze, 1979; Chkhubianishvili and Malaniya, 1990; Kipiani et al., 1990; Abashidze, 1991; CABI/EPPO, 2012; EPPO, 2014
IranPresentRezwani, 1981; Nassirzadeh and Bassiri, 1994; Eghtedar, 1996; CABI/EPPO, 2012; EPPO, 2014
IraqPresentCABI/EPPO, 2012; EPPO, 2014
IsraelPresentIshaaya et al., 1983; Anshelevich et al., 1994; CABI/EPPO, 2012; EPPO, 2014
JapanAbsent, invalid recordCABI/EPPO, 2012; EPPO, 2014See Bae and Komai (1991).
-HokkaidoAbsent, invalid recordEPPO, 2014See Bae and Komai (1991).
-HonshuAbsent, invalid recordEPPO, 2014See Bae and Komai (1991).
-KyushuAbsent, invalid recordEPPO, 2014See Bae and Komai (1991).
-ShikokuAbsent, invalid recordEPPO, 2014See Bae and Komai (1991).
JordanPresentCABI/EPPO, 2012; EPPO, 2014
KazakhstanPresentMazina et al., 1987; Nurmuratov et al., 1994; CABI/EPPO, 2012
LebanonPresentCABI/EPPO, 2012; EPPO, 2014
SyriaPresentCABI/EPPO, 2012; EPPO, 2014
TajikistanPresentMakhmudov et al., 1977; Grichanov et al., 1995; CABI/EPPO, 2012
TurkeyPresentGunyadin, 1972; Iren, 1972; Kisakurek, 1972; Otaci, 1972; Kacar, 1982; Atac et al., 1987; Atac et al., 1992; Erkilic and Yigit, 1992; Zeki, 1996; CABI/EPPO, 2012; EPPO, 2014
TurkmenistanPresentTokgaev and Bergmann, 1985; CABI/EPPO, 2012; EPPO, 2014
UzbekistanPresentAtanov & Gummel', 1991; Atadzhanov and Dubrovina, 1977; Nabiev, 1977; CABI/EPPO, 2012; EPPO, 2014

Africa

AlgeriaPresentCABI/EPPO, 2012; EPPO, 2014
EgyptPresentAbdel-Lateef et al., 1978; Ali et al., 1978; Nasr et al., 1995; CABI/EPPO, 2012; EPPO, 2014
EritreaPresentCABI/EPPO, 2012; EPPO, 2014
EthiopiaPresentCABI/EPPO, 2012
KenyaPresentCABI/EPPO, 2012; EPPO, 2014
LibyaPresentCABI/EPPO, 2012; EPPO, 2014
MoroccoPresentCABI/EPPO, 2012; EPPO, 2014

North America

USAEradicatedCABI/EPPO, 2012; EPPO, 2014; NAPPO, 2016
-CaliforniaEradicatedIPPC, 2009; NAPPO, 2009; CABI/EPPO, 2012; EPPO, 2014; NAPPO, 2016

South America

ArgentinaPresentCABI/EPPO, 2012; EPPO, 2014
ChilePresentIPPC, 2010; CABI/EPPO, 2012; EPPO, 2014; IPPC, 2015Present: subject to official control.

Europe

AlbaniaPresentCABI/EPPO, 2012
AustriaWidespreadGlaeser, 1979; Fischer-Colbrie, 1980; Hobnaus, 1988; CABI/EPPO, 2012; EPPO, 2014
BelarusPresentCABI/EPPO, 2012
BelgiumPresentCABI/EPPO, 2012
BulgariaWidespreadKara'-ozova, 1971; Kharizanov, 1974; Stoeva, 1979; Stoeva, 1982; Zapryanov and Stoeva, 1982; CABI/EPPO, 2012; EPPO, 2014
CroatiaPresentSubic, 2007; CABI/EPPO, 2012
CyprusWidespreadCyprus Department of Agriculture, 1988; CABI/EPPO, 2012; EPPO, 2014
Czech RepublicPresentGabel and Roehrich, 1995; CABI/EPPO, 2012
Czechoslovakia (former)PresentGabel and Mocko, 1984a; Gabel and Mocko, 1984b; Gabel and Renczes, 1982
DenmarkAbsent, intercepted onlyEPPO, 2014
FinlandUnconfirmed recordKyrki and Vilen, 1984
FranceWidespreadGuennelon and d'Arcier, 1972; Roehrich et al., 1977; Geoffrion, 1979; Touzeau, 1979; Roehrich et al., 1986; Roehrich and Carles, 1987; Gabel and Stockel, 1988; Roehrich and Schmitz, 1992; Stockel et al., 1992; Stockel et al., 1994; CABI/EPPO, 2012; EPPO, 2014
-CorsicaPresentCABI/EPPO, 2012; EPPO, 2014
-France (mainland)PresentCABI/EPPO, 2012
GermanyWidespreadSchruft, 1975; Hoppmann and Holst, 1990; Louis and Schirra, 1992; Feldhege et al., 1993; Feldhege et al., 1994; CABI/EPPO, 2012; EPPO, 2014
GreecePresentRoditakis, 1986; Savopoulou-Soultani and Tzanakakis, 1988; Tsitsipis et al., 1993; CABI/EPPO, 2012; EPPO, 2014
-CretePresentCABI/EPPO, 2012
-Greece (mainland)PresentCABI/EPPO, 2012
HungaryWidespreadVojnits and Voigt, 1971; Pongracz, 1982; Voigt and Ujvary, 1983; Schieder, 1984; Goda-Biczo and Erdelyi, 1996; CABI/EPPO, 2012; EPPO, 2014
ItalyWidespreadSilvestri, 1912; Viggiani and Tranfaglia, 1975; Tranfaglia and Malatesta, 1977; Laccone, 1978; Deseo et al., 1981; Nuzzaci and Triggiani, 1982; Russo et al., 1985; Moleas, 1988; Baumgartner and Baronio, 1989; Dalla-Montá and Giannone, 1991; Varner and Ioriatti, 1992; Bagnoli et al., 1993; Delrio et al., 1993; Pavan et al., 1993; Marchesini and Dalla-Montá, 1994; Pavan and Sbrissa, 1994; Mattedi et al., 1995; Nucifora et al., 1996; CABI/EPPO, 2012; EPPO, 2014
-Italy (mainland)PresentCABI/EPPO, 2012
-SardiniaPresentCABI/EPPO, 2012
-SicilyPresentViggiani and Tranfaglia, 1975; Tranfaglia and Malatesta, 1977; Laccone, 1978; Deseo et al., 1981; Nuzzaci and Triggiani, 1982; Russo et al., 1985; Moleas, 1988; Baumgartner and Baronio, 1989; Dalla-Montá and Giannone, 1991; Silvestri, 1992; Varner and Ioriatti, 1992; Bagnoli et al., 1993; Delrio et al., 1993; Pavan et al., 1993; Marchesini and Dalla-Montá, 1994; Pavan and Sbrissa, 1994; Mattedi et al., 1995; Nucifora et al., 1996; CABI/EPPO, 2012; EPPO, 2014
LithuaniaPresentCABI/EPPO, 2012
LuxembourgPresentCABI/EPPO, 2012; EPPO, 2014
MacedoniaPresentVelimirovic, 1975; CABI/EPPO, 2012
MaltaPresentCABI/EPPO, 2012; EPPO, 2014
MoldovaPresentCABI/EPPO, 2012; EPPO, 2014
MontenegroPresentCABI/EPPO, 2012
NetherlandsPresentHuisman et al., 2013
PolandPresentCABI/EPPO, 2012
PortugalWidespreadTavares et al., 1988; CABI/EPPO, 2012; EPPO, 2014
-Portugal (mainland)PresentCABI/EPPO, 2012
RomaniaPresentFilip and Alexandri, 1977; Filip, 1985; Filip, 1986; Rosian, 1989; Filip, 1990; CABI/EPPO, 2012; EPPO, 2014
Russian FederationPresentCABI/EPPO, 2012; EPPO, 2014
-Central RussiaPresentCABI/EPPO, 2012
-Russia (Europe)PresentEPPO, 2014
-Southern RussiaPresentCABI/EPPO, 2012
SerbiaPresentCABI/EPPO, 2012; EPPO, 2014
SlovakiaPresentGabel and Renczes, 1985; Gabel, 1992; CABI/EPPO, 2012
SloveniaWidespreadVrabl et al., 1983; CABI/EPPO, 2012; EPPO, 2014
SpainWidespreadSampayo-Fernández and Hernández-Esteruelas, 1973; Coscollá, 1981; Coscollá and Dávila-Zurita, 1983; Arias-Giralda et al., 1985; Coscollá, 1992; Torres-Vila, 1995; Coscollá, 1997; CABI/EPPO, 2012; EPPO, 2014
-Balearic IslandsPresent, no longer present; Ruíz-Castro, 1943; Coscollá, 1992; CABI/EPPO, 2012
-Spain (mainland)PresentCABI/EPPO, 2012
SwitzerlandWidespreadCharmillot et al., 1995a; Charmillot et al., 1995b; Boller, 1975; Schmid and Antonin, 1977; Chalverat, 1978; Boller and Remund, 1981; CABI/EPPO, 2012; EPPO, 2014
UKPresent, few occurrencesCABI/EPPO, 2012; EPPO, 2014
-England and WalesPresent, few occurrencesCABI/EPPO, 2012; EPPO, 2014
UkrainePresentKhmelevskaya and Gorelik, 1979; Razdolina and Gubanova, 1979; Beskrovnaya and Krivoshchenko, 1984; Vasil'-eva and Sekerskaya, 1986; Beskrovnaya and Storozhuk, 1987; Burov and Sazonov, 1992; CABI/EPPO, 2012; EPPO, 2014

Risk of Introduction

Top of page

L. botrana should be regarded as a potentially serious pest on a worldwide scale for all the vine-growing areas that are presently unaffected. In particular, in the western USA, L. botrana could occupy exactly the same ecological niche as Paralobesia viteanaL. botrana could be introduced as larvae or pupae on infested propagation material from the Old World, and especially on imported table grapes for consumption. It could also be introduced through the movement of unsanitized machinery. Thus, L. botrana must have a strict quarantine status in all countries still unaffected.

L. botrana was not detected in surveys for the pest conducted in the USA from 1986 to 2009. In the autumn of 2009, L. botrana was found in California, representing the first record of the pest in the USA and in North America. In South America, L. botrana was first detected in Chile in 2008 and in the wine-growing area of Mendoza, Argentina in 2010 (Ioriatti et al., 2012).

The USDA Animal and Plant Health Inspection Service (APHIS) convened an international technical working group to advise the agency on the scientific aspects of the discovery of European grapevine moth (EGVM) in California. Surveys determined that EGVM was present in several counties within the grape-growing regions of central California. California Department of Food and Agriculture (CDFA), University of California Extension Service and various County Agriculture offices worked together to detect, delimit and eradicate this pest. In August 2016, APHIS declared EGVM eradicated from the State of California, removed all areas under quarantine, and removed restrictions on the movement of EGVM host material (https://www.aphis.usda.gov/plant_health/plant_pest_info/eg_moth/downloads/post-eradication-guidelines.pdf).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial – ManagedCultivated / agricultural land Principal habitat Harmful (pest or invasive)
Cultivated / agricultural land Principal habitat Natural

Hosts/Species Affected

Top of page

The host plants listed for L. botrana have been compiled principally from Silvestri (1912)Voukassovitch (1924) and references therein; Ruíz-Castro (1943)Bovey (1966)Galet (1982)Stoeva (1982)Vasil'eva and Sekerskaya (1986)Moleas (1988)Savopoulou-Soultani et al. (1990)Gabel (1992) and Ioriatti et al. (2011).

Despite the wide host range recorded, grapevine is the major host crop in which damage is really important. With regard to wild hosts, Daphne gnidium is the major food plant (Lucchi and Santini, 2011). This species was thought to be the original wild host before the invasion of vineyards by L. botrana in the nineteenth century (Marchal, 1912), although this hypothesis has often been questioned (Bovey, 1966) and is still controversial.

Other hosts not selected naturally by females for egg laying have been tested satisfactorily under both laboratory and field conditions, constituting an adequate larval food; see, for example, Voukassovitch (1924) and references therein, including particularly studies by Dewitz, Wismann, Bannhiol and Lüstner; Bovey (1966) and Stavridis and Savopoulou-Soultani (1998).

However, some crops traditionally assumed in the older literature to be natural hosts of L. botrana, for example, Medicago sativa (lucerne) and Solanum tuberosum (potato), are not in fact naturally selected hosts.

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Actinidia chinensis (Chinese gooseberry)ActinidiaceaeOther
Arbutus unedo (arbutus)EricaceaeWild host
Berberis vulgaris (European barberry)BerberidaceaeWild host
Clematis vitalba (old man's beard)RanunculaceaeWild host
Cornus mas (cornelian cherry)CornaceaeWild host
Cornus sanguinea (dogwood)CornaceaeWild host
Daphne gnidiumThymelaeaceaeWild host
Daphne laureolaThymelaeaceaeWild host
Dianthus (carnation)CaryophyllaceaeOther
Diospyros kaki (persimmon)EbenaceaeOther
Drimia maritimaAsparagaceaeWild host
Hedera helix (ivy)AraliaceaeWild host
Ligustrum vulgare (common privet)OleaceaeWild host
Lonicera tatarica (Tatarian honeysuckle)CaprifoliaceaeWild host
Menispermum canadense (common moonseed)MenispermaceaeWild host
Olea europaea subsp. europaea (European olive)OleaceaeOther
Parthenocissus quinquefolia (Virginia creeper)VitaceaeWild host
Prunus amygdalusRosaceaeOther
Prunus avium (sweet cherry)RosaceaeOther
Prunus domestica (plum)RosaceaeOther
Prunus salicina (Japanese plum)RosaceaeOther
Prunus spinosa (blackthorn)RosaceaeOther
Punica granatum (pomegranate)PunicaceaeOther
Ribes (currants)GrossulariaceaeOther
Ribes nigrum (blackcurrant)GrossulariaceaeOther
Ribes rubrum (red currant)GrossulariaceaeOther
Ribes uva-crispa (gooseberry)GrossulariaceaeOther
Rosmarinus officinalis (rosemary)LamiaceaeWild host
Rubus caesius (dewberry)RosaceaeWild host
Rubus fruticosus (blackberry)RosaceaeWild host
Syringa vulgaris (lilac)OleaceaeWild host
Tanacetum vulgare (tansy)AsteraceaeHabitat/association
Thymelaea hirsutaThymelaeaceaeWild host
Viburnum lantana (Wayfaring tree)CaprifoliaceaeWild host
Vitis vinifera (grapevine)VitaceaeMain
Ziziphus jujuba (common jujube)RhamnaceaeWild host

Growth Stages

Top of page Flowering stage, Fruiting stage

Symptoms

Top of page

The following description refers to grapevine, on which symptoms largely depend on the phenological stage of the reproductive organs.

On inflorescences (first generation), neonate larvae firstly penetrate single flower buds. Symptoms are not evident initially, because larvae remain protected by the top bud. Later, when larval size increases, each larva agglomerates several flower buds with silk threads forming glomerules (nests) visible to the naked eye, and the larvae continue feeding while protected inside. Larvae usually make one to three glomerules during their development which provide protection against adverse conditions, i.e., insulation, rain and natural enemies. Despite the hygienic behaviour of larvae, frass may remain adhering to the nests.

On grapes (summer generations), larvae feed externally and penetrate them, boring into the pulp and remaining protected by the berry peel. Larvae secure the pierced berries to surrounding ones by silk threads to avoid falling. Frass may also be visible. Each larva is capable of damaging between 2 and 10 berries, and up to 20-30 larvae per cluster may occur in heavily attacked vineyards (Thiery et al., 2018). If conditions are suitable for fungal or acid rot development, a large number of berries may be also affected by Botrytis cinerea, Aspergillus carbonarius and Aspergillus niger, which result in severe qualitative and quantitative damage (Delbac and Thiery, 2016). Damage is variety-dependent: generally it is more severe on grapevine varieties with dense grapes, because this increases both larval installation and rot development.

Larval damage on growing points, shoots or leaves is unusual (Lucchi et al., 2011).

List of Symptoms/Signs

Top of page
SignLife StagesType
Fruit / extensive mould
Fruit / external feeding
Fruit / frass visible
Fruit / internal feeding
Fruit / obvious exit hole
Inflorescence / external feeding
Inflorescence / frass visible

Biology and Ecology

Top of page

Extensive information on the biology and ecology of L. botrana has been compiled by Bovey (1966), Roehrich and Boller (1991) and Coscollá (1997) and Ioriatti et al. (2011). The European grape vine moth is a polyvoltine species. The number of generations in a given area is fixed by photoperiod together with temperature, acting on diapause induction and development rate, respectively. Short-day photophases (between 8 and 12 h) during the larval stage induce diapause in larvae that will be later expressed in pupae (Komarova, 1949; Roehrich, 1969). The moth achieves two generations in northern cold areas, and more usually three in southern temperate ones, although this general latitudinal pattern is often modified by the altitude-derived gradient and/or microclimatic conditions in a given area. Thus the number of generations has a broader range, reported as one generation in Romania (Filip, 1986) to four generations (often partial) in Spain, Greece, Crete, Italy, Turkmenistan and former Yugoslavia (Coscollá, 1997 and references therein), and even, unusually, five generations in Turkmenistan (Rodionov, 1945). As previously indicated, L. botrana is very polyphagous and the host plant could have a major effect on both larval survival and adult reproductive output (Stoeva, 1982; Savopoulou-Soultani and Tzanakakis, 1987; Savopoulou-Soultani et al., 1990; Torres-Vila et al., 1992).

Moth activity, i.e. flight, feeding, calling, mating and egg-laying, is principally displayed at dusk, although some activity can also occur at daybreak or at any time on cloudy days. Water availability is necessary for adults to reach their potential reproductive output (Torres-Vila et al., 1996c). Females are usually monandrous, but several physiological factors may enhance multiple mating (Torres-Vila et al., 1997b). On the other hand, males are largely polygynic (Torres-Vila et al., 1995). One to three days after mating, females initiate oviposition on grapevine flowers or berries. When L. botrana is strictly associated with vine and there are three generations, egg-laying occurs at phenological stages 17, 31-33 and 35-37 (stages after Eichhorn and Lorenz, 1977). Egg hatching occurs 7-10 days later as a function of temperature, about 65-75 degree-days with a 10°C development threshold (Touzeau, 1981). Neonate larvae show a high level of locomotor activity before installation, called by Marchal (1912) the 'erratic stage'. Larvae have a considerable dispersal capacity and are able to reach reproductive organs placed around those selected for egg-laying by females (Torres-Vila et al., 1997c). Larvae develop the 1st, 2nd and 3rd generations on inflorescences, unripe berries and ripe (ripening) berries, respectively. Thus available food for larvae changes throughout the season according to the phenology of the host reproductive organs, and this may also affect to a great extent both survival (Torres-Vila et al., 1992; Gabel and Roehrich, 1995) and reproductive output (Torres-Vila, 1995). It has also been shown that the nutritional alteration of berries caused by Botrytis cinerea may enhance female fecundity (Savopoulou-Soultani and Tzanakakis, 1988). After larval development, pupation occurs principally on bunches or leaves in non-diapausing individuals (1st and 2nd generations). Larval development averages 20-28 days (about 170 and 255 degree-days in 1st and 2nd generations, respectively) whereas pupal development averages 12-14 days in non-diapaused individuals (about 130 degree-days; temperature summations with a 10°C development threshold, after Touzeau, 1981). Individuals from the last generation overwinter as diapausing pupae from autumn to the next spring, located under vine bark or stake crevices, and protected inside a cocoon more rigid than that of non-diapausing pupae (R. Roehrich, INRA, France, personal communication). The cocoon reduces dehydration and weight loss in overwintering pupae, maintaining female potential fecundity (Torres-Vila et al., 1996a). The diapause inhibition process, still not well documented, is decisively regulated by mean temperatures of late winter and early spring (Gabel and Roehrich, 1990). Abiotic factors may have a major effect on population dynamics of L. botrana at all insect stages. In particular, temperature acting on adult and larval stages regulates female fecundity (Bergougnoux, 1988; Torres-Vila, 1996); adult activity and longevity (Bovey, 1966 and references therein); egg mortality (Coscollá et al., 1986); and pupal mortality (Torres-Vila et al., 1993). Temperature-induced dormancy has been reported in egg and larval stages (Tzanakakis et al., 1988).

Climate

Top of page
ClimateStatusDescriptionRemark
C - Temperate/Mesothermal climate Preferred Average temp. of coldest month > 0°C and < 18°C, mean warmest month > 10°C
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Tolerated Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Actia pilipennis Parasite Larvae , ; , France; Italy grapes
Agrothereutes pumilus Parasite , ; , Italy; Sardinia grapes
Ascogaster quadridentata Parasite Larvae , ; , Italy; Tuscany; Veneto
Bacillus thuringiensis Pathogen Larvae Italy; Republic of Georgia; Spain
Bacillus thuringiensis galleriae Pathogen Larvae
Bacillus thuringiensis kurstaki Pathogen Larvae France
Bacillus thuringiensis subsp. dendrolimus Pathogen Larvae
Bacillus thuringiensis thuringiensis Pathogen Larvae
Baculovirus orana Pathogen
Bassus linguarius Parasite Larvae , ; , Italy
Bathythrix argentata Parasite , ; , Italy: Piedmont, Veneto; Sardinia
Bathythrix decipiens Parasite , ; , Italy grapes
Beauveria bassiana Pathogen Larvae/Pupae
Bracon hebetor Parasite Larvae , ; , ; ,
Bracon pillerianae Parasite , ; , ; , Italy grapes
Campoplex borealis Parasite Larvae , ; ,
Campoplex capitator Parasite Larvae , ; , France; Italy; Portugal Sicily; Spain; Turkey grapes
Campoplex difformis Parasite Larvae , ; , Austria; Bulgaria; France; Germany; Italy; Russia; Spain grapes
Chrysoperla carnea Predator Eggs/Larvae
Colpoclypeus florus Parasite Larvae , ; , ; , ; , Italy: Tuscany, Veneto; Sardinia grapes
Dibrachys affinis Parasite Larvae/Pupae , ; , ; , ; , Algeria, Austria, France, Iran, Italy, Porugal, Spain, grapes
Dibrachys microgastri Parasite Larvae/Pupae , ; , Bulgaria; France; Germany; Italy; Portugal; Romania; grapes
Dicaelotus inflexus Parasite Pupae , ; , ; , ; , ; , France; Iran; Italy; Sardinia grapes
Elachertus affinis Parasite Larvae , ; , ; , ; , ; , ; , Italy; Sardinia grapes
Elasmus steffani Parasite Larvae , Italy grapes
Elodia morio Parasite Larvae , ; , ; , Crimea grapes
Forficula auricularia Predator Italy; Sardinia grapes
Gelis areator Parasite Larvae/Pupae , ; , ; , Algeria; Austria; France; Germany: Italy; Romania; Russia grapes
Gelis cinctus Parasite , ; , Italy grapes
Granulosis virus Pathogen Larvae Republic of Georgia
Ischnus alternator Parasite Pupae , ; , ; , ; , France; Germany; Italy; Spain grapes
Itoplectis alternans Parasite Pupae , ; , ; , Crimea; Germany; Iran; Italy; Sardinia grapes
Itoplectis maculator Parasite Pupae , ; , ; , France; Iran; Italy; Spain grapes
Itoplectis tunetana Parasite Pupae , ; , ; , France; Iran; Italy; Spain grapes
Malachius sardous Predator Italy; Sardinia grapes
Malachius spinipennis Predator Italy; Sardinia grapes
Phytomyptera nigrina Parasite Larvae , ; , ; , ; , France; Italy; Spain; Turkey grapes
Pimpla apricaria Parasite Pupae , ; , Italy; Sardinia grapes
Pimpla contemplator Parasite Pupae , ; ,
Pimpla spuria Parasite Pupae , ; , France; Italy; Romania; Russia; Turkey grapes
Pleistophora legeri Pathogen
Pristomerus vulnerator Parasite , ; , Bulgaria; Crimea; Italy; Sardinia; Turkey grapes
Scambus elegans Parasite , ; , ; , France; Italy; Sardinia grapes
Sinophorus turionus Parasite Larvae , ; , Austria; Italy
Stethorus punctillum Predator
Theroscopus hemipteron Parasite , ; , Italy; Italy; Sardinia grapes
Tranosemella praerogator Parasite Larvae , ; , France; Italy
Trichogramma agrotidis Parasite Eggs , ; , ; , France grapes
Trichogramma bezdenkovii Parasite Eggs France; Portugal
Trichogramma brassicae Parasite Eggs , ; ,
Trichogramma cacaeciae Parasite Eggs , ; , ; , ; , France; Germany; Italy; Portugal grapes
Trichogramma cordubensis Parasite Eggs , ; , Italy
Trichogramma daumalae Parasite Eggs , ; , ; , France grapes
Trichogramma dendrolimi Parasite Eggs , ; ,
Trichogramma euproctidis Parasite Eggs , ; , ; ,
Trichogramma evanescens Parasite Eggs
Trichogramma ingricum Parasite Eggs , ; , ; , grapes
Trichogramma maidis Parasite Eggs , ; , France grapes
Trichogramma pintoi Parasite Eggs , ; ,
Trichogramma principium Parasite Eggs , ; , ; , France grapes
Trichogramma semblidis Parasite Eggs , ; , ; , France; Germany grapes
Triclistus lativentris Parasite Larvae/Pupae , ; , Italy; Sardinia grapes
Xanthandrus comtus Predator Larvae , ; , Italy grapes

Notes on Natural Enemies

Top of page

The cohort of L. botrana natural enemies varies considerably in time and space depending on insect physiology, activity and ecological niche of individual species,

Pathogens have been recorded after Feytaud (1924)Ruíz-Castro (1943)Bovey (1966)Deseo et al. (1981)Martignoni and Iwai (1986)Marchesini and Dalla-Monta (1994)EPPO (1996)Coscollá (1997) and references therein. They include fungi of the genera SpicariaBeauveriaPaecilomycesAspergillusCephalosporiumCladosporiumPenicilliumCitromycesVerticillium and Stemphylium, as well as the bacteria Bacillus thuringiensis var. kurstaki and B. thuringiensis var. aizawai (Scalco et al., 1997; Shahini et al., 2010). 

Arthropods feeding on EGVM include predators and parasitoids. These are listed by Thompson (1943-1964), EPPO (1996)  Coscollá (1997) and references therein. Records have been also obtained from particular studies and/or local faunas: Silvestri (1912), Feytaud (1913, 1924); Voukassovitch (1924)Ruíz-Castro (1943)Geoffrion (1959)Kisakurek (1972)Kaitazov and Kharizanov (1977), Coscollá (1980a, b, 1981), Nuzzaci and Triggiani (1982)Zapryanov and Stoeva (1982)Causse et al. (1984)Dugast and Voegele (1984)Barbieri (1987), Sengonca and Leisse (1987, 1989), Belcari and Raspi (1989)Martínez and Reymonet (1991)Marchesini and Dalla-Monta (1994), Bagnoli and Lucchi (2006), Loni et al. (2016), Reineke and Thiéry (2016) and Scaramozzino et al. (2017a, b, 2018).

Predators include a large number of spiders and carabid beetles, as well as birds, bats and many other insect species (Thiery et al., 2018) including spiders (Clubionidae, Theridiidae, Tomisidae, Linyphiidae, Salticidae) and insects belonging to Dermaptera, Hemiptera, Neuroptera, Diptera and Coleoptera (Coscollá, 1997).

Most species listed (>95%) are parasitic hymenoptera. EGVM parasitoids belong to Hymenoptera (Ichneumonidae, Braconidae, Chalcididae, Pteromalidae, Eulophidae, Elasmidae, Trichogrammatidae) and Diptera (Tachinidae). The natural control exerted by each species varies greatly in time and space. Typically, the frequency of egg and larval parasitism is high in the first two generations and decreases drastically in the overwintering generation, which is mainly affected by larval-pupal and pupal parasitoids.

PCR-RFLP analysis carried out on EGVM larvae can be an appropriate and reliable tool for estimating parasitization rates as well as parasitoid species involved.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
larvae; pupae Yes Pest or symptoms usually visible to the naked eye
Flowers/Inflorescences/Cones/Calyx eggs; larvae; pupae Yes Pest or symptoms usually visible to the naked eye
Fruits (inc. pods) eggs; larvae; pupae Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Bulbs/Tubers/Corms/Rhizomes
Growing medium accompanying plants
Leaves
Roots
Seedlings/Micropropagated plants
Stems (above ground)/Shoots/Trunks/Branches
True seeds (inc. grain)
Wood

Impact Summary

Top of page
CategoryImpact
Negative
Negative

Impact

Top of page

Yield loss quantification when larvae damage inflorescences (1st generation) has been carried out using several approaches: comparing naturally damaged and undamaged grapes (as inflorescences) by weighing or counting formed berries; artificial infestations with larvae; and damage simulation by direct ablation of flowers and berries (Roehrich, 1978; Coscollá, 1980b; Gabel, 1989). Most studies show a high compensation capacity of grapevine, variable between vine varieties, supporting the presence of one to four glomerules, or the ablation of 30 flowers per inflorescence, without significant yield losses (Roehrich and Schmid, 1979). In vineyards of eastern Spain, vines can even compensate for the ablation of 50% of flowers (Coscollá, 1980b). Thus it is generally assumed that grapevine is very tolerant to inflorescence damage, and it is usually recommended not to apply treatment in the 1st generation. Exceptions to this general approach are found in varieties having small inflorescences (Basler and Boller, 1976), and in northern vineyards where climatic conditions promote early rot attacks (ACTA-ITV, 1980). Damage thresholds oscillate in a wide range between 10 and 100 larvae per 100 inflorescences.

On grapes (summer generations), indirect damage is usually more important than direct, at least in the event of less severe attacks. Thus global damage may appear of little importance if it is evaluated exclusively as weight loss (direct damage), because greater damage is due to rot-derived reduction in quality (indirect damage). Larval boring in grapes may promote a number of fungal rots including Aspergillus, Alternaria, Rhizopus, Cladosporium, Penicillium and especially the grey rot caused by Botrytis cinerea (Fermaud and Le Menn, 1989; Fermaud, 1990). Grey rot development is greatly affected by both climatic conditions and grape phenological stage, the incidence of rotting being higher on ripening and ripe grapes than on unripe ones due to several morphophysiological and biochemical factors (Bessis, 1972; McClellan and Hewitt, 1973; Hill et al., 1981; Langcake, 1981; Pezet and Pont, 1986, 1988). In wine grapes, rot development causes bad flavours and bouquet, reducing the quality of wine. In table grapes, both larval boring and rotting cause high grape depreciation. Consequently, damage thresholds on grapes are more restricted, oscillating between two and 20 larvae per 100 grapes (ACTA-ITV, 1980) as a function of several variables including wine variety, yield use, risk of grey rot incidence, and control strategy performed.

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Tolerant of shade
  • Capable of securing and ingesting a wide range of food
  • Gregarious
Impact outcomes
  • Negatively impacts agriculture
  • Damages animal/plant products
  • Negatively impacts trade/international relations
Likelihood of entry/control
  • Difficult/costly to control

Detection and Inspection

Top of page

Inspection of Grapevine Reproductive Organs

Inspect inflorescences and look for eggs or larvae on flower buds or glomerules. Inspect grapes and look for eggs or larvae, or damaged berries. It is easier to look for larval damage rather than for eggs, because detection of eggs is very tedious and time-consuming, especially under field conditions. Egg detection is always preferable when an insecticidal control has to be programmed.

Corrugated Paper Bands

This technique has sometimes been employed to trap and quantify overwintering pupae. Bands are placed around grapevine trunks or primary branches, and diapausing larvae pupate inside. However, this method is only useful in the last generation, and its reliability is uncertain.

Light Traps

Their lack of specificity makes their use inadvisable when the adult trapping methods described below are available. EGVM flight activity mainly occurs at dusk (Lucchi et al., 2018c); this negatively affects the visibility of the light traps, impacting on their efficiency.

Feeding Traps

These traps were largely used in the past before sexual traps were developed, but may still be useful in particular situations. Trapping females with food-baited traps is a valuable tool to predict the onset of oviposition, an event used to properly time insecticide treatments (Thiéry et al., 2006). An earthen or glass pot is baited with a fermenting liquid (fruit juice, molasses, etc.) and the scents produced attract adults which are then drowned; the population may be estimated by counting. Practical problems include irregularity in trapping because fermentation strongly depends on seasonal temperature, trap maintenance (lure replenishment and foam elimination), and low selectivity. Terracotta pots baited with red wine have been used in Spain to assess the L. botrana mating ratio in mating disrupted vineyards (Bagnoli et al., 2011).

Sexual Traps

Pheromone traps are easier to use compared to feeding traps. They are a sensitive tool to monitor flight of males exclusively, but can be useful to time an ovicidal treatment, and to properly schedule scouting activities in the vineyard. Sexual traps were first suggested by Götz (1939). Chaboussou and Carles (1962) designed traps baited with living L. botrana females, which became increasingly important for monitoring. To obtain a large number of females to bait traps, laboratory rearing methods were improved both on natural substrates (Maison and Pargade, 1967; Roehrich, 1967a; Touzeau and Vonderheyden, 1968), and on synthetic or semi-synthetic media (Moreau, 1965; Guennelon et al., 1970, 1975; Tzanakakis and Savopoulou, 1973). However, sexual trapping became more efficient when the major compound of the L. botrana sex pheromone, (7E, 9Z)-7, 9-dodecadienyl acetate, was described (Roelofs et al., 1973), identified from the female sex gland (Buser et al., 1974), and synthesized (Descoins et al., 1974). In traps, females were promptly replaced by dispensers impregnated with synthetic pheromone, which had essential practical advantages for monitoring. It has now been shown that the L. botrana sex pheromone is a blend of 15 compounds (Arn et al., 1988), but for economic reasons commercial traps incorporate only the major pheromone compound, which has a satisfactory trapping specificity for L. botrana. In Italy, males of few species of non target moths are sometimes captured in L. botrana pheromone traps (Ioriatti et al., 2004).

A major limitation of L. botrana sexual trapping (as often occurs in other insect pests) is the lack of a clear relationship between the number of males trapped and the damage done by their offspring, given the high number of other uncontrolled ecological factors involved. The correlation between these variables has been partially improved by diminishing the pheromone dose in traps (Roehrich et al., 1983, 1986). According to Roehrich and Schmid (1979), only a negative prediction can be made when male catches in traps are sporadic (or nil) can one expect minimal (or even no) damage to be caused by offspring on the crop; but if catches are moderate or high, the damage caused by offspring is unpredictable. Nowadays, the variable performance of the traps on the market, the influence of the trap placement and of the wind direction on the number of catches, make it still difficult to find a strict relationship between catches and infestation, especially when the catches are low.

Scouting

Forecasting models and moth trapping alone do not provide sufficient population density information and need to be supplemented with appropriate field scouting of eggs and young larvae (Shahini et al.  2010).

Insecticides are applied according to action thresholds (AT) on the basis of the resulting infestation assessment (percentage of injured clusters, number of nests per inflorescence, number of eggs and larvae per cluster, number of injured berries per cluster). The action thresholds vary widely depending on the generation, susceptibility of the cultivar to subsequent infection by B. cinerea, and whether berries are being produced for table grape, raisins or wine production.

Modelling

Predictive mathematical models have been developed and tested to forecast the life cycle of L. botrana, integrating both biological and climatic information. Temperature-based models, both linear (degree-days accumulated above a lower threshold) and non-linear (deterministic) have been generated in Switzerland (Schmid, 1978), France (Touzeau, 1981), Slovakia (Gabel and Mocko, 1984b, 1986) and Italy (Caffarelli and Vita, 1988; Baumgartner and Baronio, 1989; Cravedi and Mazzoni, 1990). Major problems affecting the correct inference of tortricid populations using modelling are summarized by Knight and Croft (1991) - it should be noted that prognosis is usually only qualitative. However, modelling can be a useful implement in L. botrana management programmes. Time of the first appearance of adults and hatching of the first eggs can be forecasted by predictive models based on temperature requirements of individual instars and critical conditions for oviposition (Moravie et al., 2006). Unfortunately, forecast models based on Degree Days are empirical and their robustness is strongly dependent on the environment in which they have been validated. Alternative forecasting techniques are currently under development, such as the evaluation of larval age distribution during the previous generation in order to predict the distribution of female emergence (Delbac et al., 2010) .

Similarities to Other Species/Conditions

Top of page

In the Palaearctic vine-growing areas, other lepidopteran species have an ecological niche similar to that of L. botrana, including Eupoecilia ambiguella, Argyrotaenia ljungiana, Clepsis spectrana, Cryptoblabes gnidiella, Euzophera bigella and Ephestia parasitella. Even the primarily phytophagous Sparganothis pilleriana may sometimes damage grapes.

However, only the first of these, E. ambiguella, may cause comparable damage to L. botrana, at least in northern European vineyards. Adults of these species may be easily differentiated macroscopically using a photographic key (E. ambiguella forewings are cream with a median fascia bluish dark brown). In field conditions, larvae may be distinguished because (i) the head and the first prothoracic sclerite of E. ambiguella are darker than those of L. botrana; (ii) tubercules at the base of body hairs are black (white in L. botrana); and (iii) the behaviour of L. botrana when disturbed is quicker and even violent. Moreover, L. botrana pupation occurs inside a greyish white cocoon that usually does not incorporate vegetal residues and frass, as occurs in E. ambiguella.

Another tortricid species, the American grape berry moth Paralobesia viteana, occurs in the eastern USA, and presents similar bionomics to L. botrana (Roehrich and Boller, 1991).

Prevention and Control

Top of page

Phytosanitary Measures

The abnormal distribution patterns of L. botrana (see Geographical Distribution) emphasize the inherent risk of new, undesired introductions when infested grapes and/or plant material are transported around the world. Phytosanitary control in commercialization channels should be enforced to limit further pest spread, especially in importer countries with favourable climatic conditions for pest development.

Cultural Control

Several cultural methods may reduce pest incidence to a highly variable degree. Voukassovitch (1924) listed some direct (pest-killing) and indirect (microclimate-modifying) practices to reduce L. botrana infestation levels, including pruning the vine canopy, leaf stripping, irrigation, earthing-up, weeding and especially harvesting date. However, cultural methods have a limited efficiency by themselves, and are often inapplicable in major vineyards where possibilities of changing cultural schedules are restricted. For example, a systematic advance of harvesting date to reduce larval damage in the 3rd generation is often incompatible with high quality wine production.

Host-Plant Resistance

Some vine varietal characters may regulate larval damage. For example, it is often observed that compact grapes are more damaged than lax ones because larval thigmotropic behaviour, installation and grape-derived protection are enhanced.

Chemical Control

Chemical control of eggs and larvae is the most widely used control method, due to efficiency and low cost, at least using organophosphates. Chemical control, by itself or included in IPM programmes (see Integrated Pest Management), is at present necessary to keep L. botrana populations below the economic damage threshold. See Ioratti et al. (2011) for a recent review of chemical control of L. botrana.

Most insecticides applied in the past against grape berry moths have been gradually replaced by more selective and less toxic products. New and old neurotoxic insecticides (spinosyns and oxadiazines), chitin synthesis inhibitors, compounds accelerating molting, microbial insecticides, and more recently some avermectins and anthranilic diamides, have been introduced in current integrated control strategies. Nevertheless, the organophosphates chlorpyriphos and methyl chlorpyriphos and some pyrethroids are still largely used in European vineyards. Control with insecticides that are larvicidal with some ovicidal activity gives flexibility on application timing. The efficacy of these products depends on the optimal treatment of the most susceptible stages, so prediction of life-cycle events is critical for EGVM. Because of the increasing accuracy of forecasting tools, a single insecticide application to control the second generation can usually be effective in many grapevine districts in Europe, though more treatments are needed in the southern regions. In terms of selectivity, Bacillus thuringiensis has undoubtedly the highest ecological value, but its use is still limited due to its short persistence. Successful application timing can be achieved with adequate population monitoring with pheromone traps and, overall, egg field scouting in order to spray at the black-head stage of the egg (Ioriatti et al., 2012). 

Chemically inert products as kaolin (Pease et al., 2016) or a mixture of sodium silicate and sodium chloride (Loni and Lucchi, 2001) have been used effectively for their high dehydrating properties on L. botrana eggs.

Sterile Male Method (SIT)

Insect pests may be suppressed by introducing sexually sterile, mass-produced males into natural populations. This method was first proposed by Knipling (1955, 1959) and it is also known as autocide control. With regard to L. botrana, there are a number of experimental studies, performed many years ago, mainly in the former USSR, using both chemicals (thiotepa) and gamma radiation as sterilants (Beratlief, 1968; Harizanov, 1975; Vasilyan et al., 1978; Bradovskii, 1980; Bradovskii, 1982; Kipiani et al., 1990). Measurement of pupal length can be a practical method for quick separation of males and females (Steinitz et al., 2016). SIT has not reached general commercial application for the control of L. botrana.

Biological Control

The application of bacterial insecticides prepared from some Bacillus thuringiensis subspecies is the only biological control method commercially available at present. First investigations under laboratory and field conditions have already shown the potential of B. thuringiensis (spores and endotoxin crystals) against L. botrana (Roehrich, 1964, 1967b, 1968, 1970). Control efficiency averages 75-90% (sometimes even higher), under favourable meteorological conditions being almost as effective as conventional insecticides (cf. Roehrich and Boller, 1991). Biological control of L. botrana using other pathogens has not been the aim of systematic research, and their commercial interest remains obscure. Only some studies carried out in the Republic of Georgia suggest the potential of entomopathogenic viruses for use against L. botrana, reporting an efficiency in field tests of Baculovirus orana of about 60-100% (Chkhubianishili and Malaniya, 1986, 1990).

Extensive scientific efforts to develop biological control as an effective solution for practical use in the field are still needed. Egg parasitoids of the genus Trichogramma have been mass-released in an inundative strategy with mixed results (Castaneda-Samayoa et al., 1993; Hommay et al.,  2002; Ibrahim,  2004; Lucchi et al., 2016). Studies on the use of Trichogramma species as egg parasites to control L. botrana have been increasingly important in recent years and in several countries (Sengonca and Leisse, 1987, 1989; Tavares et al., 1988; Sengonca et al., 1990; Castañeda-Samayoa et al., 1993) but regrettably the method still has not attained commercial status. There are also studies on the use of the pupal parasite Dibrachys (Coscollá, 1981; Dergachev, 1995) although practical application is still under development. The pteromalids Dibrachys affinis and D. microgastri are gregarious generalist larval-pupal parasitoids of Lepidoptera, Diptera and Hymenoptera that can be readily reared in the laboratory. However, due to lack of host specificity and because they are also hyperparasites, they are not good candidates for release. The most frequent and efficient species in the Mediterranean area is the larval parasitoid Campoplex capitator (Ichneumonidae). It is regarded as the best candidate for EGVM biological control. Difficulties associated with artificially mass-rearing the species (Thiéry and Xuéreb,  2004) have been recently overcome in a fruitful cooperation between Italian and Chilean entomologists (Lucchi et al., 2017).

Mass Trapping

Studies have been carried out on mass trapping against L. botrana in Azerbaijan, but the level of control obtained was unsatisfactory in relation to conventional insecticide control (Parkhomenko and Kurbanova, 1986). Some physiological factors, including high male multiple mating potential, could explain the lack of practical efficiency (Torres-Vila et al., 1995).

Pheromone-Mediated Control Strategies

The first preconisation of this strategy is due to Götz (1940), about 20 years before the discovery of the first insect pheromone. In that paper Götz wrote “…we believe that in the future grape moths will be managed by sex attractants…once solved the issue of identification and synthesis…..the arsenic replacement will be handled in an elegant way…”. The first practical approach in the use of pheromones for insect pest control was initiated in the late 1960s by Gaston et al. (1967). With regard to L. botrana, the first tests were carried out in France, under both laboratory (Roehrich and Carles, 1977) and field conditions (Roehrich et al., 1977, 1979; Roehrich and Carles, 1982). Despite sometimes heterogeneous results, they established basic points and procedures to improve the efficiency of this method, including adult dispersal, plot shape, minimum area treated, edge area, number and dosage of pheromone dispensers, initial population density, habitat details, global pest species spectrum, and other compatible control measures. Improved knowledge of the insect species combined with technical and economic improvements are now optimizing the use of mating disruption against L. botrana (see, for example, Stockel et al., 1992, 1994; Charmillot et al., 1995a; Schmitz et al., 1995a, b, 1996, 1997a, b; Karg and Sauer, 1997; Torres-Vila et al., 1997a; Ioriatti et al., 2004).

Mating disruption is currently being applied in several countries and is proving almost as effective as conventional insecticides.

The use of pheromones for EGVM control has increased in vineyards due to their high selectivity and low environmental impact so that mating disruption (MD) is now being applied in several countries and is proving in many areas more effective than conventional insecticides (see Arn et al. (1997) and Ioratti and Lucchi (2016)). Mating disruption (MD) with hand-applied passive reservoir dispensers is the most well-studied and widely used pheromone-mediated control technique against EGVM in European grapevine-growing regions (Ioriatti and Lucchi, 2016). Currently MD is applied on approximately 300,000 hectares, i.e., about 6-7% of the total grapevine-growing area in the European Union. MD area-wide applications have recently been conducted in Chile, Argentina and California where EGVM was accidentally introduced (Ioriatti et al., 2012; Cooper et al., 2014). The most common hand-applied dispensers available on the market for EGVM are Shin-Etsu twist-ties ropes (Isonet® L, Lplus, LE and LAplus in Europe; Isomate® EGVM in the USA), the BASF twin ampoules (RAK® 2 MAX and RAK® 1+2) and the ShinEtsu LTT twin ropes (Lucchi et al., 2018a). The active ingredient in these dispensers is the main EGVM pheromone component, (E,Z)-7,9-dodecadienyl acetate, sometimes mixed with other compounds. Depending on the formulation, 500 to 200 dispensers per hectare (the number of dispensers may vary depending on manufacturer formulation and recommendations) must be deployed in the vineyards before the onset of the first seasonal flight, because late deployment will probably cause control failures. Dispensers must be evenly distributed in the vineyard and should be attached to vine shoots or loosely attached to wires covered with foliage for protection against direct exposure to sun and high temperatures. Twice as many dispensers must be hung along the vineyard edges to compensate for the loss of pheromone concentration in those areas. Border effects are greatly reduced when MD is applied in area wide projects as in certain growing regions of Germany, France, Switzerland, northern Italy and Spain (Kast, 2001; Ioriatti et al., 2008; Ioriatti and Lucchi, 2016). Depending on the vineyard layout and trellising system, the time to deploy the dispensers in the vineyards may vary between 1 and 2.5 h/ha. The surface area of vineyards in Europe under pheromone-mediated (MD) control of L. botrana remains limited, despite intensive research and substantial experience with practical applications during the past two decades. This is because of socio-cultural and economical conditions existing in the different vine-growing areas where interest and trust in innovative methods is often low. Increasing quality standards for wine and table grapes, with respect to pesticide residues, and improved pest control in high pressure areas are creating new opportunities for extensive adoption of MD in IPM programmes.

Automatic aerosol devices are a promising alternative to passive dispensers, releasing pheromone puffs at programmed time intervals (Suterra CheckMate Puffer® LB and ShinEtsu Isonet® MisterLB). These active devices require a lower number of units per hectare (3 to 5) compared to hand-applied dispensers because they release micro droplets that float in the air and evaporate instead of slow releasing vapourized molecules of pheromones. The reduced number of units can save labour costs, at least after the first year of application, and contribute (to some extent) to reduce plastic disposal in agricultural settings (McGhee et al., 2016; Lucchi et al., 2018b).

These devices have been successfully tested against several insect species of economic importance, with special reference to moth pests (Burks and Brandl, 2004; Knight, 2004; Stelinski et al., 2007; Suckling et al., 2007; De Lame et al., 2010; McGhee et al., 2014, 2016) and recently showed good potential for the control of EGVM in Spain (Lucchi et al., 2018b).

Aerosol formulations can be easily tuned to release pheromone plumes during the hours when males really flight, searching for mates, providing a cost­-effective alternative to hand­-applied dispensers.

Lucchi et al. (2018c) reported that EGVM flight along the three generations, mainly occurs between 21:00 and 23:00 h.

These findings are useful in optimizing the MD technique, identifying selected time intervals when the release of EGVM synthetic pheromones can be concentrated, boosting MD efficacy against this important pest, reducing the release of synthetic sex pheromone molecules and potentially reducing application costs.

Further research to develop aerosol dispensers with reduced pheromone content and finely tuned release programmes is ongoing with the aim of producing highly effective, economic and easy-to-manage aerosol devices.

Other novel pheromone application systems as autoconfusion, lure and kill, microencapsulated sprayables and nanofibers are still under investigation and possibly represent future opportunities for grapevine moth control (Underwood et al., 2002; Charmillot et al.,  2005; Ioriatti and Lucchi, 2016). Investment in fundamental research is critical for an effective improvement in semiochemical applications. Research should address the reproductive, physiological and behavioural mechanisms by which the pheromone affects the target insects, as well as explain how volatile compounds are involved in tritrophic interactions. 

Integrated Pest Management

In most situations IPM procedures are recommended against L. botrana, integrating all the available control methods in varying proportions, but with chemical control being, as far as possible, a minor component. Improvement of detection and inspection methods and accurate damage threshold establishment are used to enhance IPM programmes, which are being developed in most vine-growing countries including Armenia (Vasilyan et al., 1978; Azaryan et al., 1980; Manukyan, 1980), Azerbaijan (Agaeva and Nuraddinov, 1988), Georgia (Abashidze, 1991), Iran (Nassirzadeh and Bassiri, 1994), Israel (Anshelevich et al., 1994). Kazakhstan (Mazina et al., 1987), Tajikistan (Makhmudov et al., 1977), Turkey (Atac et al., 1987; Zeki, 1996), Turkmenistan (Tokgaev and Bergmann, 1985), Uzbekistan (Atadzhanov and Dubrovina, 1977), Egypt (Abdel-Lateef et al., 1978), Austria (Fischer-Colbrie, 1980), Bulgaria (Kharizanov, 1979; Zapryanov and Stoeva, 1982; Mitkov and Raicheva, 1983), France (Guennelon and d'Arcier, 1972; Roehrich et al., 1977, 1986; Touzeau, 1979; Roehrich and Carles, 1987; Stockel et al., 1992, 1994; Bals, 1995), Germany (Schruft and Steiner, 1975; Englert, 1983; Louis and Schirra, 1992; Feldhege et al., 1993), Greece (Tsitsipis et al., 1993), Hungary (Schieder, 1984), Italy (Viggiani and Tranfaglia, 1975; Tranfaglia and Malatesta, 1977; Laccone, 1978; Tranfaglia and Viggiani, 1981; Dalla-Monta, 1987; Dalla-Monta and Giannone, 1991; Lozzia and Rigamonti, 1991; Silvestri, 1992; Varner and Ioratti, 1992; Bagnoli et al., 1993; Mattedi et al., 1995; Moleas, 1995; Nucifora et al., 1996), Macedonia (Velimirovic, 1975), Moldova (Gontarenko et al., 1981; Teshler, 1992; Zavelishko and Vojnyak, 1996), Portugal (Tavares et al., 1988), Romania (Filip and Alexandrini, 1977; Filip, 1985; Rosian, 1989), Russia (Akhmedov, 1974; Makhmudov et al., 1977; Velieva, 1983; Talesh and Vorob'eva, 1987; Aslanov, 1992; Dergachev, 1995), Slovakia (Gabel and Renczes, 1985), Slovenia (Vrabl et al., 1983), Spain (Coscollá, 1997 and references therein), Switzerland (Schmid and Antonin, 1977; Boller and Remund, 1981; Baillod et al., 1988; Baillod et al., 1990; Charmillot et al., 1995a, b; Remund et al., 1996) and Ukraine (Khmelevskaya and Gorelik, 1979; Razdolina and Gubanova, 1979; Beskrovnaya and Storozhuk, 1987; Burov and Sazanov, 1992).

References

Top of page

Abashidze ED, 1991. Comparative evaluation of entomophenological prediction methods. Soviet Journal of Ecology, 22(1):64-69

Abdel-Lateef MFA, Ali MA, Awadallah AM, Korashy MA, 1978. Efficiency of some insecticides in controlling the vine grape moth, Lobesia botrana Schiff. Proceedings of the Fourth Conference of Pest Control, September 30 - October 3, 1978. (Part I). Cairo, Egypt: Academy of Scientific Research and Technology and National Research Centre, 605-608

ACTA-ITV, 1980. Protection intégrée. Contrôles périodiques au vignoble. Vol. II. Paris, France: Laboreur et Cie., Issoudum

Agaeva ZM, Nuraddinov RI, 1988. Pheromone traps in the control of the grape leaf-roller. Zashchita Rastenii (Moskva), 8:31-32

Akbarzadeh Shoukat, G., 2011. Identification of the pupal parasitoid wasps of grape berry moth Lobesia botrana (Denis & Schiffermüller)(Lep.,Tortricidae) in Orumieh vineyards. Journal of the Entomological Research, 3(2), 95-102.

Akbarzadeh Shoukat, G., Ebrahimi, E., 2008. Egg parasitoids and their role in biological control of grape berry moth Lobesia botrana (Denis & Schiff.) (Lep. Tortricidae) in Orumieh vineyards. Proceeding of 18th Iranian Plant Protection Congress, 24-27 Aug., Hamedan, Iran: 19

Akhmedov DS, 1974. The grape leafroller. Zaschchita Rastenii, 8:38-39

Ali MA, Abdel-Lateef MF, Awadallah AM, Korashy MA, 1978. Seasonal abundance and occurrence of Lobesia botrana Schiff. larva with special reference to climatic factors effects. Proceedings of the Fourth Conference of Pest Control, September 30 - October 3, 1978. (Part I). Cairo, Egypt: Academy of Scientific Research and Technology and National Research Centre, 163-168

Anshelevich L, Kehat M, Dunkelblum E, Greenberg S, 1994. Sex pheromone traps for monitoring the European vine moth, Lobesia botrana: effect of dispenser type, pheromone dose, field aging of dispenser, and type of trap on male captures. Phytoparasitica, 22(4):281-290

Arias Giralda A, Guerrero Cruz JM, Guerrero Rodriguez F, Nieto Calderon J, 1985. Effectiveness of deltamethrin (pyrethroid) and of etrimfos (organophosphate) against the vine moth (Lobesia botrana Den. & Schiff) and the secondary effect on the two-spotted spider mite (Tetranychus urticae Koch). Anales del Instituto Nacional de Investigaciones Agrarias, Agricola, 28(2):95-104

Arn H, Louis F, Cardé RT, Minks AK, 1997. Mating disruption in European vineyards. In: Cardé RT, ed. Insect pheromone research: new directions. New York, USA: Chapman & Hall

Arn H, Rauscher S, Guerin P, Buser HR, 1988. Sex pheromone blends of three tortricid pests in European vineyards. Agriculture, Ecosystems and Environment, 21(1-2):111-117

Aslanov AA, 1992. Polychrosis botrana on vine. Zashchita Rastenii^breve~ (Moskva), No. 6:24

Atac O, Bulut H, Cevik T, 1992. Orta anadolu bolgesinde baglarda zarar yapan salkim guvesi (Lobesia botrana Den. et Schiff) 'ne karsi ilac denemesi (Chemical control of European grape-berry moth (Lobesia botrana Den. et Schiff) in vineyards in central Anatolia). Zirai Mucadele Arastirma Yilligi, 22-23:29-30

Atac O, Cevik T, Zeki C, 1987. Investigations on the determination of control times by means of sex pheromone traps against the European grape berry moth (Lobesia botrana Den. & Schiff.) (Lepidoptera: Tortricidae) in the region of Central Anatolia, and on the possibility of using these traps for early warning. Turkiye I. Entomoloji Kongresi Bildirileri, 13-16 Ekim 1987, Ege Universitesi, Bornova, Izmir Bornova/Izmir, Turkey; Ege Universitesi Ataturk Kultur Merkezi, 119-128

Atadzhanov MA, Dubrovina VA, 1977. An experiment in the protection of fruit trees and vines. Zashchita Rastenii, 7:24

Atanov NM, Gummel ER, 1991. Pheromone traps. Zashchita Rastenii^breve~ (Moskva), No. 3:49-50

Azaryan GKh, Alaverdyan SP, Babayan AS, Mkrtumyan KL, Tsaturyan AA, 1980. Combined use of pheromones and chemosterilants in the control of the codling moth and the vine moth. Biologicheskii Zhurnal Armenii, 33(3):244-250

Bae YS, Komai F, 1991. A revision of the Japanese species of the genus Lobesia Guenée (Lepidoptera, Totricidae), with description of a new subgenus. Tyo to Ga, 42(2):115-141

Bagnoli B, Goggiolo D, Righini M, 1993. Experiments with mating disruption to control the grape moth Lobesia botrana (Den. and Schiff.) in the Chianti region. Redia, 76(2):375-390

Bagnoli, B., Espadas, A. L., Palao, J. S., Perez, B. M. G., Juan, M. P., Cascales, A. P., Ortega, M., Sambado, P., Lucchi, A., 2013. Performance of a wine trap device to monitor Lobesia botrana adult populations in Murcia vineyards. IOBC/WPRS Bulletin, 85, 145-150. http://www.iobc-wprs.org/pub/bulletins/bulletin_2013_85_table_of_contents_abstracts.pdf

Bagnoli, B., Lucchi, A., 2006. Parasitoids of Lobesia botrana (Den. & Schiff.) in Tuscany. Bulletin OILB/SROP, 29(11), 139-142. http://www.iobc-wprs.org

Baillod M, Charmillot PJ, Guignard E, Meylan A, Vallotton R, Antonin P, Jermini M, 1990. Application of integrated protection against vine pests. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 22(1):15-23

Baillod M, Guignard E, Dupuis D, 1988. Application and economic returns of directed control in a vine-growing domain. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 20(3):183-188

Bals N, 1995. Un exemple de mise en practique de la lutte integree dans le vignoble de l'Herault en 1994. Progres Agricole et Viticole, 112: 334-337

Barbieri R, 1987. Supervised control against vine moths. Informatore Fitopatologico, 37(7-8):9-13

Basler P, Boller E, 1976. Der Traubenwickler in der Ostschweiz: II, Zur Bedeutung des Heuwurms. Schweizerische Zeitschrift für Obst und Weinbau, 112:74-79

Baumgartner J, Baronio P, 1989. Phenological model of the flight of Lobesia botrana Den. & Schiff. (Lep. Tortricidae) in relation to the environmental conditions of Emilia-Romagna. Bollettino dell'Istituto di Entomologia "Guido Grandi" della Universita degli Studi di Bologna, 43:157-170

Belcari A, Raspi A, 1989. A new predator of Lobesia botrana (Denn. & Schiff.) (Lepidoptera Tortricidae): Xanthandrus comtus (Harr.) (Diptera Syrphidae). Bollettino di Zoologia Agraria e di Bachicoltura, 21:185-192

Beratlief C, 1968. Citeva efecte ale radiatiilor gamma asupra moliei strugurilor, Lobesia botrana Schiff. Analele-Institutului-de-Cercetari-pentru-Protectia-Plantelor, 6: 373-381

Bergougnoux P, 1988. Dynamique de la population de Lobesia botrana Schiff. dans un vignoble de Beaumes de Venise (Vaucluse). Etude comparative du facteur thermique sur l'émergence et la ponte dans une population d'élevage et une population naturelle. Marseille, France: Mémoire DEA de l'Université de Marseille

Beskrovaya ML, Storozhuk EM, 1987. Traps in studies on flight dynamics. Zashchita Rastenii (Moskva), 6:46-47

Beskrovnaya ML, Krivoshchenko NP, 1984. Optimal height for placing traps. Zashchita Rasteni, 7:38-39

Bessis R, 1972. Etudes en microscopie électronique à balayage des rapports entre l'hôte et le parasite dans le cas de la porriture grise. Comptes Rendus de l'Academie des Sciences de Paris (series D) 274:1911-1914

Boller E, 1975. Die Traubenwickler in der Ostschweiz. 1. Verbreitung und Flugverlauf des einbindigen und bekreuzten Traubenwicklers. Schweizerische Zeitschrift für Obst und Weinbau, 111:277-282

Boller E, Remund U, 1981. Der Sauerwurm 1981 in der Ostschweiz: Prognosen und Hinweise fur seine chemische oder biologische Bekampfung. Schweizerische Zeitschrift für Obst und Weinbau, 117:424-430

Bovey P, 1966. Superfamille des Tortricoidea. In: Balachowsky AS, ed. Entomologie Appliquée à l'Agriculture Vol. 2 (1). Paris, France: Masson et Cie., 859-887

Bradovskii VA, 1980. Sterilisation of the grape moth. Zashchita Rastenii, 7:24

Bradovskii VA, 1982. Characteristics of the biology of the vine moth and a tactical basis for its control by the sterilisation method. In: Sokolov VE, ed. Pheromones and behaviour. Izdatel'stvo "Nauka" Moscow USSR, 238-246

Burks, C. S., Brandl, D. G., 2004. Seasonal abundance of the navel orangeworm, Amyelois transitella, in figs and the effect of peripheral aerosol dispensers on sexual communication. Journal of Insect Science (Tucson), 4, 40. http://www.insectscience.org/4.40/ doi: 10.1093/jis/4.1.40

Burov VN, Sazonov AP, 1992. A new preparation for orchards and vineyards. Zashchita Rastenii (Moskva), 10:50-51

Buser HR, Rauscher S, Arn H, 1974. Sex pheromones of Lobesia botrana. E7 Z9 dodecadienyl-acetate in the female grape vine moth. Zeitschrift für Naturforschung, 29:731-783

CABI/EPPO, 2012. Lobesia botrana. [Distribution map]. Distribution Maps of Plant Pests, No.December. Wallingford, UK: CABI, Map 70 (2nd revision)

Caffarelli V, Vita G, 1988. Heat accumulation for timing grapevine moth control measures. Bulletin SROP, 11(2):24-26

Castaneda-Samayoa O, Holst H, Ohnesorge B, 1993. Evaluation of some Trichogramma species with respect to biological control of Eupoecilia ambiguella Hb. and Lobesia botrana Schiff. (Lep., Tortricidae). Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 100(6):599-610

Causse R, Barthes J, Marcelin H, Vidal G, 1984. Localisation et mortalité hivernale des chenilles de l'Eudémis de la Vigne, Lobesia botrana Schiff. Vignes et Vins, 326:8-15

Chaboussou F, Carles JP, 1962. Observations sur le piégeage sexuel des mâles d'Eudémis (Lobesia botrana Schiff). Revue de Zoologie Agricole et Appliquée, 61:81-98

Chalverat J, 1978. Observations on vine moths in 1976 in the Neuchatel vine-growing district. Distribution and density of the two species, cochylis (Clysia ambiguella) and eudemis (Lobesia botrana). Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 10(3):127-131

Charmillot PJ, Pasquier D, Scalco A, Alipaz NJ, 1995. Six years of control of the vine and grape moths by mating disruption with a reduced density of dispensers. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 27(1):7-12

Charmillot PJ, Pasquier D, Scalco A, Dupuis D, 1995. Lutte par confusion contre les vers de la grappe eudémis et cochylis a Perroy et Allaman: resultats de 1995. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 27:347-358

Charmillot, P. J., Degen, T., Pasquier, D., Briand, F., 2005. (Noveaux procédés à base de pheromones pour lutter contre les vers de la grappe, essay preliminaries en 2004). Revue Suisse Viticulture Arboriculture Horticulture, 37, 283–288.

Chkhubianishvili TsA, Malaniya IG, 1986. Granulosis virus against the European grape moth. Zashchita Rastenii, 5:33

Chkhubianishvili TsA, Malaniya IG, 1990. Entomopathogenic viruses against the grape leaf-roller. Sadovodstvo i Vinogradarstvo, No. 10:27-28

Cooper, M., Varela, L., Smith, R., Whitmer, D., Simmons, G., Lucchi, A., Broadway, R., Steinhauer, R., 2014. Growers, scientists and regulators collaborate on European grapevine moth program. California Agriculture, 68(4), 125-133. http://californiaagriculture.ucanr.org/issue.cfm?issue=current doi: 10.3733/ca.v068n04p125

Coscollá R, 1980. Contribution to the study of natural parasitism of Lobesia botrana Den. & Schiff. in the vine-growing districts of Valencia. Boletin del Servicio de Defensa contra Plagas e Inspeccion Fitopatologica, 6(1):5-15

Coscollá R, 1980. Estudio poblacional, ecológico y económico de la Polilla del racimo de la vid Lobesia botrana Den. & Schiff. en la provincia de Valencia. Planteamiento de un sistema de lucha dirigida. Valencia, Spain: Tesis Doctoral de la ETS de Ingenieros Agrónomos de la Universidad Politécnica de Valencia

Coscollá R, 1981. Algunas observaciones sobre el pteromalido Dibrachys affinis Masi., parasito de Lobesia botrana Den. y Schiff. (polilla del racimo de la vid). Boletfn del Servicio de Defensa contra Plagas e Inspección Fitopatológica, 7:57-63

Coscollá R, 1982. Algunas consideraciones sobre la dinámica poblacional de Lobesia botrana Den. Schiff. en las comarcas vitfcolas valencianas. Boletfn del Servicio de Defensa contra Plagas e Inspección Fitopatológica, 7:169-184

Coscollá R, 1992. Polillas del racimo (Lobesia botrana Den. y Schiff.). In: Arias A et al., eds. Los parásitos de la vid. Madrid, Spain: MAPA-Mundi Prensa, 29-41

Coscollá R, 1997. La polilla del racimo de la vid (Lobesia botrana Den. y Schiff.). Valencia, Spain: Generalitat Valenciana, Consejerfa de Agricultura, Pesca y Alimentación

Coscollá R, Dávila-Zurita M, 1983. Influence of climatic factors on the severity of attack by Lobesia botrana in vineyards in the Valencia region. Bulletin OEPP/EPPO Bulletin, 13(2):97-102

Coscollá R, Sanchez J, Beltran V, 1986. Preliminary study on the mortality of eggs of Lobesia botrana Den. & Schiff. caused by high temperatures and low relative humidities in the laboratory. Boletin de Sanidad Vegetal, Plagas, 12(1):3-7

Cravedi P, Mazzoni E, 1990. Heat sums for forecasting the emergence of Lobesia botrana Den. & Schiff. (Lepidoptera, Tortricidae). Redia, 73(1):17-40

Cyprus Department of Agriculture, 1988. Plant Protection - entomology. Annual report for the year 1987 Nicosia, Cyprus; Ministry of Agriculture and Natural Resources, 37-40

Dalla Montá L, 1987. Integrated control in viticulture. Informatore Agrario, 43(18):67-70, 73-74

Dalla Montá L, Giannone F, 1991. Un regolatore di crescita degli insetti (Fenoxicarb) contro la Tignoletta della vite (Lobesia botrana Den. et Schiff.) nel Veneto. Informatore Fitopatologico, 41:53-56

Davydov GN, 1976. The phenology of the grape moth. Zashchita Rastenii, 2:52

de Jong, Y., Verbeek, M., Michelsen, V., Place Bjorn, P. de, Los, W., Steeman, F., Bailly, N., Basire, C., Chylarecki, P., Stloukal, E., 2014. Fauna Europaea – all European animal species on the web. Biodiversity Data Journal, 2, e4034.

Delbac, L., Lecharpentier, P., Thiery, D., 2010. Larval instars determination for the European Grapevine Moth (Lepidoptera: Tortricidae) based on the frequency distribution of head-capsule widths. Crop Protection, 29(6), 623-630. http://www.sciencedirect.com/science/journal/02612194 doi: 10.1016/j.cropro.2010.01.009

Delbac, L., Thiéry, D., 2016. Damage to grape flowers and berries by Lobesia botrana larvae (Denis & Schiffernüller) (Lepidoptera: Tortricidae), and relation to larval age. Australian Journal of Grape and Wine Research, 22(2), 256-261. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1755-0238 doi: 10.1111/ajgw.12204

Delrio G, Luciano P, Nannini M, 1993. Prove di lotta contro Lobesia botrana (Den. & Schiff.) con la tecnica di confusione sessuale in vigneti della Sardegna. Annali della Facolta di Agraria dell'Universita Sassari, Studi Sassaresi, 34:177-185

Delrio, G., Luciano, P., Prota, R., 1987. Researches on grape-vine moths in Sardinia. Proc. Meet. E.C. Experts Group “Integrated pest control in viticulture”, Portoferraio, Italy, 26-28 september, 1985. Ed, A.A. Balkema, Rotterdam: 57-67

Denis M, Schiffermüller T, 1776. Systematisches Verzeichnis der Schmetterlinge der Wienergegend. Vienna, Austria: L. Bernardi

Dergachev DV, 1995. Dibrachys application to control grape leaf roller. Zashchita Rastenii (Moskva), 7:18-19

Descoins C, Lalanne-Cassou B, Samain D, 1974. Sur des attractifs sexuels synthétiques pour l'Eudémis de la vigne Lobesia botrana (Schiff.) (LépidoptFre, Tortricidae). Comptes Rendus de l'Academie des Sciences de Paris (series D) 279:907-910

Deseo KV, Marani F, Brunelli A, Bertaccini A, 1981. Observations on the biology and diseases of Lobesia botrana Den. and Schiff. (Lepidoptera, Tortricidae) in Central-North Italy. Acta Phytopathologica Academiae Scientiarum Hungaricp, 16(3/4):405-431

Dugast JF, Voegele J, 1984. The trichogrammatid parasites of vine moths; discovery of a new species: Trichogramma daumalp (Hym. Trichogrammatidae). Actes de l'Institut Agronomique et Veterinaire Hassan II, 4(1 (Numero Special Zoologie)):11-21

Dzhivladze KN, 1979. Use of biological methods in Georgia. Zashchita Rastenii, 5:28

Eghtedar E, 1996. Biology of Lobesia botrana in Fars province. Applied Entomology and Phytopathology, 63(1/2):5-6

Eichhorn KW, Lorenz DH, 1977. Phenological development stages of the grape vine. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 29(8):119-120

Englert WD, 1983. Aspects of integrated plant protection in viticulture. Mitteilungen der Deutschen Gesellschaft fur Allgemeine und Angewandte Entomologie, 4(1/3):171-172

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Erkilic L, Yigit A, 1992. Akdeniz bolgesi baglarinda zararli salkim guvesi (Lobesia botrana Schiff and Den. Lep.: Tortricidae) 'ne karsi ilac denemesi (Chemical experiment against the grape berry moth (Lobesia botrana Schiff and Den. Lep.: Tortricidae) in vineyards in southern Anatolia). Zirai Mucadele Arastirma Yilligi, 22-23:31-32

Feldhege M, Eichhorn KW, Louis F, 1993. Mating disruption of the European grapevine moth Lobesia botrana Schiff. (Lepidoptera: Tortricidae). Investigations on the temporal and spatial distribution of populations. Bulletin OILB/SROP, 16(10):90-92

Feldhege M, Louis F, Schmutterer H, 1994. Eine neue Methode zur Bestimmung von Traubenwickler Falterdichten im Weinbau. Anzeiger fur Schadlingskunde, Pflanzenschutz, Umweltschutz, 67:137-142

Fermaud M, 1990. Incidence des attaques larvaires d'Eudémis Lobesia botrana sur le développement de la Pourriture Grise Botrytis cinerea chez la vigne: rôle des facteurs du milieu et mécanismes mis en jeu. Paris, France: ThFse Doctoral de l'INA PG, INRA

Fermaud M, Menn R le, 1989. Association of Botrytis cinerea with grape berry moth larvae. Phytopathology, 79(6):651-656

Feytaud J, 1913. La destruction naturelle de la Cochylis et de l'Eudémis. ProcFs Verbaux de la Société Linnéenne de Bordeaux, 13 pp

Feytaud J, 1924. Notes biologiques sur les vers du raisin (Cochylis et Eudémis). Revue de Zoologie Agricole et Appliquée, Numéro spécial, 36 pp

Filip I, 1985. Economicitatea combaterii principalelor boli si daunatori si vitei de vie in conditiile podgoriei Murfatlar (Economic effectiveness of controlling the principal diseases and pests of grapevine in the conditions of Murfatlar vineyard). Probleme de Protectia Plantelor, 13:283-288

Filip I, 1986. Breeding zones of the grape moth (Lobesia botrana Den & Schiff) in Romania. Probleme de Protectia Plantelor, 14(1):25-30

Filip I, 1990. Causes of fluctuation in the grape moth (Lobesia botrana Den. et Schiff.) population density in the vineyard of Murfatlar. Analele Institutului de Cercetari pentru Protectia Plantelor, Academia de Stiinte Agricole si Silvice, 23:129-134

Filip I, Alexandri AA, 1977. Investigations on the biology and control by chemical and biological means of the grape moth (Lobesia botrana Schiff.) in the Murfatlar vineyards. Analele Institutului de Cercetari pentru Protectia Plantelor, 13:121-131

Fischer-Colbrie P, 1980. Present pests in viticulture and modern methods of control. Pflanzenarzt, 33(4):35-37

Forster W, Wohlfart TA, 1954. Die Schmetterlinge Mitteleuropas. I-IV. Stuttgart, Germany

Fotáki A., 2013. (Meleti tis Anthektikotitas stin Edvemida tis Ampelou Lobesia botrana (Denis and Schiffermueller)). Thesis. T.E.I. of Crete Faculty of Agricultural Technology, Department of Biological Greenhouses Cultivation and Growth, 65 pp. https://apothesis.lib.teicrete.gr/handle/11713/923

Gabel B, 1989. Fixation du seuil de nuisibilité des chenilles de la Tordeuse de la Grappe de la premiFre génération. Defense des Végetaux, 259:17-20

Gabel B, 1992. Tansy flowers attract European grapevine moth females, Lobesia botrana Den. & Schiff. (Lep., Tortricidae). Journal of Applied Entomology, 113(2):153-158

Gabel B, Mocko V, 1984. Forecasting the cyclical timing of the grape vine moth, Lobesia botrana (Lepidoptera, Tortricidae). Acta Entomologica Bohemoslovaca, 81(1):1-14

Gabel B, Mocko V, 1984. Temporal analysis of fertilization in the field population of the grape leaf-roller, Lobesia botrana Den. et Schiff. (Lep., Tortricidae). Zeitschrift für Angewandte Entomologie, 98(4):380-389

Gabel B, Mocko V, 1986. A functional simulation of European vine moth Lobesia botrana Den. et Schiff. (Lep., Tortricidae) population development. Journal of Applied Entomology, 101(2):121-127

Gabel B, Renczes V, 1982. Effects of design and siting of pheromone traps in monitoring the grape vine moth, Lobesia botrana (Lepidoptera, Tortricidae). Acta Entomologica Bohemoslovaca, 79(4):260-266

Gabel B, Renczes V, 1985. Factors affecting the monitoring of flight activity of Lobesia botrana and Eupoecilia ambiguella (Lepidoptera, Tortricidae) by pheromone traps. Acta Entomologica Bohemoslovaca, 82(4):269-277

Gabel B, Roehrich R, 1990. Action d'expositions à différentes températures sur les chrysalides diapausantes de Lobesia botrana Den. et Schiff. Les Colloques de l'INRA, 52:57-60

Gabel B, Roehrich R, 1995. Sensitivity of grapevine phenological stages to larvae of European grapevine moth, Lobesia botrana Den. et Schiff. (Lep., Tortricidae). Journal of Applied Entomology, 119(2):127-130

Gabel B, Stockel J, 1988. Studies on the flight behaviour of the European vine moth, Lobesia botrana Den. et Schiff. (Lep., Tortricidae). Journal of Applied Entomology, 105(2):205-211

Galet P, 1982. Les Maladies et les Parasites de la Vigne. Vol. 2. Montpellier, France: Imp. du Paysan du Midi

Gaston AR, Shorey HH, Saario CA, 1967. Insect population control by the use of sex pheromones to inhibit orientation between sexes. Nature, 213:1155

Geoffrion R, 1959. Etude biologique de la cochylis et de l'eudémis (Clysia ambiguella Hb. et Polychrosis botrana Schiff.) dans les vignobles du Val de Loire et recherches expérimentales sur la fécondité de la cochylis et du carpocapse (Laspeyresia pomonella L.). Angers, France: ThFse Doctoral de la Faculté des Sciences de l'Université de Poitiers

Geoffrion R, 1979. The Hoplocampa of pear trees and the cecidomyiid of developing pear fruits. Phytoma, 305:5-6

Gilligan TM, Baixeras J, Brown JW, Tuck KR, T@RTS: Online World Catalogue of the Tortricidae (Ver. 3.0). http://www.tortricid.net/catalogue.asp

Glaeser G, 1979. Report on the occurrence of important diseases and pests on cultivated plants in Austria in the year 1977. Pflanzenschutzberichte, 45(7/12):153-164

Goda-Biczo M, Erdelyi K, 1996. A tarka szolomoly (Lobesia botrana Schiff.) es a nyerges szolomoly (Eupoecilia ambiguella Hubner) dominanciaviszonyainak alakulasa a Pannonhalmi tortenelmi borvideken (The dominance conditions of grape fruit (vine) moth (Lobesia botrana Schiff.) and grape berry moth (Eupoecilia ambiguella Hubner) in the Pannonhalma vine-growing area). Novenyvedelem, 32:287-290

Gontarenko MA, Roshka GK, Kovalev BG, Oloi IN, 1981. Pheromone traps for optimising control dates. Zashchita Rastenii, 9:26

Grichanov IYa, Bulyginskaya MA, Bukzeeva ON, Zakonnikova KV, Ovsyannikova EI, 1995. Ecogeographical variation of species specificity of the artificial sex attractants of Lepidoptera. Russian Journal of Ecology, 26(5):349-352

Guennelon C, Sender C, d'Arcier F, Audemard H, 1970. Mise au point d'un milieu artificiel pour l'élevage au laboratoire des larves de l'Eudémis de la Vigne Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae). Annales de Zoologie, Ecologie Animale, 2:51-77

Guennelon G, d'Arcier F, 1972. Piégeage sexuel de l'eudémis de la vigne Lobesia botrana Schiff. (Lepidoptera Tortricidae) dans la région d'Avignon. Revue de Zoologie Agricole et de Pathologie Végétale, 71:61-77

Guennelon G, D'Arcier F, Trincal J, 1975. Description of mass rearing the vine Tortricid on an artificial medium (Lobesia botrana Schiff, Lepidoptera, Tortricidae). Annales de Zoologie, Ecologie Animale, 7(3):295-309

Gunyadin T, 1972. A survey of vine pests in south-east and east Anatolia. Tarim Bakanligi Zirai Mucadele ve Zirai Karantina Genel Mudurlugu Arastirma Subesi: Plant Protection Research Annual. Zirai Mucadele Arastirma Yilligi, 42:170

Götz, B., 1940. (Sexualduftstoffe als Lockmittel in der Schädlingsbekämpfung). Umschau, 44, 794-796.

Halperin, J., Sauter, W., 1992. An annotated list with new records of Lepidoptera associated with Forest and ornamental trees and shrubs in Israel. Israel Journal of Entomology, 25-26 (1991-1992), 105-147.

Harizanov A, 1975. Results of exposing Lobesia botrana Den. et Schiff. pupae to gamma radiation. VIII International Plant Protection Congress, Moscow 1975. Reports and informations. Section V. Biological and genetic control. Moscow. USSR, 91-96

Hill G, Stellwaag-Kittler F, Huth G, Schlosser E, 1981. Resistance of grapes in different developmental stages to Botrytis cinerea. Phytopathologische Zeitschrift, 102(3/4):328-338

Hobnaus E, 1988. Distribution of the grape berry moth species Eupoecilia ambiguella Hb. and Lobesia botrana Schiff. in Austria. Pflanzenschutzberichte, 49(1):34-40

Hoppmann D, Holst H, 1990. Biometeorological influences on the development of the banded and crossed grape tortricids. Bayerisches Landwirtschaftliches Jahrbuch, 67(1):259-266

Horak M, Brown RL, 1991. Taxonomy and phylogeny. In: Van der Geest LPS and Evenhuis HH, eds. Tortricids pests their biology natural enemies and control. Amsterdam, The Netherlands: Elsevier, 23-48

Huisman KJ, Koster JC, Muus TST, 2013. Microlepidoptera in The Netherlands in 2007-2010. (Microlepidoptera in Nederland, vooral in 2007-2010: met een terugblik op 30 jaar faunistisch onderzoek.) Entomologische Berichten, 73(3):91-117. http://www.nev.nl

Ibrahim, R., 2004. Biological control of grape berry moths Eupoecilia ambiguella Hb. and Lobesia botrana Schiff. (Lepidoptera: Tortricidae) by using egg parasitoids of the Genus Trichogramma. Diss. Ph.D., Agricultural Sciences, Institute of Phytopathology and Applied Zoology, Justus Liebig University, Giessen, Germany

Imam A. I., Sawaby, R. F., 2013. Diversity of arthropod harbored Mitnan, Thymelaea hirsute, shrub under rainfed conditions of Habbes valley, Matrouh, Egypt. Egypt. Acad. J. Biolog. Sci, 6(3), 39-47.

Ioriatti, C., Anfora, G., Tasin, M., Cristofaro, A. de, Witzgall, P., Lucchi, A., 2011. Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology, 104(4), 1125-1137. http://esa.publisher.ingentaconnect.com/content/esa/jee/2011/00000104/00000004/art00003 doi: 10.1603/EC10443

Ioriatti, C., Bagnoli, B., Lucchi, A., Veronelli, V., 2004. Vine moths control by mating disruption in Italy: results and future prospects. Redia, 87, 117-128.

Ioriatti, C., Lucchi, A. , Varela, L. G., 2012. Grape berry moths in western European vineyards and their recent movement into the new world. In: Bostanian NJ, Vincent C, Isaacs R (eds). Arthropod management in vineyards: Pests, approaches, and future directions. Springer, Dordrecht, Germany, 339-359

Ioriatti, C., Lucchi, A., 2016. Semiochemical strategies for tortricid moth control in apple orchards and vineyards in Italy. Journal of Chemical Ecology, 42(7), 571-583. http://rd.springer.com/journal/10886 doi: 10.1007/s10886-016-0722-y

IPPC, 2009. Detection of the European grapevine moth, Lobesia botrana, from California vineyard - new US record. IPPC Official Pest Report, USA-03/2. Rome, Italy: FAO. https://www.ippc.int/index.php?id=1110520&no_cache=1&type=pestreport&L=0

IPPC, 2010. Actualización de la viligancia de Lobesia botrana. IPPC Official Pest Report, No. CHL-08/3. Rome, Italy: FAO. https://www.ippc.int/

IPPC, 2015. 2015, dec. National Program Lobesia botrana. Strategy for the years 2015-2016. IPPC Official Pest Report, No. CHL-25/2. Rome, Italy: FAO. https://www.ippc.int/

Iren Z, 1972. Investigations to determine the most important pests of viticulture in central Anatolia. Tarim Bakanligi Zirai Mucadele ve Zirai Karantina Genel Mudurlugu Arastirma Subesi: Plant Protection Research Annual. Zirai Mucadele Arastirma Yilligi, 40-41: 168-169

Ishaaya I, Gurevitz E, Ascher KRS, 1983. Synthetic pyrethroids and avermectin for controlling the grapevine pests Lobesia botrana, Cryptoblabes gnidiella and Drosophila melanogaster. Phytoparasitica, 11(3/4):161-166

Kacar N, 1982. Observations on the damage caused by the grape berry moth (Lobesia botrana Schiff. & Den.) (Lep.: Tortricidae) on some grape varieties appropriate to the conditions of the pgean region. Turkiye Bitki Koruma Dergisi, 6(2):105-109

Kaitazov A, Kharizanov A, 1977. Results of the use of chrysopids. Rastitelna Zashchita, 25(3):14-16

Kara'ozova A, 1971. The control of grape moths in 1970. Rastitelna Zashchita, 19(5):13-16

Karg G, Sauer AE, 1997. Seasonal variation of pheromone concentration in mating disruption trials against European grape vine moth Lobesia botrana (Lepidoptera: Tortricidae) measured by EAG. Journal of Chemical Ecology, 23(2):487-501

Kast, W. K., 2001. Twelve years of practical experience using mating disruption against Eupoecilia ambiguella and Lobesia botrana in vineyards of the Wuerttemberg region, Germany. Bulletin OILB/SROP, 24(2), 71-73.

Khalilov BB, 1972. Pests of grape vines in Azerbaidzhan. Zashchita Rastenii, 17(2):36-40

Kharizanov A, 1974. Dynamics of development of the first generation of the variegated grape moth, Polychrosis botrana. Rastitelna Zashchita, 22(1):18-21

Kharizanov A, 1979. Integrated protection of grape vine. Rastitelna Zashchita, 27(5):7-10

Khmelevskaya MA, Gorelik MM, 1979. For protection from the pest. Zashchita Rastenii, No. 12:40

Kipiani AA, Machavariani EA, Sikharulidze EI, 1990. Biological protection of vineyards against the grape leaf-roller. Sadovodstvo i Vinogradarstvo, 10:23-25

Kisakurek, O. R., 1972. Studies on the distribution, rate of infestation, parasites and predators of the grape cluster moth (Lobesia botrana Den. et Schiff.) in southern districts of Anatolia. Bitki Koruma Bulteni, 12(3):183-186

Knight AL, Croft BA, 1991. Modelling and prediction technology. In: Van der Geest LPS and Evenhuis HH, eds. Tortricids pests their biology natural enemies and control. Amsterdam, The Netherlands: Elsevier, 301-312

Knight, A. L., 2004. Managing codling moth (Lepidoptera: Tortricidae) with an internal grid of either aerosol puffers or dispenser clusters plus border applications of individual dispensers. Journal of the Entomological Society of British Columbia, 101, 69-77.

Knipling EF, 1955. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48: 459-466

Knipling EF, 1959. Sterile male method of population control. Science, 103: 902-904

Komarova OS, 1949. Factors promoting diapause in Polychrosis botrana Schiff. Doklady Akademii Nauk SSSR, 68:789-792

Kyrki J, Vilen J, 1984. Lobesia botrana an unusual importation into Finland (Lepidoptera: Tortricidae). Notulp Entomologicp, 64(2):79

Laccone G, 1978. Prove di lotta contro Lobesia botrana (Schiff.) (Lepid. - Tortricidae) e determinazione della "soglia economica" sulle uve da tavola in Puglia. Annali della Facolta di Agraria, Universita di Bari, 30:717-746

Lalanne-Cassou B, 1977. Contribution à l'étude de la communication sexuelle par phéromone chez l'Eudémis de la Vigne Lobesia botrana Schiff (Lep.: Tortricidae). Paris, France: ThFse Doctoral de l'Université de Paris VI

Lame, F. M. de, Epstein, D., Gut, L. J., Goldfarb, H., Miller, J. R., 2010. Effect of varying dispenser point source density on mating disruption of Grapholita molesta (Lepidoptera: Tortricidae). Journal of Economic Entomology, 103(4), 1299-1305. http://docserver.ingentaconnect.com/deliver/connect/esa/00220493/v103n4/s34.pdf?expires=1281945040&id=0000&titleid=10264&checksum=58B13BB5DD1EEF4B45844739A5C21DCA doi: 10.1603/EC09239

Langcake P, 1981. Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, epsilon -viniferin, alpha -viniferin and pterostilbene. Physiological Plant Pathology, 18(2):213-226

Loni, A., Lucchi, A., 2001. Preliminary study on the efficacy of sodium salts for the control of the Grape Vine Moth Lobesia botrana (Den. & Schiff.). Bulletin OILB/SROP, 24(7), 99-102.

Loni, A., Samartsev, K. G., Scaramozzino, P. L., Belokobylskij, S. A., Lucchi, A., 2016. Braconinae parasitoids (Hymenoptera, Braconidae) emerged from larvae of Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae) feeding on Daphne gnidium L. ZooKeys, (No.587), 125-150. http://zookeys.pensoft.net/articles.php?id=8478#articles.php?id=8478&_suid=1464832275139040468201225453937

Lotfalizadeh H, Masnadi-Yazdinejad A, Saber M, 2012. New records of the grape berry moth hymenopterous parasitoids in Iran. Munis Entomology & Zoology, 7(1):284-291. http://www.munisentzool.org

Louis F, Schirra KJ, 1992. Mating disruption of Lobesia botrana and side effects of pheromones on beneficial arthropods in vineyards of the 'Rheinpfalz' (Germany). Bulletin OILB/SROP, 15(5):135

Lozzia GC, Rigamonti IE, 1991. Osservazioni sulle strategie di controllo biologiche e integrate delle tignole della vite in Italia settentrionale. Vignevini, 18: 33-37

Lucchi A, Scaramozzino PL, Michl G, Loni A, Hoffmann C, 2016. The first record in Italy of Trichogramma cordubense Vargas & Cabello 1985 (Hymenoptera Trichogrammatidae) emerging from the eggs of Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera Tortricidae). Vitis, 55(4):161-164. http://www.vitis-vea.de

Lucchi, A., Ladurner, E., Iodice, A., Savino, Ricciardi, R., Cosci, F., Conte, G., Benelli, G., 2018a. Eco-friendly pheromone dispensers—a green route to manage the European grapevine moth? . Environmental Science and Pollution Research, 25, 9426–9442. https://doi.org/10.1007/s11356-018-1248-3

Lucchi, A., Pozzolini, E., Anfora, G., Mazzoni, V., Tasin, M., Leonardelli, E., Ioriatti, C., 2011. Feeding behaviour of Lobesia botrana on leaves and shoots of grapevine. IOBC/WPRS Bulletin, 67, 275-280. http://www.iobc-wprs.org/pub/bulletins/bulletin_2011_67_table_of_contents_abstracts.pdf

Lucchi, A., Ricciardi, R., Loni, A., Cosci, F., Alvarez, A. R., Beeche, M., Scaramozzino, P. L., 2017. Rearing Campoplex capitator Aubert in Italy and In Chile: preliminary achievements. . Future IPM 3.0, Book of abstracts of the Meeting of the WG Integrated protection in viticulture, 15-20 October 2017, Riva del Garda, Italy

Lucchi, A., Sambado, P., Juan Royo, A. B., Bagnoli, B., Conte, G., Benelli, G., 2018b. Disrupting mating of Lobesia botrana using sex pheromone aerosol devices. Environmental Science and Pollution Research, 25(22), 22196-22204. doi: 10.1007/s11356-018-2341-3

Lucchi, A., Sambado, P., Royo, A. B. J., Bagnoli, B., Benelli, G., 2018. Lobesia botrana males mainly fly at dusk: video camera-assisted pheromone traps and implications for mating disruption. Journal of Pest Science, 91(4), 1327-1334. https://link.springer.com/article/10.1007/s10340-018-1002-0 doi: 10.1007/s10340-018-1002-0

Lucchi, A., Santini, L., 2011. Life history of Lobesia botrana on Daphne gnidium in a Natural Park of Tuscany. IOBC/WPRS Bulletin, 67, 197-202. http://www.iobc-wprs.org/pub/bulletins/bulletin_2011_67_table_of_contents_abstracts.pdf

Maison P, Pargade P, 1967. Le piégeage sexuel de l'Eudémis au service de l'avertissement agricole. Phytoma, 190:9-13

Makhmudov D, Azimov A, Abdulagatov AZ, Ataev KG, 1977. Control of the grape moth. Zashchita Rastenii, 7:24-25

Manukyan VV, 1980. Use of sex traps. Zashchita Rastenii, 7:13

Marchal P, 1912. Rapport sur les travaux accomplis par la mission d'études de la Cochylis et de l'Eudémis. Paris, France: Librairie Polytechnique, Paris et LiFge

Marchesini E, Montá LD, 1994. Observations on natural enemies of Lobesia botrana (Den. & Schiff.) (Lepidoptera, Tortricidae) in Venetian vineyards. Bollettino di Zoologia Agraria e di Bachicoltura, 26(2):201-230

Martignoni ME, Iwai PJ, 1986. A catalogue of viral diseases of insects, mites and ticks. General Technical Report PNW-195, 4th edn. Portland, USA: USDA Forest Service, Pacific Northwest Research Station

Martinez M, Reymonet C, 1991. The hosts of Pseudoperichaeta nigrolineata and P. palesoidea (Dipt.: Tachinidae). Entomophaga, 36(2):227-233

Mattedi L, Rizzi C, Lucin R, 1995. Metodo della confusione sessulae per la tignoletta in Trentino. Informatore Agrario, 51:63-66

Mazina VV, Shek GKh, Iskendirova R, 1987. The European grape moth. Zashchita Rastenii (Moskva), 4:53

McClellan WD, Hewitt WB, 1973. Early Botrytis rot of grapes: time of infection and latency of Botrytis cinerea Pers. in Vitis vinifera L. Phytopathology, 63(9):1151-1157

McGhee, P. S., Gut, L. J., Miller, J. R., 2014. Aerosol emitters disrupt codling moth, Cydia pomonella, competitively. Pest Management Science, 70(12), 1859-1862. http://onlinelibrary.wiley.com/doi/10.1002/ps.3732/full doi: 10.1002/ps.3732

McGhee, P. S., Miller, J. R., Thomson, D. R., Gut, L. J., 2016. Optimizing aerosol dispensers for mating disruption of codling moth, Cydia pomonella L. Journal of Chemical Ecology, 42(7), 612-616. http://rd.springer.com/journal/10886 doi: 10.1007/s10886-016-0724-9

Mitkov A, Raicheva B, 1983. Achievements and problems in biological control and integrated plant protection. Rastitelna Zashchita, 31(5):12-15

Moleas T, 1988. Lobesia botrana Den. et Schiff. (Tortricidae-Lepidoptera), a potential danger to kiwifruit (Actinidia chinensis Planchon). Informatore Fitopatologico, 38(12):71-73

Moleas T, 1995. Lotta alle tignole della vite da tavola nell'Italia meridionale. Informatore Fitopatologico, 45: 8-11

Moravie, M. A., Davison, A. C., Pasquier, D., Charmillot, P. J., 2006. Bayesian forecasting of grape moth emergence. Ecological Modelling, 197(3/4), 478-489. doi: 10.1016/j.ecolmodel.2006.03.030

Moreau JP, 1965. Comportement des vers de la grappe vis-à-vis de divers cépages et essais d'alimentation artificielle. Revue de Zoologie Agricole et Appliquée, 64:13-16

Moursi, K.S., Hegazi, E.M., 1983. Destructive insects of wild plants in the Egyptian Western Desert. Journal of Arid Environments, 6(1), 119-127.

Nabiev UYa, 1977. Economic effectiveness of control of the grape moth. Zashchita Rastenii, No. 4:18

NAPPO, 2009. Phytosanitary Alert System: Detection of the European grapevine moth, Lobesia botrana, from California vineyard - new US record. http://www.pestalert.org/oprDetail.cfm?oprID=400

NAPPO, 2016. Phytosanitary Alert System: APHIS Declares Eradication of European Grapevine Moth (Lobesia botrana) and Eliminates All Quarantine Areas in California. NAPPO. http://www.pestalert.org/oprDetail.cfm?oprID=678

Nasr FN, Korashy MA, Rashed FFM, 1995. Trichogramma evanescens West. (Hym., Trichogrammatidae) as an egg parasitoid of grape moth Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae). Anzeiger für Schadlingskunde, Pflanzenschutz, Umweltschutz, 68(2):44-45

Nassirzadeh H, Bassiri G, 1994. Determination of generation number and the most appropriate time for controlling Lobesia botrana Schiff. (Lep. Tortricidae) in Fars province. Journal of Entomological Society of Iran, 14:11-12 (En)

Noyes, J. S., 2017. Universal Chalcidoidea Database. http://www.nhm.ac.uk/chalcidoids

Nucifora A, Buonocore E, Colombo A, Boncoraglio P, Campo G, Nucifora MT, 1996. Il metodo della confusione sessuale nella lotta contro Lobesia botrana (Den. et Schiff.) (Lepidoptera, Tortricidae) su uva "Italia" in vigneti della Sicilia orientale (I contributo). Informatore Fitopatologico, 46:56-61

Nurmuratov TN, Lukin VA, Mazina VV, Alimkulov DM, Zhunisbaev RT, Kharada A, 1994. Sumi-alpha in south-eastern Kazakhstan. Zashchita Rastenii (Moskva), 11:32

Nuzzaci G, Triggiani O, 1982. Notes on the biocenosis in Puglia of Lobesia (Polychrosis) botrana (Schiff.) (Lepidoptera: Tortricidae) exclusive to Daphne gnidium L. Entomologica, 17:47-52

Otaci C, 1972. Marmara bolgesinde salkim guvesinin bio-ekolojisi ve savasi icin kullanilan ilaclarin bakiye durumlari uzerinde arastirmalar (Research on residues of chemicals applied for the bio-ecology and control of grape-berry moth in the Marmara region). Zirai Mucadele Arastirma Yilligi, 49-50:178-179

Parkhomenko AA, Kurbanova TI, 1986. Mass traping males against grape moth Polychrosis botrana Schiff. Byull Vsesoyuzyni Nauchno Issledovatel'skii Institut Zashchity Rastenii, 64:57-59

Parkhomenko AA, Kurbanova TI, 1988. The use of sex attractants in the protection of vineyards from the grape moth in Azerbaijan. Feromony nasekomykh i razrabotka putei ikh prakticheskogo ispol'zovaniya [edited by Sazonov, A.P.] Leningrad, USSR; Vsesoyuzyni Nauchno-issledovatel'skii Institut Zashchity Rastenii, 101-108

Pavan F, Girolami V, Cecchini A, Turbian E, 1993. Evolution of damage of grape berry moths, Lobesia botrana (Den. and Schiff.) and Eupoecilia ambiguella (Hb.), in north-eastern Italy and chemical control. Redia, 76(2):417-431

Pavan F, Sbrissa F, 1994. Damage of the grape berry moths, Lobesia botrana (Den. e Schiff.) and Eupoecilia ambiguella (Hb.), on late-harvested cultivars in north-eastern Italy. Frustula Entomologica, 17:43-53

Pavan, F., Floreani, C., Barro, P., Zandigiacomo, P., Montà, L. D., 2010. Influence of generation and photoperiod on larval development of Lobesia botrana (Lepidoptera: Tortricidae). Environmental Entomology, 39(5), 1652-1658. doi: 10.1603/EN10069

Pease, C. E., López-Olguín, J. F., Pérez-Moreno, I., Marco-Mancebón, V., 2016. Effects of kaolin on Lobesia botrana (Lepidoptera: Tortricidae) and its compatibility with the natural enemy, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Journal of Economic Entomology, 109(2), 740-745. http://jee.oxfordjournals.org/content/109/2/740 doi: 10.1093/jee/tov400

Pezet R, Pont V, 1986. Floral infection and latency of Botrytis cinerea in grape clusters of Vitis vinifera (var. Gamay). Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 18(5):317-322

Pezet R, Pont V, 1988. Antifungal activity in Vitis vinifera grapes: effects of organic acids and pterostilbene. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 20(5):303-309

Pinna, M., Gremo, F., Scaramozzino, P. L., 1989. A preliminary investigation into the influence of biotic and abiotic environmental factors on the winter populations of Lobesia botrana (Den. & Schiff.) in veniyards in Piedmont, Italy (Lepidoptera – Tortricidae). In: Cavalloro R (ed.) Influence of environmental factors on the control of grape pests, diseases and weeds. Proceedings of a meeting of the EC Experts' Group, Thessaloniki 6–8 October 1987:77–86

Pongracz A, 1982. Swarming dynamics of Lobesia botrana Schiff. in the Sopron wine-growing region. Novenyvedelem, 18(1):27-28

Razdolina TA, Gubanova AA, 1979. Entobakterin against the grape moth. Zashchita Rastenii, 5:24

Reineke, A., Thiéry, D., 2016. Grapevine insect pests and their natural enemies in the age of global warming. Journal of Pest Science, 89(2), 313-328. http://link.springer.com/article/10.1007%2Fs10340-016-0761-8 doi: 10.1007/s10340-016-0761-8

Remund U, Boller E, Zuber M, 1996. Zur Verwirrungstechnik des Einbindigen und Bekreuzten Traubenwicklers in der Ostschweiz. Schweizerische Zeitschrift für Obst und Weinbau, 132:212-215

Rezwani A, 1981. The biology and ecology of the vine moth Lobesia botrana Schiff. in the Tehran region. Entomologie et Phytopathologie Appliquees, 49(1):Pe pp. 35-43; de pp

Rodionov ZS, 1945. Pest of vines in the Turkmen SSR. (English abstract in Rev. Appl. Entomol., 1948, 36:3)

Roditakis NE, 1986. Effectiveness of Bacillus thuringiensis Berliner var. kurstaki on the grape berry moth Lobesia botrana Den. and Shiff. (Lepidoptera, Tortricidae) under field and laboratory conditions in Crete. Entomologia Hellenica, 4(2):31-35; 24 ref

Roehrich R, 1964. A comparative study of the sensitivity of three Lepidoptera (Tortricoidea) to Bacillus thuringiensis Berliner. Journal of Insect Pathology, 6:186-197

Roehrich R, 1967. Elevage des chenilles de l'Eudémis (Lobesia botrana Schiff.) sur des aliments naturels de remplacement. Revue de Zoologie Agricole et Appliquée, 66:111-115

Roehrich R, 1967. Sensibilité des chenilles de Tortricidae a l'action des cristaux associés a la toxine thermostable de Bacillus thuringiensis Berliner, Sérotype I. Phytiatrie Phytopharmacie, 16:91-95

Roehrich R, 1968. Essais sur vigne de divers produits à base de Bacillus thuringiensis Berliner contre l'Eudémis de la Vigne (Lobesia botrana Schiff). Revue de Zoologie Agricole et Appliquée, 67:63-68

Roehrich R, 1969. La diapause de l'Eudémis de la Vigne Lobesia botrana Schiff (Lep.: Tortricidae): induction et élimination. Annales de Zoologie, Ecologie Animale, 1:419-431

Roehrich R, 1970. Essais de deux produits commerciaux à base de Bacillus thuringiensis pour la protection de la vigne contre l'Eudémis (Lobesia botrana Schiff). Revue de Zoologie Agricole et de Pathologie Végétale, 69:73-78

Roehrich R, 1978. Recherches sur la nuisibilité de Eupoecilia ambiguella Hb. et Lobesia botrana Den. et Schiff. Defense des Végetaux, 191:106-124

Roehrich R, Boller E, 1991. Tortricids in vineyards. In: Van der Geest LPS and Evenhuis HH, eds. Tortricids pests their biology natural enemies and control. Amsterdam, The Netherlands: Elsevier, 507-514

Roehrich R, Carles JP, 1977. Perturbations dans la reproduction de Lobesia botrana Schiff. (Lepidoptera: Tortricidae) induites par la présence de la phéromone sexuelle de synthFse. Comptes Rendus de l'Academie des Sciences de Paris (series D), 285:237-239

Roehrich R, Carles JP, 1982. Test of mating disruption in a vineyard against the vine moth Lobesia botrana Schiff. Les mediateurs chimiques agissant sur le comportement des insectes. Symposium international. Versailles, 16-20 novembre 1981. Paris, France: Institut National de la Recherche Agronomique, 365-371

Roehrich R, Carles JP, 1987. Biological observations during mating disruption experiments of Lobesia botrana. Bulletin SROP, 10(3):45-46

Roehrich R, Carles JP, Dreuilhe A, Vonderheyden F, 1983. Captures of Lobesia botrana Den. & Schiff. (Lepidoptera, Tortricidae) in sex traps in relation to the dosage of pheromone in the dispenser. Agronomie, 3(9):925-929

Roehrich R, Carles JP, Durand H, Tymen JL, 1986. Relation between the number of males of the vine tortricid, Lobesia botrana Den. & Schiff. (Lepid., Tortricidae), captured by two doses of pheromone, and the level of larval populations in the trapping plots. Agronomie, 6(5):447-452

Roehrich R, Carles JP, Tresor C, 1977. Preliminary test for protecting vineyards against Lobesia botrana Schiff. by means of the synthetic sex pheromone (disorientation method). Revue de Zoologie Agricole et de Pathologie Vegetale, 76(1):25-36

Roehrich R, Carles JP, Tresor C, Vathaire MAde, 1979. 'Sexual confusion' test against the vine moths Lobesia botrana Den. et Schiff. and Eupoecilia ambiguella Tr. Annales de Zoologie, Ecologie Animale, 11(4):659-675

Roehrich R, Schmid A, 1979. Tordeuses de la grappe: évaluation du risque, détermination des périodes d'intervention et recherche des méthodes de lutte biologique. In: Proceedings of the International Symposium IOBC/WPRS on Integrated Plant Protection in Agriculture and Forestry. Vienna, Austria: IOBC/WPRS, 245-254

Roehrich R, Schmitz V, 1992. The attraction of males for mated females of the grape moth Lobesia botrana Den. and Schif. (Lepidoptera, Tortricidae). Bulletin de la Societe Entomologique de France, 97(1):75-81

Roelofs W, Kochansky J, Carde R, Arn H, Rauscher S, 1973. Sex attractant of the grape vine moth, Lobesia botrana. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 46(1/2):71-73

Rosian M, 1989. Elements of control technology against grapevine moth specific for Tirnave vineyard. Probleme de Protectia Plantelor, 17(4):363-371

Rufz-Castro A, 1943. Fauna entomológica de la vid en Espa±a, Vol. 1. Madrid, Spain: Instituto Espa±ol de Entomologfa, CSIC

Russo A, Gurrieri C, Bonfanti S, Fici P, 1985. Flight dynamics of the grape berry moth in the vineyards of eastern Sicily. Rivista di Viticoltura e di Enologia, 38(4):219-227

Sampayo Fernández M, Hernández Esteruelas P, 1973. The vine moth (Lobesia botrana Schiff.). Boletin Informativo de Plagas, 108:7-11

Savopoulou-Soultani M, Stavridis DG, Tzanakakis ME, 1990. Development and reproduction of Lobesia botrana on vine and olive inflorescences. Entomologia Hellenica, 8:29-35

Savopoulou-Soultani M, Tzanakakis ME, 1987. Comparison of olive flowers with vine flowers and leaves as food for larvae of Lobesia botrana. In Cavalloro R, ed. Influence of Environmental Factors on the Control of Grape Pest, Diseases and Weeds. Rotterdam, The Netherlands: Commision European Communities, Balkema, 63-67

Savopoulou-Soultani M, Tzanakakis ME, 1988. Development of Lobesia botrana (Lepidoptera: Tortricidae) on grapes and apples infected with the fungus Botrytis cinerea. Environmental Entomology, 17(1):1-6

Savopoulou-Soultani, M., Tzanakakis, M. E., 1990. Head-capsule width of Lobesia botrana (Lepidoptera: Tortricidae) larvae reared on three different diets. Annals of the Entomological Society of America, 83(3), 555-558. doi: 10.1093/aesa/83.3.555

Scalco, A., Charmillot, P. J., Pasquier, D., Antonin, P., 1997. (Comparaison de produits a base de Bacillus thuringiensis dans la lutte contre les vers de la grappe: du laboratoire au vignoble). Rev. Suisse Viticolture Arboricolture Horticolture, 29, 345-350.

Scaramozzino PL, Loni A, Gandini L, Lucchi A, 2017b. Who's who in the nests molded by Lobesia botrana on Daphne gnidium? . In: IOBC-WPRS Bulletin,128. 130-134.

Scaramozzino, P. L., Di Giovanni, F., Loni, A., Ricciardi, R., Lucchi, A., 2018. A review of insect parasitoids associated with Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera, Tortricidae) in Italy. 2. Hymenoptera Ichneumonidae: Anomaloninae and Campopleginae. Zookeys, 772, 47-95. doi: 103897/zookeys.77025288

Scaramozzino, P. L., Loni, A., Lucchi, A., 2017. A review of insect parasitoids associated with Lobesia botrana (Denis & Schiffermüller, 1775) in Italy. 1. Diptera Tachinidae and Hymenoptera Braconidae (Lepidoptera, Tortricidae). ZooKeys, (No.647), 67-100. http://zookeys.pensoft.net/articles.php?id=11098 doi: 10.3897/zookeys.647.11098

Schieder F, 1984. Investigations on the swarming dynamics of grape-berry moths in Fejer County, Eastern Transdanubia. Novenyvedelem, 20(7):320-324

Schmid A, 1978. Vers de la grappe 1977 en Suisse Romande. In: Lutte Intégrée en Viticulture. Zaragoza, Spain: OILB Technical Report

Schmid A, Antonin P, 1977. Effects of the exceptional weather conditions in 1976 on the development of grape moths. The distribution of the two species Clysia ambiguella and Lobesia botrana in French Switzerland. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 9(3):131-135

Schmitz V, Charlier L, Roehrich R, Stockel J, 1997. Etude du mécanisme de la confusion sexuelle chez l'eudémis de la vigne, Lobesia botrana Den. et Schiff. (Lep., Tortricidae) IV - quel est le rôle de la fixation de la phéromone par le feuillage?. Journal of Applied Entomology, 121:41-46

Schmitz V, Renou M, Roehrich R, Stockel J, Lecharpentier P, 1997. Disruption mechanisms of pheromone communication in the European grape moth Lobesia botrana Den & Schiff. III. Sensory adaptation and habituation. Journal of Chemical Ecology, 23(1):83-96

Schmitz V, Roehrich R, Stockel J, 1995. Disruption mechanisms of pheromone communication in the European grape moth Lobesia botrana Den. & Schiff. (Lep., Tortricidae) II. Influence of the population density and the distance between insects for males to detect the females in atmosphere impregnated by pheromone. Journal of Applied Entomology, 119(4):303-308

Schmitz V, Roehrich R, Stockel J, 1995. Disruption mechanisms of pheromone communication in the European grape moth Lobesia botrana Den. et Schif. I. Respective roles of competition, camouflage of female signals and modification of pheromonal signal. Journal of Applied Entomology, 119(2):131-138

Schmitz V, Roehrich R, Stockel J, 1996. Déplacements d'adultes de Lobesia botrana marques et lâches dans un vignoble isolé. Etude de l'effet de la phéromone sexuelle synthétique sur leurs mouvements. Journal International des Sciences de la Vigne et du Vin, 30:67-72

Schruft G, 1975. The problems of integrated control in viticulture. In: Steiner H, ed. Advances in integrated control. Volume 1. Current problems in integrated control. Fortschritte im integrierten Pflanzenschutz. Band 1. Aktuelle Probleme im integrierten Pflanzenschutz. Darmstadt, Germany: Dr. Dietrich Steinkopff Verlag, 37-42

Sengonca C, Leisse N, 1987. Occurrence and importance of Trichogramma semblidis Auriv. (Hymenoptera, Trichogrammatidae) as an egg parasite of both species of grape moths in the Ahr Valley. Journal of Applied Entomology, 103(5):527-531

Sengonca C, Leisse N, 1989. Enhancement of the egg parasite Trichogramma semblidis (Auriv.) (Hym., Trichogrammatidae) for control of both grape vine moth species in the Ahr Valley. Journal of Applied Entomology, 107(1):41-45

Sengonca C, Schade M, Klute J, 1990. Determination of adequate alternative hosts for the support of Trichogramma semblidis (Auriv.) (Hym., Trichogrammatidae) as an egg parasitoid of the grape vine moth. II. Host influence on the quality of the parasitoid. Journal of Applied Entomology, 110(4):346-352

Shahini, S., Kullaj, E., Çakalli, A., Çakalli, M., Lazarevska, S., Pfeiffer, D. G., Gumeni, F., 2010. Population dynamics and biological control of European grapevine moth (Lobesia botrana: Lepidoptera: Tortricidae) in Albania using different strains of Bacillus thuringiensis. International Journal of Pest Management, 56(3), 281-286. doi: 10.1080/09670874.2010.481056

Silvestri E, 1992. Observations on the biology and methods of control of Lobesia botrana on the coastal strip of Grosseto. Informatore Agrario, 48(30):41-43

Silvestri F, 1912. Contribuzioni alla conoscenza degli insetti dannosi et dei loro simbionti. III. La tignoletta dell'uva (Polychrosis botrana Schiff.) con un cenno sulla tignola dell'uva (Conchylis ambiguella Hb.). Bollettino del Laboratorio di Zoologia Agraria, Portici, 6:246-307

Stavridis DG, Savopoulou-Soultani M, 1998. Larval performance on and oviposition preference for known and potential hosts by Lobesia botrana (Lepidoptera: Tortricidae). European Journal of Entomology, 95(1):55-63

Stelinski, L. L., Gut, L. J., Haas, M., McGhee, P., Epstein, D., 2007. Evaluation of aerosol devices for simultaneous disruption of sex pheromone communication in Cydia pomonella and Grapholita molesta (Lepidoptera: Tortricidae). Journal of Pest Science, 80(4), 225-233. http://www.springerlink.com/content/1t24916932730l21/fulltext.pdf doi: 10.1007/s10340-007-0176-7

Stockel J, Schmitz V, Lecharpentier P, Roehrich R, Torres Vila M, Neumann U, 1994. Mating disruption of the grape moth Lobesia botrana (Lepidoptera Tortricidae). Results of a five-year experiment in a Bordeaux vineyard. Agronomie, 14(2):71-82

Stockel JP, Schmitz V, Lecharpentier P, Roehrich R, Neumann U, Torres-Vila M, 1992. Three years experience in the control of the grape moth Lobesia botrana using mating disruption in a Bordeaux vineyard. Bulletin OILB/SROP, 15(5):117-120

Stoeva R, 1979. The diurnal activity of the vine moth (Lobesia botrana Schiff.). Gradinarska i Lozarska Nauka, 16(2):111-121

Stoeva R, 1982. Food-plants of the grape moth (Lobesia botrana Schiff.) in Bulgaria. Gradinarska i Lozarska Nauka, 19(2):83-90

Subic M, 2007. Multi-year trials of the chemical, biotechnological and biological control of European grape vine moth (Lobesia botrana) in the MeÐimurje wine region. Glasilo Biljne Zastite, 7(4):245-254

Suckling, D. M., Daly, J. M., Chen Xiong, Karg, G., 2007. Field electroantennogram and trap assessments of aerosol pheromone dispensers for disrupting mating in Epiphyas postvittana. Pest Management Science, 63(2), 202-209. http://www.interscience.wiley.com/pestmanagementscience doi: 10.1002/ps.1312

Svensson I, 1983. Remarkable finds of Microlepidoptera in Sweden 1982. Entomologisk Tidskrift, 104(2):59-65

Talash AI, Vorob'eva TN, 1987. In place of pesticides. Zashchita Rastenii (Moskva), No. 4:31

Tavares J, Oliveira L, Teixeira R, Anunciada L, Moreira I, Santos F, Madeira D, Henriques L, Matias H, 1988. Biological control of Lobesia botrana Den & Schiff (Lep.: Tortricidae) using Trichogramma cacoecip Marchal (Hym.: Trichogrammatidae). Boletim da Sociedade Portuguesa de Entomologia, 4-1(No. 103):11 pp

Telenga, N. A., 1934. (Parasiten und ihre Bedeutung in der Dynamik des Traubenwicklers (Polychrosis botrana Schiff.)). Journal of Pest Science, 10(9), 101–106.

Teshler MP, 1992. Monitoring and biological control as the main components of IPM in vineyards. Proceedings - Brighton Crop Protection Conference Pests and Diseases - 1992 Brighton, November 23-26, 1992., 991-996

Thiéry D., Kuntzmann P., Sentenac G., 2011. (Tordeuses de la vigne). In: La faune auxiliaire des vignobles de France, [ed. by Sentenac, G.]. France: Agricole & Dunod. 16-27.

Thiéry, D., Louâpre, P., Muneret, L., Rusch, A., Sentenac, G., Vogelweith, F., Iltis, C., Moreau, J., 2018. Biological protection against grape berry moths. A review. Agronomy for Sustainable Development, 38(2), 15. https://link.springer.com/article/10.1007/s13593-018-0493-7 doi: 10.1007/s13593-018-0493-7

Thiery, D., Xuereb, A., 2004. (Vers une lutte biologique contre eude´mis (Lobesia botrana)). In: Proceedings Mondiaviti, 1-2 December 2004, Bordeaux, France, 47-52

Thompson WR, 1943-1964. A catalogue of the parasites and predators of insect pest, 17 Vols. Farnham Royal, UK: Commonwealth Agricultural Bureaux

Tokaev T, Bergmann MA, 1985. Use of pheromone traps in the protection of grapevine against the grape moth in the foothills of the Kopetdag. Izvestiya Akademii Nauk Turkmenskoi SSR, Biologicheskikh Nauk, 3:37-41

Torres-Vila LM, 1995. Factores reguladores del potencial biótico y de la poliandria en la polilla del racimo de la vid Lobesia botrana Den. y Schiff., (Lepidoptera: Tortricidae). Madrid, Spain: Tesis Doctoral de la ETS de Ingenieros Agrónomos de la Universidad Politécnica de Madrid

Torres-Vila LM, 1996. Efecto de la temperatura de desarrollo preimaginal sobre el potencial biótico de la polilla del racimo de la vid, Lobesia botrana (Denis y Schiffermuller, (1775)) (Lepidoptera: Torticidae). SHILAP, Revista de Lepidopterologfa, 24:197-206

Torres-Vila LM, Oustry L, Schmitz V, Roehrich R, Stockel J, 1993. Action of relative humidity and temperature fluctuation on non-diapausing pupae of the grape vine moth Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae). Boletin de Sanidad Vegetal, Plagas, 19(1):79-93

Torres-Vila LM, Schmitz V, Stockel J, 1992. Effect of the phenological stage and of grape cultivar on the establishment and survival of the first generation of larvae of the grape vine moth Lobesia botrana Den. and Schiff. (Lepidoptera; Tortricidae). Boletin de Sanidad Vegetal, Plagas, 18(4):755-764

Torres-Vila LM, Stockel J, Bielza P, Lacasa A, 1996a. Efecto de la diapausa y del capullo sobre el potencial biótico de la polilla del racimo Lobesia botrana Den. y Schiff. (Lepidoptera: Tortricidae). Boletfn de Sanidad Vegetal, Plagas, 22:27-36

Torres-Vila LM, Stockel J, Lecharpentier P, 1996. A melanic form of the European grape vine moth, Lobesia botrana Den and Schiff (Lepidoptera, Tortricidae), and its genetic basis. Agronomie, 16(6):391-397

Torres-Vila LM, Stockel J, Lecharpentier P, Rodrfguez-Molina MC, 1997. Artificial selection in pheromone permeated air increases mating ability of the European grape vine moth Lobesia botrana (Lep., Tortricidae). Journal of Applied Entomology, 121(4):189-194; 40 ref

Torres-Vila LM, Stockel J, Rodriguez-Molina MC, 1996c. Efecto de la indisponibilidad de agua sobre el potencial biótico de la polilla del racimo Lobesia botrana Den. y. Schiff. (Lepidoptera: Tortricidae). Boletfn de Sanidad Vegetal, Plagas, 22:443-449

Torres-Vila LM, Stockel J, Rodríguez-Molina MC, 1997. Physiological factors regulating polyandry in Lobesia botrana (Lepidoptera: Tortricidae). Physiological Entomology, 22(4):387-393; 46

Torres-Vila LM, Stockel J, Roehrich R, 1995. The reproductive potential and associated biotic variables in the male of the European vine moth Lobesia botrana. Entomologia Experimentalis et Applicata, 77(1):105-119

Torres-Vila LM, Stockel J, Roehrich R, Rodrfguez-Molina MC, 1997. The relation between dispersal and survival of Lobesia botrana larvae and their density in vine inflorescences. Entomologia Experimentalis et Applicata, 84(2):109-114

Touzeau J, 1979. The use of sexual traps for agricultural warnings and risk forecasting. Annales de Zoologie, Ecologie Animale, 11(4):547-563

Touzeau J, Vonderheyden F, 1968. L'élevage semi-industriel des Tordeuses de la grappe destinées au piégeage sexuel. Phytoma, 198:25-30

Touzeau, J, 1981. Modélisation de l'évolution de l'Eudémis de la Vigne pour la région Midi Pyrénées. Bollettino di Zoologia Agraria e di Bachicoltura (series II), 16:26-28

Tranfaglia A, Malatesta M, 1977. Use of synthetic pheromone traps and evaluation of the degree of infestation by Lobesia botrana (Schiff.) (Lep. Tortricidae) on the island of Ischia in the year 1976. Bollettino del Laboratorio di Entomologia Agraria 'Filippo Silvestri', Portici, 34:19-24

Tranfaglia A, Viggiani G, 1981. Problems of integrated control in vine-growing in Italy. Bollettino di Zoologia Agraria e di Bachicoltura, 16:85-89

Tsitsipis JA, Stockel J, Lolas G, Yatropoulos C, Koutroubas A, 1993. Controlling the vine berry moth, Lobesia botrana Den. & Schiff., with mating disruption technique by pheromones in Greece. Bulletin OILB/SROP, 16(10):355

Tzanakakis ME, Savopoulou MC, 1973. Artificial diets for larvae of Lobesia botrana (Lepidoptera: Tortricidae). Annals of the Entomological Society of America, 66:470-471

Tzanakakis ME, Savopoulou -Soultani MC, Oustapassidis CS, Verras SC, Hatziemmanuel H, 1988. Induction of dormancy in Lobesia botrana by long day and high temperature conditions. Entomologia Hellenica, 6:7-10

Underwood, K., Howse, P., Loughlin, D., 2002. Potential applications of ExoSect® AutoconfusionTM. IOBC, Working Group Meeting 'Pheromones and other semiochemicals integrated production', Erice (Italy), September 22-27, 2002, Scientific Program and Abstracts, pp. 78-80

USDA, 1985. Pests not known to occur in the United States or of limited distribution, No. 60: European grape vine moth., USA: USDA, 10 pp

Varela, L. G., Smith, R. J., Cooper, M. L. , Hoenisch, R. W., 2010. European grapevine moth, Lobesia botrana in Napa Valley vineyards. In: Practical Winery & Vineyard , (March/April) . 1-5.

Varner M, Ioriatti C, 1992. Mating disruption of Lobesia botrana in Trentino (Italy): organization of the growers and first results. Bulletin OILB/SROP, 15(5):121-124

Vasil'eva EA, Sekerskaya NP, 1986. The dianthus tortrix - a pest of pomegranate. Zashchita Rastenii, No. 3:39

Vasilyan VV, Azaryan GKh, Babayan AS, 1978. Promising means of protection - a long road. Zashchita Rastenii, 1:15

Velieva EN, 1983. The sex pheromone of the grape moth. Zashchita Rastenii, No. 9:25

Velimirovic V, 1975. Contribution to the study of the ashen vine moth Lobesia botrana (Lepidoptera, Tortricidae) in the region of Crna Gora. Zastita Bilja, 26(131):85-91

Viggiani G, Tranfaglia A, 1975. Indicative control tests against the vine moth (Lobesia botrana - Schiff.) in Campania. Bollettino del Laboratorio di Entomologia Agraria 'Filippo Silvestri', Portici, 32:140-144

Voigt E, Ujvary I, 1983. Data on the flight of Lobesia botrana Den. et Schiff. based on sex-pheromone trapping [in Hungary]. Novenyvedelem, 19(7):314

Vojnits A, Voigt E, 1971. A comparative study of Microlepidoptera deriving from light traps at low and high altitudes. Folia Entomologica Hungarica, 24(19):219-228

Voukassovitch P, 1924. Contribution à l'étude de l'Eudémis (Polychrosis botrana Schiff.) de la Pyrale de la Vigne Oenophthira pilleriana Schiff.) et de leurs parasites. Toulouse, France: ThFse Doctoral de la Faculté des Sciences de l'Université de Toulouse

Vrabl S, Matis G, Beber K, 1983. Results of investigations of the distribution of grape moths (Lobesia botrana Den. et Schiff. and Eupoecilia ambiguella Hb.) in Slovenia using pheromones. Zastita Bilja, 34(4):457-465

Zapryanov A, Stoeva R, 1982. The parasitic entomofauna on Lobesia botrana Schiff. (Lepidoptera, Tortricidae) in south-western Bulgaria and its role in reducing the density of the pest. Gradinarska i Lozarska Nauka, 19(3):74-80

Zavelishko IA, Vojnyak VI, 1996. Filmy preparation forms with sex pheromone of Lobesia botrana for control by means of disorientation. Agrokhimiya, No. 8/9:123-126; 9 ref

Zeki C, 1996. Organization and operation of forecasting and warning systems against pests in Turkey. Bulletin OEPP, 26(3/4):587-593; 8 ref

Zerny H, Beier M, 1936-1938. Lepidoptera. In: Kükenthal W and Krumbach T, eds. Handbuch der Zoologie. Berlin, Germany

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.

Contributors

Top of page

03/07/18 Review by: 

Andrea Lucchi, University of Pisa, Department of Agriculture, Food & Environment, via Del Borghetto, 80 – 56124 Pisa, Italy, with review of natural enemies by Pier Luigi Scaramozzino, Department of Agriculture, Food and Environment, University of Pisa, Italy
 

Distribution Maps

Top of page
You can pan and zoom the map
Save map