Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Poa pratensis
(smooth meadow-grass)

Toolbox

Datasheet

Poa pratensis (smooth meadow-grass)

Summary

  • Last modified
  • 08 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Poa pratensis
  • Preferred Common Name
  • smooth meadow-grass
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Monocotyledonae
  • Summary of Invasiveness
  • P. pratensis is a perennial, cool season mat-forming grass. It is native to Europe and Asia and has probably been introduced to the USA and Canada, where it is invasive in the northern prairie states, as well a...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); inflorescence. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
TitleInflorescence
CaptionPoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); inflorescence. Guilford Co., Greensboro, North Carolina, USA. May, 2011.
CopyrightPublic Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); inflorescence. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
InflorescencePoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); inflorescence. Guilford Co., Greensboro, North Carolina, USA. May, 2011.Public Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of inflorescence. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
TitleClose-up of inflorescence
CaptionPoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of inflorescence. Guilford Co., Greensboro, North Carolina, USA. May, 2011.
CopyrightPublic Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of inflorescence. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
Close-up of inflorescencePoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of inflorescence. Guilford Co., Greensboro, North Carolina, USA. May, 2011.Public Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); ligule. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
TitleLigule
CaptionPoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); ligule. Guilford Co., Greensboro, North Carolina, USA. May, 2011.
CopyrightPublic Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); ligule. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
LigulePoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); ligule. Guilford Co., Greensboro, North Carolina, USA. May, 2011.Public Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of ligule. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
TitleClose-up of ligule
CaptionPoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of ligule. Guilford Co., Greensboro, North Carolina, USA. May, 2011.
CopyrightPublic Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of ligule. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
Close-up of ligulePoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of ligule. Guilford Co., Greensboro, North Carolina, USA. May, 2011.Public Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of node. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
TitleClose-up of node
CaptionPoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of node. Guilford Co., Greensboro, North Carolina, USA. May, 2011.
CopyrightPublic Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of node. Guilford Co., Greensboro, North Carolina, USA.  May, 2011.
Close-up of nodePoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of node. Guilford Co., Greensboro, North Carolina, USA. May, 2011.Public Domain - Original image by Doug Goldman/USDA-NRCS-NPDT
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of seeds.
TitleSeeds
CaptionPoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of seeds.
CopyrightPublic Domain - Steve Hurst/USDA-NRCS PLANTS Database
Poa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of seeds.
SeedsPoa pratensis (smooth-stalked meadowgrass, Kentucky bluegrass); close-up of seeds.Public Domain - Steve Hurst/USDA-NRCS PLANTS Database

Identity

Top of page

Preferred Scientific Name

  • Poa pratensis L.

Preferred Common Name

  • smooth meadow-grass

Variety

  • Poa sergievskajae

Other Scientific Names

  • Poa montana Honck.
  • Poa nymannii Tineo
  • Poa oligeria Steud.
  • Poa pachyantha Keng f. ex S.L.Chen
  • Poa paratunkensis Kom.
  • Poa peckii Chase
  • Poa pinegensis Roshev.
  • Poa pratensis subsp. latifolia (Weihe ex Mert. & W.D.J. Koch) Schübl. & G. Martens
  • Poa pratensis subsp. sabulosa (Roshev.) Tzvelev
  • Poa pratensis subsp. sergievskajae (Prob.) Tzvelev
  • Poa pratensis subsp. skrjabinii Tzvelev
  • Poa pratensis subsp. sobolevskiana (Gudoschn.) Tzvelev
  • Poa pratensis subsp. turfosa (Litv.) Vorosch.
  • Poa pratensis subsp. zhukoviae Yurtsev & Tzvelev
  • Poa pratensis var. hatusimae (Ohwi) Ohwi
  • Poa pratensis var. majdelii (Roshev.) Bondar ex Korovina
  • Poa pratensis var. rigens (Hartm.) Laest.
  • Poa pratensis var. sabulosa Roshev.
  • Poa pratensis var. stricta Hook.
  • Poa pratensis var. subglabriflora (Roshev.) Bondarenko ex Korovina
  • Poa pratensis var. transnominata Bondarenko ex Korovina
  • Poa pratensis var. transnominatum Bondar ex Korovina
  • Poa pratensis var. turfosa (Litv.) Bondarenko ex Korovina
  • Poa pratensis var. umbrosa Parn.
  • Poa pratensis var. urjanchaica (Roshev.) Bondarenko ex Korovina
  • Poa pseudopratensis Beyer
  • Poa rigens Hartm.
  • Poa sobolevskiana Gudoschn.
  • Poa stenachyra Keng ex Keng f. & G.Q.Song
  • Poa subcaerulea var. anceps (Gaudich.) Soó
  • Poa subglabriflora Roshev.
  • Poa todarii Lojac.
  • Poa turfosa Litv.
  • Poa urjanchaica Roshev.

International Common Names

  • English: bird grass; blue grass; common meadow-grass; English grass; green grass; June grass; Kentucky bluegrass; narrow-leaf meadow grass; northern meadow grass; smoothstalk bluegrass; smooth-stalked meadow grass; spreading bluegrass
  • Spanish: grama de prados; poa cmun; poa de los prados; zacate poa
  • French: pâturin des prés
  • Portuguese: capim-do-campo; erva-de-febra

Local Common Names

  • Germany: schmalblättriges Rispengras; Wiesen- Rispengras; Wiesenrispengras
  • Italy: fienarola dei prati; gramigna dei prati
  • Japan: Nagahagusa
  • Netherlands: gewoon beemdgras
  • Sweden: Aengsgroee

EPPO code

  • POAPR (Poa pratensis)

Summary of Invasiveness

Top of page

P. pratensis is a perennial, cool season mat-forming grass. It is native to Europe and Asia and has probably been introduced to the USA and Canada, where it is invasive in the northern prairie states, as well as in New Zealand, Indian Ocean islands and South Africa. The wide, creeping rootstock produces underground runners and leafy shoots. In the USA, where it is known as Kentucky bluegrass, it is regarded as a crop in some systems but as a weed in others. It is highly valued as a pasture and turf grass, particularly in golf courses, but is considered an invasive weed in natural grassland ecosystems, where it outcompetes native species, reduces biodiversity and alters nitrogen cycling and ecosystem function. It is defined as ‘high risk’ for the Pacific region and invasive in Hawaii by PIER (2016).

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Monocotyledonae
  •                     Order: Cyperales
  •                         Family: Poaceae
  •                             Genus: Poa
  •                                 Species: Poa pratensis

Notes on Taxonomy and Nomenclature

Top of page

P. pratensis is a grass species from the family Poaceae. It was one of the many species described in Species Plantarum by Carl Linnaeus in 1753. Poa is Greek for fodder and pratensis is Latin for meadow.

Infraspecific taxa recognised by the Plant List (2016) are Poa pratensis var. hatusimae (Ohwi) Ohwi, Poa pratensis subsp. latifolia (Weihe ex Mert. & W.D.J. Koch) Schübl. & G. Martens and Poa pratensis var. majdelii (Roshev.) Bondar ex Korovina. There are also two ill-defined subspecies: P. pratensis ssp. pratensis, found in temperate regions, and P. pratensis ssp. colpodea, found in the Arctic.

One of the common names for this species is Kentucky bluegrass. This name derives from its flower heads, which are blue when the plant is allowed to grow to its natural height of two to three feet.

Description

Top of page

P. pratensis is a herbaceous perennial grass species with shallow creeping rhizomes. It grows from 10 to 90 cm in height. The leaves have boat-shaped tips, narrowly linear, up to 20 cm long and 3-5 mm broad, smooth or slightly roughened, with a rounded to truncate ligule 1-2 mm long. The broad, blunt leaves spread at the base, forming close mats. The conical panicle is 5-20 cm long, with 3 to 5 branches in the basal whorls; the oval spikelets are 3-6 mm long with 2 to 5 florets, and are purplish-green or grey. Seeds tightly enclosed in the lemma and palea, 2mm long.

Distribution

Top of page

P. pratensis is certainly native to Europe and Asia and probably some countries of northern Africa. It has been introduced to Mexico, South America, southern Africa, Atlantic islands, Antarctica, Australia, New Zealand and Pacific islands including Hawaii.

Its status in North America is not completely clear, with some authorities suggesting it is native across most of USA and Canada (Fernald, 1950; Canadensys, 2016) while others believe it is exotic (Hitchcock, 1950; ISSG, 2016). BONAP (2016) and USDA-NRCS (2016) take an intermediate view, suggesting that some forms of the plant may be native, at least in the northern states of the USA and Canada, while others (presumably those of commercial interest) have been introduced. Overall, it seems most probable that it is effectively introduced across North America. In any case it is most common in the north and much less common in southern states. Most introductions have been deliberate, for cultivation. In some cases it may continue to be restricted to cultivation, and not naturalised, but it has not been possible to make this distinction in the Table below.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

AfghanistanPresentNativeISSG, 2015
AzerbaijanPresentNativeISSG, 2015
BhutanPresentNativeNoltie, 2000
ChinaPresentNativeISSG, 2015
-AnhuiPresentNativeFlora of China Editorial Committee, 2016
-GansuPresentNativeFlora of China Editorial Committee, 2016
-GuizhouPresentNativeFlora of China Editorial Committee, 2016
-HebeiPresentNativeFlora of China Editorial Committee, 2016
-HeilongjiangPresentNativeFlora of China Editorial Committee, 2016
-HenanPresentNativeFlora of China Editorial Committee, 2016
-HubeiPresentNativeFlora of China Editorial Committee, 2016
-JiangsuPresentNativeFlora of China Editorial Committee, 2016
-JiangxiPresentNativeFlora of China Editorial Committee, 2016
-JilinPresentNativeFlora of China Editorial Committee, 2016
-LiaoningPresentNativeFlora of China Editorial Committee, 2016
-Nei MengguPresentNativeFlora of China Editorial Committee, 2016
-NingxiaPresentNativeFlora of China Editorial Committee, 2016
-QinghaiPresentNativeFlora of China Editorial Committee, 2016
-ShaanxiPresentNativeFlora of China Editorial Committee, 2016; Flora of China Editorial Committee, 2016
-ShandongPresentNativeFlora of China Editorial Committee, 2016
-SichuanPresentNativeFlora of China Editorial Committee, 2016
-TibetPresentNativeFlora of China Editorial Committee, 2016
-XinjiangPresentNativeFlora of China Editorial Committee, 2016
-YunnanPresentNativeFlora of China Editorial Committee, 2016
Georgia (Republic of)PresentNativeISSG, 2015; Euro+Med, 2016
IndiaPresentNativeISSG, 2015
-Himachal PradeshPresentNativeShukla, 1996
-MeghalayaPresentNativeShukla, 1996
-SikkimPresentNativeNoltie, 2000
IndonesiaPresentNativeFlora of China Editorial Committee, 2016
IranPresentNativeISSG, 2015
IraqPresentNativeISSG, 2015
JapanPresentNativeFlora of China Editorial Committee, 2016
KazakhstanPresentNativeFlora of China Editorial Committee, 2016
Korea, Republic ofPresentNativeFlora of China Editorial Committee, 2016
KyrgyzstanPresentNativeFlora of China Editorial Committee, 2016
LebanonPresentNativeISSG, 2015; Euro+Med, 2016
MongoliaPresentNativeISSG, 2015
MyanmarPresentNative
NepalPresentNativeFlora of China Editorial Committee, 2016
PakistanPresentNativeISSG, 2015
Saudi ArabiaPresentNativeISSG, 2015
Sri LankaPresentNativeFlora of China Editorial Committee, 2016
SyriaPresentNativeISSG, 2015; Euro+Med, 2016
TaiwanPresentNativeFlora of China Editorial Committee, 2016
TajikistanPresentNativeFlora of China Editorial Committee, 2016
TurkeyPresentEuro+Med, 2016
UzbekistanPresentNativeFlora of China Editorial Committee, 2016

Africa

AlgeriaPresentNativeUSDA-ARS, 2016
LibyaPresentNativeUSDA-ARS, 2016
MauritiusPresentIntroduced Invasive PIER, 2016
MoroccoPresentNativeEuro+Med, 2016
RéunionPresentIntroduced Invasive PIER, 2016
Rodriguez IslandPresentIntroduced Invasive PIER, 2016
Saint HelenaPresentIntroduced Invasive ISSG, 2015
South AfricaPresentIntroduced Invasive ISSG, 2015
Spain
-Canary IslandsPresentNativeEuro+Med, 2016

North America

CanadaPresentPresent based on regional distribution.
-AlbertaPresentISSG, 2015; Canadensys, 2016
-British ColumbiaPresentISSG, 2015
-ManitobaPresentISSG, 2015; Canadensys, 2016
-New BrunswickPresentISSG, 2015; Canadensys, 2016
-Newfoundland and LabradorPresentISSG, 2015; Canadensys, 2016
-Northwest TerritoriesPresentISSG, 2015; Canadensys, 2016
-Nova ScotiaPresentISSG, 2015; Canadensys, 2016
-NunavutPresentISSG, 2015; Canadensys, 2016
-OntarioPresentISSG, 2015; Canadensys, 2016
-Prince Edward IslandPresentIntroduced Invasive ISSG, 2015; Canadensys, 2016
-QuebecPresentISSG, 2015; Canadensys, 2016
-SaskatchewanPresentISSG, 2015; Canadensys, 2016
-Yukon TerritoryPresentISSG, 2015; Canadensys, 2016
MexicoPresentIntroduced Invasive ISSG, 2015
USAWidespreadIntroduced Invasive ISSG, 2015
-AlabamaPresentIntroduced Invasive ISSG, 2015
-AlaskaPresentIntroduced Invasive ISSG, 2015
-ArizonaPresentIntroduced Invasive ISSG, 2015
-ArkansasPresentIntroduced Invasive ISSG, 2015
-CaliforniaPresentIntroduced Invasive ISSG, 2015
-ColoradoPresentIntroduced Invasive ISSG, 2015
-ConnecticutPresentIntroduced Invasive ISSG, 2015
-DelawarePresentIntroduced Invasive ISSG, 2015
-District of ColumbiaPresentIntroduced Invasive ISSG, 2015
-FloridaPresentIntroduced Invasive ISSG, 2015
-GeorgiaPresentIntroduced Invasive ISSG, 2015
-HawaiiPresentIntroduced Invasive PIER, 2016Hawai’I, Maui, O’ahu islands
-IdahoPresentIntroduced Invasive ISSG, 2015
-IllinoisPresentIntroduced Invasive ISSG, 2015
-IndianaPresentIntroduced Invasive ISSG, 2015
-IowaPresentIntroduced Invasive ISSG, 2015
-KansasPresentIntroduced Invasive ISSG, 2015
-KentuckyPresentIntroduced Invasive ISSG, 2015
-LouisianaPresentIntroduced Invasive ISSG, 2015
-MainePresentIntroduced Invasive ISSG, 2015
-MarylandPresentIntroduced Invasive ISSG, 2015
-MassachusettsPresentIntroduced Invasive ISSG, 2015
-MichiganPresentIntroduced Invasive ISSG, 2015
-MinnesotaPresentIntroduced Invasive ISSG, 2015
-MississippiPresentIntroduced Invasive ISSG, 2015
-MissouriPresentIntroduced Invasive ISSG, 2015
-MontanaPresentIntroduced Invasive ISSG, 2015
-NebraskaPresentIntroduced Invasive ISSG, 2015
-NevadaPresentIntroduced Invasive ISSG, 2015
-New HampshirePresentIntroduced Invasive ISSG, 2015
-New JerseyPresentIntroduced Invasive ISSG, 2015
-New MexicoPresentIntroduced Invasive ISSG, 2015
-New YorkPresentIntroduced Invasive ISSG, 2015
-North CarolinaPresentIntroduced Invasive ISSG, 2015
-North DakotaPresentIntroduced Invasive ISSG, 2015
-OhioPresentIntroduced Invasive ISSG, 2015
-OklahomaPresentIntroduced Invasive ISSG, 2015
-OregonPresentIntroduced Invasive ISSG, 2015
-PennsylvaniaPresentIntroduced Invasive ISSG, 2015
-Rhode IslandPresentIntroduced Invasive ISSG, 2015
-South DakotaPresentIntroduced Invasive DeKeyser et al., 2015; ISSG, 2015
-TennesseePresentIntroduced Invasive ISSG, 2015
-TexasPresentIntroduced Invasive ISSG, 2015
-UtahPresentIntroduced Invasive ISSG, 2015
-VermontPresentIntroduced Invasive ISSG, 2015
-VirginiaPresentIntroduced Invasive ISSG, 2015
-WashingtonPresentIntroduced Invasive ISSG, 2015
-West VirginiaPresentIntroduced Invasive ISSG, 2015
-WisconsinPresentIntroduced Invasive ISSG, 2015
-WyomingPresentIntroduced Invasive ISSG, 2015

South America

ChilePresentIntroduced Invasive PIER, 2016Continental and Juan Fernandez Islands (Isla Mas a Tierra; Isla Mas Afuera)
Falkland IslandsPresentIntroduced Invasive ISSG, 2015
South Georgia and the South Sandwich IslandsPresentIntroduced Invasive ISSG, 2015

Europe

AlbaniaPresentNativeEuro+Med, 2016
AustriaPresentNativeISSG, 2015; Euro+Med, 2016
BelarusPresentNativeISSG, 2015; Euro+Med, 2016
BelgiumPresentNative Invasive ISSG, 2015; Euro+Med, 2016
BulgariaPresentNativeISSG, 2015; Euro+Med, 2016
CroatiaPresentNativeEuro+Med, 2016
CyprusPresentNativeISSG, 2015; Euro+Med, 2016
Czech RepublicPresentIntroducedISSG, 2015; Euro+Med, 2016
DenmarkPresentNativeISSG, 2015; Euro+Med, 2016
EstoniaPresentNativeISSG, 2015; Euro+Med, 2016
Faroe IslandsPresentNativeEuro+Med, 2016
FinlandPresentNativeISSG, 2015; Euro+Med, 2016
FrancePresentNativeISSG, 2015; Euro+Med, 2016
-CorsicaPresentNativeEuro+Med, 2016
GermanyPresentNativeISSG, 2015; Euro+Med, 2016
GreecePresentNativeISSG, 2015; Euro+Med, 2016
HungaryPresentNativeISSG, 2015; Euro+Med, 2016
IcelandPresentNativeEuro+Med, 2016
IrelandPresentNativeEuro+Med, 2016
ItalyPresentNativeISSG, 2015
LatviaPresentNativeISSG, 2015
LithuaniaPresentNativeISSG, 2015; Euro+Med, 2016
LuxembourgPresentNativeISSG, 2015
MacedoniaPresentNativeISSG, 2015
MaltaPresentNativeEuro+Med, 2016
NetherlandsPresentNativeISSG, 2015; Euro+Med, 2016
NorwayPresentNativeISSG, 2015; Euro+Med, 2016
PolandPresentNativeISSG, 2015; Euro+Med, 2016
PortugalPresentNativeISSG, 2015; Euro+Med, 2016
-AzoresIntroducedEuro+Med, 2016
RomaniaPresentNativeISSG, 2015; Euro+Med, 2016
Russian FederationPresentPresent based on regional distribution.
-Central RussiaPresentNativeISSG, 2015; Euro+Med, 2016
-Eastern SiberiaPresentNativeISSG, 2015; Euro+Med, 2016
-Northern RussiaPresentNativeISSG, 2015; Euro+Med, 2016
-Russian Far EastPresentNativeISSG, 2015; Euro+Med, 2016
-Southern RussiaPresentNativeISSG, 2015; Euro+Med, 2016
-Western SiberiaPresentNativeISSG, 2015; Euro+Med, 2016
SerbiaPresentNativeEuro+Med, 2016
SlovakiaPresentNativeEuro+Med, 2016
SloveniaPresentNativeEuro+Med, 2016
SpainPresentNativeISSG, 2015; Euro+Med, 2016
-Balearic IslandsNativeEuro+Med, 2016
Svalbard and Jan MayenPresentNativeISSG, 2015
SwedenPresentNativeISSG, 2015; Euro+Med, 2016
SwitzerlandPresentNativeISSG, 2015; Euro+Med, 2016
UKWidespreadNativePhillips, 1980; ISSG, 2015
UkrainePresentNativeISSG, 2015; Euro+Med, 2016

Oceania

AustraliaPresentIntroduced Invasive Council of Heads of Australasian Herbaria, 2016; PIER, 2016Continental and Lord Howe Island
-Australian Northern TerritoryLocalisedIntroducedCouncil of Heads of Australasian Herbaria, 2016
-New South WalesWidespreadIntroducedCouncil of Heads of Australasian Herbaria, 2016
-QueenslandLocalisedIntroducedCouncil of Heads of Australasian Herbaria, 2016
-South AustraliaPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
-TasmaniaWidespreadIntroducedCouncil of Heads of Australasian Herbaria, 2016
-Western AustraliaLocalisedIntroducedCouncil of Heads of Australasian Herbaria, 2016
New ZealandPresentIntroduced Invasive Council of Heads of Australasian Herbaria, 2016; PIER, 2016
Norfolk IslandPresentIntroducedCouncil of Heads of Australasian Herbaria, 2016
Papua New GuineaPresentIntroducedPIER, 2016

History of Introduction and Spread

Top of page

According to Cook (2015), P. pratensis arrived in the USA from Europe during colonial times (1600s) and rapidly spread west along with European settlers. It performed well in north central Kentucky for forage, which led to the common name Kentucky bluegrass. It continued to spread both west and north until it became an important grass throughout northern USA and Canada from coast to coast. P. pratensis was introduced to Hawaii in 1879 (Wilcox, 1015) and to the Antarctic in 1954 (Pertierra et al., 2013). Earliest dates of collection according to GBIF (2016) include 1900 for South Africa, 1828 for New Zealand, 1848 for Australia, 1850 in Chile and 1893 in Mexico.

Habitat

Top of page

P. pratensis is widespread throughout the UK and north-eastern USA in plant assemblages of pasture and arable land, roadsides, waste-ground, forest edges, dry hills, marshes, along seashores and walls. P. pratensis is used for hay, grazing and for park and sportsground turf (Clarke and Malte, 1913; Phillips, 1980).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
 
Terrestrial – ManagedCultivated / agricultural land Principal habitat Natural
Managed forests, plantations and orchards Present, no further details Natural
Managed grasslands (grazing systems) Principal habitat Natural
Industrial / intensive livestock production systems Present, no further details Natural
Disturbed areas Principal habitat Natural
Rail / roadsides Present, no further details Natural
Urban / peri-urban areas Present, no further details Natural
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details Natural
Natural grasslands Present, no further details Natural

Hosts/Species Affected

Top of page

P. pratensis has been reported to impact on, Triticum aestivum, Hordeum vulgare and Anemone patens.

Biology and Ecology

Top of page

Genetics

P. pratensis is very variable genetically, with chromosome numbers ranging from 2n=14 to 154, but the most common numbers are 2n = 28 or 56 (Missouri Botanic Garden, 2016). The genetic variability in P. pratensis has been studied by Raggi et al. (2015) where they found relatively little consistent variation between cultivated and wild types, but variation according to region of collection. The most distinct variation is shown by populations from China and Mongolia and it is suggested that this is a likely area of origin of the species.

Reproductive Biology

P. pratensis may hybridize but some forms produce seed apomictically, whereby the seed forms from cells contained within the ovary wall of the flowers (the progeny are identical to the parent plant) (Hubbard, 1959). Breeders have been able to make controlled crosses and in many cases the resulting crosses are still highly apomictic. Many early cultivars, including ‘Merion’, are simple selections of highly apomictic plants.

Physiology and Phenology

Seeds of P. pratensis germinate in autumn after a chilling period. In a study by Aamlid and Arntsen (1997), the optimum constant temperature for germination was 16°C but higher rates of germination were obtained under fluctuating temperatures. Light was beneficial at constant temperatures, but had no benefit, or was even inhibitory at alternating temperatures. Germination is delayed under dry soil conditions, more so than in related Poa species (Springer and Goldman, 2016). Seedlings establish forming a short tuft, rhizomes and tillers (North Dakota Department of Agriculture, 2005). It may take up to three years for plants to establish fully from seed but is then very long-lived.

Valuable detail on the phenology and ecology of P. pratensis are provided by Sather (2016). He records that the growth of each aerial shoot or underground rhizome is indeterminate until its shoot apex is triggered by environmental stimuli to initiate floral development. Each tiller or rhizome produces a single terminal aerial flowering stem. Floral initiation is induced by a period of vernalisation involving both an inductive developmental stage and a photoperiodic requirement before the inflorescence is initiated. Vernalisation is not transferred from one shoot to another, with the consequence that aerial shoots from either tillers or rhizomes formed in any given year (whether spring or fall) must overwinter before they will bloom. This requirement applies even though apical dominance is removed by removing the flowering culm. Flowering in the UK occurs from May to early July (Phillips, 1980). Each panicle (flower) is capable of producing between 100 and 200 seeds. Seeds can remain viable for up to two years.

Environmental Requirements

P. pratensis is best adapted to well-drained, fertile, medium-textured soils of limestone origin, although it can survive on poorly-drained and heavy textured soils. It prefers soils of pH 6.0 to 7.5. Optimum temperatures for growth are between 15 to 32°C and it grows best in humid areas. It prefers high sunlight but can do well in light shade if moisture and nutrients are sufficient. It is usually dormant during dry or hot weather but can survive severe droughts (ISSG, 2016). Frost is tolerated but tolerance is reduced under increased nitrogen availability (Malyshev and Henry, 2012).

Climate

Top of page
ClimateStatusDescriptionRemark
Cf - Warm temperate climate, wet all year Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
Cs - Warm temperate climate with dry summer Preferred Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
Cw - Warm temperate climate with dry winter Preferred Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)

Air Temperature

Top of page
Parameter Lower limit Upper limit
Mean annual temperature (ºC) 15.5 32

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Amara aenea Herbivore Seeds
Eupelix cuspidata Herbivore Leaves
Maniola jurtina Herbivore
Myrmus miriformis Herbivore Leaves
Pyronia tithonus Herbivore

Notes on Natural Enemies

Top of page

P. pratensis is affected by a very wide range of fungal and nematode enemies, but none are known to be very widespread or damaging. Of greatest economic significance perhaps are those which affect P. pratensis on golf courses and other amenities.

Among many insects P. pratensis is eaten by the caterpillars of the meadow brown (Maniola jurtina) and gatekeeper (Pyronia tithonus) butterflies. Adults of the common sun beetle (Amara aenea) feed on the developing seeds. The leafhopper Eupelix cuspidata and the grassbug Myrmus miriformis feed on young blades and developing seeds.

Impact Summary

Top of page
CategoryImpact
Cultural/amenity Positive and negative
Economic/livelihood Positive and negative
Environment (generally) Negative

Economic Impact

Top of page

In the UK and China, P. pratensis has been reported as a weed in agricultural crops such as wheat and other cereal crops (Yann and QinHua, 2009; Bayer, 2016).

Environmental Impact

Top of page

In a recent review, DeKeyser et al., (2015) comment that P. pratensis has become the most-common species on the untilled, native prairie sites of much of North and South Dakota, one of the most endangered ecosystems in North America. Toledo et al., (2014) found that invasion of the prairies in northern USA may bring negative consequences to ecosystem services, such as pollination, habitat for wildlife species and alteration of nutrient and hydrologic cycles, among others. All these impacts can negatively affect livestock production as well as wildlife habitat and ecosystem services (Hendrickson and Lund, 2010). In addition to this, P. pratensis can outcompete native plant species and therefore reduce biodiversity in invaded areas (North Dakota Department of Agriculture, 2005). The vital rates and population growth rate of a native US species, Anemone patens, was observed to be greatly reduced when growing with P. pratensis and other invasive grasses (Williams and Crone, 2006).

Litter produced by P. pratensis has been observed to form thick mats of ‘slicks’ on the soil surface (Hendrickson and Lund, 2010). The litter is known to inhibit seedling establishment of other plant species (Bosy and Reader, 1995).

P. pratensis is also a host of Aspergillus versicolor, a fungus which produces a mycotoxin causing mycotoxicosis in livestock (Rekha et al., 2016).

Despite being a non-native grass species in the USA, P. pratensis provides important habitat and oviposition sites for the rare grass skipper Polites mardon (Beyer and Schultz, 2010).

Social Impact

Top of page

P. pratensis is an important plant of sports turf, especially on golf courses, parks and private gardens.

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Has a broad native range
  • Abundant in its native range
  • Highly adaptable to different environments
  • Is a habitat generalist
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Pioneering in disturbed areas
  • Tolerant of shade
  • Highly mobile locally
  • Benefits from human association (i.e. it is a human commensal)
  • Long lived
  • Fast growing
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
  • Reproduces asexually
  • Has high genetic variability
Impact outcomes
  • Ecosystem change/ habitat alteration
  • Modification of fire regime
  • Modification of hydrology
  • Modification of nutrient regime
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Highly likely to be transported internationally deliberately
  • Difficult to identify/detect as a commodity contaminant

Uses

Top of page

Economic value

The main use of P. pratensis is for sports turf, especially for golf courses. It is also used in private gardens and parks and in ball fields and other heavy use areas such as picnic areas, as it thrives from mowing (USDA, 2002).

Environmental Services

P. pratensis and its seeds can be an important component in the diets of elk, mule deer, and bighorn sheep, numerous species of small mammals, songbirds, cottontail rabbit, wild turkey and prairie chickens. In P. pratensis-dominated grasslands there can be an abundance of small mammals which provide food for foraging raptors (USDA Forest Service, 2015)

P. pratensis is highly palatable to horses, cattle and sheep. It produces relatively low yields compared to other pasture grasses, but can be very productive in northeast USA on closely grazed intensive rotational grazing systems (USDA, 2002).

Despite being a non-native grass species in the USA, P. pratensis provides important habitat and oviposition sites for the rare grass skipper Polites mardon (Beyer and Schultz, 2010).

P. pratensis is also an excellent erosion control plant due to its dense, vigorous turf forming habit. It can be used as a mix with legumes or other grasses for erosion control in conservation cover, waterways, field borders, heavy use areas and critical areas such as steep banks and pond edges. It is also used alone or in seed mixtures as permanent cover for tree plantings and orchards (USDA, 2002).

Similarities to Other Species/Conditions

Top of page

P. pratensis is similar in appearance to a number of closely related species in the same genus. P. pratensis flowers from May to July, as opposed to P. annua, which is in flower for eight months of the year. P. pratensis has a fairly prominent mid-vein in the middle of the blade. The ligule of P. pratensis is extremely short and square-ended, in contrast to P. annua and P. trivialis, in which it is silvery and pointed. P. pratensis is a dark green compared to the apple green colour of P. annua and P. trivialis.P. angustifolia may also be confused with P. pratensis; it differs mainly in narrower, stiffer leaves, but in any case is regarded by some authorities as a subspecies of P. pratensis. P. compressa, often occurring with P. pratensis in Europe and in the USA, is distinct in having flattened stems.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Physical/Mechanical Control

Mowing and raking are generally ineffective against P. pratensis and can actually stimulate rhizome and tiller production. Williams and Crone (2006) found that mowing and raking decreased Bromus inermis (smooth brome), a similar invasive grass, but increased P. pratensis. Common varieties of P. pratensis however, perform well when lightly grazed or mowed at 5 cm or higher, actually improving the stand. However, when intensively grazed, or mown below 5 cm, diseases can then develop which generally destroy the stand. The dwarf or compact turf varieties require mowing below 2 cm; so mowing is therefore not recommended for control unless there is disease already present in the stand below cutting level (North Dakota Department of Agriculture, 2005; Hendrickson and Lund, 2010). For eradication complete turf removal down to 12-25 cm is recommended.

Sather (2016) comments that the most widely used management procedure for controlling P. pratensis in natural areas is the use of fire. In Kansas and Nebraska, USA three successive years of annual spring burning are considered sufficient for conversion of rangeland from P. pratensis to dominance by native warm season grasses. In the north it appears that much longer periods of annual burning are required. In central North Dakota, refuge managers suggest that even longer periods may be required and that P. pratensis may never be eliminated but only held in control by fire. The timing of the prescribed burn, moisture and site conditions are important factors that may influence the response of the plant to burning. It is also critical to consider native species composition of the area prior to burning. Burning usually needs to be repeated annually for several years (North Dakota Department of Agriculture, 2005). USDA Forestry Service (2015) makes detailed comments on the factors influencing the effectiveness of fire in control of P. pratensis.

Chemical Control

In the USA, glyphosate is effective in reducing infestations of P. pratensis (North Dakota Department of Agriculture, 2005). Imazapyr and sulfometuron methyl can also provide control. However, chemical control may not be the preferred method of control in some regions due to its effect on native species (North Dakota Department of Agriculture, 2005), as these chemicals will likely also affect the native species that are desired. Sather (2016) records that atrazine, DMPA (‘Zytron’), DCPA (‘Dacthal’) and trifluoralin at suitable doses can provide some selective suppression of P. pratensis in a pasture situation.

In field experiments performed in the UK, Clay et al. (2006) found P. pratensis to be moderately resistant to resistant to all graminicide herbicides tested. It was only moderately susceptible to the broad-acting glyphosate in spring and autumn. Resistance was greater with autumn-applied herbicides than with spring applications. Established plants were more resistant than young plants. Bayer (2016) recommend chlortoluron, isoproturon, diflufenican and flufenacet alone or in mixtures for control of Poa species including P. pratensis in winter wheat and barley

IPM

A study in North Dakota, USA, found that burning followed by the application of a herbicide (imazapic) was more effective at reducing P. pratensis than burning or using a herbicide alone. Burning removed the heavy thatch layer associated with P. pratensis, which may have improved herbicide effectiveness. However, this study also found that while burn/herbicide treatment decreased P. pratensis, it caused an increase in smooth brome (Bromus inermis) (Hendrickson and Lund, 2010).

References

Top of page

Aamlid TS; Arntsen D, 1998. Effects of light and temperature on seed germination of Poa pratensis from high latitudes. Acta Agriculturæ Scandinavica. Section B, Soil and Plant Science, 48(4):239-247.

Alderman SC; Walenta DL; Hamm PB; Martin RC; Dung J; Kosman E, 2015. Afternoon ascospore release in Claviceps purpurea optimizes perennial ryegrass infection. Plant Disease, 99(10):1410-1415. http://apsjournals.apsnet.org/loi/pdis

Bayer, 2016. Meadowgrass managemnent in winter cereals. Bayer AgriServices. http://www.bayercropscience.co.uk/mediafile/100474521/m27534_mg_expert_guide_eg_2015_210x148.pdf

Beyer LJ; Schultz CB, 2010. Oviposition selection by a rare grass skipper Polites mardon in montane habitats: advancing ecological understanding to develop conservation strategies. Biological Conservation, 143(4):862-872. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5X-4Y6T806-5&_user=10&_coverDate=04%2F30%2F2010&_rdoc=8&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235798%232010%23998569995%231783332%23FLA%23display%23Volume)&_cdi=5798&_sort=d&_docanchor=&_ct=31&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=710e405e333e47c82b03dfb2d73430f6

Blunt TD; Brunk G; Koski T; Tisserat N, 2015. Typhula blight development in Poa annua and Poa pratensis as influenced by persistence of the fungicides chlorothalonil and fludioxonil under snow cover. Canadian Journal of Plant Pathology, 37(2):165-178. http://www.tandfonline.com/loi/tcjp20

BONAP, 2016. The Biota of North America Program, North American Vascular Flora., USA. http://bonap.net/NAPA/

Bosy JL; Reader RJ, 1995. Mechanisms underlying the suppression of forb seedling emergence by grass (Poa pratensis) litter. Functional Ecology, 9(4):635-639.

Canadensys, 2016. Canadensys - data community., Canada. http://data.canadensys.net/explorer/en/search

Clarke GH; Malte MO, 1913. Fodder And Pasture Plants., Canada: Canadian Department of Agriculture. http://chestofbooks.com/flora-plants/weeds/Fodder-Pasture-Plants/Kentucky-Blue-Grass-Poa-Pratensis-L.html#.VX20OkZvn9o

Clay DV; Dixon FL; Willoughby I, 2006. Efficacy of graminicides on grass weed species of forestry. Crop Protection, 25(9):1039-1050.

Cook T, 2015. Kentucky Bluegrass, Poa pratensis L. Beaver Turf report. Oregon, USA: Oregon State University.

Council of Heads of Australasian Herbaria, 2016. Australia's Virtual Herbarium., Australia: Council of Heads of Australasian Herbaria. http://avh.ala.org.au

DeKeyser ES; Dennhardt LA; Hendrickson J, 2015. Kentucky bluegrass (Poa pratensis) invasion in the Northern Great Plains: a story of rapid dominance in an endangered ecosystem. Invasive Plant Science and Management, 8(3):255-261. http://www.bioone.org/loi/ipsm

Euro+Med, 2016. Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. http://www.emplantbase.org/home.html

Fernald ML, 1950. Gray's Manual of Botany. 8th Ed. New York, USA: American.

Flora of China Editorial Committee, 2016. Flora of China. St. Louis, Missouri and Cambridge, Massachusetts, USA: Missouri Botanical Garden and Harvard University Herbaria. http://www.efloras.org/flora_page.aspx?flora_id=2

Frauenstein K, 1970. The major fungal pathogens of bluegrass (Poa pratensis L.) in the GDR. Nachrichtenblatt fur den Deutschen Pflanzenschutzdienst, 24:5-9.

GASKIN TA, 1966. Evidence for physiologic races of stripe smut (Ustilago striifonnis) attacking Kentucky Bluegrass. Plant Disease Reporter, 50(6):430-431.

Hendrickson JR; Lund C, 2010. Plant community and target species affect responses to restoration strategies. Rangeland Ecology & Management, 63(4):435-442. http://www.srmjournals.org/doi/abs/10.2111/08-239.1

Hitchcock AS, 1950. Manual of the grasses of the United States. USDA Miscellaneous Publication 200. Washington, D.C., USA: USDA.

Hsiang T; Shi F; Darbyson A, 2014. First report of Sclerotinia homoeocarpa from the sedge Trichophorum cespitosum in eastern Canada, which causes dollar spot disease on Lolium perenne and Poa pratensis but not on Agrostis stolonifera. Plant Disease, 98(1):161-162. http://apsjournals.apsnet.org/loi/pdis

Hubbard CE, 1959. Grasses. London, UK: Penguin Books.

ISSG, 2015. Global Invasive Species Database (GISD). Invasive Species Specialist Group of the IUCN Species Survival Commission. http://www.issg.org/database/welcome/

Larson DL; Larson JL, 2010. Control of one invasive plant species allows exotic grasses to become dominant in northern Great Plains grasslands. Biological Conservation, 143(8):1901-1910. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5X-505FHTW-1&_user=10&_coverDate=08%2F31%2F2010&_rdoc=12&_fmt=high&_orig=browse&_srch=doc-info(%23toc%235798%232010%23998569991%232113752%23FLA%23display%23Volume)&_cdi=5798&_sort=d&_docanchor=&_ct=13&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=8cbe10a3a63ef0b50f926e5fdaad35bb

Lee JungHan; Oh SoJin; Kim DongSoo; Kwak YounSig, 2014. First report of leaf blight disease caused by Fusarium verticillioides (teleomorph Gibberella moniliformis) in Kentucky bluegrass. Journal of Phytopathology, 162(5):345-347. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1439-0434

Malyshev AV; Henry HAL, 2012. Frost damage and winter nitrogen uptake by the grass Poa pratensis L.: consequences for vegetative versus reproductive growth. Plant Ecology, 213(11):1739-1747. http://www.springerlink.com/content/100328/?MUD=MP

Missouri Botanical Garden, 2016. Tropicos database. St. Louis, Missouri, USA: Missouri Botanical Garden. http://www.tropicos.org/

Ni XX; Li BT; Cai M; Liu XL, 2012. First report of brown ring patch caused by Waitea circinata var. circinata on Agrostis stolonifera and Poa pratensis in China. Plant Disease, 96(12):1821-1822. http://apsjournals.apsnet.org/loi/pdis

Noltie HJ, 2000. Flora of Bhutan including a record of plants from Sikkim and Darjeeling. Volume 3 Part 2. The Grasses of Bhutan. Edinburgh, UK: Royal Botanic Garden Edinburgh and Royal Government of Bhutan.

North Dakota Department of Agriculture, 2005. Kentucky bluegrass (Poa pratensis). http://www.library.nd.gov/statedocs/AgDept/Kentuckybluegrass20070703.pdf

Pertierra LR; Lara F; Benayas J; Hughes KA, 2013. Poa pratensis L., current status of the longest-established non-native vascular plant in the Antarctic. Polar Biology, 36(10):1473-1481. http://rd.springer.com/article/10.1007/s00300-013-1367-8

Phillips R, 1980. Grasses, ferns, mosses and lichens of Great Britain and Ireland. London, UK: Ward Lock Limited., 191pp.

PIER, 2016. Pacific Island Ecosystems at Risk. Honolulu, USA: HEAR, University of Hawaii. http://www.hear.org/pier/index.html

Polizzi G; Vitale A; Castello I, 2006. Southern blight of tall fescue and bluegrass caused by Sclerotium rolfsii in Italy. Plant Disease, 90(2):246. HTTP://www.apsnet.org

Raggi L; Bitocchi E; Russi L; Marconi G; Sharbel TF; Veronesi F; Albertini E, 2015. Understanding genetic diversity and population structure of a Poa pratensis worldwide collection through morphological, nuclear and chloroplast diversity analysis. PLoS ONE, 10(4):e0124709. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124709

Rekha C; Shridhar NB; Sanganal JS; Narayanaswamy HD, 2016. Isolation of Aspergillus versicolor from fungal contaminated meadow grass and its toxicopathological study in Wistar albino rats. Indian Journal of Veterinary Pathology, 40(1):79-82. http://www.indianjournals.com/ijor.aspx?target=ijor:ijvp&volume=40&issue=1&article=018

Rúa MA; McCulley RL; Mitchell CE, 2014. Climate drivers, host identity and fungal endophyte infection determine virus prevalence in a grassland ecosystem. Journal of Ecology (Oxford), 102(3):690-699. http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2745

Sather N, 2016. Poa pratensis. BugwoodWiki. https://wiki.bugwood.org/Poa_pratensis

Shukla U, 1996. The grasses of north-eastern India. Jodhpur, India: Scientific Publishers, 404 pp.

Smiley RW; Giblin DE, 1986. Root cortical death in relation to infection of Kentucky bluegrass by Phialophora graminicola.. Phytopathology, 76(9):917-922.

Springer TL; Goldman JJ, 2016. Seed germination of five Poa species at negative water potentials. American Journal of Plant Sciences, 7(3):601-611. http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=64967

The Plant List, 2013. The Plant List: a working list of all plant species. Version 1.1. London, UK: Royal Botanic Gardens, Kew. http://www.theplantlist.org

Toledo D; Sanderson M; Spaeth K; Hendrickson J; Printz J, 2014. Extent of Kentucky bluegrass and its effect on native plant species diversity and ecosystem services in the Northern Great Plains of the United States. Invasive Plant Science and Management, 7(4):543-552. http://wssajournals.org/loi/ipsm

USDA Forest Service, 2015. Fire effects information system., USA: USDA. http://www.feis-crs.org/beta/

USDA-ARS, 2016. Germplasm Resources Information Network (GRIN). National Plant Germplasm System. Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

Wilcoc EV, 1915. Grasses and forage plants of Hawaii. Bulletin 36. Hawaii Agrcilultural Experiment Station.

Williams JL; Crone EE, 2006. The impact of invasive grasses on the population growth of Anemone patens, a long-lived native forb. Ecology, 87(12):3200-3208. http://www.esajournals.org/archive/0012-9658/87/12/pdf/i0012-9658-87-12-3200.pdf

Yan L; QinHua L, 2009. Effect of Sigma Broad OD on controlling Poa pratensis in a wheat field. Weed Science (China), 4:62-63.

Yang CD; Yao YL; Zhang ZF; Xue L, 2016. First report of leaf blight of Poa pratensis caused by Peyronellaea glomerata in China. Plant Disease, 100(4):862-863. http://apsjournals.apsnet.org/loi/pdis

Zhao ShuAng; Zhang N; Chen FaDi; Shen QiRong, 2014. Phylogenetic analysis and macroarray detection of Magnaporthe poae and its related species. Journal of Nanjing Agricultural University, 37(5):81-86. http://nauxb.njau.edu.cn/

Contributors

Top of page

24/06/16 Updated by:

Chris Parker, Consultant, Bristol, UK

22/06/15 Original text by:

Philip Roberts, CABI, UK

Distribution Maps

Top of page
You can pan and zoom the map
Save map