Cookies on Invasive Species Compendium

Like most websites we use cookies. This is to ensure that we give you the best experience possible.

Continuing to use www.cabi.org means you agree to our use of cookies. If you would like to, you can learn more about the cookies we use.

Datasheet

Phyllocnistis citrella (citrus leaf miner)

Summary

  • Last modified
  • 11 October 2017
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Phyllocnistis citrella
  • Preferred Common Name
  • citrus leaf miner
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Young citrus leaf recently infested by P. citrella. The larva feeds in the epidermis causing the serpentine mine.
TitleSymptoms on citrus leaf
CaptionYoung citrus leaf recently infested by P. citrella. The larva feeds in the epidermis causing the serpentine mine.
CopyrightPeter A.C. Ooi/Tropical Press Sdn Bnd
Young citrus leaf recently infested by P. citrella. The larva feeds in the epidermis causing the serpentine mine.
Symptoms on citrus leafYoung citrus leaf recently infested by P. citrella. The larva feeds in the epidermis causing the serpentine mine.Peter A.C. Ooi/Tropical Press Sdn Bnd
P. citrella is a very small, whitish moth, only 2 mm in length when at rest. Its wingspan is 4 mm.
TitleP. citrella (adult)
CaptionP. citrella is a very small, whitish moth, only 2 mm in length when at rest. Its wingspan is 4 mm.
CopyrightDavid Agassiz
P. citrella is a very small, whitish moth, only 2 mm in length when at rest. Its wingspan is 4 mm.
P. citrella (adult)P. citrella is a very small, whitish moth, only 2 mm in length when at rest. Its wingspan is 4 mm.David Agassiz
Symptoms on citrus leaf. P. citrella causes serpentine mines with a silvery appearance.
TitleSymptoms on leaf
CaptionSymptoms on citrus leaf. P. citrella causes serpentine mines with a silvery appearance.
CopyrightDavid Agassiz
Symptoms on citrus leaf. P. citrella causes serpentine mines with a silvery appearance.
Symptoms on leafSymptoms on citrus leaf. P. citrella causes serpentine mines with a silvery appearance.David Agassiz

Identity

Top of page

Preferred Scientific Name

  • Phyllocnistis citrella Stainton

Preferred Common Name

  • citrus leaf miner

Other Scientific Names

  • Lithocolletis citricola
  • Phyllocnistis citricola Shiraki

International Common Names

  • English: citrus leafminer; leafminer of citrus
  • Spanish: minador de la hoja de los cítricos; minador de las hojas de los cítricos
  • French: mineuse des feuilles du l'oranger; mineuse du citronnier

Local Common Names

  • Germany: citrus-miniermotte; Schneckenmotten-Art
  • Japan: Mikan-hamoguriga
  • Netherlands: Citrus-bladboorder; Djeroek-mineerder; Mineerrups

EPPO code

  • PHYNCI (Phyllocnistis citrella)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Lepidoptera
  •                         Family: Gracillariidae
  •                             Genus: Phyllocnistis
  •                                 Species: Phyllocnistis citrella

Description

Top of page

The morphology of P. citrella has been described by Heppner (1993) and Zhang et al. (1994):

Adults

P. citrella is a very small, whitish moth, only 2 mm in length when at rest. Its wingspan is 4 mm. Markings comprise black and brown lines with an apical black spot, placed so that when at rest it resembles a small insect facing in the opposite direction. The antennae are three-quarters the length of the wing.

Larvae

P. citrella larvae are 3 mm long when fully fed. They are translucent greenish-yellow. The mines in which they live have a distinctive silvery appearance. The fifth-instar larva and prepupa have been described by Heppner (1993).

Pupae

P. citrella pupae have been described by Heppner (1993).

Distribution

Top of page

Originally an Asiatic species, P. citrella was discovered in Florida, USA, in 1993 and has since spread throughout the state. It was found in the Mediterranean basin in 1994 where it has since spread rapidly. It is also spreading in Central and South America and has been reported from southern Africa and West Africa.

In addition to the records on the map, P. citrella has been identified in Lebanon, Libya, Mozambique, Brazil and Colombia (J LaSalle, IIE, UK, personal communication, 1997). It has also been identified in Oman (T Pittaway, CABI, Wallingford, UK, personal communication, 1996) and Zimbabwe (DJL Agassiz, IIE, UK, personal communication, 1997).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

AfghanistanPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
BangladeshPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
Brunei DarussalamPresentWaterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
CambodiaPresentIIE, 1995; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
ChinaRestricted distributionCABI/EPPO, 2003; EPPO, 2014
-ChongqingPresentZhang et al., 2001
-FujianPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-GuangdongPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-GuangxiPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-Hong KongPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-HunanPresentCABI/EPPO, 2003; EPPO, 2014
-JiangsuPresentCABI/EPPO, 2003; EPPO, 2014
-MacauPresentCABI/EPPO, 2003; EPPO, 2014
-SichuanWidespreadCABI/EPPO, 2003; EPPO, 2014
-ZhejiangAbsent, invalid recordCABI/EPPO, 2003; EPPO, 2014
Georgia (Republic of)PresentCABI/EPPO, 2003; EPPO, 2014
IndiaWidespreadCABI/EPPO, 2003; EPPO, 2014
-Andaman and Nicobar IslandsPresentCABI/EPPO, 2003; EPPO, 2014
-Andhra PradeshPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-Arunachal PradeshPresentCABI/EPPO, 2003; EPPO, 2014
-AssamPresentCABI/EPPO, 2003; EPPO, 2014
-BiharPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-GujaratPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-Himachal PradeshPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-Indian PunjabPresentCABI/EPPO, 2003; EPPO, 2014
-KarnatakaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-Madhya PradeshPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-MaharashtraPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-MeghalayaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-RajasthanPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-Tamil NaduPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-Uttar PradeshPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-West BengalPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
IndonesiaWidespreadCABI/EPPO, 2003; EPPO, 2014
-Irian JayaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-JavaPresentIIE, 1995; Kalshoven and van der Laan, 1981; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
-KalimantanPresentKalshoven and van der Laan, 1981; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
-SulawesiPresentIIE, 1995; Kalshoven and van der Laan, 1981; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
-SumatraPresentIIE, 1995; Kalshoven and van der Laan, 1981; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
IranPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
IraqWidespreadIIE, 1995; Bohlen, 1973; CABI/EPPO, 2003; EPPO, 2014
IsraelRestricted distribution1994NAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
JapanWidespreadCABI/EPPO, 2003; EPPO, 2014
-HonshuPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-KyushuPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-Ryukyu ArchipelagoPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-ShikokuPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
JordanPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
Korea, DPRAbsent, unreliable recordEPPO, 2014
Korea, Republic ofPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
LaosPresentIIE, 1995; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
LebanonWidespreadCABI/EPPO, 2003; EPPO, 2014
MalaysiaWidespreadCABI/EPPO, 2003; EPPO, 2014
-Peninsular MalaysiaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-SabahPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-SarawakPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
MyanmarPresentWaterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
NepalPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
PakistanPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
PhilippinesPresentIIE, 1995; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
Saudi ArabiaPresentIIE, 1995; Bohlen, 1973; CABI/EPPO, 2003; EPPO, 2014
SingaporeWidespreadWaterhouse, 1993; AVA, 2001; CABI/EPPO, 2003; EPPO, 2014
Sri LankaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
SyriaRestricted distribution1994CABI/EPPO, 2003; EPPO, 2014
TaiwanPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
ThailandPresentIIE, 1995; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
TurkeyPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014; Gözel and Gözel, 2014
TurkmenistanPresentCABI/EPPO, 2003; EPPO, 2014
VietnamPresentIIE, 1995; Waterhouse, 1993; CABI/EPPO, 2003; EPPO, 2014
YemenPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014

Africa

AlgeriaPresentCABI/EPPO, 2003; EPPO, 2014
Côte d'IvoirePresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
EgyptPresentNAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
EritreaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
EthiopiaPresentCABI/EPPO, 2003; EPPO, 2014
LibyaPresent1995CABI/EPPO, 2003; EPPO, 2014
MauritiusPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
MoroccoPresentCABI/EPPO, 2003; EPPO, 2014
NigeriaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
RéunionPresentCABI/EPPO, 2003; EPPO, 2014
South AfricaPresentIIE, 1995; Bohlen, 1973; CABI/EPPO, 2003; EPPO, 2014
SudanPresentIIE, 1995; Bohlen, 1973; CABI/EPPO, 2003; EPPO, 2014
TanzaniaPresentBohlen, 1973; CABI/EPPO, 2003; EPPO, 2014
TunisiaPresentCABI/EPPO, 2003; EPPO, 2014

North America

BermudaWidespread2000CABI/EPPO, 2003; Hoy and Jessey, 2004; EPPO, 2014
MexicoPresent1994NAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
USARestricted distribution1993CABI/EPPO, 2003; EPPO, 2014
-AlabamaPresentSmith and Hoy, 1995; CABI/EPPO, 2003; EPPO, 2014
-CaliforniaPresentLe et al., 2008
-FloridaWidespread1993NAPPO 14(4); Heppner, 1993; CABI/EPPO, 2003; EPPO, 2014
-LouisianaRestricted distribution1994NAPPO 14(4); Smith and Hoy, 1995; CABI/EPPO, 2003; EPPO, 2014
-TexasRestricted distribution1994Müller, 1995; NAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014

Central America and Caribbean

Antigua and BarbudaPresentCABI/EPPO, 2003; EPPO, 2014
BahamasPresentNAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
BarbadosWidespread2001CABI/EPPO, 2003; EPPO, 2014
BelizePresent1993Müller, 1995; NAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
British Virgin IslandsPresentCABI/EPPO, 2003; EPPO, 2014
Cayman IslandsPresentNAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
Costa RicaPresentNAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
CubaPresentCABI/EPPO, 2003; EPPO, 2014
DominicaPresentCABI/EPPO, 2003; EPPO, 2014
Dominican RepublicPresentCABI/EPPO, 2003; EPPO, 2014
GrenadaWidespread1998CABI/EPPO, 2003; EPPO, 2014
GuadeloupePresentEPPO, 2014
HondurasPresentIIE, 1995; NAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
JamaicaPresentNAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
MartiniquePresentCABI/EPPO, 2003; EPPO, 2014
Netherlands AntillesPresentCABI/EPPO, 2003; EPPO, 2014
NicaraguaPresentNAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
PanamaPresentNAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
Puerto RicoPresentNAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
Saint Kitts and NevisRestricted distributionCABI/EPPO, 2003; EPPO, 2014
Saint LuciaPresentIntroduced Invasive CABI/EPPO, 2003; Heileman, 2007; Mathurin, 2010; EPPO, 2014
Trinidad and TobagoWidespread1997CABI/EPPO, 2003; EPPO, 2014

South America

ArgentinaPresentCABI/EPPO, 2003; EPPO, 2014
BrazilRestricted distributionCABI/EPPO, 2003; EPPO, 2014
-AcrePresentThomazini and Albuquerque, 2005
-Espirito SantoPresentCABI/EPPO, 2003; EPPO, 2014
-Minas GeraisPresentCABI/EPPO, 2003; EPPO, 2014
-ParanaPresentCABI/EPPO, 2003; EPPO, 2014
-PiauiPresent1996CABI/EPPO, 2003; EPPO, 2014
-Rio de JaneiroPresentCABI/EPPO, 2003; EPPO, 2014
-Rio Grande do SulPresentCABI/EPPO, 2003; EPPO, 2014
-Santa CatarinaPresentCABI/EPPO, 2003; EPPO, 2014
-Sao PauloPresentCABI/EPPO, 2003; EPPO, 2014
ChileRestricted distribution1998CABI/EPPO, 2003; EPPO, 2014
ColombiaRestricted distributionCABI/EPPO, 2003; EPPO, 2014
EcuadorPresentCañarte et al., 2004
French GuianaPresent1997CABI/EPPO, 2003; EPPO, 2014
GuyanaPresentCABI/EPPO, 2003; EPPO, 2014
PeruPresentCABI/EPPO, 2003; Meca et al., 2009; EPPO, 2014
VenezuelaPresentCABI/EPPO, 2003; EPPO, 2014

Europe

CroatiaPresentCABI/EPPO, 2003; EPPO, 2014
CyprusWidespread1994IIE, 1995; CABI/EPPO, 2003; EPPO, 2014
FranceRestricted distribution1995CABI/EPPO, 2003; EPPO, 2014
-CorsicaPresentEPPO, 2014
GreeceRestricted distributionCABI/EPPO, 2003; EPPO, 2014
-CretePresentEPPO, 2014
ItalyRestricted distribution1994IIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-SardiniaPresentEPPO, 2014
-SicilyPresentEPPO, 2014
MaltaPresent, few occurrences1995CABI/EPPO, 2003; EPPO, 2014
MontenegroRestricted distributionEPPO, 2014
PortugalRestricted distributionCABI/EPPO, 2003; EPPO, 2014
-AzoresPresentEPPO, 2014
-MadeiraPresentCABI/EPPO, 2003; EPPO, 2014
-Portugal (mainland)Restricted distributionCABI/EPPO, 2003
SerbiaPresentEPPO, 2014
SpainWidespreadIIE, 1995; NAPPO 14(4); CABI/EPPO, 2003; EPPO, 2014
-Balearic IslandsPresentEPPO, 2014
Yugoslavia (Serbia and Montenegro)Restricted distributionCABI/EPPO, 2003

Oceania

AustraliaWidespreadCABI/EPPO, 2003; EPPO, 2014
-Australian Northern TerritoryPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-New South WalesWidespreadHeppner, 1993; CABI/EPPO, 2003; EPPO, 2014
-QueenslandWidespreadIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
-South AustraliaPresentCABI/EPPO, 2003; EPPO, 2014
-VictoriaPresentCABI/EPPO, 2003; EPPO, 2014
GuamPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
Micronesia, Federated states ofRestricted distributionCABI/EPPO, 2003; EPPO, 2014
Northern Mariana IslandsPresentCABI/EPPO, 2003; EPPO, 2014
PalauPresentCABI/EPPO, 2003; EPPO, 2014
Papua New GuineaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
SamoaPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014
Solomon IslandsPresentIIE, 1995; CABI/EPPO, 2003; EPPO, 2014

Risk of Introduction

Top of page

Now that P. citrella is found in all of the world's citrus-growing areas the question of phytosanitary risk has little meaning.

Hosts/Species Affected

Top of page

A list of reported and potential hosts is given by Heppner (1993). A pest of citrus, P. citrella also attacks other Rutaceae.

Hosts also include Loranthus sp. (on citrus), Pongamia pinnata and Alseodaphne semicarpifolia.

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Cinnamomum verum (cinnamon)LauraceaeOther
CitrusRutaceaeMain
Citrus aurantiifolia (lime)RutaceaeOther
Citrus aurantium (sour orange)RutaceaeMain
Citrus x paradisi (grapefruit)RutaceaeMain
Jasminum (jasmine)OleaceaeOther

Growth Stages

Top of page Vegetative growing stage

Symptoms

Top of page

The mines produced by P. citrella, chiefly on the underside of leaves, are easily detected. Mining results in deformed leaves and reduced photosynthetic capacity.

List of Symptoms/Signs

Top of page

Leaves

  • abnormal leaf fall
  • internal feeding
  • internal feeding
  • leaves rolled or folded
  • necrotic areas

Biology and Ecology

Top of page

Descriptions are given by Heppner (1993) and Zhang et al. (1994):

Eggs

P. citrella eggs are laid singly on the underside of leaves of the host plant. They hatch in 2-10 days.

Larvae

P. citrella larvae usually mine the under surface of a leaf, but attack both surfaces in heavy infestations, and occasionally fruit. The serpentine mine has a silvery appearance and reaches a length of 50-100 mm. Young leaves are attacked and mines can cause leaf curl. Up to 20 mines per leaf have been recorded on elephant lemon in India. There are four larval instars including a pre-pupal stage when the larva does not feed. Development time is 5-20 days.

Pupae

Pupation takes place within the mine, near the leaf margin, under a slight curl of the leaf. Pupation takes 6-22 days.

Adults

P. citrella adults emerge at dawn and are active in the morning. They also fly at dusk and by night. Continuously brooded, up to 13 generations have been reported in a year in India and Egypt, 7 in a year in Tuscany, Italy.

Overwintering usually takes place in the larval or pupal stage.

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Ageniaspis citricola Parasite Larvae
Ancylopteryx octopunctata Predator Eggs/Larvae/Pupae
Apotetrastichus sericothorax Parasite
Asecodes delucchii Parasite
Asecodes erxias Parasite
Bacillus thuringiensis
Chrysocharis pentheus Parasite
Chrysocharis vonones Parasite Efrom et al., 2007
Cirrospilus brevis Parasite Vercher et al., 2005
Cirrospilus diallus Parasite
Cirrospilus floridensis Parasite Efrom et al., 2007
Cirrospilus neotropicus Parasite Efrom et al., 2007
Cirrospilus pictus Parasite
Cirrospilus quadristriatus Parasite Pupae
Citrostichus phyllocnistoides Parasite Larvae
Closterocerus trifasciatus Parasite
Elasmus phyllocnistoides Parasite Efrom et al., 2007
Mallada boninensis Predator Adults/Eggs/Larvae/Nymphs/Pupae
Orius albidipennis Predator
Pnigalio agraules Parasite
Pnigalio minio Parasite
Quadrastichus Parasite Larvae
Semielacher petiolatus Parasite Larvae
Sympiesis striatipes Parasite
Zagrammosoma multilineatum Parasite
Zaommomentedon brevipetiolatus Parasite
Zaommomentodon brevipetiolaris Parasite Larvae

Notes on Natural Enemies

Top of page

A list of parasitoids recorded is provided by Heppner (1993). Further lists in many countries have been produced since that date, notably Ujiye et al. (1996).

There is a vast guild of parasitoids which can attack P. citrella but those which have been recorded as having a significant effect are Ageniaspis citricola, Cirrospilus ingenus and Tetrastichus spp. in Taiwan; Citrostichus phyllocnistoides, Tetrastichus spp., Chrysonotomyia spp., Apleurotropis spp. and Cirrospilus quadristriatus in southern China. The green lacewings (Neuroptera) are important predators.

Plant Trade

Top of page
Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
Leaves eggs; larvae Yes Pest or symptoms usually visible to the naked eye
Plant parts not known to carry the pest in trade/transport
Bark
Bulbs/Tubers/Corms/Rhizomes
Flowers/Inflorescences/Cones/Calyx
Fruits (inc. pods)
Growing medium accompanying plants
Roots
Seedlings/Micropropagated plants
Stems (above ground)/Shoots/Trunks/Branches
True seeds (inc. grain)
Wood

Impact

Top of page

P. citrella is a major pest of citrus, found in virtually all major citrus-producing areas. Heavy infestations can hinder the growth of newly planted trees or reduce fruit production of mature trees. Larval feeding reduces the photosynthetic capacity of leaves and increases the susceptibility of leaves to citrus bacterial canker, Xanthomonas axonopodis pv. citri (Gottwald et al., 2007; Hall et al., 2010)

Originating in the Far East, P. citrella spread rapidly to other citrus-growing areas during the 1990s. Damage to young trees can be severe and populations can increase dramatically under heavy pesticide regimes such as those currently practiced in Florida (USA) for control of a separate pest and vector of citrus greening disease, the Asian citrus psyllid Diaphorina citri. The location of larvae inside the mine protects the insects from most topical sprays.

Huang and Li (1989) considered the economic threshold of P. citrella to be 0.74 larvae per susceptible (tender) leaf. If the percentage of damaged area in susceptible leaves is below 20% there will be no negative impact on growth, development or yield of citrus fruit. However, a major concern of producers of high quality fresh fruit for export markets is the increased susceptibility of leaves damaged by the leafminer to infection by citrus canker disease. Loss of access to international markets due to phytosanitary controls is a major economic impact related to leafminer damage.

Detection and Inspection

Top of page Look on the young leaves of citrus, especially the underside, for evidence of a serpentine mine with a silvery appearance.

Prevention and Control

Top of page

Cultural Control

In Italy, Mineo et al. (1997) found that if Parietaria is grown near the citrus trees affected there is a lepidopterous leaf miner Cosmopterix pulchrimella which is an alternative host to several of the parasitoids and therefore a reservoir for them.

Zhou et al. (1994) found that planting Ageratum conyzoides as ground cover in hilly citrus orchards in Hunan, China, increased relative humidity in summer and temperature in winter and also decreased summer temperatures in the canopy and soil, thus improving conditions for the survival of P. citrella's natural enemies. As a consequence, damage by P. citrella in spring was reduced.

Zhang et al. (1994) describe a traditional Chinese management method which includes the collection and destruction of fallen leaves in winter and pruning to restrict budding to late autumn, ensuring even budding stands. This restricts growth to the season when P. citrella moths are at lowest density. In addition, fertilization and the avoidance of drought keeps trees in a healthy state, thus improving their resistance to attack by P. citrella.

Biological Control

Smith and Hoy (1995) have described the use of the parasitoids Ageniaspis citricola and Cirrospilus quadristriatus in classical biological control.

In southern China, Chen et al. (1989) found that the naturally occurring predators Ancylopteryx octopunctata and Chrysopa boninensis [Mallada boninensis] controlled the population, and only if weather or chemical sprays reduce their numbers did these need supplementation by laboratory-reared insects.

Bacillus thuringiensis strains 04-1, 454 and HD-1 have all been found to cause 80-97% mortality in P. citrella (Zhang et al., 1994).

In Taiwan, Lao and Chiu (1986) (quoted in Zhang et al., 1994) reported that natural enemies attack 90% of leaf-miners, making chemical control unnecessary.

To combat the recent spread of P. citrella, biological control programmes have been started in several countries. To date, natural enemies have been established in Florida, USA (Smith and Hoy, 1995), Australia (Neale et al., 1995) and Israel (Argov and Rossler, 1996). It is not yet known if these introductions will succeed in bringing P. citrella under satisfactory control.

A list of the natural enemies introduced into Italy is given by Siscaro et al. (1999). A general list of introductions is given by Schauff et al. (1998).

Host-Plant Resistance

Padmanaban (1994) evaluated 31 species or varieties of citrus for leaf-miner infestation at Basar, India. Lowest infestation levels were observed in the sweet orange variety Ruby Malta (9.33%) and in the hybrid variety Kinnow Mandarin (8.34%). The data obtained indicated that the variation in susceptibility could be due to the availability of tender flushes and seasonal fluctuation in the leaf-miner population.

Batra et al. (1992) in the Indian Punjab tested 134 citrus species/cultivars for resistance to P. citrella. The varieties Carrizo, Sacaton, Savage, Troyer, Yama Citrange, Citrumelo (Poncirus trifoliata x grapefruit), Cambell Valencia, Pomary and Rubidoux, and Muraya koenigii were resistant to P. citrella on the basis of leaf infestation. Nineteen species/cultivars were fairly resistant, 27 slightly susceptible, 53 moderately susceptible and 25 highly susceptible. Cleopatra, a promising rootstock for sweet orange, was slightly susceptible whereas the commercial rootstock Jatti Khatti [C. jambhiri] was highly susceptible. Of 26 hybrids studied, P. trifoliata x sweet orange, Rangpur Lime x Troyer and Kinnow x Mosambi were the least susceptible.

Singh and Rao (1978) tested 34 cultivars of citrus for susceptibility in India in 1975 and 1976. Queen mandarin had the least incidence of infestation, and Meyer lemon and Rangpur lime were the most susceptible in both years. In general, Citrus reticulata, Kinnow mandarin, Citrus reshni and Poncirus trifoliata had less incidence compared to limes (C. limonia, C. latifolia and C. aurantifolia), lemons and satsumas. Variation in susceptibility of the species and cultivars was linked to growth flushes and seasonal fluctuations in the leaf-miner population.

Chemical Control

Many insecticides are effective against P. citrella, but they are always liable also to reduce numbers of natural enemies which may control the pest to within acceptable thresholds. The location of larvae inside the mine protects the insects from most topical sprays. Systemic insecticides are only effective in young trees. Natural enemies can be effective if management practices allow.

Vargas et al. (1999) tested the percentage efficacy of three insecticides for selective control through a field trial carried out on orange trees in Chile, evaluating larval mortality at new growing shoots, in the spring season of 1998. Treatments, applied by spraying on the foliage, were the following: abamectin, imidacloprid, tebufenozide and an untreated control. Mortality values, evaluated by sampling on the fourth day after application, were corrected for control mortality using Abbott's formula, and were as follows: imidacloprid 80.34%, tebufenozide 44.59%, and abamectin, 39.62%.

Nucifora et al. (1999) found that a single application of imidacloprid resulted in the control of P. citrella for >100 days.

Buchelos and Foudoulakis (2000) in Greece applied fenoxycarb on young citrus trees. During 1996, the compound, applied every 10 days (with or without adjuvant), gave satisfactory protection from P. citrella without substantially harming C. noacki populations. No phytotoxicity symptoms were observed during the experiments.

Smith and Hoy (1995) have described chemical control as not viable because of the cost of multiple applications, the inaccessibility of larvae within the mine and the likely development of resistance.

Zhang et al. (1994) stated that pyrethrins have been chiefly used in China, although Huang and Li (1989) showed that P. citrella has already built up resistance to them. Pyrethroids such as cypermethrin, cyhalothrin, fenvalerate, fenpropathrin, esfenvalerate and deltamethrin have been used. The organophosphates phosmet, quinalphos and dimethoate and the carbamates carbaryl and cartap, have also been used.

In Australia, the biorational insect growth regulator fenoxycarb has been used more frequently than more harmful broad-spectrum compounds (CDFA, 1993).

Liu et al. (1992) found that treatment of citrus with avermectins gave 86.2-100% control of P. citrella.

In field trials in Nagpur, Maharashtra, India, Katole et al. (1993) found that fish oil resin soap and Pongamia oil were the most effective treatments, followed by dimethoate, mahua (Madhuca longifolia) oil and neem oil. Indiara (of unstated composition), castor oil and Neemark (an extract of neem) were ineffective.

However, in Karnataka, India in 1989 Jothi et al. (1993) tested neem, mahua (Madhuca longifolia) and Pongamia oils (2 and 4%) and neem and Pongamia seed extracts (2%) against P. citrella on limes. All the treatments reduced the P. citrella population, with neem seed extract being the most effective.

Pheromonal Control

Ando et al. (1985) found Japanese populations of P. citrella were attracted to traps baited with (Z,Z)-7,11-hexadecadienal; however, attempts to show attraction of this material to populations in other countries were not successful (Sant’ana et al., 2003).

Leal et al. (2006) and Moreira et al. (2006) detected three active compounds from female pheromone gland extracts. Of these, (Z,Z,E)-7,11,13-hexadecatrienal (triene) and (Z,Z)-7,11-hexadecadienal (diene) used together were shown to be necessary and sufficient for attraction in Florida, USA (Lapointe et al., 2006; 2009). Control of P. citrella by mating disruption with these two extracts was effective at very low rates of pheromone deployment (Stelinski et al., 2008). Either pheromone compound alone is capable of disrupting mating. Initially, an emulsified wax formulation was developed for slow-release of P. citrella pheromone applied to citrus by a specialized tractor-mounted applicator (Lapointe et al., 2009; Lapointe and Stelinski, 2011; Stelinski et al., 2010). The triene was approximately 13 times more effective compared with the diene alone and was as effective or more effective compared with the natural 3:1 blend (Lapointe et al., 2009; 2011; 2015). As a result, an emulsified wax was formulated with the triene component only as the active ingredient. A hand-applied solid elastomeric dispenser was developed and marketed in limited quantities in 2014. A single application of the device may be capable of effective mating disruption for an entire growing season (Lapointe et al., 2015).

IPM Programmes

Zhang et al. (1994) outlined a programme using cultural practices, with the possibility of releasing parasitoids and predators when necessary, with carefully timed applications of Bacillus thuringiensis. Mating disruption should provide an excellent management option if the pheromone dispensers become widely available to growers, especially when combined with biological control and minimal chemical control. 

References

Top of page

Ando T; Taguchi KY; Uchiyama M; Ujiye T; Kuroko H, 1985. (7Z,11Z)-7,11-Hexadecadienal: sex attractant of the citrus leafminer moth, Phyllocnistis citrella Stainton (Lepidoptera, Phyllocnistidae). Agricultural and Biological Chemistry, 49(12):3633-3635

APPPC, 1987. Insect pests of economic significance affecting major crops of the countries in Asia and the Pacific region. Technical Document No. 135. Bangkok, Thailand: Regional Office for Asia and the Pacific region (RAPA).

Argov Y; R÷ssler Y, 1996. Introduction, release and recovery of several exotic natural enemies for biological control of the citrus leafminer, Phyllocnistis citrella, in Israel. Phytoparasitica, 24(1):33-38; 11 ref.

AVA, 2001. Diagnostic records of the Plant Health Diagnostic Services, Plant Health Centre, Agri-food & Veterinary Authority, Singapore.

Batra RC; Sharma DR; Chanana YR, 1992. Screening of citrus germplasm for their resistance against citrus leaf miner, Phyllocnistis citrella Stainton. Journal of Insect Science, 5(2):150-152

Bohlen E, 1973. Crop pests in Tanzania and their control. Berlin, Germany: Verlag Paul Parey.

Buchelos CT; Foudoulakis M, 2000. Evaluation of effectiveness of Insegar (fenoxycarb 250 g/kg) WP against Phyllocnistis citrella Stainton (Lep., Gracillariidae) and its effect on Cales noacki How. (Hym., Aphelinidae). Anzeiger fu^umlaut~r Scha^umlaut~dlingskunde, 73(1):19-21; 6 ref.

CABI/EPPO, 2003. Phyllocnistis citrella. Distribution Maps of Plant Pests, No. 274. Wallingford, UK: CAB International.

Cañarte Bermúdez E; Bautista Martínez N; Vera Graziano J; Arredondo Bernal HC; Huerta Paniagua A, 2004. Phyllocnistis citrella (Lepidoptera: Gracillariidae) and its parasitoids in citrus in Ecuador. Florida Entomologist, 87(1):10-17. http://www.fcla.edu/FlaEnt/

Chen RT; Chen YH; Huang MD, 1989. Biology of the green lacewing, Chrysopa boninensis and its predation efficiency on the Citrus leaf miner, Phyllocnistis citrella. Studies on the integrated management of Citrus insect pests Guangzhou, Guangdong, China; Academic Book & Periodical Press, 96-105

Efrom CFS; Redaelli LR; Diefenbach LMG, 2007. Diversity of Phyllocnistis citrella (Lepidoptera: Gracillariidae) parasitoids in citrus cultivars and the relationship with biotic and abiotic factors. (Diversidade de parasitóides de Phyllocnistis citrella (Lepidoptera: Gracillariidae) em variedades de citros e a relação com fatores bióticos e abióticos.) Arquivos do Instituto Biológico (São Paulo), 74(2):121-128. http://www.biologico.sp.gov.br/ARQUIVOS/v74_2/efrom.pdf

EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

Gottwald TR; Bassanezi RB; Amorim L; Bergamin Filho A, 2007. Spatial pattern analysis of citrus canker-infected plantings in São Paulo, Brazil, and augmentation of infection elicited by the Asian leafminer. Phytopathology, 97(6):674-683.

Gözel Ç; Gözel U, 2014. The potential use of entomopathogenic nematodes against tomato leaf miner Tuta absoluta (Lep: Gelechiidae) [Conference poster]. In: Proceedings, 4th ESENIAS Workshop: International Workshop on IAS in Agricultural and Non-Agricultural Areas in ESENIAS Region, Çanakkale, Turkey, 16-17 December 2013 [ed. by Uludag, A.\Trichkova, T.\Rat, M.\Tomov, R.]. Ankara, Turkey: Çanakkale Onsekiz Mart University, 116.

Hall DG; Gottwald TR; Bock CH, 2010. Exacerbation of citrus canker by citrus leafminer Phyllocnistis citrella in Florida. Florida Entomologist, 93(4):558-566. http://www.fcla.edu/FlaEnt/

Heileman S, 2007. Thematic Report for the Insular Caribbean Sub-Region, CLME Project Implementation Unit. Thematic Report for the Insular Caribbean Sub-Region, CLME Project Implementation Unit. Cave Hill Campus, Barbados: CERMES, University of the West Indies. http://ioc3.unesco.org/iocaribe/files/clme/Final%20Preliminary%20TDA%20for%20the%20Insular%20%20Caribbean%20Subregion.pdf

Heppner JB, 1993. Citrus leafminer, Phyllocnistis citrella, in Florida (Lepidoptera: Gracillariidae: Phyllocnistinae). Tropical Lepidoptera, 4(1):49-64

Hoy MA; Jessey C, 2004. Ageniaspis citricola (Hymenoptera: Encyrtidae) established in Bermuda. Florida Entomologist, 87(2):229-230. http://www.fcla.edu/FlaEnt/

Huang M; Li S, 1989. The damage and economic threshold of citrus leafminer Phyllocnistis citrella (Stainton) in citrus. In: Studies on the Integrated Management of Citrus Insect Pests. Academic Bood and Periodical Press. Beijing. [Chinese, English abstract]

Jothi BD; Tandon PL; Verghese A, 1993. Evaluation of different plant oils and extracts against citrus leaf miner, Phyllocnistis citrella Stainton (Lepidoptera: Phyllocnistidae). Botanical pesticides in integrated pest management Rajahmundry, India; Indian Society of Tobacco Science, 340-342

Kacic S; Zanic K; Katalinic M, 1997. Citrus leaf miner (CLM), Phyllocnistis citrella stainton (Lepidoptera: Gracillariidae), in Croatia. Fragmenta Phytomedica et Herbologica, 25(1/2):15-25; 16 ref.

Kalshoven LGE; Laan PA van der (Reviser and translator), 1981. Pests of crops in Indonesia (revised). Jakarta, Indonesia: Ichtiar Baru, 701 pp.

Karsholt O; Razowski J, 1996. The Lepidoptera of Europe: a distributional checklist. Stenstrup, Denmark: Apollo Books, 380 pp.

Katole SR; Thakare HS; Mahajan RK, 1993. Effects of some plant products and insecticides on the infestation of citrus leaf miner on Nagpur mandarin. Journal of Maharashtra Agricultural Universities, 18(1):67-68

Lapointe SL; Hall DG; Murata Y; Parra-Pedrazzoli AL; Bento JMS; Vilela EF; Leal WS, 2006. Field evaluation of a synthetic female sex pheromone for the leafmining moth Phyllocnistis citrella (Lepidoptera: Gracillariidae) in Florida citrus. Florida Entomologist, 89(2):274-276. http://www.fcla.edu/FlaEnt/fe89p274.pdf

Lapointe SL; Keathley CP; Stelinski LL; Urrutia WH; Mafra-Neto A, 2015. Disruption of the leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) in citrus: effect of blend and placement height, longevity of disruption and emission profile of a new dispenser. Florida Entomologist.

Lapointe SL; Stelinski LL, 2011. An applicator for high viscosity semiochemical products and intentional treatment gaps for mating disruption of Phyllocnistis citrella. Entomologia Experimentalis et Applicata, 141(2):145-153. http://onlinelibrary.wiley.com/doi/10.1111/j.1570-7458.2011.01178.x/abstract

Lapointe SL; Stelinski LL; Evens TJ; Niedz RP; Hall DG; Mafra-Neto A, 2009. Sensory imbalance as mechanism of orientation disruption in the leafminer Phyllocnistis citrella: elucidation by multivariate geometric designs and response surface models. Journal of Chemical Ecology, 35(8):896-903. http://www.springerlink.com/link.asp?id=104273

Lapointe SL; Stelinski LL; Robinson RD, 2011. A novel pheromone dispenser for mating disruption of the leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae). Journal of Economic Entomology, 104(2):540-547. http://esa.publisher.ingentaconnect.com/content/esa/jee/2011/00000104/00000002/art00027

Le Van Vang; Islam MA; Nguyen Duc Do; Tran Van Hai; Koyano S; Okahana Y; Ohbayashi N; Yamamoto M; Ando T, 2008. 7,11,13-Hexadecatrienal identified from female moths of the citrus leafminer as a new sex pheromone component: synthesis and field evaluation in Vietnam and Japan. Journal of Pesticide Science, 33(2):152-158. http://www.jstage.jst.go.jp/browse/jpestics

Le=n MGA; Campos PJC, 1999. Populational fluctuation of the citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) in the piedmont of the department of Meta. Revista Colombiana de Entomologi^acute~a, 25(3-4):147-150; 11 ref.

Leal WS; Parra-Pedrazzoli AL; Cossé AA; Murata Y; Bento JMS; Vilela EF, 2006. Identification, synthesis, and field evaluation of the sex pheromone from the citrus leafminer, Phyllocnistis citrella. Journal of Chemical Ecology, 32(1):155-168.

Liu JF; Wang CX; Yang WH; Liu ZC, 1992. Field trials on the control of pest insects on vegetable and Citrus with the antibiotic Agrimec. Natural Enemies of Insects, 14(2):83-88; 2 ref.

Mathurin G, 2010. Recent Plant Pest Introductions to St. Lucia. Quarantine Training Workshop, July 2010.

Meca A; Sepúlveda B; Ogoña JC; Grados N; Moret A; Morgan M; Tume P, 2009. In vitro pathogenicity of northern Peru native bacteria on Phyllocnistis citrella Stainton (Gracillariidae: Phyllocnistinae), on predator insects (Hippodamia convergens and Chrisoperna externa), on Citrus aurantifolia Swingle and white rats. Spanish Journal of Agricultural Research, 7(1):137-145. http://www.inia.es/inia/contenidos/publicaciones/index.jsp?idcategoria=3174®ini=10

Mineo G; Sinacori A; Rizzo MC; Massa B, 1997. On the arthropod fauna of Parietaria spp. (Urticaceae). 3rd contribution. Parasitoids of Cosmopterix pulchrimella Chambers (Lepidoptera Cosmopterigidae). Bollettino di Zoologia Agraria e di Bachicoltura, 29(2):195-198; 5 ref.

Mnller GW, 1995. Citrus leaf miner: a potentially destructive exotic pest for South American citriculture. IPM working for development, 5:1-12.

Moreira JA; McElfresh JS; Millar JG, 2006. Identification, synthesis, and field testing of the sex pheromone of the citrus leafminer, Phyllocnistis citrella. Journal of Chemical Ecology, 32(1):169-194.

N·nez Sacarfas E; Canales Canales A, 1999. Ageniaspis citricola Logvinovskaya, 1983 (Hymenoptera: Encyrtidae). Biological control agent of Phyllocnistis citrella "citrus leaf miner": its introduction, production and use in Peru. ^italic~Ageniaspis citricola^roman~ Logvinovskaya, 1983 (Hymeno^acute~ptera: Encyrtidae). Controlador de ^italic~Phyllocnistis citrella^roman~ "minador de la hoja de los ci^acute~tricos": su introduccio^acute~n, produccio^acute~n e implantacion en el Peru^acute~., 88 pp.; 4 pp. of ref.

Neale C; Smith D; Beattie GAC; Miles M, 1995. Importation, host specificity testing, rearing and release of three parasitoids of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in eastern Australia. Journal of the Australian Entomological Society, 34(4):343-348; 9 ref.

Nucifora A; Nucifora MT, 1999. The citrus bud miner in Sicily: current strategies of control and future perspectives. Proceedings 5th World Congress of the International Society of Citrus Nurserymen, Montpellier, France, 5-8 March, 1997., 251-260; 22 ref.

Padmanaban B, 1994. Screening of citrus germplasm for controlling citrus leaf-miner (Phyllocnistis citrella) (Lepidoptera: Phyllocnistidae). Indian Journal of Agricultural Sciences, 64(10):723-726

Ruiz Cancino E; Coronado Blanco JM, 1994. Minador de la hoja de los citricos Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae: Phyllocnistinae). Centro de Investigacfon, Facultad de Agronomfa, Universidad Autónoma de Tamaulipas. Folleto Entomológico, 1:1-2.

Schauff ME; LaSalle J; Wijesekara GA, 1998. The genera of chalcid parasitoids (Hymenoptera: Chalcidoidea) of citrus leafminer Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae). Journal of Natural History, 32(7):1001-1056; 8 ref.

Singh SP; Rao NS, 1978. Relative susceptibilities of different species/varieties of citrus to leaf miner, Phyllocnistis citrella Stainton. Proceedings of the International Society of Citriculture 1978. 1980, 174-177.

Siscaro G; Longo S; Maugeri V; Reina P; Zappala L, 1999. Establishment in Sicily of Ageniaspis citricola. Informatore Agrario, 55(16):85-86.

Smith JM; Hoy MA, 1995. Rearing methods for Ageniaspis citricola (Hymenoptera: Encyrtidae) and Cirrospilus quadristriatus (Hymenoptera: Eulophidae) released in a classical biological control program for the citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae). Florida Entomologist, 78(4):600-608; 13 ref.

Stelinski LL; Lapointe SL; Meyer WL, 2010. Season-long mating disruption of citrus leafminer, Phyllocnistis citrella Stainton, with an emulsified wax formulation of pheromone. Journal of Applied Entomology, 134(6):512-520. http://www.blackwell-synergy.com/loi/jen

Stelinski LL; Miller JR; Rogers ME, 2008. Mating disruption of citrus leafminer mediated by a noncompetitive mechanism at a remarkably low pheromone release rate. Journal of Chemical Ecology, 34(8):1107-1113. http://www.springerlink.com/link.asp?id=104273

Thomazini MJ; Albuquerque ESde, 2005. Occurrence of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in citrus in the state of Acre, Brazil. (Ocorrência de Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) em citros no Estado do Acre, Brasil.) Acta Amazonica, 35(3):395-397.

Trjapitzin VA; Cancino ER, 1995. Ageniaspis citricola Logvinovskaya (Hymenoptera: Chalcidoidea: Encyrtidae): Un parasitoide del minador de la hoja de los citricos Phyllocnistis citrella (Stainton) (Lepidoptera:Phyllocnistidae). Revista de la Universidad Autonoma de Tamaulipas, 44:59-64. [In Spanish]

Ujiye T; Kamijo K; Morakote R, 1996. Species composition of parasitoids and rate of parasitism of the citrus leafminer (CLM), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in central and northern Thailand, with key to parasitoids of CLM collected from Japan, Taiwan and Thailand. Bulletin of the Fruit Tree Research Station, No. 29:79-106; 29 ref.

Uygun N; Yumruktepe R; Kersting U; Karaca I; Yigit A; Tekeli NZ; Aytas M; Ulusoy MR; Canhilal R, 1995. A serious citrus pest: citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera, Gracillariidae). Tu^umlaut~rkiye Entomoloji Dergisi, 19(4):247-252; 14 ref.

Vargas OH; Bobadilla D; JimTnez RM; Vargas CH, 1999. A preliminary trial about larval susceptibility of Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) to insecticides sprayed on the foliage. IDESIA, 16:23-27; 17 ref.

Vercher R; Costa-Comelles J; Marzal C; García-Marí F, 2005. Recruitment of native parasitoid species by the invading leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) on citrus in Spain. Environmental Entomology, 34(5):1129-1138. HTTP://www.esa.catchword.org

Waterhouse DF, 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. ACIAR Monograph No. 21. Canberra, Australia: Australian Centre for International Agricultural Research, 141 pp.

Wu KC; Tao CC, 1977. Comparative study of spraying and painting insecticides against citrus leaf miner, Phyllocnistis citrella (Phyllocnistidae, Lept.). Journal of Agricultural Research of China, 26(2):158-168

Wu TzeKann; Lin KweiShui, 1998. Influence of green lacewing, Mallada basalis (Walker) (Neuroptera: Chrysopidae), on parasitoids of citrus leafminer, Phyllocnistis citrella Stainton (Lepidoptera: Phyllocnistidae). Chinese Journal of Entomology, 18(1):13-25; 13 ref.

Zhang AG; O'Leary C; Quarles W, 1994. Chinese IPM for citrus leafminer [Phyllocnistis citrella] (update). IPM Practitioner, 16(8):10-13

Zhang QuanBing; Lei HuiDe; Lin BangMao; Ran Chun; Li HongYun; Tian WenHua; Qian KeMing, 2001. Experimental control of citrus leaf miner. South China Fruits, 30(4):17.

Zhou CA; Zou JJ; Huang SD, 1994. The effects of Ageratum interplanting in hilly Citrus orchards in Hunan Province on citrus mite and insect populations. Acta Phytophylactica Sinica, 21(1):57-61.

Distribution Maps

Top of page
You can pan and zoom the map
Save map
Download KML file Download CSV file
Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Please click OK to ACCEPT or Cancel to REJECT