Platypus quercivorus (oak ambrosia beetle)
Index
- Pictures
- Identity
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- Risk of Introduction
- Habitat
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Growth Stages
- Symptoms
- List of Symptoms/Signs
- Biology and Ecology
- Notes on Natural Enemies
- Plant Trade
- Wood Packaging
- Impact
- Environmental Impact
- Detection and Inspection
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportIdentity
Top of pagePreferred Scientific Name
- Platypus quercivorus (Murayama, 1925)
Preferred Common Name
- oak ambrosia beetle
Other Scientific Names
- Crossotarsus quercivorus Murayama, 1925
- Crossotarsus sexfenestratus Beeson, 1937
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Metazoa
- Phylum: Arthropoda
- Subphylum: Uniramia
- Class: Insecta
- Order: Coleoptera
- Family: Platypodidae
- Genus: Platypus
- Species: Platypus quercivorus
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageThe eggs are elongated and cylindrical.
Larvae
The larvae are variable in size and range from 2-6 mm long when mature. They are legless and creamy-white, with an amber to light-brown head capsule. The last abdominal segment ends in a flat to slightly concave declivity.
Pupae
The pupae are creamy-white and have partially developed wings and appendages.
Adults
The adults of the genus Platypus are reddish-brown to dark-brown with a cylindrical, elongated body that averages 5 mm long. These insects have a concave elytral declivity armed with spines. The front (prothoracic) legs are adapted for excavation.
Distribution
Top of pageDistribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 17 May 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Asia |
|||||||
India | Present | Native | |||||
-West Bengal | Present | ||||||
Indonesia | Present | Native | |||||
-Java | Present | ||||||
Japan | Present | ||||||
-Hokkaido | Present, Widespread | Native | Invasive | ||||
-Honshu | Present, Widespread | Native | Invasive | ||||
-Kyushu | Present, Widespread | Native | Invasive | ||||
-Ryukyu Islands | Present, Widespread | Native | Invasive | ||||
-Shikoku | Present | ||||||
Laos | Present | Based on verified specimens. | |||||
Taiwan | Present | Based on verified specimens. | |||||
Thailand | Present | Based on verified specimens. | |||||
Vietnam | Present | ||||||
Oceania |
|||||||
Papua New Guinea | Present |
Risk of Introduction
Top of pageHabitat
Top of pageHosts/Species Affected
Top of pageHost Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Castanea crenata (Japanese chestnut) | Fagaceae | Unknown | |
Castanopsis cuspidata (chinkapin) | Fagaceae | Main | |
Cryptomeria japonica (Japanese cedar) | Taxodiaceae | Main | |
Ilex chinensis | Aquifoliaceae | Main | |
Lindera erythrocarpa | Lauraceae | Main | |
Lithocarpus edulis | Fagaceae | Main | |
Lithocarpus glaber | Fagaceae | Main | |
Prunus (stone fruit) | Rosaceae | Main | |
Quercus acuta (japanese evergreen oak) | Fagaceae | Main | |
Quercus acutissima (sawtooth oak) | Fagaceae | Main | |
Quercus gilva | Fagaceae | Main | |
Quercus glauca (ring-cup oak) | Fagaceae | Main | |
Quercus laurifolia (Laurel oak) | Fagaceae | Unknown | |
Quercus mongolica (Mongolian oak) | Fagaceae | Main | |
Quercus phillyraeoides (ubame oak) | Fagaceae | Main | |
Quercus robur (common oak) | Fagaceae | Unknown | |
Quercus salicina | Fagaceae | Main | |
Quercus serrata (glandbearing oak) | Fagaceae | Main | |
Quercus sessilifolia | Fagaceae | Main |
Symptoms
Top of pageList of Symptoms/Signs
Top of pageSign | Life Stages | Type |
---|---|---|
Leaves / wilting | ||
Leaves / yellowed or dead | ||
Stems / internal discoloration | ||
Stems / visible frass | ||
Whole plant / frass visible | ||
Whole plant / plant dead; dieback |
Biology and Ecology
Top of pageMembers of the genus Platypus are ambrosia beetles and breed in the wood of host trees. White splinters are produced during gallery construction as opposed to fine sawdust, which is produced by other ambrosia beetles. Also, unlike other ambrosia beetles, the galleries of Platypus spp. often penetrate into the heartwood. The larvae and adults feed on ambrosia fungi, which are stored and disseminated by the adult female. The fungal associates of several species of Platypus are members of the genus Raffaelea. In western North America, the ambrosia fungus associated with Platypus wilsoni is Raffaelea canadensis (Furniss and Carolin, 1977). In Argentina, Raffaelea santoroi is associated with Platypus mutatus (Giménez and Etiennot, 2003). In Europe, Raffaelea ambrosiae is associated with the oak ambrosia beetle, Platypus cylindrus (Babuder and Pohleven, 1995).
Adult ambrosia beetles vector their associated ambrosia fungi via structures known as mycangia, which store fungal spores. In the family Platypodidae, if mycangia are present, they are simple; usually small pits or notches in the integument. These structures are often present only on the females although the males typically initiate the attacks. For example, in the case of Platypus hintzi the mycangia consist of a pair of small hollows on the pronotum. In contrast, P. wilsoni has numerous small punctures on the pronotum (Cook, 1977). Ito et al. (2004) suggested that P. quercivorus has mycangia similar to P. hintzi.
Male P. quercivorus initiate the attacks on the boles of host trees and excavate galleries for mating from June to October (Soné et al., 2000). Apparently the first entry holes bored by male beetles trigger a mass attack (Kobayashi and Ueda, 2003). The attacks generally occur near ground level (Hijii et al., 1991). A single female joins the male and constructs the oviposition gallery after mating. This is kept clean by the male who expels the residues to the outside of the tree. During gallery construction, the females inoculate the gallery surface with spores of the ambrosia fungus, which the larvae feed on. The adult females begin to deposit eggs at the terminal parts of the tunnels, 2 to 3 weeks after gallery construction begins. The eggs are deposited in individual niches. An average of 50 to 60 larvae develop in a single gallery system but the number of larvae can be as high as 161. The larvae feed on the ambrosia fungus that develops on the walls of the galleries. Pupation occurs in the larval galleries. The majority of new adults leave their maternal galleries in September and October but some adults remain in the galleries until the spring and then die. In other cases the larvae reach the fifth-instar by late November and overwinter in pupal chambers. Pupation begins in the following May and the adults emerge in June and July. They emerge through entry holes made by the parents (Soné et al., 1998).
In Japan, Quercus mongolica and Quercus serrata that are mass-attacked by P. quercivorus, are usually killed later in the summer. Two fungi have been recovered from trees attacked by this insect and described as new species. Ophiostoma longicollum was described from Q. mongolica infested by P. quercivorus in 1998 (Masuya et al., 1998). The fungus, Raffaelea quercivora was isolated from discoloured sapwood, necrotic inner bark, the body surfaces of beetles, female beetle's mycangia and beetle galleries of symptomatic trees in 2002. Inoculation tests indicated that R. quercivora is the causal agent of Japanese oak disease and P. quercivorus is its vector. This is the first known occurrence of mass-mortality of trees in the family Fagaceae, caused by a species of Platypus and an associated ambrosia fungus of the genus Raffaelea (Ito et al., unda).
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Stems (above ground)/Shoots/Trunks/Branches | arthropods/adults; arthropods/eggs; arthropods/larvae; arthropods/nymphs; arthropods/pupae | Yes | Pest or symptoms usually visible to the naked eye |
Plant parts not known to carry the pest in trade/transport |
---|
Bark |
Bulbs/Tubers/Corms/Rhizomes |
Flowers/Inflorescences/Cones/Calyx |
Fruits (inc. pods) |
Growing medium accompanying plants |
Leaves |
Roots |
Seedlings/Micropropagated plants |
True seeds (inc. grain) |
Wood |
Wood Packaging
Top of pageWood Packaging liable to carry the pest in trade/transport | Timber type | Used as packing |
---|---|---|
Solid wood packing material with bark | Oak: pallets, crating dunnage | Yes |
Solid wood packing material without bark | Oak: pallets, crating dunnage | Yes |
Wood Packaging not known to carry the pest in trade/transport |
---|
Loose wood packing material |
Non-wood |
Processed or treated wood |
Impact
Top of pageSince the early 1980s, extensive mortality of oak forests has been reported from western Japan (Kaneko, 1995). This condition, referred to as Japanese oak disease, is now attributed to the fungus Raffaelea quercivora, an anamorphic Ascomycete, which is a fungal associate of P. quercivorus (Ito et al., unda). The mortality of oak trees, at a rate of more than 200,000 per year, has been observed in the western coastal areas of Honshu, Japan (EPPO, 2003). The deciduous species of oaks, Quercus serrata and Quercus mongolica are susceptible to the disease. Other trees of the family Fagaceae that are present in the area, e.g. Quercus acutissima, Quercus acuta, Quercus phillyraeoides and Castanopsis sieboldii, are apparently not affected by the fungus (Ito et al., unda). To date, the most severe tree mortality has occurred on the west coast of Honshu (Hamaguchi and Goto, 2003).
It has been postulated that oaks, which are resistant or tolerant to Raffaelea quercivora, co-evolved under a stable relationship between the tree, fungus and beetle during a long evolutionary process. Q. mongolica may not have been part of this co-evolution. This hypothesis is supported by the fact that P. quercivorus has the least preference for Q. mongolica but exhibits the highest reproductive success in this species. Therefore, P. quercivorus could spread more rapidly in stands with a high composition of Q. mongolica. The present oak dieback epidemic in Japan may have resulted from the warmer climate that began in the late 1980s. This facilitated the encounter of P. quercivorus and Q. mongolica, by allowing the beetle to extend its range to more northerly latitudes and higher altitudes (Kamata et al., 2002).
Environmental Impact
Top of pageDetection and Inspection
Top of pageSimilarities to Other Species/Conditions
Top of pagePrevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
The management of Platypus spp. beetles includes the application of contact insecticide sprays to the bark of high value trees to prevent attack. Systemic insecticides can be applied to the soil or bark of infested trees. Attacks in harvested logs can be prevented by the timely removal of them from forested areas and rapid processing or debarking at the sawmill (Cibrián Tovar et al., 1995).Pest management methods that are designed to reduce the rate of oak mortality caused by the combination of P. quercivorus and Raffaelea quercivora are being developed in Japan. Recent studies indicated that both P. quercivorus and its associated fungus can be controlled by the injection of NCS [metam-ammonium] (N-methyldithiocarbamate) into holes bored in the stems of host trees (Weng PuJin et al., 2000).
References
Top of pageBeaver RA; Hsien-Tzung Shih, 2003. Checklist of Platypodidae (Coleoptera: Curculionoidea) from Taiwan. Plant Protection Bulletin 45:75-90.
Bright DE; Skidmore RE, 2002. A catalogue of Scolytidae and Platypodidae (Coleoptera), Supplement 2 (1995-1999). Ottawa, Canada: NRC Research Press, 523 pp.
Cibrián Tovar D; Méndez Montiel JT; Campos Bolaños R; Yates III HO; Flores Lara JE, 1995. Forest Insects of Mexico. Chapingo, México: Universidad Autonoma Chapingo. Subsecretaria Forestal y de Fauna Silvestre de la Secretaria de Agricultura y Recursos Hidraulicos, México. United States Department of Agriculture, Forest Service, USA. Natural Resources Canada, Canada. North American Forestry Commission, FAO, Publication 6.
Cook R, 1977. The biology of symbiotic fungi. London, UK: John Wiley and Sons.
Drooz AT, 1985. Insects of eastern forests. USDA Forest Service, Miscellaneous Publication 1339.
EPPO, 2003. Raffaelea quercivora (a lethal disease of oak in Japan). www.eppo.org/QUARANTINE/Alert_List/ Fungi/raffaelea.html.
EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm
Furniss RL; Carolin VM, 1977. Western Forest Insects. Washington DC, USA: US Department of Agriculture Forest Service, Miscellaneous Publication No. 1339.
Giménez RA; Etiennot RE, 2003. Host range of Platypus mutatus (Chapois, 1865) (Coleoptera: Platypodidae). Entomotropica, 18(2):89-94.
Hamaguchi K; Goto H, 2003. Molecular phylogenic relationships among populations of the ambrosia beetle, Platypus quercivorus, the vector insect of Japanese oak disease. Display Presentation D0321, Entomological Society of America, National Meeting, Cincinnati, Ohio, 28 October 2003.
Ito S; Murata M; Kubono T; Yamada T, unda. Pathogenicity of Raffaelea quercivora associated with mass mortality of facaceous trees in Japan. Poster presentation, MIE University, Kamihamcho, Japan. On line: http://www.forestresearch.co.nz/PDF/11.20Itoetal.pdf.
Kaneko S, 1995. Mass death of oaks in Japan. Paper presented at the IUFRO XX World Congress, 6-12 August 1995, Tampere, Finland.
Kobayashi M; Ueda A, 2003. Observation of mass attack and artificial reproduction in Platypus quercivorus (Murayama) (Coleoptera: Platypodidae). Japanese Journal of Applied Entomology and Zoology, 47(2):53-60.
Wood SL, Bright Jr. DE, 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic Index. Provo, Utah, USA: Bringham Young University, Great Basin Naturalist Memoir No. 13.
Distribution References
Hamaguchi K, Goto H, 2003. Molecular phylogenic relationships among populations of the ambrosia beetle, Platypus quercivorus, the vector insect of Japanese oak disease. In: Display Presentation D0321, Entomological Society of America, National Meeting, Cincinnati, Ohio, 28 October 2003,
Wood SL, Bright DE, 1992. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. In: Great Basin Naturalist Memoirs, 13 1-1553.
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/