Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Pityogenes chalcographus
(sixtoothed spruce bark beetls)



Pityogenes chalcographus (sixtoothed spruce bark beetls)


  • Last modified
  • 21 November 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Pityogenes chalcographus
  • Preferred Common Name
  • sixtoothed spruce bark beetls
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta
  • Summary of Invasiveness
  • P. chalcographus is considered in its native region a serious secondary insect pest, occasionally outbreaking and attacking trees. It can easily establish itself in new areas, mainly in temperate and sub-tropical zones, where the species can find sui...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page
P. chalcographus; museum set specimen of adult male.
CaptionP. chalcographus; museum set specimen of adult male.
CopyrightMilos Knizek
P. chalcographus; museum set specimen of adult male.
Male P. chalcographus; museum set specimen of adult male.Milos Knizek
P. chalcographus; museum set specimen of adult female.
CaptionP. chalcographus; museum set specimen of adult female.
CopyrightMilos Knizek
P. chalcographus; museum set specimen of adult female.
FemaleP. chalcographus; museum set specimen of adult female. Milos Knizek
P. chalcographus; elytral declivity of adult male (museum set specimen).
TitleAdult male
CaptionP. chalcographus; elytral declivity of adult male (museum set specimen).
CopyrightMilos Knizek
P. chalcographus; elytral declivity of adult male (museum set specimen).
Adult maleP. chalcographus; elytral declivity of adult male (museum set specimen).Milos Knizek
P. chalcographus; elytral declivity of adult female (museum set specimen).
TitleAdult female
CaptionP. chalcographus; elytral declivity of adult female (museum set specimen).
CopyrightMilos Knizek
P. chalcographus; elytral declivity of adult female (museum set specimen).
Adult femaleP. chalcographus; elytral declivity of adult female (museum set specimen).Milos Knizek
P. chalcographus attacking timber; entrance hole with frass.
TitleEntrance hole
CaptionP. chalcographus attacking timber; entrance hole with frass.
CopyrightMilos Knizek
P. chalcographus attacking timber; entrance hole with frass.
Entrance holeP. chalcographus attacking timber; entrance hole with frass.Milos Knizek
Initial gallery system of P. chalcographus; maternal galleries with females laying eggs. The mating chamber is hidden within the phloem.
TitleGallery system
CaptionInitial gallery system of P. chalcographus; maternal galleries with females laying eggs. The mating chamber is hidden within the phloem.
CopyrightMilos Knizek
Initial gallery system of P. chalcographus; maternal galleries with females laying eggs. The mating chamber is hidden within the phloem.
Gallery systemInitial gallery system of P. chalcographus; maternal galleries with females laying eggs. The mating chamber is hidden within the phloem.Milos Knizek
Gallery system of P. chalcographus; maternal and larval galleries, and hatching eggs.
TitleGallery system
CaptionGallery system of P. chalcographus; maternal and larval galleries, and hatching eggs.
CopyrightMilos Knizek
Gallery system of P. chalcographus; maternal and larval galleries, and hatching eggs.
Gallery systemGallery system of P. chalcographus; maternal and larval galleries, and hatching eggs. Milos Knizek
Fully developed gallery system of P. chalcographus.
TitleMature gallery system
CaptionFully developed gallery system of P. chalcographus.
CopyrightMilos Knizek
Fully developed gallery system of P. chalcographus.
Mature gallery systemFully developed gallery system of P. chalcographus.Milos Knizek
Entrance and exit holes of P. chalcographus on spruce (Picea abies).
TitleEntrance and exit holes
CaptionEntrance and exit holes of P. chalcographus on spruce (Picea abies).
CopyrightMilos Knizek
Entrance and exit holes of P. chalcographus on spruce (Picea abies).
Entrance and exit holesEntrance and exit holes of P. chalcographus on spruce (Picea abies).Milos Knizek
Picea abies attacked by P. chalcographus.
TitleDamage symptoms
CaptionPicea abies attacked by P. chalcographus.
CopyrightMilos Knizek
Picea abies attacked by P. chalcographus.
Damage symptomsPicea abies attacked by P. chalcographus.Milos Knizek


Top of page

Preferred Scientific Name

  • Pityogenes chalcographus (Linnaeus, 1761)

Preferred Common Name

  • sixtoothed spruce bark beetls

Other Scientific Names

  • Bostrichus bicolor Chevrolat, 1838
  • Bostrichus xylographus Sahlberg, 1836
  • Dermestes chalcographus Linnaeus, 1761
  • Ips chalcographus Linnaeus
  • Ips spinosus DeGeer, 1775
  • Scolytus sexdentatus Olivier, 1795
  • Tomicus chalcographus Linnaeus

International Common Names

  • English: bark beetle, six-dentated; engraver, spruce wood
  • Spanish: barenillo pequeno de los abetos; barrenillo pequeño de los abetos
  • French: bostryche chalcographe; petit rongeur de l'épicéa; petit rongeur du sapin
  • Russian: obyknovennyj graver
  • Chinese: xue xing keng xiao chong

Local Common Names

  • Croatia: bestozubu smrekov potkornjak
  • Czech Republic: lykozrout leskly
  • Denmark: chalcograf
  • Finland: kuusentähtikirjaaja
  • Germany: Borkenkaefer, Sechszaehniger; Borkenkaefer, Sechszaehniger Fichten-; Kupferstecher; Sechszähniger Fichtenborkenkäfer
  • Hungary: rèzmetszöszù
  • Italy: bostrico calcografo
  • Netherlands: koperetser
  • Norway: liten barkbille
  • Poland: rytownnik pospolity
  • Serbia: mali trozubi smrcin potkornjak; sesterozubi smrcin potkornja
  • Slovakia: lykozrut leskly
  • Slovenia: mali smrekov lubadar; sesterozobi smrekov lubadar
  • Sweden: sextandad barkborre
  • Yugoslavia (former): mal jelkin potkornik

EPPO code

  • PITYCH (Pityogenes chalcographus)

Summary of Invasiveness

Top of page P. chalcographus is considered in its native region a serious secondary insect pest, occasionally outbreaking and attacking trees. It can easily establish itself in new areas, mainly in temperate and sub-tropical zones, where the species can find suitable conditions for its development due to its wide polyphagy.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Coleoptera
  •                         Family: Scolytidae
  •                             Genus: Pityogenes
  •                                 Species: Pityogenes chalcographus

Notes on Taxonomy and Nomenclature

Top of page The species was described under the genus Dermestes by Linnaues in 1761 under the species name spelled "calcographus". In the 18th Century different authors spelled its name both ways, "calcographus" and "chalcographus". For more than the last 200 years the spelling commonly used is "chalcographus", which seems to be correctly expressing the original meaning, presumably referring to the gallery system below the bark resembling a copper (chalkos) engraving (grapho). It was transfered by Bedel (1888) into the genus Pityogenes.

It is rather unique within the Scolytids that such a widespread species has so few synonyms. P. chalcographus is a rather distinctive species but can be commonly mixed up with other morphologically related species, such as P. trepanatus, P. bidentatus or other species in museum and private collections.


Top of page Eggs
Round, shiny, whitish.

Whitish, curved, apode, 2.7-3.0 mm long in its last instar, there are three larval instars. Lekander (1968) described its morphology. The appearance of the larvae supports the division of this genus into two groups; species in which the females have a pit in their frons (e.g. P. chalcographus and P. trepanatus), and species where the females do not have this pit (e.g. P. bidentatus and P. quadridens).


The beetle is about 1.6-3.0 mm in length, has a black head and thorax, the elytra has a characteristic red-brownish shine. Frons is simply convex and scarce punctured. Elytral declivity longitudinally impressed in the middle and armed with three strong lateral spines on each side. (Schwerdtfeger, 1957; Postner, 1974; Freude et al., 1981).

Females have the same appearance as males, but frons has a deep transversal impression above epistomal margin and elytral spines are markedly smaller than the males, while the declivity is not so impressed (Schwerdtfeger, 1957; Postner, 1974; Freude et al., 1981).


Top of page P. chalcographus is a common bark beetle species throughout the entire natural range of Picea abies in Europe and other Picea species over its distribution in Asia. It also occurs in plantations in western Europe, outside the natural range of the host. Generally, it has trans-Palaearctic distribution.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 10 Jan 2020
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes


AlgeriaPresentIntroducedCABI (Undated)Original citation: Gaubil (1849)


ChinaPresentNativeCABI (Undated);
-HeilongjiangPresentNativeCABI (Undated)Original citation: Wood and Bright (1992)
-SichuanPresentNativeCABI (Undated)Original citation: Wood and Bright (1992)
IsraelPresentCABI (Undated)Original citation: Schendl, 1978
JapanPresent, WidespreadNativeCABI (Undated)Original citation: JPPA, 1980
MongoliaPresentNativeCABI (Undated)Original citation: Yanovskii and Tegshzhargal (1984)
North KoreaPresent, WidespreadNativeCABI (Undated);
South KoreaPresent, WidespreadNativeCABI (Undated);
TurkeyPresent, WidespreadNativeCABI (Undated)Original citation: Íymen, 1992


AustriaPresent, WidespreadNativeCABI (Undated)Original citation: Amman and Knabl (1913)
BelgiumPresent, WidespreadNativeCABI (Undated);
Bosnia and HerzegovinaPresent, WidespreadNativeCABI (Undated)Original citation: Wood and Bright (1992)
BulgariaPresent, WidespreadNativeCABI (Undated);
CroatiaPresent, LocalizedNativeCABI (Undated);
CzechiaPresent, WidespreadNativeCABI (Undated)Original citation: Jaminicky, 1960
CzechoslovakiaPresent, WidespreadNativeCABI (Undated)Original citation: Pfeffer (1931)
Federal Republic of YugoslaviaPresent, WidespreadNativeAndroic (1951); CABI (Undated);
DenmarkPresent, WidespreadNativeCABI (Undated)Original citation: Byers (1993)
EstoniaPresent, WidespreadNativeCABI (Undated)Original citation: Voolma and et al. (1996)
FinlandPresent, WidespreadNativeCABI (Undated);
FrancePresent, WidespreadNativeCABI (Undated);
-CorsicaPresentCABI (Undated)Original citation: Barthe (1896)
GermanyPresent, WidespreadNativeCABI (Undated)Original citation: Andersch (1851)
HungaryPresent, WidespreadNativeCABI (Undated);
IrelandPresent, Few occurrencesIntroducedInvasiveCABI (Undated)Original citation: O’Conner and et al. (1991)
ItalyPresent, WidespreadNativeCABI (Undated)Original citation: Beffa (1949)
LatviaPresent, WidespreadNativeCABI (Undated)Original citation: Telnov et al., 1997
LithuaniaPresent, WidespreadNativeCABI (Undated)Original citation: Silfverberg (1992)
NetherlandsPresent, WidespreadNativeCABI (Undated);
North MacedoniaPresent, WidespreadNativeCABI (Undated)Original citation: Karaman (1971)
NorwayPresent, WidespreadNativeCABI (Undated);
PolandPresent, WidespreadNativeCABI (Undated);
RomaniaPresent, WidespreadNativeCABI (Undated);
RussiaPresent, WidespreadNativeCABI (Undated);
-Central RussiaPresent, WidespreadNativeCABI (Undated)Original citation: Stark (1952)
-Eastern SiberiaPresent, WidespreadNativeCABI (Undated)Original citation: Stark (1952)
-Northern RussiaPresent, WidespreadNativeCABI (Undated)Original citation: Belousov (1916)
-Russian Far EastPresent, WidespreadNativeCABI (Undated)Original citation: Krivolutskaya (1996)
-Southern RussiaPresent, WidespreadNativeCABI (Undated)Original citation: Yanovskii (1999)
-Western SiberiaPresent, WidespreadNativeCABI (Undated)Original citation: Stark (1952)
SerbiaPresent, WidespreadNativeAndroic (1951)
SlovakiaPresent, WidespreadNativeCABI (Undated);
SloveniaPresent, WidespreadNativeCABI (Undated)Original citation: Jurc (2003)
SpainPresent, Few occurrencesIntroducedInvasiveCABI (Undated)Original citation: Riba (1996)
SwedenPresent, WidespreadNativeCABI (Undated)Original citation: Klefbeck and Sjoberg (1960)
SwitzerlandPresent, WidespreadNativeCABI (Undated);
UkrainePresent, WidespreadNativeCABI (Undated)Original citation: Rudnev (1965)
United KingdomAbsent, Intercepted onlyCABI (Undated);

North America

-British ColumbiaAbsent, Intercepted onlyCABI (Undated)Original citation: Humble et al., 1994
JamaicaAbsent, Intercepted onlyCABI (Undated)Original citation: Wood and Bright (1992)
Puerto RicoAbsent, Intercepted onlyCABI (Undated)Original citation: USDA, 1976
United States
-GeorgiaAbsent, Intercepted onlyCABI (Undated)Original citation: Haack (2001)
-KentuckyAbsent, Intercepted onlyCABI (Undated)Original citation: Haack (2001)
-LouisianaAbsent, Intercepted onlyCABI (Undated)Original citation: Haack (2001)
-MichiganAbsent, Intercepted onlyCABI (Undated)Original citation: Haack (2001)
-MinnesotaAbsent, Intercepted onlyCABI (Undated)Original citation: MDA, 2003
-New YorkAbsent, Intercepted onlyCABI (Undated)Original citation: Haack (2001)
-TexasAbsent, Intercepted onlyCABI (Undated)Original citation: Haack (2001)


New ZealandAbsent, Intercepted onlyCABI (Undated)Original citation: Bain (1974)

History of Introduction and Spread

Top of page The species is native to the Palaearctic region but is frequently introduced into new areas, probably through commerce e.g. New Zealand (Bain, 1974); North America (Wood and Bright, 1992; Humble et al., 1994); Africa (Gaubil, 1849).

Risk of Introduction

Top of page The risk of introduction for P. chalcographus must be considered as high. Because of world wide commerce it can be introduced into new areas; once established its eradication is nearly impossible. The main pathways of introduction could be the trade of seedlings, wood with bark and dunnage with bark.


Top of page P. chalcographus occurs in both natural and managed forests. Under optimal conditions it can become a serious pest with significant economic importance.

Habitat List

Top of page
Terrestrial – ManagedCultivated / agricultural land Present, no further details Harmful (pest or invasive)
Protected agriculture (e.g. glasshouse production) Present, no further details Harmful (pest or invasive)
Managed forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Managed grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Disturbed areas Present, no further details Harmful (pest or invasive)
Rail / roadsides Present, no further details Harmful (pest or invasive)
Urban / peri-urban areas Present, no further details Harmful (pest or invasive)
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details Harmful (pest or invasive)
Natural grasslands Present, no further details Harmful (pest or invasive)
Riverbanks Present, no further details Harmful (pest or invasive)
Wetlands Present, no further details Harmful (pest or invasive)
Cold lands / tundra Present, no further details Harmful (pest or invasive)
Deserts Present, no further details Harmful (pest or invasive)
Coastal areas Present, no further details Harmful (pest or invasive)
Freshwater Present, no further details Harmful (pest or invasive)
Marine Present, no further details Harmful (pest or invasive)

Hosts/Species Affected

Top of page P. chalcographus occurs generally on all coniferous tree species in its main area of distribution; Central and Eastern Europe, and from northern Asia to the Far East.

Growth Stages

Top of page Post-harvest, Vegetative growing stage


Top of page Trees infested by P. chalcographus can be easily identified by the change in colour of their needles, which start by yellowing and then become brown later on. In the initial stages of attack, the entrance holes can be seen together with frass that the beetles push out during the construction of the gallery system. The colour changes are easily visible by terrestrial investigation as well as by aerial survey.

List of Symptoms/Signs

Top of page
SignLife StagesType
Leaves / yellowed or dead
Leaves / yellowed or dead
Stems / gummosis or resinosis
Stems / gummosis or resinosis
Stems / internal feeding
Stems / internal feeding
Stems / visible frass
Stems / visible frass
Whole plant / discoloration
Whole plant / discoloration
Whole plant / frass visible
Whole plant / frass visible
Whole plant / internal feeding
Whole plant / internal feeding
Whole plant / plant dead; dieback
Whole plant / plant dead; dieback

Biology and Ecology

Top of page A comprehensive review on the literature of P. chalcographus is given by Bright and Skidmore (1997; 2002) and Wood and Bright (1987; 1992).

The ecology and biology of P. chalcographus has been described extensively by Ratzeburg (1839), Schwerdtfeger (1929), Stark (1930), Karpinski (1933), Galoux (1948), Klausert (1954), Pfeffer (1955), Schwerdtfeger (1957), Postner (1974), Novak (1976) and Zumr and Soldán (1981).

P. chalcographus is a polygamous species. The males dig a nuptial chamber in the bark. Inside the nuptial chamber, every male copulates with three to six females. After copulation, females begin to bore the mother galleries in a star-like arrangement, depositing about 40 egg niches on both sides of the mother gallery. After hatching, larvae generate larval galleries horizontally to the mother galleries, ending in a pupal chamber where development is completed. Here, after metamorphosis to immature adults, maturation feeding takes place, enabling the imago to undergo sexual development. The nuptial chamber does not touch the wood if the bark is thick. However, in thin parts of the phloem of spruce and pine trees the nuptial chamber can carve into the wood making the frass similar to that of P. bidentatus.

P. chalcographus has one to two generations per year, while under especially favourable conditions a third generation may also be established. The swarming period of the first generation begins in the last ten days of April, dependant on the temperature. Vité (1965) states that the adults appear only as soon as the temperature reaches 16°C. The second generation swarms during July and August (Schwerdtfeger, 1929; Postner, 1974). P. chalcographus hibernates either in the larval, pupal or in the young adult stage inside the gallery. Adult beetles can also hibernate in the soil (Renner, 1974; Postner, 1974). Eggs can survive hibernation, however, under extreme temperatures they are more likely to die than the other ontogenetic stages. Embryonic development is heavily dependant on photoperiod and temperature.

If females are disturbed or if the tree is too heavily infested by other P. chalcographus, females can emerge and start another mother gallery without mating, on another tree.

P. chalcographus is attracted to the host tree by a mixture of monoterpenes such as (±)-alpha-pinene,(-)-beta-pinene and camphene (Chararas, 1962; Kangas, 1968; Vite and Pitmann, 1969; Byers et al., 1988). The detoxification of these substances in the gut, results in their transformation into the aggregation pheromones that compose of two chemical substances, dioxaspiro[4.4]nonane, 2-ethyl-1,6 or chalcogran (Francke, 1977) and methyl-E,Z-2,4-decadienoate, which are found to act synergistically (Byers et al., 1988; Byers et al., 1990). The aggregation pheromone attracts males as well as females, resulting often in mass infestation.

Intra-specific investigations showed that P. chalcographus did not colonize its current distribution area in a uniform way but instead had formed races within Europe. Crossing experiments among Northeast and Central European populations revealed incompatibilities (Führer, 1976) and differences in fertility and reproductive incompatibility were recognised (Führer, 1977). Analysis of morphological parameters - proportion of the antennae and spine formation on the elytra revealed significant differences between Northeast and Central European populations (Führer, 1978). Allopatric females were partly rejected by males in certain strain combinations, in which sympatric and allopatric females were simultaneously offered as pairing partners (Sturies and Führer, 1979). Crossings of Scandinavian, Polish and Alpine strains resulted in different degrees of inter-population heterosis (Führer and Klipstein, 1980). Hybrids tend to have a superior epidemiological potential when compared to the parental strains (Führer, 1984). Inter-popular hybrids showed polyploid sperm. Increased polyploid rates are indicative of inter-popular hybridisation (Führer, 1980; Führer and Krehan, 1985). Allozyme electrophoreses revealed two groups, however, races were not clustered according to previous findings (Ritzengruber, 1990). The bacterial endosymbiont Wolbachia, often responsible for race formation due to induction of cytoplasmic incompatibility, was not found in P. chalcographus (Riegler, 1999).

P. chalcographus was influenced by the postglacial history of its host, Picea abies. After the temperature amelioration about 10 000 years ago, vegetation and fauna began to re-invade the previously frozen and incompatible northern zones. According to pollen analysis, Picea abies had three refugial areas: Dinaric Alps, Carpatic Alps and area north of Moscow, Russia (Schmidt-Vogt, 1977; Lagercrantz and Ryman, 1990). Further, the Apennines were important for the re-colonization of the Southern Alps (Giannini et al., 1991). It is suggested that Picea abies re-migrated from the Dinaric and the Apennine back to the Central Alps; from the Carpathic back to the northern Alps and from the area north of Moscow (Kostroma), Russia, back to western Europe and over Finland to Scandinavia (Schmidt-Vogt, 1977; Lagercrantz and Ryman, 1990). It is likely that P. chalcographus had the same refugial areas and the same remigration routes. However, according to allozyme findings in P. chalcographus (Ritzengruber, 1990), this scolytid species might have had a geographic barrier preventing migration from Kostroma, Russia, to Scandinavia. Further there might be several other barrier zones (e.g., the Danube river) which might be responsible for the race formation within Central Europe. The genetic background of the formation of the races in P. chalcographus is not yet known although the understanding of their evolution would be interesting from the phylogeographic standpoint but also could be exploited in forest protection. It may open new ways for integrated pest management such as the use of new semiochemicals.

Virkki (1960) studied the cytology of male meiosis in P. chalcographus. The main features appeared to be the same as in Pityogenes quadridens (Hartig). The chromosome number was 20 in spermatogonia, and 10 bivalents in the first meiotic metaphase (9+Xyp). Abnormal spermatogenesis in P. chalcographus results in oversized spermatozoa in all the populations investigated. They can be identified by light microscopy and classified as 2n up to 16n polyploid. The percentage of polyploid sperm increases when allopatric parents are crossed: Parental populations with less than 1% polyploid, result in male F-1 with more than 20% polyploid. Populations from allochthonous sites for the host tree are distinguished by higher rates of sperm polyploidy than those from autochthonous areas. Thus, it is assumed that polyploid sperm indicates populations originating from the mixing of partially incompatible beetles (Führer, 2004).

The preference of P. chalcographus in the upper, thin barked parts of the trunk enables its association with Ips typographus, whose presence is located in the lower, thick barked parts. (Ratzeburg 1839, Schwerdtfeger 1957, Postner 1974, Zumr and Soldán 1981, Benz & Zuber 1993). The proportion of windthrown trees attacked by I. typographus increases with stem diameter, whereas the opposite is true for P. chalcographus. There is a positive interspecific association between the species on the lower, middle and upper third parts of the trees (Gothlin et al, 2000). Byers (1993) concluded that the avoidance of interspecific competition between these two scolytid species is achieved by the pheromone components, drawing a barrier to their distribution on the trunk.

P. chalcographus, is associated with blue-stain fungi, in a rather intimate manner, since a large proportion of individuals carry spores of ophiostomatoid fungi (Kirisits 2004). The spectrum of the mycobiota associated with P. chalcographus comprises of Graphium fimbriisporum (Kirisits 1996; Kirisits et al., 2000), many Ophiostoma species, Ophiostoma ainoae (Kirisits 1996; Kirisits et al., 2000) Ophiostoma bicolour (Krokene and Sollheim 1996; Kirschner 1998, 2001) Ophiostoma piceae (Kirschner 1998; 2001) Ophiostoma piceaperdum (Kirisits 1996; Kirisits et al., 2000; Kirschner 1998, 2001), as well as some representatives of Ceratocystiopsis (Ceratocystiopsis minuta (Kirisits 1996; Kirisits et al., 2000; Kirschner 1998, 2001) and Pesotum species (Mathiesen 1950; Kirisits 1996; Kirisits et al., 2000).

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Beauveria bassiana Pathogen Adults/Larvae
Beauveria caledonica Pathogen Adults/Larvae
Caenopachys hartigii Parasite Larvae
Chytridiopsis typographi Pathogen Adults/Larvae
Coeloides bostrichorum Parasite Larvae
Corticeus linearis Predator Eggs/Larvae
Cosmophorus cembrae Parasite Adults
Dendrosoter middendorffii Parasite Larvae
Dinotiscus eupterus Parasite Larvae
Ecphylus hylesini Parasite Larvae
Ecphylus silesiacus Parasite Larvae
Epuraea marseuli Predator Eggs
Eurytoma arctica Parasite Larvae
Eurytoma morio Parasite Larvae
Gregarina typographi Pathogen Adults/Larvae
Macromesus amphiretus Parasite Larvae
Malamoeba scolyti Pathogen Adults/Larvae
Mattesia Pathogen Adults/Larvae
Medetera adjaniae Predator Adults/Larvae
Medetera dendrobaena Predator Adults/Larvae
Medetera dichrocera Predator Adults/Larvae
Medetera setiventris Predator Adults/Larvae
Menzbieria chalcographi Pathogen Adults/Larvae
Metacolus azureus Parasite Larvae
Metarhizium anisopliae Pathogen Adults/Larvae
Nemosoma elongatum Predator Adults/Larvae
Nemozoma elongatum Predator
Nudobius lentus Predator Adults/Larvae
Paromalus parallelepipedus Predator
Phaonia Predator Larvae
Placusa depressa Predator Adults/Eggs/Larvae
Platysoma angustatum Predator Larvae
Platysoma lineare Predator Larvae
Pteromalus abieticola Parasite Larvae
Pyemotes dryas Predator Larvae
Rhizophagus depressus Predator Eggs/Larvae
Rhopalicus quadratus Parasite Larvae
Rhopalicus tutela Parasite Larvae
Roptrocerus brevicornis Parasite Larvae
Roptrocerus mirus Parasite Larvae
Roptrocerus xylophagorum Parasite Larvae
Scoloposcelis pulchella Predator Larvae
Thanasimus femoralis Predator Adults/Larvae
Thanasimus formicarius Predator Adults/Larvae
Tolypocladium cylindrosporum Pathogen Adults/Larvae
Tomicobia pityophthori Parasite Adults
Troxochrus nasutus Predator Adults
Unikaryon Pathogen Adults/Larvae

Notes on Natural Enemies

Top of page All parasitoids and predators mentioned in this datasheet are from Kenis et al. (2004). Parasitoid records considered by these authors as dubious are not included. For the predators, only those species clearly associated with P. chalcographus or its galleries are mentioned. The parasitoids and predators attacking the larvae usually also attack the pupae.

Pathway Vectors

Top of page
VectorNotesLong DistanceLocalReferences
Soil, sand and gravelSoil Yes

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Bark adults; eggs; larvae; nymphs; pupae Yes Pest or symptoms usually visible to the naked eye
Stems (above ground)/Shoots/Trunks/Branches adults; eggs; larvae; nymphs; pupae Yes Pest or symptoms not visible to the naked eye but usually visible under light microscope
Plant parts not known to carry the pest in trade/transport
Fruits (inc. pods)
Growing medium accompanying plants
Seedlings/Micropropagated plants
True seeds (inc. grain)

Wood Packaging

Top of page
Wood Packaging liable to carry the pest in trade/transportTimber typeUsed as packing
Solid wood packing material with bark Conifer No
Wood Packaging not known to carry the pest in trade/transport
Loose wood packing material
Processed or treated wood
Solid wood packing material without bark

Impact Summary

Top of page
Animal/plant collections Negative
Animal/plant collections Negative
Animal/plant products None
Animal/plant products None
Biodiversity (generally) Positive
Biodiversity (generally) Positive
Crop production None
Crop production None
Environment (generally) Positive
Environment (generally) Positive
Fisheries / aquaculture None
Fisheries / aquaculture None
Forestry production Negative
Forestry production Negative
Human health None
Human health None
Livestock production None
Livestock production None
Native fauna None
Native fauna None
Native flora None
Native flora None
Rare/protected species None
Rare/protected species None
Tourism None
Tourism None
Trade/international relations Negative
Trade/international relations Negative
Transport/travel None
Transport/travel None


Top of page The EU funded COST action BAWBILT started to list the economic impact in European countries.

Economic Impact

Top of page The EU funded COST action BAWBILT started to list the economic impact in European countries.

Detection and Inspection

Top of page P. chalcographus can be easily detected by using pheromone traps bated with commercially available pheromone dispensers. Infested logs are easily detected by the presence of entrance holes, which are easily identifiable in the initial stage of infestation by the frass pushed out during the construction of the gallery system. Galleries of P. chalcographus are typical in shape and are easily visible on the lower surface of bark after debarking.

Similarities to Other Species/Conditions

Top of page This species can be easily distinguished from other Pityogenes species due to the characteristic brown-reddish tinge of the elytra, the shape of spines on the elytral declivity as well as the morphology of the female frons. Morphologically, the closest related species are P. trepanatus, P. fossifrons and other "three simple-spined" Pityogenes spp. with impressions on female the frons. If this species is found on pine species, the frass can be easily confused with P. bidentatus.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

The most effective measure is to remove infested trees from the forest before the new generation of adult beetles emerge. After logging, residue and other infested material should be burnt or chipped (Knízek and Zahradník, 2004). Thicker parts of trunks can be treated chemically by many commercially available pesticides (Zahradník, 2004). Forest management is recommended in order to increase the stability and vitality of forest stands (Thalenhorst, 1958; Christiansen and Bakke, 1988; Eidmann, 1992). Mass trapping with pheromone-baited traps or trap trees has also been successfully used to suppress beetle populations and prevent outbreak conditions (Bakke et al., 1977; Zumr, 1983; Bakke, 1985; Furuta et al., 1985; Weslien et al., 1989; Raty et al., 1995).

The pheromone traps with commercially available pheromone dispensers are used in central Europe mainly for monitoring but sometimes for mass trapping as well (Knízek and Zahradník, 2004).

Debarking of logs before export is the best and may be the only efficient way to prevent P. chalcographus from being introduced into isolated new areas. The EPPO Specific Quarantine Requirements (OEPP/EPPO, 1990) offer countries the choice of prohibiting import of bark of conifers from countries where the species occurs or of demanding an appropriate treatment. Wood of conifers should be debarked, kiln-dried or subjected to another appropriate treatment.

No biological control method of P. chalcographus is applied at the present. The percentage of mortality caused by natural enemies is not effective enough to stop the beetles in the outbreak stage.


Top of page

÷ymen T, 1992. The forest Scolytidae of Turkey. I^dot over~stanbul U^umlaut~niversitesi Orman Faku^umlaut~ltesi Dergisi. Seri A, 42(1):77-91; 76 ref.

Acloque A, 1896. Faune de France, contenant la description de especes indigenes disposes en tableaux analytiques et illustree de figures representant les types characteristiques des genres (Scolytidae, p405-411). J. Bailliere et Fils. Paris. Vol. 1 Coleopteres.

Allen A, 1951. New records of rare Ipinae in Hants and Berks. Entomologist’s Monthly Magazine, 87: 115.

Amman J; Knabl H, 1913. Die Käferfauna des Ötztals. Koleopterologische Rundschau, 2: 82-91.

Andersch C, 1851. Die preußischen Borkenkäfer, Xylophaga. Preußische Provinzialblätter, 12: 56-62.

Androic; M, 1951. Los mas importantes problemas de entomologia forestal en Yugoslavia. Servicio de Plagas Forestales, Boletin, 9: 43-53.

Anonymous, 1960. Interceptions of special interest at US ports of entry. Cooperative Economic Insect Report, 48: 1105.

Anonymous, 1976. Detection of Pityogenes chalcographus in Puerto Rico. Cooperative Plant Pest Report, 1: 139.

Anonymous, 1980. Major insect and other pests of economic plants in Japan. Japan Plant Protection Association, Tokyo.

Anonymous, 2003. Minesota Department of Agriculture, Invasive Species Program.

Baader EJ, 1989. Pityogenes spp. (Col., Scolytidae): investigations on semiochemicals and their application in forest protection. Journal of Applied Entomology, 107(1):1-31

Bain J, 1974. Overseas wood- and bark-boring insects intercepted at New Zealand ports. Technical Paper, Forest Research Institute, New Zealand Forest Service, No. 61, 24 pp.; 19 ref.

Bakke A, 1960. Insect damage to unbarked Spruce and Pine timber in Norway. [Insektskader pa ubarket gran- og furutommer i Norge.] Medd. Norske Skogforsoksv. 16 (4), No. 56, (281-333). 15 refs.

Bakke A, 1968. Ecological studies on bark beetles (Coleoptera: Scolytidae) associated with Scots Pine (Pinus sylvestris L.) in Norway with particular reference to the influence of temperature. Medd. Norske Skogforsoksv. 21 (6), (No. 83), (441-602). [9 pp. of refs.].

Balazy S; Michalski J, 1960. Contribution to the knowledge of the beetles occurring in the galleries of bark beetles. Polskie Pismo Entomologiczne, 30: 133-144.

Barthe E, 1896. Catalogous coleopterorum Galliae et Corsicae. Scolytidae 49-51 and 188-191.

Bedel LEM, 1888. Le Famille Scolytidae. Faune des coleopteres du basin de la Seine, etc. Annales de la Societe Entomologique de France, hors serie 6: 385-421.

Beffa GD, 1949. Damaging Insects in the Agriculture & Forestry. Edition 3. Ulrich Huepli, Milano.

Bejer-Peterson B; Palle J, 1977. Distribution and frequency of bark beetles in Denmark. Entomologiske Meddelelser, 45: 1-36.

Belousov V, 1916. Bark beetles of Northern Saian. Russkoe Entomologischeskoe Obozrenie, 16: 334-337.

Benz G; Zuber M, 1993. Die wichtigsten Forstinsekten der Schweiz und des angrenzenden Auslandes. Verlag der Fachvereine Zürich, Zürich.

Brakman PJ, 1966. Lijst van Coleoptera uit Nedeland en het omliggend gebied [Scolytidae, p. 203-207]. Monographieen van de Nederlandsche Entomologische Vereeniging No. 2.

Bright DE; Skidmore RE, 1997. A catalog of Scolytidae and Platypodidae (Coleoptera), Supplement 1 (1990-1994). Ottawa, Canada: NRC Research Press, 368 pp.

Bright DE; Skidmore RE, 2002. A catalogue of Scolytidae and Platypodidae (Coleoptera), Supplement 2 (1995-1999). Ottawa, Canada: NRC Research Press, 523 pp.

Browne FG, 1968. Pests and diseases of forest plantation trees: an annotated list of the principal species occurring in the British Commonwealth. Clarendon Press, Oxford University Press, Oxford.

Buresh I; Lazarov A, 1956. Vrednite nasekomi za selskoto i gorskoto stopanstvo v Bulgaria. Bulgarska Akademia na Naukite, Sofia, Zoologicheski Institute, 5:1-935.

Byers JA, 1993. Avoidance of competition by spruce bark beetles, Ips typographus and Pityogenes chalcographus. Experientia, 49(3):272-275

Byers JA; Birgesson G; Löfqvist J; Appelgren M; Bergström G, 1990. Isolation of pheromone synergists of a bark beetle, Pityogenes chalcographus, from complex insect-plant odours by fractionation and subtractive-combination bioassay J. Chemical Ecology 16: 861-876.

Byers JA; Birgesson G; Löfqvist J; Bergström G, 1988. Synergistic pheromones and monoterpenes enable aggregation and host recognition by a bark beetle. Naturwissenschaften 75, 153-155.

Chararas C, 1961. Les Scolytides parasites de l’epicea dans la foret Saint-Prix. Degats et lutte [Scolytidae parasitic on Norway spruce in the forest of Saint-prix; damage and control]. Institute of National Agronomique, Paris, Annales 47:65-138.

Chararas C, 1962. Encyclopêdie Entomologique A, Band 38. Paris.

Chararas C, 1983. Diet and carbohydrase activity in wood-feeding insects. Bulletin de la Societe Zoologique de France, 108(3):389-397

Cho PS, 1957. A systematic catalog of Korean Coleoptera. Korea University, Humidities and Science 2: 173-338.

Chorbadzhievo P, 1924. Notes on bark beetles and list of bark beetles in Bulgaria. Ipidae, Scolytidae. Bulgarsko Entomologichno Druzhestvo, Sofia, Izvestiia, 1: 33-35.

Csiki E, 1914. Adatok Magyararorszag bogarfaunajahoz. Rovartini Lapok 21, 16-26.

Debatisse G, 1945. Contribution a la connaissance des Scolytides de Belgique (Col.). Societe Entomologique de Belgique, Bulletin et Annales 81:252-256.

Dominik J, 2003. Research on damage of exotic coniferous species caused by indigenous insects – supplementary results. Sylwan 10: 25-28.

Elton ETG, 1949. Review of available data on insect pests in Dutch forests and other woody growth in 1948. [Overzicht der beschikbare gegevens over insectenplagen in onze bossen en andere houtopstanden in het jaar 1948.] Ned. Boschb.-Tijdschr. 21 (11), (332-44). 8 refs.

Fang SY; Roques A; Sun JH, 1988. Report on the survey of cone and seed insects in conifer forest in Northeast China. Journal of North-East Forestry University, China, 16(1):91-98

Favre E, 1890. Faune des Coleopteres du Valais et des regions limitrophes. Nouv. Mem. Soc. helv. Sc. nat. Bd. 31:348-352. Zürcher and Furrer, Zurich.

Fergusson A, 1920. The Clyde record of Pityogenes chalcographus L. Scottish Naturalist 1920:199-200.

Francke W, 1977. 2-Ethyl-1,6-dioxaspirol[4,4]nonane, Principal aggregation pheromone of Pityogenes chalcographus L. Naturwissenschafte 64: 590-591.

Francke W; Kitching W, 2004. Spiroacetals in insects. Current Organic Chemistry 5: 233-251.

Freude H; Harde KW; Lohse GA, 1981. Die Käfer Mitteleuropas. Vol. 10. Krefeld, Germany: Goecke & Evers.

Fuhrer E, 1976. Reproductive incompatibility in Pityogenes chalcographus - a new means of bark beetle control? Forstarchiv, 47(6):114-117; 10 ref.

Fuhrer E, 1977. Studies on intraspecific incompatibility in Pityogenes chalcographus L. (Col., Scolytidae). Zeitschrift fur Angewandte Entomologie, 83(3):286-297

Fuhrer E, 1980. Sperm polyploidy by inter-population hybridisation in Pityogenes chalcographus. Naturwissenschaften, 67(8):410-411

Fuhrer E, 1984. Race differentiation in Pityogenes chalcographus. Part 4: viability of interpopulation hybrids. [Rassendifferenzierung bei Pityogenes chalcographus L. (Col., Scolytidae). IV. Lebenserwartung interpopularer Bastarde.] Centralblatt fur das Gesamte Forstwesen, 101(1):24-33; 12 ref.

Fuhrer E; Klipstein EL, 1980. Race differentiation in Pityogenes chalcographus. Fertility of intraspecific F1 hybrids. [Rassendifferenzierung bei Pityogenes chalcographus L. (Col., Scolytidae). Fertilitat intraspezifischer F1-Bastarde.] Forstwissenschaftliches Centralblatt, 99(2):85-90; 7 ref.

Führer E, 2004. Polyploid spermatozoa in Pityogenes chalcographus and Ips typographus (Coleoptera: Scolytidae). European Journal of Entomology 101: 21-27.

Führer E; Krehan H, 1985. Zum Auftreten der Spermapolyploidie in Populationen des Fichtenborkenkäfers Pityogenes chalcographus. Zentralblatt für das gesamte Forstwesen 102, 134-149.

G÷thlin E; Schroeder LM; Lindel÷w +, 2000. Attacks by Ips typographus and Pityogenes chalcographus on windthrown spruces (Picea abies) during the two years following a storm felling. Scandinavian Journal of Forest Research, 15(5):542-549; 39 ref.

Galoux A, 1948. Etudes statistiques sur une population de Pityogenes chalcographus L. Parasitica 4:43-78.

Gaubil J, 1849. Catalogue synonimique des Coleopteres d’Europe et Algerie. Pages 125-128, 289. Maison Libraire, Paris.

Grodzki W, 1996. Changes in the occurrence of bark beetles on Norway spruce in a forest decline area in the Sudety Mountains in Poland. “Integrating cultural tactics into the management of bark beetle and reforestation pests”, IUFRO Meeting, Vallombrosa, Italy.

Gutowski JM; Kubisz D, 1995. Entomofauna of windfall stands in the BialowieZa Primeval Forest. Prace Instytutu Badawczego Les^acute~nictwa, No. 783-789:91-129; [With English tables and figures. ^italic~Prace^roman~ No. 788]; 29 ref.

Haack RA, 2001. Intercepted Scolytidae (Coleoptera) at US ports of entry: 1985-200. Integrated Pest Management Reviews 6: 253-282.

Haidler B, 1998. Pathogene und Parasiten von Fichtenborkenkäfern in einem Fichtenbestand am Achner Kogel bei Tamsweg. Diploma thesis, Formal- und Naturwissenschaftliche Fakultät der Universität Wien.

Humble LM; Allen EA; Bell JD, 1995. Exotic Wood-boring Beetles in British Columbia: Interceptions and Establishments. Canadian Forest Service.

Händel U, 2001. Untersuchungen zum Gegenspielerkomplex assoziiert lebender Fichtenborkenkäfer (Col., Scolytidae) aus naturnahen und sekundären Fichtenbeständen unter besonderer Berücksichtigung der Pathogene. PhD thesis, Universität für Bodenkultur Wien.

Händel U; Wegensteiner R; Weiser J; Žižka Z, 2001. Occurrence of pathogens in associated living bark beetles (Col., Scolytidae) from different spruce stands in Austria. Journal of Pest Science 76, 22-32.

Jacobs W; Renner M, 1988. Biology and ecology of insects. Stuttgart, German Federal Republic; Gustav Fischer Verlag, Ed. 2:690 pp.

Jamnicky J, 1960. Scolytids inhabiting P. cembra. [Korovce (Scolytidae) zijuce na borovici limbe (Pinus cembra L.)] Biologia, Bratislava 15 (11), (820-31). 12 refs.E.

Jansky L, 2001. Perspectives for Sustainable Mountain Forest Management in the Western Carpathians. World Mountain Symposium 2001.

Johansson L; Andersen J; Nilssen AC, 1994. Distribution of bark insects in "island" plantations of spruce (Picea abies (L.) Karst.) in subarctic Norway. Polar Biology, 14(2):107-116

Jurc M, 2003. Bark beetles (Scolytidae,Coleoptera) in Slovenia with special Regard to species in Burnt Pine Forests. Proceedings: Ecology, Survey and Management of Forest Insects. 157-159.

Kangas E, 1968. The orientation mechanisms of bark beetle in relation to their breeding material. Anz. Schadlingsk. 41 (12), (177-80). [38 refs.].

Karaman Z, 1971. Coleopteres, Scolytides. Fauna de Macedonia. Musee d’Histoire Naturelle de Skopje, Skopje.

Karpinski JJ, 1933. Fauna korników puscy Bialowieskiej na tle wystepujacych w paszezy typóv drzewostanow. Rozpr. Sprau. Zakl. Daswiad. Las. panst., Warszawa. 1: 1-68.

Kenis M; Wermelinger B; Grégoire JC, 2004. Natural enemies of bark beetles. In: Bark and wood boring insects in living trees in Europe, a synthesis (eds. Lieutier F, Day K, Battisti A, Grégoire JC, Evans H). Kluwer (in press).

Kirchhoff JF; Fuhrer E, 1990. Experimental analysis of infection and developmental cycle of Malamoeba scolytii in Dryocoetes autographus (Coleoptera: Scolytidae). Entomophaga, 35(4):537-544

Kirisits T, 1996. Untersuchungen über die Vergesellschaftung von Bläuepilzen (Ceratocystis/Ophiostoma spp.) mit den rindenbrütenden Fichtenborkenkäfer Ips typographus, Pityogenes chalcographus und Hylurgops glabratus in Österreich. Diplomarbeit, Universität für Bodenkultur Wien.

Kirisits T; Grubelnik R; Fnhrer E, 2000. The ecological role of blue-stain fungi for phloem-feeding bark beetles. FBVA Berichte, No. 111:117-137; 56 ref.

Kirschner R, 1998. Diversität mit Borkenkäfer assoziierter filamentöser Mikropilze, Disseration, Eberhard-Karls-.Universität Tübingen.

Kirschner R, 2001. Diversity of Filamentous Fungi in Bark Beetle Galleries in Central Europe. In: Trichomycetes and Other Fungal Groups: Professor Robert W. Lichtwardt Commemoration Volume, Editors-J. K Misra, BW Horn, Science Publishers, Inc., Enfield (NH), USA 175-196.

Klausert O, 1954. Ein Beitrag zur Kenntnis des Kupferstechers (Pityogenes chalcographus L.). In Wellenstein, G. (Hrsg) : Die große Borkenkäferkalamität in Südwestdeutschland 1944-1951. Forstschutzstelle Südwest Ringingen.

Klefbeck E; Sjoberg B, 1960. Catalogus Insectorum Sueciae. XVI. Coleoptera. Opuscula Entomologica Supplementum 18.263 p.

Knížek M; Zahradník P, 2004. Kurovci na jehlicnanech [Bark beetles on conifers]. Lesnická práce 83(3): I-VIII.

Knotek J, 1892. Scolytidae, koje su do sada poznate iz Bosne i Horcegovine. Glasnik Zemaljekog Muzeja u Bosni Hercegovini, 4:32-39.

Ko JH, 1969. A list of forest insects pest in Korea: Forest Research Institute, Seoul. 10+458p.

Koca G, 1905. Popis tvrdokrilaca (kornjasa) vinkovace okolice. [Scolytidae, p. 116]. Glasnik Hrvatsko Prirodoslovno Drustnvo u Zagrebu 17:119-212.

Kono H, 1938. Neue und wenig bekannte Ipiden als Schadlinge an Sachalintannen und Ezofichten in Hokkaido. Insecta Matsumurana 12:64-73.

Kovacevic Z, 1957. The problem of forest protection in Jugoslavia- review of the most important forest pests. [Die Probleme des Forstschutzes in Jugoslawien Ubersicht der wichtigsten Forstchadlinge.] Anz. Schadlingsk. 30 (5), (65-9).

Krivolutskaya GO, 1996. Gem Scolytidae (pages 312-373). In key to the insects of the Russian Far East. Vol. III, Coleoptera, Part 3. (In Russian). Vladivostok: Dal’nauka.

Lakatos F, 1999. Bark beetles ono pine in Hungary. Pages 248-249 In B. Forster, M. Knížek, and W. Grodzki (eds.), Methodology of forest insect and disease survey in Central Europe. Proceedings of the Second Workshop on the IUFRO Working Party 7.03.10, April 20-23, 1999, Sion-Châteauneuf, Switzerland. Swiss Federal Institute of Forest, Snow and Landscape Research, Birmensdorf, Switzerland.

Langhoffer AU, 1915. Podkornjaci Hrvatske Scolytidae Croatiae. Entomologische Blätter 11(7-9):154-159.

Leclercq J, 1971. Atlas provisoire des insectes de Belgique. Cartes 1 a 400. Faculte des Sciences Agronomiques, Zoologia Generale et Faunitique, Gembloux, Belgium.

Lekander B, 1968. Scandinavian barkbeetle larvae: descriptions and classification. Rapp. Uppsats. Instn. Skogszool. Skogshogsk. No. 4, 1968. pp. 186. [En, 52 ref.].

Linnaeus C, 1761. Fauna Suecica. Edition 2. Laur. Salvi, Stockholm.

Lobinger G; Feicht E, 1999. Swarming behaviour and abundance dynamics of the pteromalid wasp Karpinskiella pityophthori (Boucek) (Hym., Pteromalidae), a parasitoid of the bark beetle (Pityogenes chalcographus L., Col., Scolytidae). Anzeiger fu^umlaut~r Scha^umlaut~dlingskunde, 72(3):65-71; 11 ref.

Marcu O, 1957. Contributii la cunoastera faunei coleopterelor Transilvaniei. Bull. Univ. “V. Babes si J. Bolyai” ser. Stiint. Nat. 1(1-2):539.

Mathiesen A, 1950. Über einige mit Borkenkäfer assoziierte Bläuepilze in Schweden. Oikos 2,275-308.

Michalski J; Ratajczak E, 1994. Korniki (Coleoptera:Scolytidae) wraz z fauna towarzyszaca w Roztoczanskim Parku Narodowym. [Bark beetles (Coleoptera:Scolytidae) and the associated fauna of the Roztoczanski National Park]. Fragmenta Faunistica 37: 291-313.

Murayama JJ, 1954. Scolytid-fauna of the nothern half of Honshu with a distribution table of all the scolytid-species described from Japan. Yamaguti University, Faculty of Agriculture, Bulletin, 5:149-212.

Nielsen MC, 1998. Newsletter of the Michigan Entomological Society. Volume 43, Number 4: 18-19.

Novak V, 1976. Atlas of insects harmful to forest trees. Vol. 1. Amsterdam: Elsevier Scientific Publishing Company.

O’Conner JP; Winter TG; Good JA, 1991. A review of the Irish Scolytidae. Irish Naturalists Entomologists 23: 403-408.

Pehl L; Kehr R, 1994. Biological control of bark beetles: preparations with the fungus Metarhizium anisopliae. AFZ, Allgemeine Forst Zeitschrift, 49(19):1065-1067

Pfeffer A, 1924. Pokus o zoogeografickou studii ze Slovenska. Lesnicka Prace 3: 470-474.

Pfeffer A, 1928. Kurovci nejzapadnejsiho Slovenska. Lesnika Prace, 7:15-24.

Pfeffer A, 1931. Zoogeographische Verbreitung der Borkenkäfer in der Tschechoslowakischen Republik. Verhandlung der Deutschen Gesellschaft für angewandte Entomologie, Mitgliederversammlung zu Rohstock. 8:72-76.

Pfeffer A, 1994. Zentral- und Westpaläarktische Borken- und Kernkäfer. Entomologica Basiliensia, 17:1-310, ISBN-3-9520840-6-9.

Postner M, 1974. Scolytidae (= Ipidae), Borkenkäfer. In: Schwenke W, ed. Die Forstschadlinge Europas. Vol. 2. Hamburg, Berlin, Germany: Parey, 334-482.

Prazak R, 1988. Die Wirkung des insektenpathogenen Pilzes Beauveria bassiana (Bals.) Vuill. auf den Gestreiften Nutzholzborkenkäfer Trypodendron lineatum Oliv. (Coleoptera: Scolytidae). PhD thesis, Universität für Bodenkultur Wien.

Purrini K; Führer E, 1980. Experimentelle Infektion von Pityogenes chalcographus durch Malamoeba scolyti Purrini und Menzbieria chalcographi Weiser. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 52, 167-173.

Ratzeburg JTC, 1839. Die Forst-Insekten, Erster Theil, Die Käfer. Berlin.

Riba JM, 1996. Inventario de los Scolytidae (Coleoptera) del NE Espana - Inventory of the Scolytidae (Coleoptera) in the NE of Spain. Bol. Asoc. Espano. Entomol., 20:63-74.

Riegler M, 1999. Untersuchungen zu Wolbachia in Ips typographus und anderen Arten der Rhynchophora. Diploma Thesis, Institute of Forest Entomology, University of Agricultural Sciences, Vienna.

Ritzengruber O, 1990. Isoenzyme analysis of different populations of Pityogenes chalcographus L. (Col., Scolytidae). II. Population structure, population differentiation. Journal of Applied Entomology, 109(1):55-63

Rudnev DF, 1965. Schutz der Walder vor Schadlingen in Ukraine. Anzeiger für Schädlingkunde 38:116-117.

Ruskov MD, 1928. Einige schadliche Forstinsekten, die in den Waldern Bulgariens wahrend des Jahres 1927 festgestellt wurden (in Bulgarian). Bulgarsko Entomologichno Druzhestvo, 4:57-64.

Sawamoto T, 1940. On the Larch bark beetles of Sakhalin, Hokkaido and Honshu. [Uber die Larchenborkenkafer von Sachalin, Hokkaido und Honshu.] Insecta matsum. 14 (95-107). I.I.E.

Schedl KE, 1978. The bark and timber beetles of Israel - II. 328. Contribution to the morphology and taxonomy of the Scolytidae. Israel Journal of Entomology, 12:35-39

Schmidt-Vogt H, 1977. Die Fichte. Band I.Taxonomie.Verbreitung. Morphologie. Ökologie. Waldesellschaften. Hamburg, Berlin, Germany: Paul Parey.

Schreiber JD, 1991. A system for genetic monitoring of Pityogenes chalcographus. Forstliche Schriftenreihe - Universitat fur Bodenkultur, Wien, No. 4:104 pp.

Schwerdtfeger F, 1929. Ein Beitrag zur Forstpflanzungsbiologie des Borkenkäfers Pityogenes chalcographus. Zeitschrift für Angewandte Entomologie, 15: 335-427.

Schwerdtfeger F, 1957. Waldkrankheiten. Zweite Auflage. Verlag Paul Parey, Hamburg und Berlin.

Siitonen J, 1990. Potential forest pest beetles conveyed to Finland on timber from the Soviet Union. Silva Fennica, 24(3):315-321

Silfverberg H, 1992. Enumeratio Coleopterorum Fennoscandiae, Daniae et Baltiae. Helsinki, Finland: Helsingin Hyönteisvaihtoyhdistys.

Simionescu A, 1995. Protection of softwoods in the northern part of the East Carpathians damaged by wind and snow. Revista Pa^breve~durilor, 110(2):16-25.

Stark VN, 1930. Ob entomofaune tipov lesa. Zašc. Rastenij, 6: 339-343.

Stark VN, 1952. Koroedi. Fauna SSSR, Zhestkokrylye 31 Akademia Nauk SSSR, Zoologicheskii Institut (N.S.) 49.

Stierlin WG, 1989. Coleoptera Helvetiae. Die Kafer-Fauna der Schweiz. Edition 2. [Scolztidae, p. 429-449]. Boli and Bocherer, Schaffhausen.

Stolina M, 1969. Vplyr Ipidofauni na vyvoj strucktury pritodnyc horskychlesov v zapadnych Karpatoch. Lesnicky Casopis 15(1):45-63.

Sturies HJ; Führer E, 1979. Rassendifferenzierung bei Pityogenes chalcographus L. (Col., Scolytidae). II. Partnerdiskriminierung bei der Paarung. Allgemeine Forst- und Jagdzeitung, 150, 99-101.

Tomic D, 1957. Potkornjaci sumskog rezervata planine Golije u 1953 godini. [Bark beetles in the forest reserve on Mt. Golija in 1953]. Sumarstvo, 10(3/4):207-210.

Vappula NA, 1965. Pests of cultivated plants in Finland. Acta Entomologica Fennica, 19:1-239.

Virkki N, 1960. Cytology of male meiosis in certain European forest beetles of the families Scolytidae, Cleridae, and Anobiidae. Annales Academiae Scientiarum Fennicae, Helsinki (Ser. A. IV.) No. 49, 1960. pp. 16 + 13 photomicrographs. 7 refs.

Vite JP, 1965. Is preventive poisoning of trap trees practical? Allg. Forstzeitschr. 20 (28), (438-9). 17 refs.

Vité JP; Pitmann GP, 1969. Aggregation behaviour of Dendroctonus brevicomis in response to synthetic pheromones. J. Ins. Phys. 15: 1617-1622.

Voolma K; Ounap H; Süda I, 1996. Bark beetles (Coleoptera, Scolytidae) in the insect collections of Estonia. Metsanduslikud Uurimused, 27:125-132; 31 ref.

Wegensteiner R, 2004. Pathogens in bark beetles. In: Bark and wood boring insects in living trees in Europe, a synthesis (eds. Lieutier F, Day K, Battisti A, Grégoire JC, Evans H). Kluwer (in press).

Weiser J, 1955. Beitrag zur Kenntnis der Parasiten des Borkenkäfers Ips typographus. II. Vestnik Ceskoslovenske Zoologicke Spolecnosti (Acta Societatis Zoologicae Bohemoslovenicae; Transactions of the Czechoslovak Zoological Society) 19, 374-380.

Wood SL; Bright DE Jr, 1992. A catalogue of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic index. Great Basin Naturalist Memoirs, 1-1553.

Wood SL; Bright DEJr, 1987. A catalog of Scolytidae and Platypodidae (Coleoptera), Part 1: Bibliography. Great Basin Naturalist Memoirs, No. 11:685pp.

Wulf A, 1979. Der insektenpathogene Pilz Beauveria bassiana (Bals.) Vuill. als Krankheitserreger des Kupferstechers Pityogenes chalcographus L. (Col., Scolytidae). PhD thesis, Georg-August-Universität Göttingen.

Wulf A, 1983. Studies on the entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. as a parasite of the bark-beetle Pityogenes chalcographus L. (Col., Scolytidae). Zeitschrift fur Angewandte Entomologie, 95(1):34-46

Xiao GG(Chief Editor), 1991. Forest insects of China. Beijing, China; China Forestry Publishing House, Ed. 2:vi + 1362 pp.

Yanovskii VM, 1999. An annotated list of scolytids (Coleoptera, Scolytidae) of North Asia. Entomologicheskoe Obozrenie, 78(2):327-362; 3 pp. of ref. English translation: Entomological Review, 79: 493-522.

Yanovskii VM; Tegshzhargal D, 1984. Bark beetles (Coleoptera, Scolytidae) of the Mongolian People's Republic. Nasekomye Mongolii, 9:404-417. (In Russian).

Zahradník P, 2004. Ochrana smrcin proti kurovcum [Protection of spruce stands against bark beetles]. Lesnická práce, Kostelec nad Cernými Lesy.

Zuber M, 1994. Ökologie der Borkenkäfer. Biologie in unserer Zeit. Nr. 3: 144-152.

Zumr V; Soldan T, 1981. Reproductive cycle of Ips typographus, I. amitinus and Pityogenes chalcographus (Coleoptera, Scolytidae). Acta Entomologica Bohemoslovaca, 78(5):280-289

Distribution References

Androic M, 1951. (Los mas importantes problemas de entomologia forestal en Yugoslavia)., 9 43-53.

CABI, Undated. Compendium record. Wallingford, UK: CABI

CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

Links to Websites

Top of page
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gateway source for updated system data added to species habitat list.

Distribution Maps

Top of page
You can pan and zoom the map
Save map