Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Plantago major
(broad-leaved plantain)

Toolbox

Datasheet

Plantago major (broad-leaved plantain)

Summary

  • Last modified
  • 22 November 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Plantago major
  • Preferred Common Name
  • broad-leaved plantain
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • P. major is native to Europe and Asia but is now widely distributed around the world, particularly in temperate, but also tropical parts. It is easily distributed and maintained by anthropogenic activities, particularly soil disturbance and compactio...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Plantago major, growing in hard-surfaced road. Wallingford, Oxfordshire, UK.  21st October 2010.
TitleHabit
CaptionPlantago major, growing in hard-surfaced road. Wallingford, Oxfordshire, UK. 21st October 2010.
Copyright©A.R. Pittaway
Plantago major, growing in hard-surfaced road. Wallingford, Oxfordshire, UK.  21st October 2010.
HabitPlantago major, growing in hard-surfaced road. Wallingford, Oxfordshire, UK. 21st October 2010.©A.R. Pittaway

Identity

Top of page

Preferred Scientific Name

  • Plantago major L.

Preferred Common Name

  • broad-leaved plantain

International Common Names

  • English: broadleaf plantain; common plantain; greater plantain; plantain; ribgrass; ribwort; white-man's foot
  • Spanish: llantén; llantén común; llantén major
  • French: grand plantain; plantain majeur
  • Portuguese: tanachagem major

Local Common Names

  • Germany: Breitwegerich
  • Italy: petacciola; piantaggine maggiore
  • Japan: onioobako; seiyooobako
  • Netherlands: weegbree, groote
  • South Africa: broad-leaved ribwort; cart-track plant; indlebe-ka-tekwane; large plantain; larger ribwort plantain; ripplegrass; rippleseed plantain; wild sago
  • Sweden: groblad

EPPO code

  • PLAMA (Plantago major)

Summary of Invasiveness

Top of page P. major is native to Europe and Asia but is now widely distributed around the world, particularly in temperate, but also tropical parts. It is easily distributed and maintained by anthropogenic activities, particularly soil disturbance and compaction. Its small seeds may be spread as a contaminant. There is a possibility for invasion of naturally disturbed habitats (e.g. riparian) as well as anthropogenically disturbed areas and grasslands.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Plantaginales
  •                         Family: Plantaginaceae
  •                             Genus: Plantago
  •                                 Species: Plantago major

Notes on Taxonomy and Nomenclature

Top of page A number of subspecies of P. major have been named: for example, dostalii, major, winteri, intermedia and pleiosperma (Penkova, 1986; Akeroyd and Doogue, 1988; Lotz et al., 1990).

Description

Top of page P. major is a glabrous to pubescent perennial with one rosette, leaves ovate to broadly so, abruptly narrowed to petiole usually more or less as long as leaves 1.5-40 cm, entire to weakly toothed. Scapes to 40 cm, not furrowed. Inflorescence a spike up to 20 cm long. Many small flowers subtended by bracts 1-2 mm, ovate, glabrous, brownish white with green keel. Sepals 1.5-2.5 mm, green. Corolla tube ca. 2 mm, glabrous, the lobes ca.1 mm, yellowish white, subobtuse, glabrous. Stamens exserted to 2-3 mm, anthers at first lilac, later dirty yellow. Fruits 2-4 mm. Seeds are two celled. This species is wind pollinated.

Subspecies major: leaves mostly with five to nine veins, usually obtuse at the apex, subcordate to rounded at the base and subentire; capsules mostly with 4-15 seeds; seeds (1)1.2-1.8 (2.10) mm.

Subspecies intermedia: plants usually smaller with much shorter spikes; leaves mostly with three to five veins, usually subacute at apex, broadly cunate at base and +/- undulate toothed near base; capsules mostly with (9)14-25 (36) seeds; seeds (0.6) 0.8-1.2 (1.5) mm.

The morphology of P. major is fairly variable, even within populations and at a small spatial scale of tens of metres for some sites (Lotz et al., 1990). Populations subject to intensive grazing or cutting are generally lower growing and less erect, and variation in growth form has been shown to contain a genetic component (Warwick and Briggs, 1979, 1980).

P. major forms a basal rosette with a compressed stalk and leafless flower stalk. Root contraction has been observed in this species and is related to resistance to treading. The fruit is a capsule opening with an operculum and the seed is mucilaginous and easily transported by cattle or man (Soekarjo, 1992).

Plant Type

Top of page Broadleaved
Perennial
Seed propagated

Distribution

Top of page P. major is a worldwide weed originating from Eurasia (USDA-ARS, 2003). It is distributed widely throughout Europe, North Africa, North and Central Asia and has naturalized throughout most of the world in temperate climates (Clapham et al., 1989); it is also present in some tropical areas.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 10 Jan 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

AngolaPresentIntroducedVerdcourt (1971)
Cabo VerdePresentPinto Basto (1996)
Congo, Democratic Republic of thePresentIntroducedVerdcourt (1971)
EgyptPresentHolm et al. (1979)
EswatiniPresentWells et al. (1986)
EthiopiaPresentIntroducedVerdcourt (1971)
KenyaPresentIntroducedVerdcourt (1971)
LesothoPresentWells et al. (1986)
MauritiusPresentHolm et al. (1979)
NamibiaPresentWells et al. (1986)
São Tomé and PríncipePresentIntroducedVerdcourt (1971)
South AfricaPresentHolm et al. (1979); Wells et al. (1986); Glen (1998)

Asia

AfghanistanPresentHolm et al. (1979)
ChinaPresentHolm et al. (1979)
-HubeiPresentYao et al. (1992)
-JiangsuPresentCABI (Undated)Original citation: Wang et al. (1990)
-LiaoningPresentCABI (Undated)Original citation: Wang et al. (1990)
-ShandongPresentCABI (Undated)Original citation: Wang et al. (1990)
-ZhejiangPresentCABI (Undated)Original citation: Wang et al. (1990)
Hong KongPresentHolm et al. (1979)
IndiaPresentHolm et al. (1979); Sen and Kasera (1988); Sharma et al. (1994)
-Himachal PradeshPresentGupta and Bhardwaj (1998)
-NagalandPresentSharma et al. (1994)
IndonesiaPresentHolm et al. (1979)
IsraelPresentHolm et al. (1979)
JapanPresentHolm et al. (1979); Kobayashi and Hori (1999)
-ShikokuPresentKanai and Konta (1987)
LebanonPresentHolm et al. (1979)
MalaysiaPresentHolm et al. (1979)
MyanmarPresentAye Than et al. (1996); Aye Than et al. (1996a)
Saudi ArabiaPresentHolm et al. (1979)
SingaporePresentChua et al. (1994)
TurkeyPresentHolm et al. (1979); Bașaran et al. (1997)
VietnamPresentHolm et al. (1979)

Europe

BelgiumPresentHolm et al. (1979)
CzechiaPresentPyšek and Pyšek (1988)
DenmarkPresentHolm et al. (1979); Molgaard (1992); Andreasen et al. (1996)
Federal Republic of YugoslaviaPresentHolm et al. (1979); Šegulja and Topić (1987)
FinlandPresentHolm et al. (1979)
FrancePresentHolm et al. (1979)
GermanyPresentBöttcher (1993)
GreecePresentCABI (Undated)Original citation: Babalonas et al., 1987
HungaryPresentHolm et al. (1979)
IcelandPresentHolm et al. (1979)
IrelandPresentAkeroyd and Doogue (1988); Reynolds (1990)
ItalyPresentHolm et al. (1979)
NetherlandsPresentHolm et al. (1979); Molgaard (1992)
NorwayPresentHǻland (1989)
PolandPresentHolm et al. (1979); Holeksa and Holeksa (1987); Trzaskoś (1996)
RomaniaPresentCoste (1970); Cristea and Groza (1983)
RussiaPresentHolm et al. (1979); Bekmansurov (1996); Zhukova et al. (1996); Ivshin (1998)
-Western SiberiaPresentKryukova and Persidskaya (1986)
SlovakiaPresentKliment (1991)
SloveniaPresentBatič et al. (1997)
SpainPresentHolm et al. (1979); Patón et al. (1997); CABI (Undated)
SwedenPresentHolm et al. (1979); Fogelfors (1984)
United KingdomPresentHolm et al. (1979); Bastin and Thomas (1999)

North America

CanadaPresentHawthorn (1974); Holm et al. (1979); CABI (Undated);
-OntarioPresentCABI (Undated)Original citation: Hawthorne, 1978
-Prince Edward IslandPresentCABI (Undated)Original citation: Thomas Ivany (1990)
-QuebecPresentPotvin and Vasseur (1997)
Costa RicaPresentHolm et al. (1979)
CubaPresentIntroducedInvasiveOviedo Prieto et al. (2012)
Dominican RepublicPresentHolm et al. (1979)
HondurasPresentMissouri Botanical Garden (2003)
JamaicaPresentHolm et al. (1979)
MexicoPresentCABI (Undated)Original citation: Lopez-Tellez & Reyes, 1999
NicaraguaPresentMissouri Botanical Garden (2003)
PanamaPresentMissouri Botanical Garden (2003)
Puerto RicoPresentHolm et al. (1979)
U.S. Virgin IslandsPresentUSDA-NRCS (2003)
United StatesPresent, WidespreadHolm et al. (1979); USDA-NRCS (2003)
-AlabamaPresentUSDA-NRCS (2003)
-AlaskaPresentUSDA-NRCS (2003)
-ArizonaPresentUSDA-NRCS (2003)
-ArkansasPresentUSDA-NRCS (2003)
-CaliforniaPresentUSDA-NRCS (2003)
-ColoradoPresentUSDA-NRCS (2003)
-ConnecticutPresentUSDA-NRCS (2003)
-DelawarePresentUSDA-NRCS (2003)
-FloridaPresentUSDA-NRCS (2003)
-GeorgiaPresentUSDA-NRCS (2003)
-HawaiiPresentUSDA-NRCS (2003)
-IdahoPresentUSDA-NRCS (2003)
-IllinoisPresentUSDA-NRCS (2003)
-IndianaPresentUSDA-NRCS (2003)
-IowaPresentUSDA-NRCS (2003)
-KansasPresentUSDA-NRCS (2003)
-KentuckyPresentUSDA-NRCS (2003)
-LouisianaPresentUSDA-NRCS (2003)
-MainePresentUSDA-NRCS (2003)
-MarylandPresentUSDA-NRCS (2003)
-MassachusettsPresentUSDA-NRCS (2003)
-MichiganPresentUSDA-NRCS (2003)
-MinnesotaPresentUSDA-NRCS (2003)
-MississippiPresentUSDA-NRCS (2003)
-MissouriPresentUSDA-NRCS (2003)
-MontanaPresentUSDA-NRCS (2003)
-NebraskaPresentUSDA-NRCS (2003)
-NevadaPresentUSDA-NRCS (2003)
-New HampshirePresentUSDA-NRCS (2003)
-New JerseyPresentUSDA-NRCS (2003)
-New MexicoPresentUSDA-NRCS (2003)
-New YorkPresentUSDA-NRCS (2003)
-North CarolinaPresentUSDA-NRCS (2003)
-North DakotaPresentUSDA-NRCS (2003)
-OhioPresentUSDA-NRCS (2003)
-OklahomaPresentUSDA-NRCS (2003)
-PennsylvaniaPresentUSDA-NRCS (2003)
-South CarolinaPresentUSDA-NRCS (2003)
-South DakotaPresentUSDA-NRCS (2003)
-TennesseePresentUSDA-NRCS (2003)
-TexasPresentUSDA-NRCS (2003)
-UtahPresentUSDA-NRCS (2003)
-VermontPresentUSDA-NRCS (2003)
-VirginiaPresentUSDA-NRCS (2003)
-West VirginiaPresentUSDA-NRCS (2003)
-WisconsinPresentUSDA-NRCS (2003)
-WyomingPresentUSDA-NRCS (2003)

Oceania

AustraliaPresentHolm et al. (1979)
FijiPresentHolm et al. (1979)
New ZealandPresentHolm et al. (1979); Popay et al. (1995)

South America

ArgentinaPresentHolm et al. (1979)
BoliviaPresentHolm et al. (1979)
BrazilPresentHoletz et al. (2002)
-BahiaPresentFrança et al. (1996)
-Minas GeraisPresentCABI (Undated)Original citation: Silva Filho et al., 1994
-Sao PauloPresentRamos et al. (2002)
ChilePresentHolm et al. (1979)
ColombiaPresentHolm et al. (1979)
EcuadorPresentHolm et al. (1979)
PeruPresentHolm et al. (1979)
VenezuelaPresentWatson (1977); Holm et al. (1979)

History of Introduction and Spread

Top of page This species is synanthropic (often associated with human activities and landuse such as agriculture, earthworks). It has thus spread from Eurasia to much of the rest of the world, particularly temperate areas. Its pollen is used as an indicator of human settlement from the Neolithicum onwards (Aart and Vulto, 1992a). In the Americas it is known as 'white man's foot' (Mitch, 1987). Godwin (1944) notes the increase in abundance of this species in Denmark's prehistoric pollen record as original forest cover was replaced by cultivated land. The seedbank of this species in Danish arable soil is thought to have decreased significantly over the period 1964-1992 (Jensen and Hjellsson, 1992).

Habitat

Top of page Like other Plantago species, this is a plant of open, well lit (Aart and Vulto, 1992b), often grassy habitats (Stace, 1997) in a range of climates. Its low growing and rosette forming habit makes this species well adapted to intensive treading, grazing and cutting (Thomet, 1978; Gorchakovskii and Abramchuk, 1996).

P. major is found in grass seed mixes for a range of purposes (Kolb and Schwarz, 1983) and therefore it is present in a wide range of seeded grassland habitats. It is tolerant of high nutrient conditions and is found in agriculturally improved grasslands (Aart and Vulto, 1992b). This species is also a plant of man-made habitats such as urban areas and disturbed ground (Bastin and Thomas, 1999).

P. major subsp. intermedia tends to be found in damp, usually saline places near the sea and less often inland (Stace, 1997).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
 
Terrestrial – ManagedCultivated / agricultural land Present, no further details
Managed forests, plantations and orchards Present, no further details
Managed forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Managed grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Disturbed areas Present, no further details Harmful (pest or invasive)
Rail / roadsides Present, no further details Harmful (pest or invasive)
Urban / peri-urban areas Present, no further details Harmful (pest or invasive)
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details Harmful (pest or invasive)
Natural grasslands Present, no further details Harmful (pest or invasive)
Riverbanks Present, no further details Harmful (pest or invasive)

Hosts/Species Affected

Top of page P. major is mainly found in grassland.

Biology and Ecology

Top of page Genetics

P. major has a chromosome number of 2n=12 (Stace, 1997). Populations show a high level of genetic structure, with a tendency to form a range of morphological variants specialized to fit particular niches. At least some of this specialization is thought to be due to: 1) the high rate of self-fertilization in the species, which restricts gene flow between variants, and 2) the high chromosome variability of this species. Such specialization and interrupted gene flow contrast with the free gene flow of some other Plantago species which are outbreeding generalists (Sharma et al., 1992; Sharma and Koul, 1995). Alloenzyme variation evidence corroborates this analysis, and shows high variation and low gene flow in P. major (Dijk and Wolff, 1992).

P. major tends to show wide variability across, but uniformity within, populations. Analysis of the inter- and intraspecific variation of chloroplast DNA of four European Plantago species (P. major, P. lanceolata, P. media and P. coronopus) by Hooglander et al. (1993) showed P. major to be most closely related to P. media. A short mutation (70 base pairs) could discriminate between the subspecies major and pleiosperma. Wolff and Morgan-Richards (1998) have also distinguished P. major subspecies using PCR markers.

Physiology and Phenology

P. major seed dormancy is broken by stratification (1-7 days), exogenous gibberellic acid (GA3) and potassium nitrate (Saruhan et al., 2002). Light is normally required for germination (Blom, 1978; Pons and Toorn, 1988; Pons, 1991) and an approximately linear decrease in germination rate with increasing soil depth has been observed (Bliss and Smith, 1985). Imbibition (soaking) and alternating temperature (20°C/30°C) increase germination (Deschenes and Moineau, 1972); ethylene treatment was inhibitory and thereafter germination occurred only in the presence of light (Heydecker et al., 1972). Two- to 5-year-old seed showed a higher germination rate than fresh seed (Blom, 1992). Seeds of this species have been shown to survive passage through the digestive tract of a cow and will germinate if followed by a period of low temperature (5°C) but not when followed by a period of higher temperature (20°C) (Holub and Lhotska, 1991).

Under optimal conditions, P. major shows higher rates of emergence and establishment in uncompacted rather than compacted soils. However the roots of this species have a marked ability to penetrate compacted soils and, under conditions of low moisture, P. major does better in compacted than loose sandy soil (Blom, 1976). Although perennial, P. major may behave as an annual, flowering and setting seeds within 6 weeks of germination. In Britain, flowering normally starts in early June and continues for about 3 months (Sagar and Harper, 1964). A micropropagation protocol for this species has been produced by Mederos et al. (1998) and involves shoot tip culture on modified MS medium.

Reproductive Biology

P. major reproduces mainly by seeds and cannot multiply freely by vegetative means (Holm et al., 1977). The species is wind pollinated, but relies heavily on self-pollination (Sharma et al., 1992; Sharma and Koul, 1995). There may be 3-30 seeds per capsule and a seed production of 14,000 seeds per plant per year has been recorded (Holm et al., 1977). Sharma and Koul (1995) and Sharma et al. (1992) describe the reproductive strategy of this species as making a greater investment in female rather than male reproductive components and relying heavily on self-fertilization. Sagar and Harper (1964) note that seed is set rapidly after fertilization but is frequently not dispersed from the capsules until the following year.


Environmental Requirements

There is some evidence that P. major is more shade tolerant than other members of the genus (Toorn and Pons, 1988). There is also evidence that this species has a higher soil moisture requirement than some other Plantago species (Blom, 1976). Stoutjesdijk (1992) indicates that P. major tolerates a narrower range of temperature, solar radiation and humidity than other Plantago species such as P. lanceolata. Sagar and Harper (1964) note that P. major occurs on a wide range of soil types in Britain, being absent only from extremely acid peats and mountain grasslands.

P. major is particularly resistant to trampling and compaction (Engelaar et al., 1993; Engelaar, 1995; Gorchakovskii and Abramchuk, 1996). Zelikov and Psonnova (1961) and Kolb and Schwarz (1983) found it inhabited soil with a mean density of 1.42 g/cm3, and its abundance has been positively correlated with soil compaction (Crawford and Liddle, 1977; Aspinall and Pye, 1987). Thomet (1978) and Holeksa and Holeksa (1987) found P. major to be an indicator of excessive treading in permanent pastures. A number of studies show this species to be capable of withstanding considerable foot traffic and it is often an important component of well worn turf (Montacchini and Siniscalco, 1982).

Associations

Sagar and Harper (1964) provide detailed lists of plants associated with P. major in the British Isles.

Rainfall

Top of page
ParameterLower limitUpper limitDescription
Mean annual rainfall00mm; lower/upper limits

Soil Tolerances

Top of page

Soil drainage

  • free
  • impeded
  • seasonally waterlogged
  • seasonally waterlogged

Soil texture

  • heavy
  • light
  • medium

Notes on Natural Enemies

Top of page Sagar and Harper (1964) provide a long list of natural enemies including invertebrates, fungi and viruses but imply that these have much less influence than livestock management.

Means of Movement and Dispersal

Top of page Natural Dispersal (Non-Biotic)

The small seeds are dispersed by the wind.

Vector Transmission (Biotic)

The seeds are mucilaginous and are dispersed by humans and animals (Soekarjo, 1992).

Accidental Introduction

Because of the small size of its seeds, P. major may be introduced as a contaminant of agricultural produce.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Flowers/Inflorescences/Cones/Calyx seeds
Fruits (inc. pods) seeds Yes Pest or symptoms usually visible to the naked eye
Growing medium accompanying plants roots; seeds
Roots roots
Seedlings/Micropropagated plants whole plants
True seeds (inc. grain) seeds
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs/Tubers/Corms/Rhizomes
Leaves
Stems (above ground)/Shoots/Trunks/Branches
Wood

Impact Summary

Top of page
CategoryImpact
Animal/plant collections None
Animal/plant products None
Biodiversity (generally) None
Crop production Negative
Environment (generally) None
Fisheries / aquaculture None
Forestry production None
Human health Positive
Livestock production Positive
Native fauna None
Native flora None
Rare/protected species None
Tourism None
Trade/international relations None
Transport/travel None

Impact

Top of page P. major has been described as an agricultural, pastoral and environmental weed competing with other plants for light, water and nutrients and replacing preferred vegetation. P. lanceolata and P. major have together been reported as weeds in over 50 countries affecting a wide range of crops (Holm et al., 1977). It is a field rather than field margin weed, although it colonizes disturbed margins (Kress, 1988).

In the UK it affects the majority of local authority owned sports turf (Raikes et al., 1994). In Prince Edward Island, Canada, it is present in 80% of cereal fields with a mean density of over 14 plants per m² (Thomas and Ivany, 1990).

Risk and Impact Factors

Top of page Invasiveness
  • Invasive in its native range
  • Proved invasive outside its native range
  • Highly adaptable to different environments
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Highly mobile locally
  • Has high reproductive potential
Impact outcomes
  • Negatively impacts agriculture
  • Negatively impacts tourism
  • Reduced amenity values
Impact mechanisms
  • Competition - monopolizing resources
Likelihood of entry/control
  • Highly likely to be transported internationally accidentally
  • Difficult to identify/detect as a commodity contaminant
  • Difficult/costly to control

Uses

Top of page P. major has medicinal properties and is a popular Chinese medicine. It contains phenylethanoid glycosides. It is used to treat inflammation (Nunez Guillen et al., 1997), gastritis and peptic ulcers (Aye et al., 1996b), leishmanial ulcers (Franca et al., 1996), to reduce pain (Nunez Guillen et al., 1997), and as an antidiarrhoeal agent (Heinrich, 1998). It is also used in the treatment of dermatological conditions (Brown and Dattner, 1998), common cold, viral hepatitis (Chiang et al., 2002), and has expectorant, cicatrizant and astringent properties (Ramos et al., 2002). Aqueous extracts of P. major have a significant effect on aspirin-induced ulceration in rats (Aye et al., 1996b), some effects on pain and inflammation (Nunez Guillen, 1997; Aye et al., 1996a). Navarro et al. (1998) report P. major to be effective at controlling dental plaque and gingivitis. Extracts of this species show some degree of antibacterial activity (Holetz et al., 2002).

P. major is also used as fodder (Fogelfors, 1984). It is higher in trace elements than pasture grasses and therefore can be considered a useful pasture component (Trzaskos, 1996). It is palatable to sheep (Barcsak and Kispal, 1984).

P. major is cultivated as an ornamental in South Africa (Wells et al., 1986).

Uses List

Top of page

Medicinal, pharmaceutical

  • Traditional/folklore

Similarities to Other Species/Conditions

Top of page P. major is distinguished from other Plantago species by its long-petioled leaf blade and many-seeded capsule that opens around the fruit above the base, and the angular seeds which are marked with thread-like ridges and bear a light-coloured hilum (Holm et al., 1977).

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Cultural Control

Flooding and trampling regimes aimed at weed control have not been successful against P. major (Engelaar and Blom, 1995). Similarly, a four-course crop rotation (oats, clover, winter wheat, faba beans), using minimal weed control for 4 years, resulted in large increases in weed biomass and surface and subsurface seed bank of P. major (Hill et al., 1989).

Mechanical Control

Mechanized spraying of hot water (85-95°C) in an orchard required two to three repeat sprays for good control of this and other species (Kurfess and Kleisinger, 2000).

Whilst microwave radiation has been tested as a weed control measure, it required more than 32 h of treatment (at 2.45 Ghz, 6 kW) for complete control of P. major in pot experiments. Higher frequencies (13.5 MHz, 50 kW) were effective against some erect weeds but not P. major (Kunisch et al., 1992).

Chemical Control

Treatment with chlorthal-dimethyl + naptalam resulted in successful control in Cucumis crops (Himme et al., 1984). In winter and spring cereals, glyphosate efficiently controlled weeds, including P. major, by pre-harvest application and on stubble after harvesting (Ciuberkis and Petraitis, 1998).

Amitrole or paraquat with diuron failed to control this species in orchards (Himme and Stryckers, 1975a, b), and it is resistant to lenacil (Stryckers and Himme, 1974) and methazole (Tasmanian Department of Agriculture, 1975). In a long-term repeated spraying regime using diuron, P. major was the first weed species to gain resistance (Bulcke et al., 1989).

P. major is controlled less easily with chemicals than are other turf weeds (Schery, 1974). In Festuca rubra / Poa pratensis turf, MCPA or 2,4-D applied in July-August (in northwest USA) provided excellent control of this species (Ebdon and Jagschitz, 1981). In Festuca arundinacea / Poa pratensis turf, the best control of P. major was obtained with 2,4-D (Wehner et al., 1981). In turf close to ornamental shrubs, dicamba + 2,4-D was effective (Hendricks et al., 1983). Neal and Mascianica (1988) found that quinclorac and triclopyr provided adequate control of this species in turf. However, Neal (1990) found 2,4-D and clopyralid + triclopyr were effective treatments but not quinclorac, chlorflurenol or dicamba. MCPA ± mecoprop + dicamba or clopyralid ± triclopyr or chlorflurenol ± clopyralid gave excellent control of Plantago spp. in turf, including P. major (Sawyer and Jagschitz, 1988).

Heavy applications of glyphosate to pasture increased the abundance of P. major (Grabowski, 1990). Vidme (1973) recommends that weed control by herbicide (such as 2,4 D salts or esters) in grassland is combined with heavy nitrogen applications for maximum effect.

Biological Control

P. major has been identified as a priority weed for bioherbicide research of lawn weeds (Gadoury and Watson, 1987).

Integrated Control

This weed was best controlled in rainfed rice (Nagaland, India) by a combination of chemical (2,4-D, butachlor and fluchloralin at 1 day after transplanting (DAT); thiobencarb at 1 and 7 DAT) and hand-weeding (at 25 and 45 DAT; Sharma et al., 1994).

References

Top of page

Aart van der PJM; Vulto JC, 1992. Biogeography and human effects. In: Kuiper PJC, Bos M, eds. Plantago: a Multidisciplinary Study. Ecological Studies, Vol. 89. Berlin, Germany: Springer Verlag, 5-6.

Aart van der PJM; Vulto JC, 1992. General ecology. In: Kuiper PJC, Bos M, eds. Plantago: a Multidisciplinary Study. Ecological Studies, Vol. 89. Berlin, Germany: Springer Verlag, 6.

Akeroyd JR; Doogue D, 1988. Plantago major L. subsp. intermedia (DC.) Arcangeli (Plantaginaceae) in Ireland. Irish Naturalists' Journal, 22(10):441-443

Andreasen C; Stryhn H; Streibig JC, 1996. Decline of the flora in Danish arable fields. Journal of Applied Ecology, 33(3):619-626; 44 ref.

Aspinall RJ; Pye AM, 1997. The effect of trampling on limestone grassland in the Malham area of North Yorkshire. Journal of Biogeography, 14(2):105-115.

Aye T; Mu MSM; Tin M; Win M, 1996. Anti-oedema activity of Nyctanthes arbor-tristis L., Curcuma longa L. and Plantago major L. Myanmar Health Sciences Research Journal, 8(1):36-40.

Aye T; Mu MSM; Win M; Tin M; Su SH, 1996. The anti-ulcerogenic activity of Plantago major Linn. Myanmar Health Sciences Research Journal, 8(2):74-77.

Barcsak Z; Kispal T, 1990. Palatability examination of grasses. In: Gaborcik N, Krajcovic V, Zimkova M, eds. Soil Grassland Animal Relationships. Proceedings of 13th General Meeting of the European Grassland Federation, Banska Bystrica, Czechoslovakia, June 25-29, 1990, Volume 2. Banska Bystrica, Czechoslovakia: Grassland Research Institute, 281-284.

Basaran AA; Ceritoglu I; Undeger U; Basara N, 1997. Immunomodulatory activities of some Turkish medicinal plants. Phytotherapy Research, 11(8):609-611.

Bastin L; Thomas CD, 1999. The distribution of plant species in urban vegetation fragments. Landscape Ecology, 14(5):493-507; 43 ref.

Batic F; Ribaric LC; Gorjup NV; Kopusar N; Bienelli A, 1997. Monitoring the effects of ozone on agricultural plants within the ICP-Crops in Slovenia. Proceedings of the 14th International Congress of Biometeorology. Part 2, Volume 2. Ljubljana, Slovenia, 1-8 September 1996. Research Reports Biotechnical Faculty University of Ljubljana, Agricultural Issue, 1997.

Bekmansurov MV, 1996. Investigation of greater plantain (Plantago major L.) consortia. Russian Journal of Ecology, 27(2):148-149.

Bliss D; Smith H, 1985. Penetration of light into soil and its role in the control of seed germination. Plant, Cell and Environment, 8(7):475-483.

Blom CWPM, 1976. Effects of trampling and soil compaction on the occurrence of some Plantago species in coastal sand dunes. I. Soil compaction, soil moisture and seedling emergence. Oecologia Plantarum, 11(3):225-241

Blom CWPM, 1978. Germination, seedling emergence and establishment of some Plantago species under laboratory and field conditions. Acta Botanica Neerlandica, 27(5/6):257-271

Blom CWPM, 1992. Germination and establishment. In: Kuiper PJC, Bos M, eds. Plantago: a Multidisciplinary Study. Ecological Studies, Vol. 89. Berlin, Germany: Springer Verlag, 88-98.

Bottcher W, 1993. Effects of intensive farming on the landscape of a river meadowland in the Saxon hilly country. Archiv fur Naturschutz und Landschaftsforschung, 32(3):209-225

Brown DJ; Dattner AM, 1998. Phytotherapeutic approaches to common dermatologic conditions. Archives of Dermatology, 134(11):1401-1404.

Bulcke R; Himme M van; Stryckers J, 1989. Shifts in the flora by long-term repeated herbicide applications in a bush apple plantation. Proceedings of the 4th EWRS symposium on weed problems in Mediterranean climates. Vol. 1. Problems of weed control in fruit, horticultural crops and rice, 121-128

Chiang LC; Chiang W; Chang MY; Ng LT; Lin CC, 2002. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Research, 55(1):53-62.

Chua KS; Tan HTW; Turner IM, 1994. The angiosperm flora of Singapore. Part 3. Plantaginaceae. Gardens' Bulletin (Singapore), 46(2):103-107; [1 fig.]; 9 ref.

Ciuberkis S; Petraitis V, 1998. Application of Roundup to hasten the ripening of winter and spring cereals and to control the weeds. Z^hacek~emdirbyste^dot over~, Mokslo Darbai, 62:63-75; 12 ref.

Clapham AR; Tutin TG; Moore DM, 1989. Flora of the British Isles. Cambridge, UK: Cambridge University Press.

Coste I, 1970. Contribution to the study of a Molinio-Arrhenatheretea Tx. (1937) 1970 in the Locva Mountains (southwestern Romania). Revue Roumaine de Biologie, Biologie Vegetale, 24(1):17-26.

Crawford AK; Liddle MJ, 1977. The effect of trampling on neutral grassland. Biological Conservation, 12(2):135-142.

Cristea V; Groza G, 1983. Contributions to studies of the vegetation of the hills of 'Batrinu' - Vadu Crisului municipalitu (Bihor district). Contributii Botanice Universitatea 'Babes-Bolyai' din Cluj Napoca, 137-143.

Deschenes JM; Moineau D, 1972. The conditions required for germination in four Quebec weeds. Naturaliste Canadien, 99:103-114

Dijk H van; Wolff K, 1992. Allozyme variation and genetic structure in Plantago species. Plantago: a multidisciplinary study [edited by Kuiper, P. J. C.; Bos, M.] Berlin, Germany; Springer-Verlag, 184-192

Dunst RM; Pool RM, 1985. Preemergence annual weed control in a New York vineyard. Proceedings, 39th annual meeting of the Northeastern Weed Science Society., 211-213.

Ebdon JS; Jagschitz JA, 1981. Evaluation of herbicides for broadleaf weed control in lawn turf. Proceedings, Northeastern Weed Science Society, 1981., Volume 35:274-279

Engelaar WMHG; Blom CWPM, 1995. Effects of flooding and trampling on the performance of river foreland species of Rumex and Plantago. Acta Botanica Neerlandica, 44(3):225-245

Fogelfors H, 1984. Useful weeds? Part 14. Lantmannen, 105(16):43

Forcella F, 1992. Invasive weeds in the northern Rocky Mountains. Western Wildlands, 18(2):2-5

Franca F; Lago EL; Marsden PD, 1996. Plants used in the treatment of leishmanial ulcers due to Leishmania (Vannia) braziliensis in an endemic area of Bahia, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 29(3):229-232.

Gadoury H; Watson AK, 1987. Biological control of lawn weeds. Cahier des Journees Horticoles Ornementales, III:9-15.

Glen HF, 1998. Investigation of the antiinflammatory activity of liquid extracts of Plantago lanceolata L. FSA contributions 12: Plantaginaceae. Bothalia, 28(2):151-157; 26 ref.

Godwin H, 1944. Neolithic forest clearance. Nature, London, 153(1944):511-512.

Gorchakovskii PL; Abramchuk AV, 1996. Grazing tolerance of the vegetation of dry meadows. Russian Journal of Ecology, 27(5):321-325.

Grabowski K; Nowicki J; Grzegorczyk S; Benedycki S, 1990. Improvement of productivity of degraded grasslands by means of direct-into-sod sowing. Soil-grassland-animal relationships. Proceedings of 13th general meeting of the European Grassland Federation, Banska Bystrica, Czechoslovakia, June 25-29, 1990 [edited by Gaborcik, N.; Krajcovic, V.; Zimkova, M.] Banska Bystrica, Czechoslovakia; Grassland Research Institute, 355-358

Gupta AK; Bhardwaj LN, 1998. Additional host of Leveillula taurica (Lev.) G. Arnaud from India. Indian Phytopathology, 51(1):104-106.

Haland A, 1989. Nitrogen, potassium and lime for permanent pasture. Effects on botanical composition and yield. Norsk Landbruksforsking, 3(4):225-232

Hawthorn WR, 1974. The biology of Canadian weeds. 4. Plantago major and P. rugelii. Canadian Journal of Plant Science, 54(2):383-396.

Heinrich M, 1998. Plants as antidiarrhoeals in medicine and diet. Prendergast HDV, Etkin NL, Harris DR, Houghton PJ, eds. Plants for Food and Medicine. Proceedings of the Joint Conference of the Society for Economic Botany and the International Society for Ethnopharmacology, London, UK, 1-6 July 1996. London, UK: Royal Botanic Gardens Kew, 17-30.

Hendricks GJ; Mitchell WH; Williamson DH, 1983. Turfgrass weed control adjacent to ornamental shrub. Proceedings of the 37th annual meeting of the Northeastern Weed Science Society, 1983., Supplement:83

Heydecker W; Olatoye ST; Hall MA, 1973. Interaction of ethylene and light on dormant weed seeds. In: W Heydecker, ed. Seed Ecology. Proceedings of the Nineteenth Easter School in Agricultural Science, University of Nottingham, 1972. London; UK: Butterworths, 233-249.

Hill NM; Patriquin DG; Kloet SP van der, 1989. Weed seed bank and vegetation at the beginning and end of the first cycle of a 4-course crop rotation with minimal weed control. Journal of Applied Ecology, 26(1):233-246

Himme M van; Stryckers J, 1975. Long term experiments with weed mulches under low-stemmed pear trees. Himme, M. van; Stryckers, J. : Review of the results obtained for the cropping year 1973-74 by the Centrum voor Onkruidonderzoek. Rijksuniversiteit-Gent. Belgium, 130-131

Himme M van; Stryckers J, 1975. Overall herbicide treatments under standard apple trees. Himme, M. van; Stryckers, J. : Review of the results obtained for the cropping year 1973-74 by the Centrum voor Onkruidonderzoek. Rijksuniversiteit-Gent. Belgium, 126-127

Himme M van; Stryckers J; Bulcke R, 1984. Cucumis crops: gherkins. Mededelingen van het Centrum voor Onkruidonderzoek van de Rijksuniversiteit Gent, No.40:105-106

Holeksa J; Holeksa K, 1987. Plant communities of trampled sites in the Babia Gora National Park (Western Carpathians). Fragmenta Floristica et Geobotanica, 31-32(1-2):247-259.

Holetz FB; Pessini GL; Sanches NR; Cortez DAG; Nakamura CV; Dias Filho BP, 2002. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memo^acute~rias do Instituto Oswaldo Cruz, 97(7):1027-1031; 24 ref.

Holm L; Pancho J; Herberger J; Plucknett D, 1979. A Geographical Atlas of World Weeds. New York, USA: John Wiley & Sons.

Holm LG; Plucknett DL; Pancho JV; Herberger JP, 1977. The World's Worst Weeds. Distribution and Biology. Honolulu, Hawaii, USA: University Press of Hawaii.

Holub M; Lhotska M, 1991. Influence of bovine digestive tract on germination of diaspores of selected plant species - II. Biologia Bratislava, 46(1):81-87.

Hooglander N; Lumaret R; Bos M, 1993. Inter-intraspecific variation of chloroplast DNA of European Plantago spp. Heredity, 70(3):322-334

Ivshin NV, 1998. Variation in the number of ovules per boll in ecologically different populations of Plantago major L. Russian Journal of Ecology, 29(6):390-395.

Jensen HA; Hjellsson G, 1992. Changes in the seed banks in Danish arable soil in the period 1964-1989. Tidsskrift for Planteavls Specialserie, No. S 2178:93-105

Kanai H; Konta F, 1987. Distribution of commonly occurring plants in Shizuoka Prefecture, Central Japan. Bulletin of the National Science Museum, B (Botany), Tokyo, 13(4):151-170

Kliment J, 1991. Capsello bursae-pastoris-Poetum annuae Klika 1934 in the Vel'ka Fatra mountains. Biologia Bratislava, 46(1):63-72.

Kobayashi T; Hori Y, 1999. Photosynthesis and seedling survival of weeds with different trampling susceptibilities under contrasting light and water conditions. Journal of Weed Science and Technology, 44(3):195-204.

Kolb W; Schwarz T, 1983. Plant selections for covering parking lots. Rasen Grunflachen Begrunungen, 14(1):1-4.

Kress O, 1988. The wild plant flora on intensively managed vegetable growing areas and neighbouring strips. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, Sonderheft 11:189-196

Kryukova EA; Persidskaya LT, 1986. The formation of entomofauna and pathogenic microflora in a sylvagrarian countryside: ways of improving the resistance of agricultural plant communities. Vestnik Sel'skokhozyaistvennoi Nauki, No. 4:61-66; 6 ref.

Kunisch M; Hoffman P; Seefried G; Arians T; Koch W, 1992. Potential use of electromagnetic radiation for weed control on railway tracks. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, Sonderheft 13:513-522

Kurfess W; Kleisinger S, 2000. Effect of hot water on weeds. Zeitschrift fu^umlaut~r Pflanzenkrankheiten und Pflanzenschutz, Sonderh. 17:473-477; 7 ref.

Lopez Tellez A; Reyes SA, 1999. Flora de Veracruz: Plantaginaceae, No. 108:1-20. Xalapa, Mexico: Instituto de Ecologia.

Lotz LAP; Olff H; Tienderen PH van, 1990. Within-population variability in morphology and life history of Plantago major L. spp. pleiosperma Pilger in relation to environmental heterogeneity. Oecologia, 84(3):404-410

Mederos S; Martin C; Navarro E; Ayuso MJ, 1998. Micropropagation of a medicinal plant, Plantago major L. Biologia Plantarum, 40(3):465-468.

Missouri Botanical Garden, 2003. VAScular Tropicos database. St. Louis, USA: Missouri Botanical Garden. http://mobot.mobot.org/W3T/Search/vast.html.

Mitch LW, 1987. White man's foot: broadleaf plantain. Weed Technology, 1(3):250-251

Molgaard P, 1992. Polymorphism for caffeic acid esters in populations of Plantago major spp. pleiosperma. Plantago: a multidisciplinary study [edited by Kuiper, P. J. C.; Bos, M.] Berlin, Germany; Springer-Verlag, 192-203

Montacchini F; Siniscalco C, 1982. The effects of foot traffic on vegetation and soils of city park turfs. Annali della Facolta di Scienze Agrarie della Universita degli Studi di Torino, 12:365-385.

Navarro D de F; Santos EATdos; Rocha JCF da; Bremm LL; Jukoski M; Ribeiro PG; Kozlowski VA Jr, 1998. Effect of chlorhexidine digluconate, Plantago major and placebo mouth rinse on dental plaque and gingivitis. Revista Brasileira de Plantas Medicinais, 1(1):28-38; 46 ref.

Neal JC, 1990. Non-phenoxy herbicides for perennial broadleaved weed control in cool-season turf. Weed Technology, 4(3):555-559

Neal JC; Mascianica MR, 1988. Phenoxy and non-phenoxy herbicides for controlling dandelion, plantain, clover, and veronica. Proceedings, 42nd annual meeting of the Northeastern Weed Science Society, 183-184

Nunez Guillen ME; Silva Emim JA da; Souccar C; Lapa AJ, 1997. Analgesic and antiinflammatory activities of the aqueous extract of Plantago major L. International Journalof Pharmacognosy, 35(2):99-104.

Oviedo Prieto R; Herrera Oliver P; Caluff MG, et al. , 2012. National list of invasive and potentially invasive plants in the Republic of Cuba - 2011. (Lista nacional de especies de plantas invasoras y potencialmente invasoras en la República de Cuba - 2011). Bissea: Boletín sobre Conservación de Plantas del Jardín Botánico Nacional de Cuba, 6(Special Issue 1):22-96.

Paton D; Nunez J; Munoz A; Tovar J, 1997. Analysis of overgrazing in Mediterranean grasslands grazed by Retinto cattle using bioindicator plants. Archivos de Zootecnia, 46(176):357-365.

Penkova I, 1986. Contribution to the taxonomy of Plantago major L. s.l. Preslia, 58(2):117-139

Pinto Basto MF, 1996. Cape Verde Flora. Vascular Plants. Plantaginaceae. Flora de Cabo Verde, No. 77:10 pp.

Pons TL, 1991. Induction of dark dormancy in seeds: its importance for the seed bank in the soil. Functional Ecology, 5(5):669-675.

Pons TL; Toorn J van der, 1988. Establishment of Plantago lanceolata L. and Plantago major L. among grass I. Significance of light for germination. Oecologia, 75(3):394-399

Popay AI; Cox TI; Ingle A; Kerr R, 1995. Seasonal emergence of weeds in cultivated soil in New Zealand. Weed Research (Oxford), 35(5):429-436

Potvin C; Vasseur L, 1997. Long-term CO2 enrichment of a pasture community: species richness, dominance, and succession. Ecology, 78(3):666-677.

Pysek P; Pysek A, 1988. Vegetation of industrial habitats in the eastern part of Prague. 1. Floristic conditions. Preslia, 60(4):339-347

Raikes C; Lepp NW; Canaway PM, 1994. Major diseases, pests and weeds of winter sports turf. II. A questionnaire survey of local authorities. Journal of the Sports Turf Research Institute, 70:83-90; 4 ref.

Ramos MBM; Vieira MC; Heredia NAZ; Grangeiro RS, 2002. Growth and biomass production of Plantago major and Plantago tomentosa considering spaces and arrangement of plants. In: Ming LC, Craker LE, Scheffer MC, Chaves FCM, eds. Proceedings of the First Latin American Symposium on the Production of Medicinal, Aromatic and Condiment Plants, Sao Pedro, Sao Paulo, Brazil, 30 July-4 August 2000. Acta Horticulturae, No. 569:293-301.

Reynolds SC, 1990. Alien plants at Foynes and Dublin ports in 1988. Irish Naturalists' Journal, 23(7):262-268; 38 ref.

Sagar GR; Harper JL, 1964. Biological Flora of the British Isles. Plantago major L., P. media L. and P. lanceolata L. Journal of Ecology, 52: 189-221.

Saruhan N; Kadioglu A; Durmus N, 2002. Alleviation of seed dormancy in Plantago major. Israel Journal of Plant Sciences, 50(3):177-179; 13 ref.

Sawyer CD; Jagschitz JA, 1988. Broadleaf weed control in turf with postemergent herbicides. Proceedings, 42nd annual meeting of the Northeastern Weed Science Society, 179-180

Schery RW, 1974. Out-of-season weed control. Weeds, Trees and Turf, 13(9):15.

Segulja N; Topic J, 1987. Frequency of weed and ruderal plants on the pastures of eastern Slavonia and Baranja. Fragmenta Herbologica Jugoslavica, 16(1-2):85-94

Sen DN; Kasera PK, 1988. Biology of some important Kharif and rabi weeds in Indian arid zone. VIIIe Colloque International sur la Biologie, l'Ecologie et la Systematique des Mauvaises Herbes Paris, France; A.N.P.P., Vol. 2:325-333

Sharma N; Koul AK, 1995. Reproductive strategies in weeds - Plantago major, P. lanceolata and their cultivated ally P. ovata. Proceedings of the Indian National Science Academy. Part B, Biological Sciences, 61(6):471-478; 20 ref.

Sharma N; Koul P; Koul AK, 1992. Genetic systems of six species of Plantago (Plantaginaceae). Plant Systematics and Evolution, 181(1-2):1-9

Sharma UC; Choudhury AN; Khan AK, 1994. Effect of integrated weed management on yield and nutrient uptake by rainfed rice (Oryza sativa) in acid soils of Nagaland. Indian Journal of Agronomy, 39(4):553-556.

Silva Filho PV da; Laca Buendia JP; Silva Oliveira LMda; Monteiro Rezende W, 1994. Life cycle of two species of the genus Plantago L. occurring in the state of Minas Gerais. I. Plantago major L. and Plantago tomentosa Lam. Daphne, Revista do Herba^acute~rio PAMG da EPAMIG, 4(1):39-45; 26 ref.

Soekarjo R, 1992. General morphology in Plantago. Plantago: a multidisciplinary study., 6-12; [Ecological studies Vol. 89].

Stace CA, 1997. New Flora of the British Isles. Cambridge, UK: Cambridge University Press.

Stoutjesdijk P, 1992. Micrometeorological characterization of Plantago sites. Plantago: a multidisciplinary study [edited by Kuiper, P. J. C.; Bos, M.] Berlin, Germany; Springer-Verlag, 48-52

Stryckers J; Himme M van, 1974. Influence of herbicides on various strawberry varieties planted in a temporary bed in summer. Review of the results obtained for the cropping year 1972-73 by the Centrum voor Onkruidonderzoek. Gent, Belgium: Rijksuniversiteit, 143-144.

Tasmanian Department of Agriculture, 1975. Annual report 1974/75, No. 46. Australia: Tasmanian Department of Agriculture, 34-35.

Thomas AG; Ivany JA, 1990. The weed flora of Prince Edward island cereal fields. Weed Science, 38(2):119-124.

Thomet P, 1978. The influence of pasture management on the botanical composition of permanent pasture. Schweizerische Landwirtschaftliche Monatshefte, 56(5-6):125-140.

Tizado Morales EJ; Nieto Nafría JM, 1991. Contribution to the aphid fauna from Leon: new records for the Spanish fauna of the tribe Macrosiphini (Homoptera: Aphididae). Graellsia, 47:43-48; 17 ref.

Toorn J van der; Pons TL, 1988. Establishment of Plantago lanceolata L. and Plantago major L. among grass. II. Shade tolerance of seedlings and selection on time of germination. Oecologia, 76(3):341-347

Trzaskos M, 1996. Role of meadow herbs in limiting microelement deficiency in permanent grassland. Zeszyty Problemowe Poste^hook~po^acute~w Nauk Rolniczych, 434(1):395-399; 4 ref.

USDA-ARS, 2003. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

USDA-NRCS, 2003. The PLANTS Database, Version 3.5. National Plant Data Center, Baton Rouge, USA. http://plants.usda.gov.

Verdcourt B, 1971. Plantaginaceae. In: Milne-Redhead E, Polhill RM, eds. Flora of Tropical East Africa. London, UK: Crown Agents.

Vidme T, 1973. Chemical weed control in grassland. Forskning og Forsoek i Landbruket, 24(3):127-157.

Wang Z; Xin M; Ma D, eds. , 1990. Farmland Weeds of China. Beijing, China: Agricultural Publishing House.

Warwick SI; Briggs D, 1979. The genecology of lawn weeds. 3. Cultivation experiments with Achillea millefolium L., Bellis perennis L., Plantago lanceolata L., Plantago major L. and Prunella vulgaris L. collected from lawns and contrasting grassland habitats. New Phytologist, 83(2):509-536

Warwick SI; Briggs D, 1980. The genecology of lawn seeds. V. The adaptive significance of different growth habit in lawn and roadside populations of Plantago major L. New Phytologist, 85(2):289-300

Watson A, 1977. A review of the suffusa species-group of Hypercompe Hubner (Lepidoptera: Arctiidae) with a description of a new species attacking Gossypium hirsutum L. (cotton). Revista de la Facultad de Agronomia, Universidad Central de Venezuela., 9(2):137-147

Wehner DJ; Haley JE; Yust AK, 1981. Control of plantains and clover in turf with post-em. herbicides. Proceedings North Central Weed Control Conference, Volume 36:36-37

Wells MJ; Balsinhas AA; Joffe H; VM Engelbrecht; G Harding; CH Stirton, 1986. A Catalogue of Problem Plants in Southern Africa. Memoirs of the Botanical Survey of South Africa No. 53. South Africa: Botanical Research Institute, Department of Agriculture and Water Supply.

Wolff K; Morgan-Richards M, 1998. PCR markers distinguish Plantago major subspecies. Theoretical and Applied Genetics, 96(2):282-296.

Wolff K; Schaal B, 1992. Chloroplast DNA variation within and among five Plantago species. Journal of Evolutionary Biology, 5(2): 325-344.

Yao RY; Chen M; Wang ZD; Hou JQ; Liu HQ; Zhang LH; Luo YY; Ma CH, 1992. The abundance measurement of delta 15N and the potential of N-fixation of forage in Balihuang pasture, Hubei Province. Grassland of China, No. 2:20-24.

Yuldashev AS; Ikramov MI, 1987. Medicinal plant resources in the Samarkand region. Rastitel'nye Resursy, 23(4):536-539.

Zelikov VD; Psonnova VG, 1961. Effect of soil compaction on green-belt and park stands. Lesn. Hoz., 14(12):34-36.

Zhukova LA; Vedernikova OP; Faizullina SYa; Balakhonov SV; Maksimenko OE; Glotov NV, 1996. Ecological-demographic characteristics of natural populations of Plantago major L. Russian Journal of Ecology, 27(6):425-431.

Distribution References

Akeroyd J R, Doogue D, 1988. Plantago major L. subsp. intermedia (DC.) Arcangeli (Plantaginaceae) in Ireland. Irish Naturalists' Journal. 22 (10), 441-443.

Andreasen C, Stryhn H, Streibig J C, 1996. Decline of the flora in Danish arable fields. Journal of Applied Ecology. 33 (3), 619-626. DOI:10.2307/2404990

Aye Than, Mu Mu Sein Myint, Tin Myint, Win Myint, 1996a. Anti-oedema activity of Nyctanthes arbor-tristis L., Curcuma longa L. and Plantago major L. Myanmar Health Sciences Research Journal. 8 (1), 36-40.

Aye Than, Mu Mu Sein Myint, Win Myint, Tin Myint, Su Su Hlaing, 1996. The anti-ulcerogenic activity of Plantago major Linn. Myanmar Health Sciences Research Journal. 8 (2), 74-77.

Bașaran A A, Ceritoghacek˜lu I, Ündeghacek˜er Ü, Bașaran N, 1997. Immunomodulatory activities of some Turkish medicinal plants. Phytotherapy Research. 11 (8), 609-611. DOI:10.1002/(SICI)1099-1573(199712)11:8<609::AID-PTR165>3.0.CO;2-0

Bastin L, Thomas C D, 1999. The distribution of plant species in urban vegetation fragments. Landscape Ecology. 14 (5), 493-507. DOI:10.1023/A:1008036207944

Batič F, Ribarič-Lasnik C, Gorjup N V, Kopušar N, Bienelli A, 1997. Monitoring the effects of ozone on agricultural plants within the ICP-Crops in Slovenia. In: Research Reports - Biotechnical Faculty University of Ljubljana, Agricultural Issue [Proceedings of the 14th International Congress of Biometeorology. Part 2, Volume 2. Ljubljana, Slovenia, 1-8 September 1996.], 4-9.

Bekmansurov M V, 1996. Investigation of greater plantain (Plantago major L.) consortia. Russian Journal of Ecology. 27 (2), 148-149.

Böttcher W, 1993. Effects of intensive farming on the landscape of a river meadowland in the Saxon hilly country. (Landeskulturelle Aspekte der Nutzungsintensivierung im Grünland einer Flussaue des Sächsischen Hügellandes.). Archiv für Naturschutz und Landschaftsforschung. 32 (3), 209-225.

CABI, Undated. Compendium record. Wallingford, UK: CABI

CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

Chua K S, Tan H T W, Turner I M, 1994. The angiosperm flora of Singapore. Part 3. Plantaginaceae. Gardens' Bulletin (Singapore). 46 (2), 103-107.

Coste I, 1970. Contribution to the study of a Molinio-Arrhenatheretea Tx. (1937) 1970 in the Locva Mountains (southwestern Romania). In: Revue Roumaine de Biologie, Biologie Vegetale, 24 (1) 17-26.

Cristea V, Groza G, 1983. Contributions to studies of the vegetation of the hills of 'Batrihacek˜nu' - Vadu Cri?ului municipalitu (Bihor district). (Contribuții la cunoașterea pajișilor de pe dealul 'Bătrinu' - com. Vadu Crișului (jud. Bihor).). Contribuții Botanice Universitatea 'Babeș-Bolyai' din Cluj-Napoca. 137-143.

Fogelfors H, 1984. Useful weeds? Part 14. (Nyttiga ogräs? Del 14.). Lantmannen. 105 (16), 43.

França F, Lago E L, Marsden P D, 1996. Plants used in the treatment of leishmanial ulcers due to Leishmania (Vannia) braziliensis in an endemic area of Bahia, Brazil. Revista da Sociedade Brasileira de Medicina Tropical. 29 (3), 229-232. DOI:10.1590/S0037-86821996000300002

Glen H F, 1998. FSA contributions 12: Plantaginaceae. Bothalia. 28 (2), 151-157.

Gupta A K, Bhardwaj L N, 1998. Additional host of Leveillula taurica (Lev.) G. Arnaud from India. Indian Phytopathology. 51 (1), 104-106.

Hǻland Ǻ, 1989. Nitrogen, potassium and lime for permanent pasture. Effects on botanical composition and yield. (Nitrogen, kalium og kalk til permanent beite. Verknader pǻ botanisk samansetnad og avling.). Norsk Landbruksforsking. 3 (4), 225-232.

Hawthorn W R, 1974. The biology of Canadian weeds. 4. Plantago major and P. rugelii. Canadian Journal of Plant Science. 54 (2), 383-396.

Holeksa J, Holeksa K, 1987. Plant communities of trampled sites in the Babia Gora National Park (Western Carpathians). In: Fragmenta Floristica et Geobotanica, 31-32 (1-2) 247-259.

Holetz F B, Pessini G L, Sanches N R, Cortez D A G, Nakamura C V, Dias Filho B P, 2002. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memórias do Instituto Oswaldo Cruz. 97 (7), 1027-1031. DOI:10.1590/S0074-02762002000700017

Holm L, Pancho J V, Herberger J P, Plucknett D L, 1979. A geographical atlas of world weeds. New York, Chichester (), Brisbane, Toronto, UK: John Wiley and Sons. xlix + 391 pp.

Ivshin N V, 1998. Variation in the number of ovules per boll in ecologically different populations of Plantago major L. Russian Journal of Ecology. 29 (6), 390-395.

Kanai H, Konta F, 1987. Distribution of commonly occurring plants in Shizuoka Prefecture, Central Japan. Bulletin of the National Science Museum, B (Botany), Tokyo. 13 (4), 151-170.

Kliment J, 1991. Capsello bursae-pastoris-Poëtum annuae Klika 1934 in the Vel'ká Fatra mountains. (Capsello bursae-pastoris-Poëtum annuae Klika 1934 vo Vel'kej Fatre.). Biológia (Bratislava). 46 (1), 63-72.

Kobayashi T, Hori Y, 1999. Photosynthesis and seedling survival of weeds with different trampling susceptibilities under contrasting light and water conditions. Journal of Weed Science and Technology. 44 (3), 195-204.

Kryukova E A, Persidskaya L T, 1986. The formation of entomofauna and pathogenic microflora in a sylvagrarian countryside: ways of improving the resistance of agricultural plant communities. Vestnik Sel'skokhozyaĭstvennoĭ Nauki. 61-66.

Missouri Botanical Garden, 2003. Vascular Tropicos database., St. Louis, USA: Missouri Botanical Garden. http://mobot.mobot.org/W3T/Search/vast.html

Molgaard P, 1992. Polymorphism for caffeic acid esters in populations of Plantago major spp. pleiosperma. In: Plantago: a multidisciplinary study. [ed. by Kuiper P J C, Bos M]. Berlin, Germany: Springer-Verlag. 192-203.

Oviedo Prieto R, Herrera Oliver P, Caluff M G, et al, 2012. National list of invasive and potentially invasive plants in the Republic of Cuba - 2011. (Lista nacional de especies de plantas invasoras y potencialmente invasoras en la República de Cuba - 2011). Bissea: Boletín sobre Conservación de Plantas del Jardín Botánico Nacional de Cuba. 6 (Special Issue No. 1), 22-96.

Patón D, Núñez J, Muñoz A, Tovar J, 1997. Analysis of overgrazing in Mediterranean grasslands grazed by Retinto cattle using bioindicator plants. (Determinación del porcentaje de pastoreo por vacuno retinto mediante análisis con especies bioindicadoras.). Archivos de Zootecnia. 46 (176), 357-365.

Pinto Basto M F, 1996. Cape Verde Flora. Vascular Plants. Plantaginaceae. (Flora de Cabo Verde. Plantas Vasculares. Plantaginaceae.). In: Flora de Cabo Verde, Lisboa, Portugal: Instituto de Investigação Científica Tropical. 10 pp.

Popay A I, Cox T I, Ingle A, Kerr R, 1995. Seasonal emergence of weeds in cultivated soil in New Zealand. Weed Research (Oxford). 35 (5), 429-436. DOI:10.1111/j.1365-3180.1995.tb01639.x

Potvin C, Vasseur L, 1997. Long-term CO2 enrichment of a pasture community: species richness, dominance, and succession. Ecology. 78 (3), 666-677.

Pyšek P, Pyšek A, 1988. Vegetation of industrial habitats in the eastern part of Prague. 1. Floristic conditions. (Die Vegetation der Betriebe des östlichen Teiles von Praha. 1. Floristische Verhältnisse.). Preslia. 60 (4), 339-347.

Ramos M B M, Vieira M C, Heredia N A Z, Grangeiro R S, 2002. Growth and biomass production of Plantago major and Plantago tomentosa considering spaces and arrangement of plants. (Crescimento e produção de biomassa de Plantago major e Plantago tomentosa considerando espaçamentos e arranjos de plantas.). Acta Horticulturae. 293-301.

Reynolds S C, 1990. Alien plants at Foynes and Dublin ports in 1988. Irish Naturalists' Journal. 23 (7), 262-268.

Šegulja N, Topić J, 1987. Frequency of weed and ruderal plants on the pastures of eastern Slavonia and Baranja. (Učestalost korovnih i ruderalnih vrsta u sustavu pašnjaka istočne Slavonije i Baranje.). In: Fragmenta Herbologica Jugoslavica, 16 (1-2) 85-94.

Sen D N, Kasera P K, 1988. Biology of some important Kharif and rabi weeds in Indian arid zone. In: VIIIe Colloque International sur la Biologie, l'Écologie et la Systématique des Mauvaises Herbes. [VIIIe Colloque International sur la Biologie, l'Écologie et la Systématique des Mauvaises Herbes.], Paris, France: A.N.P.P. 325-333.

Sharma U C, Choudhury A N, Khan A K, 1994. Effect of integrated weed management on yield and nutrient uptake by rainfed rice (Oryza sativa) in acid soils of Nagaland. Indian Journal of Agronomy. 39 (4), 553-556.

Trzaskoś M, 1996. Role of meadow herbs in limiting microelement deficiency in permanent grassland. (Rola ziół łąkowych w ograniczaniu niedoboru mikroelementów w paszy z trwałych użytków zielonych.). In: Zeszyty Problemowe Postępów Nauk Rolniczych, 434 (1) 395-399.

USDA-NRCS, 2003. The PLANTS Database. Greensboro, North Carolina, USA: National Plant Data Team. https://plants.sc.egov.usda.gov

Verdcourt B, 1971. Plantaginaceae. In: Flora of Tropical East Africa, [ed. by Milne-Redhead E, Polhill RM]. London, UK: Crown Agents.

Watson A, 1977. A review of the suffusa species-group of Hypercompe Hubner (Lepidoptera: Arctiidae) with a description of a new species attacking Gossypium hirsutum L. (cotton). Revista de la Facultad de Agronomia, Universidad Central de Venezuela. 9 (2), 137-147.

Wells M J, Balsinhas A A, Joffe H, Engelbrecht V M, Harding G, Stirton C H, 1986. A catalogue of problem plants in southern Africa incorporating the national weed list of South Africa. Memoirs, Botanical Survey of South Africa. v + 658pp.

Yao R Y, Chen M, Wang Z D, Hou J Q, Liu H Q, Zhang L H, Luo Y Y, Ma C H, 1992. The abundance measurement of d15N and the potential of N-fixation of forage in Balihuang pasture, Hubei Province. Grassland of China. 20-24.

Zhukova L A, Vedernikova O P, Faizullina S Ya, Balakhonov S V, Maksimenko O E, Glotov N V, 1996. Ecological-demographic characteristics of natural populations of Plantago major L. Russian Journal of Ecology. 27 (6), 425-431.

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.

Distribution Maps

Top of page
You can pan and zoom the map
Save map