Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Plasmopara viticola
(grapevine downy mildew)

Toolbox

Datasheet

Plasmopara viticola (grapevine downy mildew)

Summary

  • Last modified
  • 14 July 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Plasmopara viticola
  • Preferred Common Name
  • grapevine downy mildew
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Chromista
  •     Phylum: Oomycota
  •       Class: Oomycetes
  •         Order: Peronosporales
  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    Compendia
    CAB International
    Wallingford
    Oxfordshire
    OX10 8DE
    UK
    compend@cabi.org
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Young, translucent oilspots with brown margins.
TitleSymptoms
CaptionYoung, translucent oilspots with brown margins.
CopyrightMegan M. Kennelly
Young, translucent oilspots with brown margins.
SymptomsYoung, translucent oilspots with brown margins. Megan M. Kennelly
Multiple oilspots can coalesce and cover much of the leaf surface.
TitleSymptoms
CaptionMultiple oilspots can coalesce and cover much of the leaf surface.
CopyrightMegan M. Kennelly
Multiple oilspots can coalesce and cover much of the leaf surface.
SymptomsMultiple oilspots can coalesce and cover much of the leaf surface.Megan M. Kennelly
Oilspots become dry and necrotic in the centre, with a yellow margin which retains the ability to sporulate.
TitleSymptoms
CaptionOilspots become dry and necrotic in the centre, with a yellow margin which retains the ability to sporulate.
CopyrightMegan M. Kennelly
Oilspots become dry and necrotic in the centre, with a yellow margin which retains the ability to sporulate.
SymptomsOilspots become dry and necrotic in the centre, with a yellow margin which retains the ability to sporulate.Megan M. Kennelly
Oilspots eventually become almost completely necrotic.
TitleSymptoms
CaptionOilspots eventually become almost completely necrotic.
CopyrightMegan M. Kennelly
Oilspots eventually become almost completely necrotic.
SymptomsOilspots eventually become almost completely necrotic.Megan M. Kennelly
On older leaves oilspots are restricted by veins and form yellow-to-brown small, angular spots in a patchwork pattern.
TitleSymptoms
CaptionOn older leaves oilspots are restricted by veins and form yellow-to-brown small, angular spots in a patchwork pattern.
CopyrightMegan M. Kennelly
On older leaves oilspots are restricted by veins and form yellow-to-brown small, angular spots in a patchwork pattern.
SymptomsOn older leaves oilspots are restricted by veins and form yellow-to-brown small, angular spots in a patchwork pattern.Megan M. Kennelly
After a warm, humid night sporangiophores and sporangia appear as a bright white, fluffy growth on the undersides of leaves.
TitleSymptoms
CaptionAfter a warm, humid night sporangiophores and sporangia appear as a bright white, fluffy growth on the undersides of leaves.
CopyrightMegan M. Kennelly
After a warm, humid night sporangiophores and sporangia appear as a bright white, fluffy growth on the undersides of leaves.
SymptomsAfter a warm, humid night sporangiophores and sporangia appear as a bright white, fluffy growth on the undersides of leaves.Megan M. Kennelly
Infected inflorescences and young fruit become covered with white, fluffy spores.
TitleSymptoms
CaptionInfected inflorescences and young fruit become covered with white, fluffy spores.
CopyrightMegan M. Kennelly
Infected inflorescences and young fruit become covered with white, fluffy spores.
SymptomsInfected inflorescences and young fruit become covered with white, fluffy spores.Megan M. Kennelly
Close-up of infected young berry with sporulation on berry surface and pedicel.
TitleSymptoms
CaptionClose-up of infected young berry with sporulation on berry surface and pedicel.
CopyrightMegan M. Kennelly
Close-up of infected young berry with sporulation on berry surface and pedicel.
SymptomsClose-up of infected young berry with sporulation on berry surface and pedicel.Megan M. Kennelly
Berries infected after 2-3 weeks postbloom become discoloured and shrivel, but do not support sporulation.
TitleSymptoms
CaptionBerries infected after 2-3 weeks postbloom become discoloured and shrivel, but do not support sporulation.
CopyrightMegan M. Kennelly
Berries infected after 2-3 weeks postbloom become discoloured and shrivel, but do not support sporulation.
SymptomsBerries infected after 2-3 weeks postbloom become discoloured and shrivel, but do not support sporulation.Megan M. Kennelly
Infected areas usually turn brown, dry out, and fall off of the cluster
TitleSymptoms
CaptionInfected areas usually turn brown, dry out, and fall off of the cluster
CopyrightMegan M. Kennelly
Infected areas usually turn brown, dry out, and fall off of the cluster
SymptomsInfected areas usually turn brown, dry out, and fall off of the clusterMegan M. Kennelly
Young inflorescences may distort or curl (arrowed) - note healthy inflorescence behind.
TitleSymptoms
CaptionYoung inflorescences may distort or curl (arrowed) - note healthy inflorescence behind.
CopyrightMegan M. Kennelly
Young inflorescences may distort or curl (arrowed) - note healthy inflorescence behind.
SymptomsYoung inflorescences may distort or curl (arrowed) - note healthy inflorescence behind.Megan M. Kennelly
(1) Sporangium detached from sporangiophore; (2) A sporangium which has released its zoospores; (3) Encysted zoospore beginning to germinate.
TitleSymptoms
Caption(1) Sporangium detached from sporangiophore; (2) A sporangium which has released its zoospores; (3) Encysted zoospore beginning to germinate.
CopyrightMegan M. Kennelly
(1) Sporangium detached from sporangiophore; (2) A sporangium which has released its zoospores; (3) Encysted zoospore beginning to germinate.
Symptoms(1) Sporangium detached from sporangiophore; (2) A sporangium which has released its zoospores; (3) Encysted zoospore beginning to germinate.Megan M. Kennelly
P. viticola leaf sporulation symptoms (downy mildew) on grapevine leaf.
TitleSymptoms
CaptionP. viticola leaf sporulation symptoms (downy mildew) on grapevine leaf.
CopyrightThorsten Kraska, University of Bonn, Germany
P. viticola leaf sporulation symptoms (downy mildew) on grapevine leaf.
SymptomsP. viticola leaf sporulation symptoms (downy mildew) on grapevine leaf.Thorsten Kraska, University of Bonn, Germany
Downy mildew symptoms  on grapevine leaf.
TitleSymptoms
CaptionDowny mildew symptoms on grapevine leaf.
CopyrightThorsten Kraska, University of Bonn, Germany
Downy mildew symptoms  on grapevine leaf.
SymptomsDowny mildew symptoms on grapevine leaf. Thorsten Kraska, University of Bonn, Germany

Identity

Top of page

Preferred Scientific Name

  • Plasmopara viticola (Berk. & M.A. Curtis) Berl. & de Toni

Preferred Common Name

  • grapevine downy mildew

Other Scientific Names

  • Botrytis viticola Berk. & M.A. Curtis
  • Peronospora viticola (Berk. & M.A. Curtis) de Bary
  • Plasmopara amurensis Prots.
  • Rhysotheca viticola (Berkeley & Curtis) G.W. Wilson

International Common Names

  • English: brown rot; downy mildew of grapevine; grey rot
  • Spanish: mildiu de la vid; mildiu velloso de la vid
  • French: mildiou de la grappe; mildiou de la vigne; rot-brun de la vigne; rot-gris de la vigne

Local Common Names

  • Germany: Falscher Mehltau: Weinrebe; Lederbeerenkrankheit: Weinrebe; Peronospora: Weinrebe
  • Italy: Peronospora della vite

EPPO code

  • PLASVI (Plasmopara viticola)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Chromista
  •         Phylum: Oomycota
  •             Class: Oomycetes
  •                 Order: Peronosporales
  •                     Family: Peronosporaceae
  •                         Genus: Plasmopara
  •                             Species: Plasmopara viticola

Notes on Taxonomy and Nomenclature

Top of page As reviewed by Viala (1893) and Gregory (1915), P. viticola was first collected and studied in 1834 by Schweinitz, who named it Botrytis caca (Schweinitz, 1837). Berkeley and Curtis (1848) later described the organism as Botrytis viticola. De Bary (1863) transferred the pathogen to a new genus and described it as Peronospora viticola. Berlese and de Toni (1888) redescribed the pathogen as Plasmopara viticola after Schröter (1886) separated Peronospora into two genera, Peronospora and Plasmopara.

According to Grunzel (1960) and Rafaila et al. (1968), several authors (Procenko, 1946; Savulescu and Savulescu, 1952; Golovina, 1955) have suggested distinguishing different varieties and special forms of P. viticola based on morphology or host range. Grunzel (1960) and Rafaila et al. (1968) concluded there was no evidence for such divisions.

Description

Top of page After Hall (1989).

Mycelium composed of intercellular, colourless, aseptate hyphae 7-12 µm diameter, often irregularly shaped and swollen, bearing small, rounded vesicular haustoria, 4-10 µm diameter, formed predominantly in leaf tissues.

Sporangiophores hypophyllous, arborescent, 130-250(-700) x 11-14 µm, branching monopodially in the upper third at right angles to the main axis, and with a base tapering to a conical point; branches in a whorl of 4-5, 35-45 µm long, often with two opposite secondary branches 15-20 µm long, all having 3-4 conical tips 10 µm long 6 µm wide at base, diverging at right angles and tapering to a terminal swelling.

Sporangia ovoid, colourless, (17-)20(-25) x (10-)14(-16) µm, sometimes with a short pedicel, each producing 1-6 zoospores.

Zoospores reniform, laterally biflagellate, 6-8 x 4-5 µm, emerging from opposite the insertion point of the sporangium, via a papilla, or by direct penetration of the sporangium wall.

Oospores formed in leaf tissues, spherical, 28-40 µm diameter, containing 14-16 chromosomes, covered by two inner oospore membranes and an outer wrinkled oospore wall, germinating via a tube, 2-3 µm diameter, to give a pyriform sporangium, ca 25 x 35-40 µm, producing 8-20 zoospores.

Distribution

Top of page P. viticola is native to the north-eastern USA. From the USA, P. viticola spread to Europe and worldwide. Today, P. viticola occurs in nearly all grape-growing regions worldwide. A few exceptionally dry grape-growing climates exist which support only minimal levels of the pathogen, such as parts of Argentina, Chile, California and Egypt (Weltzien, 1981; Lafon and Clerjeau, 1988; Emmett et al., 1992).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

AzerbaijanPresentCMI, 1988
CambodiaPresentCMI, 1988
ChinaPresentCMI, 1988
-LiaoningPresentZhang et al., 2004
-NingxiaPresentSha et al., 2007
-XinjiangPresentChen et al., 2007
IndiaPresentCMI, 1988
-Jammu and KashmirPresentShahzad et al., 2006
-KarnatakaPresentPrabhu, 2007
-MaharashtraPresentKhilare et al., 2003; Sawant et al., 2016
-Tamil NaduPresentPrakash et al., 2007
IndonesiaPresentCMI, 1988
IranPresentCMI, 1988
IsraelPresentCMI, 1988
JapanPresentCMI, 1988
JordanPresentCMI, 1988
KazakhstanPresentCMI, 1988
Korea, Republic ofPresentCMI, 1988; Choi et al., 2017
LaosPresentCMI, 1988
LebanonPresentCMI, 1988
MalaysiaPresentCMI, 1988
MyanmarPresentCMI, 1988
PakistanPresentCMI, 1988
PhilippinesPresentCMI, 1988
Saudi ArabiaPresentCMI, 1988
Sri LankaPresentCMI, 1988
SyriaPresentCMI, 1988
TaiwanPresentCMI, 1988
ThailandPresentCMI, 1988
TurkeyPresentCMI, 1988
VietnamPresentCMI, 1988
YemenPresentCMI, 1988

Africa

AlgeriaPresentCMI, 1988
AngolaPresentCMI, 1988
Congo Democratic RepublicPresentCMI, 1988
EgyptPresentCMI, 1988
EthiopiaPresentCMI, 1988
GhanaPresentCMI, 1988
LibyaPresentCMI, 1988
MadagascarPresentCMI, 1988
MauritiusPresentCMI, 1988
MoroccoPresentCMI, 1988
MozambiquePresentCMI, 1988
NigeriaPresentCMI, 1988
Sierra LeonePresentCMI, 1988
SomaliaPresentCMI, 1988
South AfricaPresentCMI, 1988
TanzaniaPresentCMI, 1988
TunisiaPresentCMI, 1988
UgandaPresentCMI, 1988
ZambiaPresentCMI, 1988
ZimbabwePresentCMI, 1988

North America

CanadaPresentCMI, 1988
-British ColumbiaPresentCMI, 1988
-ManitobaPresentCMI, 1988
-Nova ScotiaPresentCMI, 1988
-OntarioPresentCMI, 1988
-QuebecPresentCMI, 1988
MexicoPresentCMI, 1988
USAPresentCMI, 1988
-MarylandPresentBaudoin et al., 2008
-MichiganPresentSchilder et al., 2002
-North CarolinaPresentBaudoin et al., 2008
-PennsylvaniaPresentBaudoin et al., 2008
-VirginiaPresentBaudoin et al., 2008

Central America and Caribbean

BarbadosPresentCMI, 1988
Costa RicaPresentCMI, 1988
CubaPresentCMI, 1988
Dominican RepublicPresentCMI, 1988
El SalvadorPresentCMI, 1988
GuatemalaPresentCMI, 1988
HaitiPresentCMI, 1988
JamaicaPresentCMI, 1988
PanamaPresentCMI, 1988
Puerto RicoPresentCMI, 1988

South America

ArgentinaPresentCMI, 1988
BoliviaPresentCMI, 1988
BrazilPresentCMI, 1988
-Minas GeraisPresentPereira et al., 2010
-Rio Grande do SulPresentChavarria et al., 2007
-Santa CatarinaPresentPeruch and Bruna, 2008
-Sao PauloPresentFerrari et al., 2003
ColombiaPresentCMI, 1988
EcuadorPresentCMI, 1988
UruguayPresentCMI, 1988
VenezuelaPresentCMI, 1988

Europe

AustriaPresentCMI, 1988
BulgariaPresentCMI, 1988
CroatiaPresentSanseovic, 2002
CyprusPresentCMI, 1988
Czech RepublicPresentHrubý, 2003
Czechoslovakia (former)PresentCMI, 1988
DenmarkPresentCMI, 1988
Former USSRPresentCMI, 1988
FrancePresentCMI, 1988
GermanyPresentCMI, 1988
GreecePresentCMI, 1988
HungaryPresentCMI, 1988
ItalyPresentCMI, 1988
-SardiniaPresentCMI, 1988
MacedoniaPresentTrajcevski, 2008
MaltaPresentCMI, 1988
MoldovaPresentVoinyak et al., 2009
MontenegroPresentLatinovic and Maras, 2005
NetherlandsPresentCMI, 1988
NorwayPresentCMI, 1988
PolandPresentCMI, 1988
PortugalPresentCMI, 1988
-MadeiraPresentCMI, 1988
RomaniaPresentCMI, 1988
Russian FederationPresentPresent based on regional distribution.
-Russian Far EastPresentCMI, 1988
SlovakiaPresentVanek, 2001
SloveniaPresentLuskar et al., 2005
SpainPresentCMI, 1988
SwitzerlandPresentCMI, 1988
UkrainePresentKilimnik and Samoilov, 2000
Yugoslavia (Serbia and Montenegro)PresentCMI, 1988

Oceania

AustraliaPresentCMI, 1988
-New South WalesPresentCMI, 1988
-QueenslandPresentCMI, 1988
-South AustraliaPresentCMI, 1988
-TasmaniaPresentCMI, 1988
-VictoriaPresentCMI, 1988
-Western AustraliaPresentMcKirdy et al., 1999
New CaledoniaPresentCMI, 1988
New ZealandPresentCMI, 1988
Papua New GuineaPresentCMI, 1988

Hosts/Species Affected

Top of page P. viticola is most important as a pathogen of Vitis vinifera, V. labrusca and V. vinifera hybrids. P. viticola also attacks a number of Vitis species and related genera in the family Vitaceae, but wild hosts are not significant to disease development on the cultivated varieties (Barrett, 1939; Renfro and Bhat, 1981).

Wild Vitis host species include V. aestivalis,V. arizonica, V. berlandieri [V. cinerea var. helleri], V. californica, V. coignetiae, V. cordifolia, V. girdiana, V. monticola, V. pagnucci [V. piasezkii var. pagnuccii], V. riparia, V. romaneti, V. rotundifolia, V. rupestris and V. treleasei (Lafon and Bulit, 1981; Hall, 1989). Additionally, under laboratory conditions, Staudt and Kassemeyer (1995) observed downy mildew on V. acerifolia, V. amurensis, V. candicans [V. mustangensis], V. champinii, V. cinerea, V. doaniana, V. lanata, V. palmata, V. piasezkii, V. rubra, V. shuttleworthii, V. solonis, V. tiliifolia and V. vulpina.

Other wild host genera in the Vitaceae include Ampelopsis, Cissus, Cordifolia, Cinerea, Parthenocissus and Solonis (Renfro and Bhat, 1981; Hall, 1989).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
AmpelopsisVitaceaeOther
CissusVitaceaeOther
Vitis arizonica (canyon grape (USA))VitaceaeOther
Vitis ficifoliaVitaceaeWild host
Vitis labrusca (fox grape)VitaceaeMain
Vitis rupestris (sand-grape)VitaceaeOther
Vitis vinifera (grapevine)VitaceaeMain

Growth Stages

Top of page Flowering stage, Fruiting stage, Seedling stage, Vegetative growing stage

Symptoms

Top of page P. viticola infects all green parts of the host plant that bear stomata. It generally causes yellow discoloration, necrosis and distortion.

On young leaves, lesions appear as yellow, translucent 'oilspots' with a chocolate-brown halo (see Pictures). On cultivar Ruby Cabernet, oilspots are reddish instead of yellow (Nicholas et al., 1994). Multiple oilspots can coalesce to cover much of the leaf surface. Oilspots become dry and necrotic as they age, first in the centre and later throughout the entire lesion. On older leaves, the lesions are restricted by veins to form small, angular, yellow to reddish-brown spots which combine to form a patchwork or mosaic-like pattern.

Sporulation only occurs on the lower leaf surface, where the stomata reside. The sporangiophores and sporangia appear as a white, downy, cottony growth. Under highly favourable conditions, sporulation may appear on the undersides of leaves before the yellow oilspot becomes visible on the upper leaf surface. On older oilspots, sporulation occurs primarily on the margins of the lesion.

Infected shoot tips and rachises of young inflorescences distort into a curl or corkscrew.

Infected inflorescences and young berries appear yellow or grey and may be covered with cottony spores under favourable conditions. Sporulation occurs on pedicels and berries. Clusters infected at an early stage can result in individual berries, sections of the cluster, or even entire clusters turning brown, drying and falling off the vine.

Berries infected later in the season (after 2-3 weeks post-bloom) become discoloured and shrivel but do not support sporulation. This stage is sometimes referred to as the 'brown rot' phase. Berry stems continue to sporulate after sporulation ceases on the berries.

List of Symptoms/Signs

Top of page
SignLife StagesType
Fruit / discoloration
Fruit / extensive mould
Fruit / mummification
Fruit / premature drop
Growing point / discoloration
Growing point / distortion
Growing point / mycelium present
Inflorescence / blight; necrosis
Inflorescence / discoloration (non-graminaceous plants)
Inflorescence / distortion (non-graminaceous plants)
Inflorescence / lesions; flecking; streaks (not Poaceae)
Leaves / abnormal colours
Leaves / abnormal forms
Leaves / abnormal leaf fall
Leaves / fungal growth
Leaves / necrotic areas
Stems / distortion
Stems / mould growth on lesion
Stems / mycelium present

Biology and Ecology

Top of page P. viticola is an obligately biotrophic plant pathogen with a sexual overwintering phase and asexual multiplication cycles during the growing season.

Primary Infection

The pathogen usually overwinters as oospores in fallen leaves infected in the previous season. P. viticola is heterothallic with two mating types (Wong et al., 2001). An antheridium fertilizes an oogonium to form the sexual oospore (Kortekamp et al., 1998). In mild climates such as in California the pathogen has been observed overwintering as mycelium in buds and canes of wild grape species (Barrett, 1939).

Oospores germinate in the spring when temperatures reach about 10°C and vineyard soils are wet. Oospores germinate and form a germ tube which terminates in a macrosporangium. Germination and formation of the macrosporangia can occur in as little as 24 hours of soil wetness (Gregory, 1915; Ronzon-Tran Manh Sung and Clerjeau, 1988). When wet, the macrosporangia release an average of 8-20 (Hall, 1989) and up to 60 (Ronzon-Tran Manh Sung and Clerjeau, 1988) zoospores. At 20°C zoospore release occurs after 30 or more minutes (Ronzon-Tran Manh Sung and Clerjeau, 1988). Zoospores are dispersed onto host tissue by rainsplash.

Penetration and colonization of the host

Zoospores require surface wetness to infect the host. Infection takes place only through the stomata (Gregory, 1914). Zoospores swim on the tissue surface, encyst near stomata in groups of 2 to 5, and each spore forms a single germ tube which penetrates the stomata. In the substomatal cavity the germ tube swells, forming a substomatal vesicle from which arises a single hypha. Hyphae grow intercellularly, filling the space between the host mesophyll cells and taking on an irregular shape. In as little as 3.5 hours the first haustorium forms where the pathogen contacts the host cells. Additional haustoria form as the pathogen ramifies through host tissue, parasitizing the mesophyll cells (Langcake and Lovell, 1980; Kortekamp et al., 1998). The pathogen can initiate sporulation upon reaching a non-parasitized substomatal cavity (Langcake and Lovell, 1980; Kortekamp et al., 1998). Vascular tissue restricts pathogen growth to interveinal areas in older leaves (Langcake and Lovell, 1980).

Incubation

The incubation time, the period between infection and the first appearance of symptoms, depends on temperature and ranges from 4 to 21 days, with an average of 7-10 days. The incubation period is shortest on young leaves and at temperatures of 19-24°C (Muller and Sleumer, 1934; Zachos, 1959; Rafaila et al., 1968).

Sporulation

The pathogen sporulates through stomata during warm, humid nights. To sporulate, P. viticola requires at least 95-98% RH, temperatures between 10 and 30°C (peak production occurs at 20°C) and at least 4 hours of darkness (Blaeser and Weltzien, 1978; Lalancette et al., 1988b; Hill, 1989). Light inhibits sporulation of P. viticola (Brooks, 1979; Magarey and Butler, 1998). The sporangia remain viable for 4-8 days at high relative humidity and temperatures below about 22°C, and 1-2 days in hotter, drier conditions (Zachos, 1959; Blaeser and Weltzien, 1978; Kast and Stark-Urnau, 1999).

Individual lesions resporulate a number of times under favourable conditions, and can retain the potential to sporulate for 2-3 months (Zachos, 1959; Hill, 1989).

Secondary Infection

Secondary cycles of infection occur repeatedly throughout the growing season if weather conditions are favourable. To infect the plant, P. viticola requires surface wetness and temperatures of between 5-6°C and 30°C (Blaeser and Weltzien, 1977; Lalancette et al., 1988a). At optimal temperatures (approximately 20°C) infection can occur in 2 hours of surface wetness, with more hours of wetness required at non-optimal temperatures (Blaeser and Weltzien, 1977; Lalancette et al., 1988a).

When wet, the sporangia detach from their sporangiophores and germinate, releasing zoospores which are spread by windblown rain to new host tissue (Blaeser and Weltzien, 1978). Zoospores are released 30 to 180 minutes after the sporangia become wet (Langcake and Lovell, 1980; Kast and Stark-Urnau, 1999). Zoospores aggregate near stomata in groups of up to 10, possibly due to chemotactic signals (Royle and Thomas, 1973).

The penetration and colonization process is the same as described for the primary infection.

Means of Movement and Dispersal

Top of page Natural dispersal (non-biotic):

Blaeser and Weltzien (1978) observed sporangial dispersion only in wind-blown rain, not in the air. Zachos (1959) noted that high mortality of sporangia in dry conditions would prevent air dispersal. However, there is some evidence of long-distance (500-600 km) spore dispersal in regional air currents (Szoke et al., 1998).

Vector transmission

None.

Seedborne spread

None.

Agricultural practices

Historically, agricultural practices have led to catastrophic dispersal of P. viticola. P. viticola is native to the north-eastern USA, and it is generally accepted that the pathogen spread to Europe on American grapes imported for use as rootstocks resistant to phylloxera (Daktulosphaira vitifolii [Viteus vitifoliae]) (Viennot-Bourgin, 1981). Downy mildew was first observed in France in September 1878 (Viala, 1893).

According to Viala (1893), the dangers of importing infected American
plants had already been asserted by Cornu several years earlier.

Strategies to prevent the spread of P. viticola on plant material include heat treatment of cuttings, maintaining disease-free tissue culture plantlets, and avoiding the spread of soil and leaf debris which may bear oospores (Emmett et al., 1992).

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Flowers/Inflorescences/Cones/Calyx hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
Fruits (inc. pods) hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
Growing medium accompanying plants spores Pest or symptoms usually invisible
Leaves hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
Seedlings/Micropropagated plants hyphae; spores Yes Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs/Tubers/Corms/Rhizomes
Roots
Stems (above ground)/Shoots/Trunks/Branches
True seeds (inc. grain)
Wood

Impact

Top of page P. viticola has caused significant impacts on grape production since the 1800s. During the early culture of European varieties in the USA, yield losses were commonly 75% (Viala, 1893). Catastrophic losses arose in Europe in the late 1800s when P. viticola was first introduced on American rootstocks. The disease caused severe losses in favourable seasons and growers abandoned the use of several highly susceptible varieties (Viala, 1893).

Potential yield losses remain high, ranging from 50 to 100% under favourable conditions. The pathogen directly attacks the young inflorescences and fruit. Indirect damage occurs when severe foliar infections cause early defoliation, exposing the fruit to sunburn and reducing winter hardiness (Emmett et al., 1992). The estimated annual crop loss in an average year in Australia is $22.5 million (Australian dollars) with an additional $10 million spent on control measures. In wet years, direct crop losses may be as high as $64 million (Magarey and Butler, 1998).

Diagnosis

Top of page Place leaves displaying oilspots and clusters displaying epinasty or oilspots in a lightly moistened plastic box or plastic bag and incubate overnight in the dark at 15-25°C. Fresh spores will be visible on infected tissue in the morning. Mature berries will not produce spores but their infected pedicels will sporulate.

P. viticola is an obligate biotroph and thus cannot be grown in culture.

Detection and Inspection

Top of page Oilspots are readily visible in the field and will be noticed on inspection of the leaves (Seem et al., 1985). Monitoring procedures have been described to detect primary infection at levels as low as 0.01% (Seem et al., 1985). The upper leaf surfaces should be inspected for oilspots by gently moving the shoots and leaves, spending about 30 seconds per vine for 200-300 vines. If a primary infection is observed, that spot should be monitored for the first secondary infections, which are usually within 1 m of the original primary oilspots (Nicholas et al., 1994). Vines should be inspected every 1-2 weeks, or as necessary based on weather conditions (Nicholas et al., 1994). Computer training programs have been developed for improved accuracy of disease assessments (Nutter et al., 1998).

Similarities to Other Species/Conditions

Top of page Uncinula necator, causal agent of grape powdery mildew, also infects grape leaves and fruit clusters. Symptoms of early powdery mildew can resemble those of early downy mildew. Both diseases cause light-yellow patches on the upper leaf surface. However, powdery mildew is characterized by a flat, powdery, whitish-grey appearance on upper or lower leaf surfaces and on the fruit (Pearson, 1988; Nicholas et al., 1994). In contrast, downy mildew colonies are fluffy, a brighter white, and only found on the lower leaf surface.

Botrytis cinerea, the cause of Botrytis bunch rot or grey mould, produces fluffy colonies on grape clusters. However, Botrytis sporulation is brownish-grey or olive, unlike the bright white appearance of P. viticola (Bulit and Dubos, 1988; Nicholas et al., 1994).

Herbicides such as paraquat can cause yellowing of leaf tissue but these spots produce no spores (Nicholas et al., 1994).

Erinose mites cause a white growth on the undersides of leaves which can resemble downy mildew infections. The growths are only in blister-like galls and are not accompanied by oilspots (Nicholas et al., 1994).

Prevention and Control

Top of page

Disease pressure varies significantly with weather conditions. Management must be rigorous in wet climates such as eastern North America and parts of Europe, and during unusually wet seasons in dry locations such as California or Australia.

Chemical Control

Chemical control has been an important control measure since the late 1800s, after the classic discovery of Bordeaux mix (copper sulfate plus lime) by Millardet in 1885 (Viala, 1893). Fungicides remain the most widely used management tool against P. viticola today (Lafon and Bulit, 1981; Lafon and Clerjeau, 1988; Emmett et al., 1992).

There are multiple pre- and post-infection chemicals available. Currently used pre-infection chemicals, or protectants, include: copper-based compounds (e.g. copper hydroxide, copper oxychloride and cuprous oxide); cyclimide (e.g. captan); dithiocarbamates (e.g. mancozeb); chlorothalonil; and dithianon.
Phenylamide compounds such as metalaxyl and benalaxyl have both pre- and post-infection activity (Nicholas et al., 1994) as do strobilurines such as azoxystrobin (Wong and Wilcox, 2001). Phosphonates provide post-infection activity (Nicholas et al., 1994).

First applications are generally advised at 3-8 inches of shoot-growth, immediate pre-bloom, and post-bloom to protect the young inflorescences and fruit. For the remainder of the season sprays may be based on a routine schedule (usually every 10-14 days) to maintain continuous protection of the vines. Alternatively, sprays may be based on disease risk as determined by weather conditions and forecasting models.

Resistance to phenylamide fungicides has been observed in Europe (Leroux and Clerjeau, 1985). The possibility of future resistance has triggered interest in monitoring and preventing this threat (Genet and Vincent, 1999; Wong and Wilcox, 2000). Gauthier and Amsden (2014) reported Qol-resistant downy mildew of grape in Kentucky.

Warning Systems

The complex interactions of P. viticola with the environment render grape downy mildew a candidate for disease forecasting and modelling. Spray timing models have been used in Europe since the early 1900s (Muller and Sleumer, 1934; Populer, 1981). In more recent years computer-based forecasting models and decision tools have been developed in Italy (Rosa et al., 1993), France (Fouassier et al., 1997), Austria (Denzer, 1998), Germany (Huber et al., 1998), Hungary and Slovakia (Szoke et al., 1998), the USA (Park et al., 1997; Madden et al., 2000) and Australia (Magarey et al., 1991; Wachtel and Magarey, 1997). Most downy mildew models incorporate temperature, rainfall, relative humidity and leaf wetness, and more complex simulators incorporate information on host growth stage and varietal susceptibility. Models can be integrated into pre- or post-infection treatment strategies.

Resistant Crop Cultivars

Most cultivars of V. vinifera are highly susceptible to downy mildew, as are many cultivars of V. labrusca and interspecific hybrids.

Breeding for resistance to downy mildew has been ongoing since the 1930s (Matthews, 1981). Wild American Vitis species and related genera have been identified as possible sources of resistance. Putative resistance mechanisms include surface features such as leaf hairs or warty structures (Matthews, 1981; Staudt and Kassemeyer, 1995; Kortekamp and Zyprian, 1999), single-gene hypersensitive response (Matthews, 1981) and defence chemicals including peroxidase, viniferin, resveratrol and flavonoids (Langcake, 1981; Dai et al., 1995; Kortekamp et al., 1998).

Attempts to genetically engineer grapevine began in the late 1980s with Agrobacterium-mediated transformation (Baribault et al., 1989) and more recently with biolistics, or the 'gene gun' (Kikkert et al., 1996). Research continues on the introduction of genes for resistance to downy mildew and other pathogens (Reisch et al., 1996).

Cultural Control

Cultural practices alone are unlikely to give sufficient control, especially under conditions favourable to downy mildew (Lafon and Clerjeau, 1988). However, cultural methods can influence disease development. High humidity and extended periods of leaf wetness enhance the development of downy mildew, thus techniques to promote air circulation and minimize surface wetness may reduce disease development (Palti and Rotem, 1981). Pruning and trellising methods which reduce canopy density decrease downy mildew levels (Wearing et al., 1999). Using furrow irrigation instead of overhead irrigation also reduces disease (Emmett et al., 1992). Primary infection may be prevented by ploughing to bury oospores in leaf litter, and avoidance of irrigating soil for long periods in order to prevent oospore germination (Palti and Rotem, 1981).

References

Top of page

Baribault TJ, Skene KGM, Scott NS, 1989. Genetic transformation of grapevine cells. Plant Cell Reports, 8:137-140.

Barrett JT, 1939. Overwintering mycelium of Plasmopara viticola (B & C) Berl. & DeT. in the California wild grape, Vitis californica Benth. Phytopathology, 29:822-823.

Baudoin A, Olaya G, Delmotte F, Colcol JF, Sierotzki H, 2008. QoI resistance of Plasmopara viticola and Erysiphe necator in the mid-Atlantic United States. Plant Health Progress, February:0211-02. http://www.plantmanagementnetwork.org/sub/php/research/2008/QoI/

Berkeley JM, Curtis MA, 1848. In: Rav. Fungi Carol. Exsic. Fasc. v. n. 90.

Berlese AN, de Toni JB, 1888. In: Saccardo, Sylloge fungorum Vol. VII, 239.

Blaeser M, Weltzein H, 1977. Investigation of the infection of grapevine with Plasmopara viticola in relation to leaf wetness. Meded. Fac. Landbouww. Rijksuniv. Gent, 42:967-976.

Blaeser M, Weltzein H, 1978. The significance of sporulation, dispersal, and germination of sporangia of Plasmopara viticola. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 85:155-161.

Brook PJ, 1979. Effect of light on sporulation of Plasmopara viticola. New Zealand Journal of Botany, 17(2):135-138

Bulit J, Dubos B, 1988. Botrytis bunch rot and blight. In: Pearson RC, Goheen AC, eds. Compendium of Grape Diseases. St. Paul, USA: APS Press, 13-15.

Chavarria G, Santos HPdos, Sônego OR, Marodin GAB, Bergamaschi H, Cardoso LS, 2007. Incidence of diseases and needs of control in overhead covered grapes. (Incidência de doenças e necessidade de controle em cultivo protegido de videira.) Revista Brasileira de Fruticultura, 29(3):477-482. http://www.scielo.br/scielo.php?script=sci_issues&pid=0100-2945&lng=pt&nrm=iso

Chen WeiMin, Jiao ZiWei, Song HongMei, He Qiong, Li ZhenGui, Xu Yi, Chen RenNing, Sun QingHua, Tuersun, 2007. Occurrence of Red Global grape diseases and weeds, and their integrated management in Ili Valley, Xinjiang. Xinjiang Agricultural Sciences, 44(1):91-95. http://www.xjnykx.periodicals.com.cn

Choi, Y. J., Cho, S. E., Shin, H. D., 2017. First report of downy mildew caused by Plasmopara viticola on Vitis ficifolia var. sinuata in Korea., 101(11), 1958. http://apsjournals.apsnet.org/loi/pdis doi: 10.1094/PDIS-04-17-0571-PDN

CMI, 1988. Distribution Maps of Plant Disease, No. 221, edition 4. Wallingford, UK: CAB International.

Dai GH, Andary C, Mondolot-Cosson L, Boubals D, 1995. Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris and V. rotundifolia and the downy mildew fungus, Plasmopara viticola. Physiological and Molecular Plant Pathology, 46(3):177-188

de Bary A, 1863. Developpement de quelques champignons parasites. Ann. Sc. Nat, Series 4.

Denzer HW, 1998. "Itimet" a new grape vine disease risk analyzing program. In: Magarey PA, Thiele SA, Tschirpig KL, Emmett RW, Clake K, Magarey RD, eds. Proceedings of the Third International Workshop on Grapevine Downy and Powdery Mildew. Loxton, South Australia: SARDI Research Report Series, 12.

Emmett RW, Wicks TJ, Magarey PA, 1992. Downy mildew of grapes. Plant diseases of international importance. Volume III. Diseases of fruit crops [edited by Kumar, J.; Chaube, H.S.; Singh, U.S.; Mukhopadhyay, A.N.] Englewood Cliffs, USA; Prentice Hall, 90-128

Ferrari JT, Nogueira EMde C, Santos AJT, Louzeiro IM, 2003. Evaluation of fungicides in the control of grapevine downy mildew on grape. (Avaliação de fungicidas no controle do míldio em videira.) Arquivos do Instituto Biológico (São Paulo), 70(Suplemento 3):045. http://www.biologico.sp.gov.br/ARQUIVOS/V70_suplemento23/raib.pdf

Fouassier S, Magnien C, Jacquin D, 1997. MILVIT: A model for the asexual phase of grapevine downy mildew-Results of 4 years of validation. Viticulture and Enological Sciences, 52:169-171.

Gauthier NAW, Amsden B, 2014. First report of QoI-resistant downy mildew (Plasmopara viticola) of grape (Vitis vinifera cv. Vidal Blanc) in Kentucky. Plant Disease, 98(2):276-277. http://apsjournals.apsnet.org/loi/pdis

Genet JL, Vincent O, 1999. Sensitivity of European Plasmopara viticola populations to cymoxanil. Pesticide Science, 55(2):129-136; 16 ref.

Golovina NP, 1955. Comparatio speciminum Plasmopara viticola Berl. et de Toni e regionibus variis. Bot. Mat. J. Acad. Nauk SSSR, 10:138-144.

Gregory CT, 1914. Studies on Plasmopara viticola. Phytopathology, 4:399.

Gregory CT, 1915. Studies on Plasmopara viticola (downey mildew of grapes). Proceedings of the International Congress of Viticulture, San Francisco, USA: 126-150.

Grunzel H, 1960. Studies on the biological differentiation of downy mildew of vines (Peronospora viticola de Bary). Phytopathologische Zeitschrift, 39:149-194.

Hall G, 1989. Plasmopara viticola. CMI Descriptions of Pathogenic Fungi and Bacteria, No. 980. Wallingford, UK: CAB International.

Hill GK, 1989. Effect of temperature on sporulation efficiency of oilspots caused by Plasmopara viticola (Berk. & Curt. ex de Bary) Berl. & de Toni in vineyards. Viticulture and Enological Sciences, 44:86-90.

Hrubý R, 2003. Early warning system for grapevine in South Moravia (Czech Republic). Bulletin OEPP [Papers presented at the EPPO Conference on Computer aids for plant protection, York, UK, 15-17 October, 2002.], 33(3):433-436.

Huber B, Bleyer G, Kassemeyer HH, 1998. Verification of the Freiburg model against Plasmopara viticola by field trials from 1993-1997. In: Magarey PA, Thiele SA, Tschirpig KL, Emmett RW, Clake K, Magarey RD, eds. Proceedings of the Third International Workshop on Grapevine Downy and Powdery Mildew. Loxton, South Australia: SARDI Research Report Series, 18-19.

Kast WK, Stark-Urnau M, 1999. Survival of sporangia from Plasmopara viticola, the downy mildew of grapevine. Vitis, 38(4):185-186; 6 ref.

Khilare VC, Deokate AS, Gangawane LV, 2003. Occurrence of aluminium phosethyl (Allitte) resistance in Plasmopara viticola causing downy mildew of grapevine in Maharashtra. Journal of Phytological Research, 16(2):239-241.

Kikkert JR, Hebert-Soule D, Wallace PG, Striem MJ, Reisch BI, 1996. Transgenic plantlets of 'Chancellor' grapevine (Vitis sp.) from biolistic transformation of embryogenic cell suspensions. Plant Cell Reports, 15:311-316.

Kilimnik AN, Samoilov YuK, 2000. Approaches to control downy mildew. Zashchita i Karantin Rastenii, No.7:29.

Kortekamp A, Wind R, Zyprian E, 1998. Investigation of the interaction of Plasmopara viticola with susceptible and resistant grapevine cultivars. Zeitschrift fu^umlaut~r Pflanzenkrankheiten und Pflanzenschutz, 105(5):475-488; 46 ref.

Kortekamp A, Zyprian E, 1999. Leaf hairs as a basic protective barrier against downy mildew of grape. Journal of Phytopathology, 147(7/8):453-459; 22 ref.

Lafon R, Bulit J, 1981. Downy mildew of the vine. In: Spencer D, ed. The Downy Mildews. New York, USA: Academic Press, 601-614.

Lafon R, Clerjeau M, 1988. Downy mildew. In: Pearson RC, Goheen AC, eds. Compendium of Grape Diseases. St. Paul, USA: APS Press, 11-13.

Lalancette N, Ellis MA, Madden LV, 1988. Development of an infection efficiency model for Plasmopara viticola on American grape based on temperature and duration of leaf wetness. Phytopathology, 78(6):794-800

Lalancette N, Madden LV, Ellis MA, 1988. A quantitative model for describing the sporulation of Plasmopara viticola on grape leaves. Phytopathology, 78(10):1316-1321

Langcake P, 1981. Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, epsilon -viniferin, alpha -viniferin and pterostilbene. Physiological Plant Pathology, 18(2):213-226

Langcake P, Lovell PA, 1980. Light and electron microscopical studies of the infection of Vitis spp. by Plasmopara viticola, the downy mildew pathogen. Vitis, 19(4):321-337

Latinovic N, Maras V, 2005. Susceptibility of Kratosija variety's biotypes to causal agent of grapevine dead arm disease (Phomopsis viticola Sacc.). Agroznanje - Agroknowledge Journal, 6(2):25-29. http://www.agric.bl.ac.yu

Leroux P, Clerjeau M, 1985. Resistance of Botrytis cinerea Pers. and Plasmopara viticola (Berl. and de Toni) to fungicides in French vineyards. Crop Protection, 4(2):137-160

Luskar S, Ko?ir IJ, Kac M, 2005. Deposit of copper ions on vine leaves and its effect on biological efficacy of different plant protection products against downy mildew: 2. Deposit of copper ions on vine leaves. (Depozit bakrovih ionov na listih vinske trte in njegov vpliv na biolo?ko ucinkovitost uporabljenih fitofarmacevtskih sredstev za zatiranje peronospore vinske trte: 2. Depozit bakrovih ionov na listih vinske trte.) Hmeljarski Bilten, 12:31-41.

Madden LV, Ellis MA, Lalancette N, Hughes G, Wilson LL, 2000. Evaluation of a disease warning system for downy mildew of grapes. Plant Disease, 84(5):549-554; 31 ref.

Magarey PA, Butler AM, 1998. Can downy mildew be controlled by interrupting the dark requirement for sporulation. In: Magarey PA, Thiele SA, Tschirpig KL, Emmett RW, Clake K, Magarey RD, eds. Proceedings of the Third International Workshop on Grapevine Downy and Powdery mildew. Loxton, South Australia: SARDI Research Report Series, 17.

Magarey PA, Wachtel MF, Weir PC, Seem RC, 1991. A computer-based simulator for rational management of grapevine downy mildew (Plasmopara viticola). Plant Protection Quarterly, 6(1):29-33

Matthews P, 1981. Breeding for resistance to downy mildews. In: Spencer D, ed. The Downy Mildews. New York, USA: Academic Press, 255-287.

McKirdy SJ, Riley IT, Cameron IJ, Magarey PA, 1999. First report of grapevine downy mildew (Plasmopara viticola) in commercial viticulture in Western Australia. Plant Disease, 83(3):301; 1 ref.

Muller K, Sleumer S, 1934. Biologische Untersuchungen uber die Peronosporakrankheit des Weinstockes, mit besonderer Berucksichtigung ihrer Bekampfung nach der Inkubationskalendermethode (Investigation of the biology and control of Peronospora disease of grapevines, with special consideration of the incubation calendar method). Landwirtschaftliche Jahrbucher, 79:509-576.

Nicholas P, Magarey P, Wachtel M (Editors), 1994. Diseases and Pests. Cowandilla, Australia: Winetitles.

Nutter FW, Litwiller D, Emmett RW, Magarey PA, 1998. A computer training to improve disease severity assessments in grapevines. In: Magarey PA, Thiele SA, Tschirpig KL, Emmett RW, Clake K, Magarey RD, eds. Proceedings of the Third International Workshop on Grapevine Downy and Powdery mildew. Loxton, South Australia:17.

Palti J, Rotem J, 1981. Control of downy mildews by cultural practices. In: Spencer DM, ed. The Downy Mildews, London, UK: Academic Press, 289-304.

Park EW, Seem RC, Gadoury DM, Pearson RC, 1997. DMCast: a prediction model for grape downy mildew development. Viticulture and Enological Sciences, 52:182-189.

Pearson RC, 1988. Powdery Mildew. In: Pearson RC, Goheen AC, eds. Compendium of Grape Diseases. St. Paul, MN: APS Press, 9-11.

Pereira VF, Resende MLVde, Monteiro ACA, Ribeiro Júnior PM, Regina Mde A, Medeiros FCL, 2010. Alternative products for the protection of vine against downy mildew. (Produtos alternativos na proteção da videira contra o míldio.) Pesquisa Agropecuária Brasileira, 45(1):25-31. http://www.scielo.br/pab

Peruch LAM, Bruna ED, 2008. Relation between doses of Bordeaux mixture and phosphites potassium on the intensity of Downy Mildew on grape cv. 'Goethe'. (Relação entre doses de calda bordalesa e de fosfito potássico na intensidade do míldio e na produtividade da videira cv. "Goethe".) Ciência Rural, 38(9):2413-2418. http://www.ufsm.br/ccr/revista

Populer C, 1981. Epidemiology of downy mildews. In: Spencer D, ed. The Downy Mildews. London, UK: Academic Press, 57-105.

Prabhu HV, 2007. Biological efficacy of new combination products against downy mildew of grapes. Annals of Biology, 23(1):53-56.

Prakash VR, Eswaran A, Sanjeevkumar K, Usharani S, 2007. Effectiveness of novel combination fungicide against downy mildew incidence, fruit quality, shelf life and post harvest pathogens of grapevine in India. Plant Archives, 7(2):775-780.

Procenko A, 1946. Novii vozbuditel mildiu na Amurskom vinograde. Vinod. Vinograd. SSSR, 7-8:30-32.

Rafaila C, Sevcenco V, David Z, 1968. Contributions to the biology of Plasmopara viticola. Phytopathologische Zeitschrift, 63:328-336.

Reisch BI, Striem MJ, Howell-Martens M, 1996. Genetic engineering of elite grape cultivars: A progress report. American Journal of Enology and Viticulture, 47:229-230.

Renfro BL, Bhat SS, 1981. Role of wild hosts in downy mildew diseases. In: Spencer DM, ed. The Downy Mildews. London, UK: Academic Press, 107-119.

Ronzon-Tran Manh Sung C, Clerjeau M, 1988. Techniques for formation, maturation, and germination of Plasmopara viticola oospores under controlled conditions. Plant Disease, 72:938-941.

Rosa M, Gozzini B, Orlandini S, Seghi L, 1995. A computer program to improve the control of grapevine downy mildew. Computers and Electronics in Agriculture, 12(4):311-322

Royle DJ, Thomas GG, 1973. Factors affecting zoospore responses towards stomata in hop downy mildew (Pseudoperonospora humuli) including some comparisons with grapevine downy mildew (Plasmopara viticola). Physiological Plant Pathology, 3:405-417.

Sanseovic T, 2002. Fungicide products for control diseases in grapevine. (Pripravci za za?titu vinove loze od bolesti.) Glasnik Za?tite Bilja, 25(4):29-30...81.

Savulescu T, Savulescu O, 1952. Studiul morfologic, biologic, si sistematic al genurilor Sclerospora, Basidiophora, Plasmopara si Perenoplasmopara. Bul. Sti. Acad. Rep. Pop. Rom., 3: 3, 327-457.

Sawant SD, Ghule MR, Sawant IS, 2016. First report of QoI resistance in Plasmopara viticola from vineyards of Maharashtra, India. Plant Disease, 100(1):229. http://apsjournals.apsnet.org/loi/pdis

Schilder AMC, Gillett JM, Sysak RW, Wise JC, 2002. Evaluation of environmentally friendly products for control of fungal diseases of grapes. In: 10th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing and Viticulture. Proceedings of a conference, Weinsberg, Germany, 4-7 February 2002 [ed. by Fördergemeinschaft Ökologischer Obstbau e. V.]. Weinsberg, Germany: Fördergemeinschaft Ökologischer Obstbau e.V. (FÖKO), 163-167.

Schroeter J, 1886. Kryptogamen Flora von Schlesien. Pilze.

Schweinitz LD, 1837. In: Synopsis Fungorum Am. Boreal. 2663, no. 25.

Seem RC, Magarey PA, McCloud PI, Wachtel MF, 1985. A sampling procedure to detect grapevine downy mildew. Phytopathology, 75(11):1252-1257

Sha YueXia, Wang GuoZhen, Fan ZhongQing, Zhang Yi, Zhang XinNing, 2007. Study on the resistance of different grape cultivars to downy mildew. Journal of Fruit Science, 24(6):803-809.

Shahzad Ahmad, Khan NA, Kirmani SA, 2006. Occurrence of downy mildew (Plasmapara viticola) on grapes - a new report from Jammu and Kashmir. Applied Biological Research, 8(1/2):61-62.

Smith IM, Dunez J, Lelliott RA, Phillips DH, Archer SA(Editors), 1988. European handbook of plant diseases. Oxford, UK: Blackwell Scientific Publications.

Staudt G, Kassemeyer HH, 1995. Evaluation of downy mildew resistance in various accessions of wild Vitis species. Vitis, 34(4):225-228; 8 ref.

Szoke L, Vanek G, Szabo L, Baglyas F, 1998. Experience on the GALATI-VITIS grape plant protection forecasting computer program and its role in the integrated viticulture management. In: Magarey PA, Thiele SA, Tschirpig KL, Emmett RW, Clake K, Magarey RD, eds. Proceedings of the Third International Workshop on Grapevine Downy and Powdery Mildew. Loxton, South Australia: SARDI Research Report Series.

Trajcevski T, 2008. Results of the efficiency research of Sphinx Extra WDG fungicide for the protection of wine grape from Plasmopare viticole - causative agent of Plasmopara viticola. (Rezultati ispitivanja djelotvornosti fungicida Sphinx Extra WDG za za?titu vinove loze od napada Plasmopare viticole - uzrocnika plamenjace.) Glasnik Za?tite Bilja, 31(6):72-77. http://www.zastitabilja.com.hr

Vanek G, 2001. Current issues in vineyard protection in 2001. (Aktuálne my?lienky k ochrane vinica v roku 2001.) Vinohrad (Bratislava), 39(1/2):6-9.

Viala P, 1893. Les Maladies de la Vigne. Montpellier, France.

Viennot-Bourgin G, 1981. History and importance of downy mildews. In: Spencer DM, ed. The Downy Mildews. London, UK: Academic Press, 1-15.

Voinyak VI, Bradovskii VA, Iordosopol EI, Nikolaeva AN, Nikolaeva SI, 2009. Integrated protection of grape vine. Zashchita i Karantin Rastenii, No.6:26-27. http://www.z-i-k-r.ru

Wachtel MF, Magarey PA, 1997. The field use of a simulator for Plasmopara viticola to improve disease management for Australian grapegrowers. Viticulture and Enological Sciences, 52:193-194.

Wearing LP, McFadden-Smith W, Fisher KH, Hall R, 1999. Grapevine canopy density affects the development of fungal diseases. Phytopathology, 89:S83.

Weltzein HC, 1981. Geographical distribution of downy mildews. In: Spencer DM, ed. The Downy Mildews. London, UK: Academic Press, 31-43.

Wong FP, Burr HN, Wilcox WF, 2001. Heterothallism in Plasmopara viticola. Plant Pathology, 50(4):427-432; 17 ref.

Wong FP, Wilcox WF, 2000. Distribution of baseline sensitivities to azoxystrobin among isolates of Plasmopara viticola. Plant Disease, 84(3):275-281; 36 ref.

Wong FP, Wilcox WF, 2001. Comparative physical modes of action of azoxystrobin, mancozeb, and metalaxyl against Plasmopara viticola (grapevine downy mildew). Plant Disease, 85(6):649-656; 27 ref.

Zachos DG, 1959. Recherches sur la biologie et l'epidemiology du mildiou de la vigne en Grece. Annales de l'Institut Phytopathologique Benaki.

Zhang ZiWei, Lin Jing, Zhang Ning, 2004. Experiment using Baifushuangke for control of grape downy mildew and white rot diseases. China Fruits, No.1:26-27.

Distribution Maps

Top of page
You can pan and zoom the map
Save map