Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Phthorimaea operculella
(potato tuber moth)

Toolbox

Datasheet

Phthorimaea operculella (potato tuber moth)

Summary

  • Last modified
  • 19 November 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Phthorimaea operculella
  • Preferred Common Name
  • potato tuber moth
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Phthorimaea operculella (potato tuber moth); damage symptoms, showing final instar larva in a leaf mine on tobacco (Nicotiana tabacum). North Carolina Department of Agriculture, USA.
TitleDamage symptoms
CaptionPhthorimaea operculella (potato tuber moth); damage symptoms, showing final instar larva in a leaf mine on tobacco (Nicotiana tabacum). North Carolina Department of Agriculture, USA.
Copyright©Jessica Louque/Smithers Viscient/Bugwood.org - CC BY 3.0 US
Phthorimaea operculella (potato tuber moth); damage symptoms, showing final instar larva in a leaf mine on tobacco (Nicotiana tabacum). North Carolina Department of Agriculture, USA.
Damage symptomsPhthorimaea operculella (potato tuber moth); damage symptoms, showing final instar larva in a leaf mine on tobacco (Nicotiana tabacum). North Carolina Department of Agriculture, USA.©Jessica Louque/Smithers Viscient/Bugwood.org - CC BY 3.0 US
Phthorimaea operculella (potato tuber moth); final instar larva and, pupa.
TitleLarva and pupa
CaptionPhthorimaea operculella (potato tuber moth); final instar larva and, pupa.
Copyright©Merle Shepard, Gerald R.Carner& P.A.C Ooi/Insects and their Natural Enemies Associated with Vegetables and Soybean in Southeast Asia/Bugwood.org - CC BY 3.0 US
Phthorimaea operculella (potato tuber moth); final instar larva and, pupa.
Larva and pupaPhthorimaea operculella (potato tuber moth); final instar larva and, pupa.©Merle Shepard, Gerald R.Carner& P.A.C Ooi/Insects and their Natural Enemies Associated with Vegetables and Soybean in Southeast Asia/Bugwood.org - CC BY 3.0 US
Phthorimaea operculella (potato tuber moth); adults are small elongate Gelechiid moths, measuring about 1cm in length when at rest, coloured pale brown with darker marbling. Wingspan 15-17 mm. Museum set specimen.
TitleAdult
CaptionPhthorimaea operculella (potato tuber moth); adults are small elongate Gelechiid moths, measuring about 1cm in length when at rest, coloured pale brown with darker marbling. Wingspan 15-17 mm. Museum set specimen.
Copyright©David Agassiz
Phthorimaea operculella (potato tuber moth); adults are small elongate Gelechiid moths, measuring about 1cm in length when at rest, coloured pale brown with darker marbling. Wingspan 15-17 mm. Museum set specimen.
AdultPhthorimaea operculella (potato tuber moth); adults are small elongate Gelechiid moths, measuring about 1cm in length when at rest, coloured pale brown with darker marbling. Wingspan 15-17 mm. Museum set specimen.©David Agassiz

Identity

Top of page

Preferred Scientific Name

  • Phthorimaea operculella (Zeller 1873)

Preferred Common Name

  • potato tuber moth

Other Scientific Names

  • Bryotropha solanella Boisduval
  • Gelechia operculella Zeller
  • Gelechia tabacella Ragonot
  • Gelechia terella Walker
  • Gnorimoschema operculella Zeller
  • Lita operculella
  • Lita solanella Boisduval
  • Phthorimaea solanella
  • Phthorimaea terrella
  • Scrobipalpa operculella
  • Scrobipalpulus solanivora
  • Scrobipalpus solanivora

International Common Names

  • English: potato moth; potato tuber worm; stem end grub; tobacco leafminer; tobacco split worm; tobacco splitworm
  • Spanish: gusano de la papa; gusano del tubérculo de la papa; minador común de la papa; minador de la hoja del tabaco; oruga barrenadora del tallo; palomilla de la patata; polilla de la papa (Arg); polilla de la patata
  • French: teigne de la pomme de terre

Local Common Names

  • Brazil: traca da batatinha
  • Denmark: kartoffelmol
  • Germany: kartoffel-motte; rübenmotte
  • Israel: ash habulbusin
  • Italy: tignola della patata
  • Japan: zyagaimoga
  • Netherlands: aardappel-knollenruspje
  • Norway: potetmoll
  • Sweden: potatismal
  • Turkey: patetes guvesi

EPPO code

  • PHTOOP (Phthorimaea operculella)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Lepidoptera
  •                         Family: Gelechiidae
  •                             Genus: Phthorimaea
  •                                 Species: Phthorimaea operculella

Description

Top of page
Adult

A small elongate gelechiid moth, measuring about 1 cm in length when at rest, coloured pale brown with darker marbling. Wingspan 15-17 mm. Head and thorax pale brown, palpi curved, ascending, terminal segment about as long as second. Antennae brown, 0.7 x wing length. Front wings pale brown with small blotches of mid brown, and hind wings pale grey. The tip of the male abdomen is spinose, and distinctive when viewed through a microscope.

Egg

Broadly oval, smooth and yellowish, iridescent.

Larva

When fully grown, P. operculella larvae are about 15 mm in length. Head dark brown; prothoracic plate sometimes pinkish; body greyish-white or pale greenish-grey. Pinacula small, dark brown or black. Anal plate brown.

Pupa

Yellowish or reddish brown, eighth abdominal segment with spiracles on slightly raised, backward pointing spiracles; cremaster with a median, dorsal, thorn-like spine and eight slender hooks.

Distribution

Top of page

P. operculella is a cosmopolitan pest, especially in warm temperate and tropical regions where host plants are grown. During recent years the species has been inadvertently introduced into Georgia (Markosyan, 1992) and the Ukraine and there is a threat of its spreading to neighbouring states (Sikura and Shendaraskaya, 1983). It has also been newly recorded from the Arabian peninsula (Povolny, 1986; Kroschel and Koch, 1994) and more widely in East Africa (Parker and Hunt, 1989). It was also observed in Germany (OP Karsholt, Zoologiste Museum, Copenhagen, Denmark, personal communication, 1996).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 17 Feb 2021
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

AlgeriaPresent, Widespread
BurundiPresent
Cabo VerdePresent
Congo, Democratic Republic of thePresent
Congo, Republic of thePresent
EgyptPresent
EritreaPresent
EthiopiaPresent
KenyaPresent
LibyaPresent
MadagascarPresent
MalawiPresent
MauritiusPresent
MoroccoPresent, Localized
RéunionPresent
RwandaPresent
Saint HelenaPresent
SenegalPresent
SeychellesPresent
South AfricaPresent, Widespread
SudanPresent
TanzaniaPresent
TunisiaPresent, Widespread
ZambiaPresent
ZimbabwePresent, Widespread

Asia

BangladeshPresent, Widespread
ChinaPresent
-GuizhouPresent
-YunnanPresent
GeorgiaPresent, Few occurrences1938
IndiaPresent, Widespread
-AssamPresent
-BiharPresent
-GujaratPresent
-Himachal PradeshPresent, Widespread
-KarnatakaPresent
-Madhya PradeshPresent
-MaharashtraPresent
-MeghalayaPresent, WidespreadOriginal citation: Lakshman Lal (1991)
-OdishaPresent
-PunjabPresent
-Tamil NaduPresent
-Uttar PradeshPresent
-West BengalPresent
IndonesiaPresent
-JavaPresent
-SulawesiPresent
-SumatraPresent
IranPresent
IraqPresent
IsraelPresent, Widespread
JapanPresent, Widespread
-HonshuPresent, Widespread
-KyushuPresent, Widespread
-ShikokuPresent, Widespread
JordanPresent
LebanonPresent
MyanmarPresent
NepalPresent
OmanPresent
PakistanPresent
PhilippinesPresent
Saudi ArabiaPresent
South KoreaPresent
Sri LankaPresent
SyriaPresent
ThailandPresent
TurkeyPresent, Few occurrences
VietnamPresent
YemenPresent, Widespread

Europe

AlbaniaAbsent, Unconfirmed presence record(s)
AustriaAbsent, Unconfirmed presence record(s)
BelgiumAbsent, Unconfirmed presence record(s)
BulgariaPresent, LocalizedFirst reported: 195*
CroatiaPresent, Localized
CyprusPresent, Widespread
CzechiaAbsent, Intercepted only
DenmarkAbsent, Intercepted only
FinlandAbsent, Intercepted only
FrancePresent, Localized
-CorsicaAbsent, Unconfirmed presence record(s)
GermanyAbsent, Intercepted only
GibraltarAbsent, Unconfirmed presence record(s)
GreecePresent, Widespread
-CreteAbsent, Unconfirmed presence record(s)
HungaryAbsent, Intercepted only
ItalyPresent, Localized
-SardiniaPresent
-SicilyPresent
MaltaPresent, Widespread
NetherlandsAbsent, Formerly present
North MacedoniaPresent
PortugalPresent, Widespread
-AzoresPresent
-MadeiraPresent
RomaniaPresent, Few occurrences
RussiaPresent, Few occurrences
-Northern RussiaAbsent, Intercepted only
-Southern RussiaPresent, Few occurrences
SerbiaPresent, Localized
SlovakiaAbsent, Intercepted only
SloveniaPresent
SpainPresent, Widespread
-Balearic IslandsAbsent, Unconfirmed presence record(s)
-Canary IslandsPresent
SwedenAbsent, Intercepted only
SwitzerlandAbsent, Formerly present
UkrainePresent, Few occurrences
United KingdomAbsent, Unconfirmed presence record(s)
-Channel IslandsAbsent, Unconfirmed presence record(s)
-EnglandAbsent, Intercepted only

North America

Antigua and BarbudaPresent
BermudaPresent
CanadaAbsent, Formerly present
-British ColumbiaAbsent, Formerly present
Costa RicaPresent, Widespread
CubaPresent
Dominican RepublicPresent
HaitiPresent
HondurasPresent
JamaicaPresent
MexicoPresent
Puerto RicoPresent
Saint Vincent and the GrenadinesPresent
United StatesPresent, Widespread
-AlabamaPresent
-ArizonaPresent
-CaliforniaPresent
-ColoradoPresent
-DelawarePresent
-District of ColumbiaPresent
-FloridaPresent
-GeorgiaPresent
-HawaiiPresent
-IdahoPresent
-IllinoisAbsent, Formerly present
-IndianaAbsent, Formerly present
-IowaPresent
-KansasAbsent, Formerly present
-KentuckyPresent
-LouisianaPresent
-MarylandPresent
-MassachusettsAbsent, Formerly present
-MichiganPresent
-MinnesotaPresent
-MississippiPresent
-MissouriPresent
-NebraskaPresent
-NevadaPresent
-New JerseyPresent
-New MexicoPresent
-New YorkAbsent, Formerly present
-North CarolinaPresent
-OhioPresent
-OregonPresent
-PennsylvaniaPresent
-Rhode IslandPresent
-South CarolinaPresent
-South DakotaPresent
-TennesseePresent
-TexasPresent
-UtahPresent
-VirginiaPresent
-WashingtonPresent
-WisconsinAbsent, Formerly present

Oceania

AustraliaPresent, Widespread
-New South WalesPresent, Widespread
-Northern TerritoryPresent
-QueenslandPresent, Widespread
-South AustraliaPresent, Widespread
-TasmaniaPresent, Widespread
-VictoriaPresent, Widespread
-Western AustraliaPresent, Localized
FijiPresent
French PolynesiaPresent, Localized
GuamPresent
New CaledoniaPresent
New ZealandPresent, Widespread
Norfolk IslandPresent
Papua New GuineaPresent

South America

ArgentinaPresent, Widespread
BoliviaPresent, Widespread
BrazilPresent, Widespread
-BahiaPresent
-GoiasPresent
-Minas GeraisPresent
-ParanaPresent
-Rio Grande do SulPresent
-Sao PauloPresent
ChilePresent, Localized
ColombiaPresent, Widespread
EcuadorPresent, Few occurrences
ParaguayPresent, Localized
PeruPresent, Widespread
UruguayPresent, Widespread
VenezuelaPresent, Widespread

Risk of Introduction

Top of page
This is such a cosmopolitan pest that there are few countries where it is an external or potential threat. It is intercepted occasionally in Europe on imported plant material; however it is doubtful whether it will survive severe cold winters of temperate countries.

Hosts/Species Affected

Top of page
Potato is the principal host for P. operculella, but other Solanaceae are attacked, especially tomato, tobacco, chilli, aubergine and cape gooseberry. There are many related wild hosts; 60 plant species are listed by Das and Raman (1994).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContextReferences
Beta vulgaris var. saccharifera (sugarbeet)ChenopodiaceaeOther
    Capsicum annuum (bell pepper)SolanaceaeOther
      Nicotiana tabacum (tobacco)SolanaceaeOther
        Physalis peruviana (Cape gooseberry)SolanaceaeOther
          SolanaceaeSolanaceaeOther
            Solanum lycopersicum (tomato)SolanaceaeMain
              Solanum melongena (aubergine)SolanaceaeOther
                Solanum tuberosum (potato)SolanaceaeMain

                  Growth Stages

                  Top of page
                  Post-harvest, Vegetative growing stage

                  Symptoms

                  Top of page
                  On growing plants, leaf mines betray the presence of larvae, and in addition the stem is weakened or broken. On tubers, detection is more difficult without cutting open some tubers, when galleries and larvae will be apparent within the potatoes.

                  List of Symptoms/Signs

                  Top of page
                  SignLife StagesType
                  Leaves / internal feeding
                  Leaves / wilting
                  Roots / internal feeding
                  Stems / internal feeding
                  Stems / wilt

                  Biology and Ecology

                  Top of page
                  Carter (1984) reviewed P. operculella with reference to Europe; Trivedi and Rajagopal (1992) gave a review of all aspects of the species, with special reference to India. A review of the knowledge of the pest over 50 years in South Africa was given by Daiber (1991).

                  The eggs are laid singly or in batches on the leaves of the host plant, or on exposed tubers near the eye buds. A total of 40-290 eggs are laid which take 3-15 days to hatch. In winter this stage can last up to 58 days, but eggs cannot tolerate low temperatures; eggs kept at 1-4°C for 4 months failed to hatch (Langford and Cory, 1932).

                  The larva at first bores into the petiole, or a young shoot or main leaf vein, and mines the leaf making a blotch. Later it bores into a tuber, making a long irregular gallery. On stored tubers feeding on the tubers begins immediately. The larval stage lasts 13-33 days.

                  Pupation normally takes place in the soil; the pupal period is 6-29 days.

                  Adults fly chiefly by night and are attracted to light. They live for up to 10 days. The moth breeds continuously where conditions permit; up to 13 generations a year have been recorded in India (Mukherjee, 1948). The complete life cycle ranges from 17 to 125 days. Development of all stages is greatly influenced by temperature: the maximum fecundity has been recorded at 28°C and temperatures tolerated are in the range 15-40°C.

                  Natural enemies

                  Top of page
                  Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
                  Agathis gibbosa Parasite Larvae USA; California potatoes
                  Agathis unicolorata Parasite Larvae Australia; Bermuda; Cyprus; India; New Zealand; South Africa; St Helena; USA; Zambia; Zimbabwe potatoes; tobacco
                  Anagrus nigriventris Parasite Eggs
                  Anomalochrysa frater Predator
                  Apanteles caniae Parasite Larvae
                  Apanteles gelechiidivoris Parasite Larvae California
                  Apanteles scutellaris Parasite Larvae
                  Apanteles subandinus Parasite Larvae Australia; Bermuda; Chile; Cyprus; India; Madagascar; Mauritius; New Zealand; Queensland; South Africa; St Helena; Tanzania; USA; Zambia; Zimbabwe potatoes; tobacco
                  Bacillus thuringiensis Pathogen Larvae Egypt
                  Bacillus thuringiensis kenyae Pathogen Larvae
                  Bacillus thuringiensis kurstaki Pathogen Larvae
                  Bacillus thuringiensis thuringiensis Pathogen Larvae
                  Blattisocius keegani Predator
                  Bracon gelechiae Parasite Larvae Australia; Bermuda; Chile; Cyprus; Hawaii; India; Malta; New Zealand; South Africa; St Helena; Zambia; Zimbabwe potatoes; tobacco
                  Bracon hebetor Parasite Larvae
                  Bracon instabilis Parasite Egypt
                  Bracon johannseni Parasite Larvae France Solanaceae
                  Brinckochrysa scelestes Predator
                  Brumoides suturalis Predator
                  Campoletis chlorideae
                  Campoplex haywardi Parasite Larvae Australia; Bermuda; Cyprus; India; Madagascar; Mauritius; New Zealand; South Africa; St Helena; Tanzania; USA; Zambia potatoes; tobacco
                  Campoplex phthorimaeae Parasite Bermuda; Hawaii potatoes; tobacco
                  Chelonus caucasicus Parasite Eggs/Larvae
                  Chelonus curvimaculatus Parasite Eggs/Larvae
                  Chelonus kellieae Parasite Eggs/Larvae India; USA potatoes; tobacco
                  Chelonus phthorimaeae Parasite Eggs/Larvae Australia; Bermuda; Chile; Hawaii; South Africa; USA; California potatoes; tobacco
                  Chelonus subcontractus Parasite Eggs/Larvae
                  Chrysoperla carnea Predator
                  Chrysoperla rufilabris Predator
                  Chrysoperla zastrowi Predator
                  Copidosoma desantisi Parasite Eggs/Larvae Australia; Queensland tobacco
                  Copidosoma koehleri Parasite Eggs/Larvae Australia; Bermuda; Cyprus; Greece; Hawaii; India; Italy; Japan; Kenya; Madagascar; Maharashtra; Mauritius; New Zealand; Seychelles; South Africa; St Helena; Tanzania; USA; Victoria; Zambia; Zimbabwe potatoes; tobacco
                  Copidosoma phthorimaeae Parasite
                  Diadegma mollipla Parasite Bermuda; Egypt; India; Kenya; Madagascar; New Zealand; St Helena; USA aubergines; potatoes; tobacco
                  Diadegma stellenboschensis Parasite
                  Diadegma turcator Parasite Larvae Bermuda; India; St Helena; Tanzania; Zambia potatoes; tobacco
                  Dolichogenidea appellator Parasite Larvae
                  Dolichogenidea litae Parasite Egypt
                  Encarsia porteri Parasite Eggs
                  Eriborus trochanteratus Parasite Larvae Cyprus; New Zealand; St Helena; Zambia potatoes
                  Exeristes roborator Parasite
                  Geocoris punctipes Predator
                  Geocoris tricolor Predator
                  Glypta rufiscutellaris Parasite Hawaii tobacco
                  Goniozus gallicola Parasite
                  Granulosis virus Pathogen Larvae
                  Hippodamia variegata Predator
                  Labidura riparia Predator
                  Lioadalia flavomaculata Predator
                  Microchelonus blackburni Parasite Larvae Karnataka
                  Nythobia koizumii Parasite
                  Orgilus jennieae Parasite Larvae India; USA; USA; California potatoes; tobacco
                  Orgilus lepidus Parasite Larvae Australia; Bermuda; California; Cyprus; India; New Zealand; Queensland; South Africa; St Helena; Tanzania; USA; Zambia potatoes; tobacco
                  Orgilus parcus Parasite Larvae Bermuda; Cyprus; India; New Zealand; St Helena; Zambia potatoes; tobacco
                  Orgilus pimpinellae Parasite Larvae
                  Orius albidipennis Predator
                  Orius laevigatus Predator
                  Steinernema carpocapsae Parasite Peru potatoes
                  Temelucha Parasite Larvae
                  Temelucha minuta Parasite
                  Temelucha picta Parasite
                  Temelucha platensis Parasite New Zealand potatoes
                  Trichogramma brasiliense Parasite Eggs
                  Trichogramma chilonis Parasite
                  Trichogramma evanescens Parasite Eggs
                  Trichogramma pretiosum Parasite Eggs
                  Trichogramma semblidis Parasite Eggs
                  Trichogrammatoidea armigera Parasite Eggs
                  Zosterops gouldii Predator

                  Notes on Natural Enemies

                  Top of page
                  P. operculella is attacked by native natural enemies wherever it is found; however, many of these are relatively ineffective. Some are partially effective and have been introduced for biological control into other countries. The area of origin of the pest was first believed to be North America, where some effective parasitoids exist. However, Lloyd (1972) convincingly argued that the pest originated in South America (where it attacks crops such as potato, tobacco, etc.) and in the warm temperate and subtropical areas east of the Andes where it is effectively suppressed by host-specific natural enemies. The List of Natural Enemies includes only species regarded as important and those that have been released as biological control agents.

                  Pathway Vectors

                  Top of page
                  VectorNotesLong DistanceLocalReferences
                  Containers and packaging - wood Yes
                  Plants or parts of plants Yes

                  Plant Trade

                  Top of page
                  Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
                  Bulbs/Tubers/Corms/Rhizomes larvae; pupae Yes Pest or symptoms usually invisible
                  Plant parts not known to carry the pest in trade/transport
                  Bark
                  Flowers/Inflorescences/Cones/Calyx
                  Fruits (inc. pods)
                  Growing medium accompanying plants
                  Leaves
                  Roots
                  Seedlings/Micropropagated plants
                  Stems (above ground)/Shoots/Trunks/Branches
                  True seeds (inc. grain)
                  Wood

                  Impact

                  Top of page
                  Potato tuber moth is a serious major pest in areas where the climate favours its development, and where its host plants are grown on a large scale. Ali (1993) recorded in the Sudan a range of damage from 3.3% in deep-planted tubers to 16% in shallow-planted tubers. It is also a significant post-harvest pest on potatoes in the same regions.

                  Detection and Inspection

                  Top of page
                  Mines in the leaves, leaf stalks and stems and tunnels in the tuber are clear signs of infestation by P. operculella.

                  Similarities to Other Species/Conditions

                  Top of page
                  The adult P. operculella moth closely resembles some Scrobipalpa spp. but is readily separated by the spiny structure on the dorsal side of the male genitalia, which is visible without dissection.

                  Prevention and Control

                  Top of page

                  Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

                  Cultural Control

                  As infested seed tubers are the main cause of re-infestation, the use of healthy tubers will reduce levels of field infestation (Lakshman Lal, 1991).

                  In New Zealand the greatest tuber damage and economic losses occurred during the peak of the second potato tuber moth generation during February and March. Harvesting the crop as soon as possible during this period is recommended to restrict damage (Herman, 1999).

                  In Sudan, planting in the second week of November resulted in less insect damage and a significantly greater total yield compared with crops planted 3 weeks later. Greater depth of planting and more frequent hilling-up significantly lowered infestation; for example, insect damage ranged from 3.3% (planting 10 cm deep and hilling-up three times) to 16% (planting 5 cm deep and hilling-up once). Irrigation and mulching both significantly reduced insect damage. Light irrigation every 4 days and mulching with neem leaves during the last 4 weeks before harvest were the most effective treatments (Ali, 1993).

                  Field trials conducted in Meghalaya, India, during 1987-88 indicated that larval infestations of P. operculella on potatoes were consistently reduced when potatoes were grown with chillies (Capsicum), onions or peas compared to potato alone. Similarly, tuber damage was significantly lower in plots associated with Capsicum, onions and peas (11, 11 and 13%, respectively) compared to 27% in potato alone (Lal, 1993). In Egypt larval populations of P. operculella were significantly reduced by 80 and 91% on tomato intercropped with onion and garlic, respectively, in 1988-89, but not in 1989-90. In both seasons studied, tomato yield was 114-207% and 104-284% higher in plants intercropped with onion and garlic, respectively, compared to plots grown with tomato alone (Afifi et al., 1990).

                  Host-Plant Resistance

                  Recent research into the possibility of genetically modified varieties is making some progress as described by Li et al. (1999) and Westedt et al. (1998), these point to future research directions rather than make practical solutions. An overview of current research into the genetic manipulation of potato for insect pest resistance carried out at the New Zealand Institute for Crop and Food Research is given by Conner et al. (1996). Work is focused on transferring the genes for the insecticidal proteins of Bacillus thuringiensis into potato in order to provide resistance.

                  Fifteen potato cultivars were tested for their reaction to P. operculella by Berlinger et al. (1992) using artificial infestation. There was a good correlation between the rate of larval infestation in the leaves and tubers except for cv. Frisia, which had highly susceptible leaves but a low percentage of infested tubers (8.4%). Ailsa, Escort, Blanka, King Edward and Russet Burbank were fairly resistant. Cara, Maris Piper, Desiree and Nicola were moderately resistant and Frisia, Asterix, Spunta, Pentland Squire, Diamant and Alpha were susceptible.

                  Biological Control

                  Biological control of P. operculella has been attempted since 1918 when Bracon gelichiae was imported into France from USA. Lloyd (1972) showed that in northern Argentina and southern Brazil P. operculella causes little damage and is heavily parasitized. Cultures of some of these parasitoids were mass-reared by the Commonwealth Institute of Biological Control (CABI Bioscience) and widely distributed. Three of these parasitoids, Apanteles subandinus, Copidosoma koehleri and Orgilus lepidus, and also B. gelechiae have become established in a number of countries, and in some of them successful biological control has been reported (Sankara and Girling, 1980). In Victoria, Australia, Horne (1990) found that the parasitoids A. subandinus and O. lepidus were the most abundant, but C. koehleri was also recorded from several sites.

                  Detailed analysis of data obtained through regular monitoring revealed that, in an area free from insecticides, parasitoids were a major factor in controlling P. operculella. This result differs from previously published opinions on the effect of parasitoids, and is attributed to this study's analysis of data on a generation basis. The most successful results were claimed in Zimbabwe and Zambia after the establishment of A. subandinus and O. lepidus. In Cyprus A. subandinus and other parasitoids are credited with effective control (see Sankara and Girling, 1980). C. koehleri has also been successfully used in Peru (Raman et al., 1993). However, biological control depends on the proper selection and use of insecticides, and when indiscriminate insecticide application is practised parasitoids are unable to maintain control.

                  Native parasitoids can also achieve significant rates of parasitism, for example, in Sardinia the ichneumonid Diadegma turcator and the braconids Bracon nigricans, B. properhebetor and a species of Apanteles were recorded as parasitoids of the pest, the first species accounting for 65.1% of the total rate of parasitism (Ortu and Floris, 1989).

                  The nematodes Steinernema feltiae, S. bibionis, S. carpocapsae and Heterorhabditis heliothidis were used in an experiment in Russia (Ivanova et al., 1994). Potatoes infested with larvae of P. operculella were sprayed with aqueous suspensions. The first three species resulted in 95.5, 93.4 and 93.1% mortality, respectively. Larvae of all instars, within as well as on the surface of the potatoes, were affected, and infection on larvae of the next generation appeared in 6 days.

                  In Italy, a leaflet was designed to give agricultural extension workers an understanding of the biological control of P. operculella using baculovirus (CIP, 1992). Instructions for low-cost virus multiplication are included. In Israel, in tomato fields adjacent to potato fields, extensive damage was caused by P. operculella and three consecutive applications of Bacillus thuringiensis at a high volume were required for control.

                  In Peru, Winters and Fano (1997) found that Baculovirus phthorimaea was cost effective.

                  In southern areas of the Ukraine, B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. thuringiensis were highly effective against the pest when applied at 10-25°C. Treatment of larvae with these preparations at 9-12°C showed that they were at least as active as Dipel, another formulation of B. thuringiensis subsp. kurstaki (Baklanova et al., 1990).

                  In Australia, Baggen and Gurr (1998) found in field trials to investigate the effects of habitat management, parasitism rates were greatest in P. operculella larvae recovered from potato tubers close to flowering plants of dill (Anethum graveolens), borage (Borago officinalis) or coriander (Coriandrum sativum). It is concluded that there may be value in providing non-host foods to C. koehleri by deploying flowering plants in a habitat management strategy.

                  Botanical Pesticides

                  Prevention of attack is also assisted by the application of vegetable oils. Sharaby (1988) showed that orange peel oil reduced the fecundity of P. operculella. Reproduction was significantly reduced when either males or females were exposed to the oil vapour. The effect increased with an increase of oil dose and exposure time. Egg hatch ranged from up to 30% when the moths were exposed to 160 µl of oil for 30-120 min. A further pronounced reduction in egg production and egg viability occurred when the moths were exposed to the vapours arising from paper discs treated with a drop of oil.

                  Salem (1991) showed that neem seed extract was effective for control of P. operculella on potatoes in a store in Egypt. Storage loss after 6 months in potatoes treated with 100 p.p.m. neem oil was 25% (compared to 10% with carbaryl). Adults from larvae treated with neem oil were deformed.

                  Chemical Control

                  In a field study in Egypt with potatoes, abamectin was the most effective against P. operculella followed by profenofos, Bacillus thuringiensis and granulosis virus, respectively. Tuber yields with these treatments were 14.26, 14.21, 12.58 and 12.08 t/ha, respectively, compared with the control yield of 9.04 t. Under the storage conditions, abamectin was also the most effective followed by fenitrothion, B. thuringiensis and granulosis virus (Abel-Mageed et al., 1998).

                  Quinalphos and diflubenzuron reduced damage caused by P. operculella, and the yield was highest in plots treated with quinalphos in India (Chandramonhan and Nanjan, 1993). The efficacy of nine insecticides against P. operculella on potatoes was tested in Maharashtra, India. Treatment with phenthoate, chlorpyrifos, fenitrothion, phoxim, permethrin, cypermethrin, deltamethrin and fenvalerate at fortnightly intervals reduced pest populations. One of these insecticides should be applied on the appearance of pests with two or three repeat applications (Raj and Trivedi, 1993).

                  Eleven insecticides were tested in sprays against P. operculella on potatoes in Maharashtra, India, in 1983-86. Analysis of the pooled data from three field trials indicated the efficacy of three foliar applications of quinalphos at 15-day intervals, beginning 45 days after planting (Pokharkar et al., 1991). More chemical treatment details are provided by Trivedi and Rajagopal (1992).

                  For protection of stored potatoes in India Sharma et al. (1998) carried out tests and it was concluded that Plantmix I is a considerable improvement to Neemrich I for preventing infestations of P. operculella. Debnath et al. (1998) found that damage to stored tubers was significantly reduced following the application of dry eucalyptus leaves, and powdered sweet flag (Acorus calamus) rhizomes and eucalyptus leaves. Dusting healthy tubers with fine wood ash controlled infestations for long periods. Seed potatoes were adequately protected by 5% malathion dust and 1.5% quinalphos dust. Potatoes kept in gunny bags impregnated with solutions of malathion 50 EC and azadirachtin 1400 p.p.m. were also free of damage. Although treatment with B. thuringiensis resulted in a low level of infestation and rotting, the percentage tuber damage remained high.

                  In Tunisia, Das et al. (1998) found that deltamethrin, granulosis virus and B. thuringiensis were equally effective in reducing pest damage. After 3 months' storage the treatments showed no significant effect on sprouting.

                  Pheromonal Control

                  Pheromone traps are used both for monitoring populations and for control in the field and in storage (Chernii et al., 1994). The sex pheromone of P. operculella was identified as a mixture of trans-4,cis-7-tridecadienyl acetate (PTM1) and trans-4,cis-7,cis-10 tridecatrienyl acetate (PTM2) (Persoons et al., 1976). Ortu and Floris (1989) baited traps with a mixture of the compounds. The use of a large number of pheromone traps (84/ha) drastically reduced the number of captures within the field, indicating that the mating disruption techniques may be effective for controlling this pest.

                  In New Zealand Herman and Clearwater (1998) tested delta design DeSIRe, green plastic funnel, water and A-traps and found that DeSIRe sticky traps caught more than eight times more moths per day than the funnel traps (17 and two moths per day, respectively). This was consistent regardless of height or pheromone blend. A blend of PTM1 and PTM2 in the ratio 1:1.5 was most effective.

                  Tests in 1976-78 at Casablanca in Morocco, both in the field and in vegetable-packing stations, showed that the most effective traps were pans of water over which were hung rubber septa impregnated with synthetic sex pheromone of the moth (Thal, 1979). The best results were obtained with PTM1 and PTM2 at a ratio of 9:1 (Raman, 1983); all ratios tested gave better results than traps baited with virgin females. A 1:1.5 mixture remained attractive for 90 days in the field; storage at -5°C for 2 months did not reduce its efficacy. Water traps and funnel traps gave similar results to each other. Funnel traps were ideal for mass trapping: tuber damage was reduced by 23% in pheromone-treated plots. Funnel traps in stores reduced tuber and sprout damage from 60 to 8%.

                  Integrated Pest Management

                  Strategies for integrated management of P. operculella are often contained within the management of the whole complex of potato pests. The International Potato Centre (CIP) in Peru has devised a strategy to develop and implement IPM to overcome some constraints that prevent farmers from adopting such practices. Integrated pest management strategies have been developed in many areas: see also Arx et al. (1987), Das et al. (1992), Fuglie et al. (1993), Cisneros and Gregory (1994) and Berlinger et al. (1992).

                  Phytosanitary Measures

                  Because P. operculella is such a cosmopolitan species and is considered to have reached its natural limits, phytosanitary measures are unlikely to have much effect. Where it is warm enough for the moth to survive in the open, or in warm storage, regular inspections for tuber damage should be made.

                  References

                  Top of page

                  Abdel-Megeed MI, Abbas MG, El Sayes SM, Moharam EA, 1998. Efficacy of certain biocides against potato tuber moth, Phthorimaea operculella under field and storage conditions. Proceedings, Seventh conference of agricultural development research, Cairo, Egypt, 15-17 December 1998. Volume 1. Annals of Agricultural Science Cairo, Special Issue, Volume 1:309-317.

                  Afifi FML, Haydar MF, Omar HIH, 1990. Effect of different intercropping systems on tomato infestation with major insect pests; Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae), Myzus persicae Sulzer (Homoptera: Aphididae) and Phthorimpa operculella Zeller (Lepidoptera: Gelechiidae). Bulletin of Faculty of Agriculture, University of Cairo, 41(3, Suppl. 1):885-900

                  Ajamhasani M, Salehi L, 2004. Effect of three non cultivated plants on host preference and on oviposition rate of the potato tuber moth (Phthorimaea operculella). Journal of Agriculture Sciences , 1(5):112-119. http://research.guilan.ac.ir/jas/papers/385555Ajamhasani.pdf

                  Al-Ali AS, Al-Neamy IK, Abbas SA, Abdul-Masih AME, 1975. Observations on the biology of the potato tuber moth Phthorimaea operculella Zell. (Lepidoptera, Gelechiidae) in Iraq. Zeitschrift fur Angewandte Entomologie, 79(4):345-351.

                  Ali MA, 1993. Effects of cultural practices on reducing field infestation of potato tuber moth (Phthorimaea operculella) and greening of tubers in Sudan. Journal of Agricultural Science, 121(2):187-192

                  Amitava Konar, Mohasin M, 2004. Incidence of potato tuber moth, Phthorimaea operculella (Zell.) (Gelechidae: Lepidoptera), at different locations of West Bengal. Journal of Interacademicia, 8(2):230-235.

                  APPPC, 1987. Insect pests of economic significance affecting major crops of the countries in Asia and the Pacific region. Technical Document No. 135. Bangkok, Thailand: Regional Office for Asia and the Pacific region (RAPA).

                  Arnone S, Musmeci S, Bacchetta L, Cordischi N, Pucci E, Cristofaro M, Sonnino A, 1998. Research in Solanum spp. of sources of resistance to the potato tuber moth Phthorimaea operculella (Zeller). Potato Research, 41(1):39-49.

                  Arthurs SP, Lacey LA, Rosa Fde la, 2008. Evaluation of a granulovirus (PoGV) and Bacillus thuringensis subsp. Kurstaki fro control of the potato tuberworm (Lepidoptera: Gelechiidae) in stored tubers. Journal of Economic Entomology, 10(5):1540-1056.

                  Arx Rvon, Goueder J, Cheikh M, Temime AB, 1987. Integrated control of potato tubermoth Phthorimaea operculella (Zeller) in Tunisia. Insect Science and its Application, 8(4-6):989-994; [3 fig., In Recent Advances in Research on Tropical Entomology, Nairobi, Kenya, 31 August-5 September, 1986]; 14 ref.

                  Attia R, Mattar B, 1939. Some notes on the potato tubermoth Phthorimaea operculella Zell. Bulletin of the Society of Entomology Egypt, 2(16):136.

                  Baggen LR, Gurr GM, 1998. The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biological Control, 11(1):9-17; 30 ref.

                  Baklanova OV, Lappa NV, Doroshenko NN, 1990. Biological investigation on the potato moth and its sensitivity to microbial pesticides. Zashchita Rastenii (Kiev), 37:38-42; 7 ref.

                  Bartoloni P, 1951. La Phthorimaea operculella Zeller (Lep. Gelechiidae) in Italia. Redia, 36:301-379.

                  Berlinger MJ, Mordechi S, Nachmias A, Libesku L, 1992. Susceptibility of potato cultivars to the potato tuber moth Phthorimaea operculella Zell. Hassadeh, 72(7):852-856

                  Broodryk SW, 1971. Ecological investigations on the potato tuber moth, Phthorimaea operculella (Zeller)(Lepidoptera: Gelechiidae). Phytophylactica, 3(2):73-84.

                  Brown C, 2006. Breeding for resistance to tuber moth, powdery scab, black dot, and nematode cause problems. Washington State Potato Commision progress reports. Pasco, USA: Washington State Potato Commision.

                  Broza M, Sneh B, 1994. Bacillus thuringiensis spp. kurstaki as an effective control agent of lepidopteran pests in tomato fields in Israel. Journal of Economic Entomology, 87(4):923-928; 18 ref.

                  CABI/EPPO, 2012. Phthorimaea operculella. [Distribution map]. Distribution Maps of Plant Pests, No.June. Wallingford, UK: CABI, Map 10 (2nd revision).

                  Carter DJ, 1984. Pest Lepidoptera of Europe with special reference to the British Isles. Dordrecht, Netherlands: Dr. W. Junk.

                  Chandramonhan N, Nanjan K, 1993. Damage level and control of potato tuber moth in Nilgiris District. Madras Agricultural Journal, 80:137-139.

                  Chauhan U, Verma LR, 1991. Biology of potato tuber moth, Phthorimaea operculella Zeller with special reference to pupal eye pigmentation and adult sexual dimorphism. Entomon, 16(1):63-67.

                  Chernii AM, Chaika VN, Baklanova OV, 1994. Control of abundance of Colorado potato beetle and potato tuber worm. Zashchita Rastenii (Moskva), No. 5:7-9.

                  Chittenden FH, 1913. The potato tubermoth. United States Department of Agriculture Farmer's Bulletin:1-7.

                  CIE, 1968. Distribution Maps of Plant Pests, No. 10. Wallingford, UK: CAB International.

                  CIP, 1992. Control biologico de la polilla de la papa con Baculovirus phthorimaea. Boletin de Capacitacion CIP. No. 2.

                  Cisneros F, Gregory P, 1994. Potato pest management. Aspects of Applied Biology, No. 39:113-124.

                  Clough GH, Rondon SI, DeBano SJ, David N, Hamm PB, 2010. Cultural practices to control the potato tuberworm. Journal of Economic Entomology, 103(4):1306-1311.

                  Coll M, Gavish S, Dori I, 2000. Population biology of the potato tubermoth, Phthorimaea opercuella (Lepidoptera: Gelechiidae) in two potato cropping systems in Israel. Bulletin of Entomology Research, 90:309-315.

                  Conner AJ, Lambie SC, Pereral S, Reader JK, Shum-Thomas T, Genet RA, Wigley PJ, 1996. Genetic engineering of the potato for insect resistance. Commercial Grower, 51(8):22, 24, 26.

                  CUNNINGHAM IC, 1969. Alternative host plants of tobacco leaf-miner (Phthorimaea aperculella (Zell.)). Queensland Journal of Agricultural and Animal Sciences, 26(1):107-111 pp.

                  Daiber KC, 1991. Injurious insects and nematodes on potatoes in southern Africa. - A review of 50 years research. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 98(3):268-280

                  Das GP, Lagnaoui A, Salah HB, Souibgui M, 1998. The control of the potato tuber moth in storage in Tunisia. Tropical Science, 38(2):78-80; 12 ref.

                  Das GP, Magallona ED, Raman KV, Adalla CB, 1992. Effects of different components of IPM in the management of the potato tuber moth, in storage. Agriculture, Ecosystems & Environment, 41(3-4):321-325; 11 ref.

                  Das GP, Raman KV, 1994. Alternate hosts of the potato tuber moth, Phthorimaea operculella (Zeller). Crop Protection, 13(2):83-86

                  Das GP, Raman KV, 1994. Alternate hosts of the potato tuber moth, Phthorimaea operculella (Zeller. Crop Protection, 13(2):83-86.

                  DeBano SJ, Hamm PB, Jensen A, Rondon SI, Landolt PJ, 2010. Spatial and temporal dynamics of potato tuberworm (Lepidoptera: Gelechiidae) in the Columbia Basin of the Pacific Northwest. Environmental Entomology, 39(1):1-14. http://docserver.ingentaconnect.com/deliver/connect/esa/0046225x/v39n1/s1.pdf?expires=1267677374&id=0000&titleid=10265&checksum=D98A6209D1D2ABBAA5C9FAC1828EB2F5

                  Debnath MC, Borah BK, 2002. Record of natural enemies of potato tuber moth, Phthorimaea operculella (Zeller) in Assam. Insect Environment, 8(4):161-162.

                  Dogramaci M, Rondon SI, DeBano SJ, 2008. The effect of soil depth and exposure to winter conditions on survival of the potato tuberworm, Phthorimaea operculella. Entomologia Experimentalis et Applicata, 129(3):332-339. http://www3.interscience.wiley.com/cgi-bin/fulltext/121451792/HTMLSTART

                  Douches DS, Li W, Zarka K, Coombs J, Pett W, Grafius E, El-Nasr T, 2002. Development of Bt-cry5 insect-resistant potato lines 'Spunta-G2' and 'Spunta-G3'. HortScience, 37(7):1103-1107.

                  EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm

                  Fadli HA, Al-Salih GAW, Abdul-Masih AE, 1974. A survey of the potato tuber moth in Iraq. J. Iraqi Agric, 29:35-37.

                  Foot MA, 1976. Susceptibility of twenty potato cultivars to the potato moth at Pukekohe: a preliminary assessment. New Zealand Journal of Experimental Agriculture, 4(2):239-242.

                  Fuglie K, Salah HB, Essamet M, Temime AB, Rahmouni A, 1993. The development and adoption of integrated pest management and the potato tuber moth, Phthorimaea operculella (Zeller) in Tunisia. Insect Science and its Application, 14(4):501-509

                  Graft JE, 1917. The potato tubermoth. Technical Bulletin USDA, 427:58 pp.

                  Gubbaiah, Thontadarya TS, 1977. Bionomics of the potato tuberworm, Gnorimoschema operculella Zeller (Lepidoptera: Gelechiidae) in Karnataka. Mysore Journal of Agricultural Sciences, 11(3):380-386.

                  Herman T, 1999. Monitoring shows peaks of (potato tuber moth) PTM generations. Commercial Grower, 54(1):20.

                  Herman T, Clearwater J, 1998. Pheromone traps for moths. Commercial Grower, 53(3):27-28.

                  Hilje L, 1994. Characterization of the damage by the potato moths Tecia solanivora and Phthorimaea operculella (Lepidoptera: Gelechiidae) in Cartago, Costa Rica. Manejo Integrado de Plagas, 31:43-46.

                  Horne PA, 1990. The influence of introduced parasitoids on the potato moth, Phthorimpa operculella (Lepidoptera: Gelechiidae) in Victoria, Australia. Bulletin of Entomological Research, 80(2):159-163

                  IPPC, 2013. Phthorimaea operculella absent in Denmark. IPPC Official Pest Report, No. DNK-16/1. Rome, Italy: FAO. https://www.ippc.int/

                  Ivanova TS, Borovaya VP, Danilov LG, 1994. A biological method of controlling the potato moth. Zashchita Rastenii (Moskva), No. 2:39

                  Kalshoven LGE, Laan PA van der (Reviser and translator), 1981. Pests of crops in Indonesia (revised). Jakarta, Indonesia: Ichtiar Baru, 701 pp.

                  Kroschel J, 1995. Integrated pest management in potato production in the Republic of Yemen with special reference to the integrated biological control of the potato tuber moth (Phthorimaea operculella Zeller). Weikersheim, Germany: Margraf Verlag, xiv + 227 pp.

                  Kroschel J, Koch W, 1994. Studies on the population dynamics of the potato tuber moth (Phthorimaea operculella Zell. (Lep., Gelechiidae)) in the Republic of Yemen. Journal of Applied Entomology, 118(4/5):327-341

                  Lakshman Lal, 1991. Over seasoning and re-infestation cycle of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) in north-eastern hill region. Indian Journal of Hill Farming, 4(2):45-49; 5 ref.

                  Lal L, 1991. Effect of inter-cropping on the incidence of potato tuber moth, Phthorimaea operculella (Zeller). Agriculture, Ecosystems & Environment, 36(3-4):185-190

                  LALL BS, 1949. Preliminary observations on the bionomics of potato tuber moth (Gnorimoschema oper-culella Zell.) and its control in Binar, India. Indian Journal of Agricultural Science, 19:295-306.

                  Langford GS, Cory EN, 1932. Winter survival of the potato tuber moth, Phthorimaea operculella (Zell.). Journal of Economic Entomology, 27:210-213.

                  Li WenBin, Zarka KA, Douches DS, Coombs JJ, Pett WL, Grafius EJ, 1999. Coexpression of potato PVY coat protein and cryV-Bt genes in potato. Journal of the American Society for Horticultural Science, 124(3):218-223; 20 ref.

                  Li XJ, Jin XP, Li ZY, 2005. The present status and developing tendency in Phthorimaea operculella research. J. Qinghai Norm. Univ, 21:67-70.

                  Lloyd DC, 1972. Some South American parasites of the potato tuber moth Phthorimaea operculella (Zeller) and remarks on those in other continents. Technical Bulletin of the Commonwealth Institute of Biological Control, No. 15:35-49

                  Malakar R, Tingey WM, 1999. Resistance of Solanum berthaultii foliage to potato tuberworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 92(2):497-502.

                  Markosyan AF, 1992. Effect of temperature on the development of the potato moth Phthorimaea operculella Zell. (Lepidoptera, Gelechiidae). E^dot over~ntomologicheskoe Obozrenie, 71(2):334-338; 4 ref.

                  Meisner J, Ascher KRS, Lavie D, 1974. Factors influencing the attraction to oviposition of the potato tuber moth, Gnorimoschema operculella Zell. Zeitschrift fur Angewandte Entomologie [Meisner, J.; Ascher, K. R. S.; Lavie, D. : Phagostimulants for the larva of the potato tuber moth, Gnorimoschema operculella Zell.], 77(2):179-189.

                  MORRIS HM, 1933, December. Potato Tuber Moth (Phthorimaea operculella, Zell.). Cyprus Agricultural Journal, 28(pt. 4):111-115 pp.

                  Mukherjee AK, 1948. Life-history and bionomics of the potato tuber moth, Gnorimoschema operculella Zell. at Allahabad (United Provinces), together with some notes on the external morphology of the immature stages. Journal of the Zoological Society of India, 1:57-67.

                  Musmeci S, Ciccoli R, Gioia Cdi, Sonnino A, Arnone S, 1997. Leaf effects of wild species of Solanum and interspecific hybrids on growth and behaviour of the potato tuber moth, Phthorimaea operculella Zeller. Potato Research, 40(4):417-430.

                  NIRULA KK, 1960. Control of potato tuber moth. Indian Potato Journal, 2(1):47-51.

                  NIRULA KK, RABINDER KUMAR, 1964. Control of potato tuber moth in country stores. Indian Potato Journal, 6(1):30-33 pp.

                  Odebiyi JA, Oatman ER, 1977. Biology of Agathis unicolor (Scrottky) and Agathis gibossa (Say) (Hymenoptera: Braconidae), primary parasites of the potato tuberworm. Hilgardia, 45(5):123-151.

                  Ortu S, Floris I, 1989. Preliminary study on the control of Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) on potato crops in Sardinia. Difesa delle Piante, 12(1-2):81-88

                  Parker BL, Hunt GLT, 1989. Phthorimpa operculella (Zell.), the potato tuber moth: new locality records for East Africa. American Potato Journal, 66(9):583-586

                  Persoons CJ, Voerman S, Verwiel PEJ, Ritter FJ, Nooyen WJ, Minks AK, 1976. Sex pheromone of the potato tuberworm moth, Phthorimpa operculella: isolation, identification and field evaluation. Entomologia Experimentalis et Applicata, 20(3):289-300

                  Pokharkar DS, Naik RL, Ambekar JS, 1991. Field evaluation of certain insecticides for the control of potato tubermoth. Journal of Maharashtra Agricultural Universities, 16(1):128

                  Povolny D, 1991. Morphology, systematics and phylogeny of the tribe Gnorimoschemini (Lepidoptera, Gelechiidae). Prirodovedne Prace Ustavu Ceskoslovenske Akademie Ved v Brne, 25(9-10):61 pp.

                  Raj BT, Trivedi TP, 1993. Efficacy of insecticides against potato tuber moth, Phthorimaea operculella infesting potatoes in Maharashtra. Journal of the Indian Potato Association, 20(3-4):216-218

                  Raman KV, 1983. Sex pheromones aid in the control of potato tuber moth. 10th International Congress of Plant Protection 1983. Volume 1. Proceedings of a conference held at Brighton, England, 20-25 November, 1983. Plant protection for human welfare British Crop Protection Council Croydon UK, 274

                  Raman KV, Palacios M, 1982. Screening potato for resistance to potato tuberworm. Journal of Economic Entomology, 75(1):47-49.

                  Raman KV, Palacios M, Mujica N, Raman KV, Palacios M, Mujica N, 1993. Biological control of the potato moth Phthorimaea operculella by the parasitoid Copidosoma koehleri. Boletin de Capacitacion CIP Lima, Peru; International Potato Center (Centro Internacional de la Papa) (CIP), No. 3:28 pp.

                  Rondon SI, 2010. The potato tuberworm: a literature review of its biology, ecology, and control. American Journal of Potato Research, 87(2):149-166. http://springerlink.com/content/u7m216w785617021/fulltext.html

                  Rondon SI, DeBano SJ, Clough GH, Hamm PB, Jensen A, Schreiber A, Alvarez JM, Thornton M, Barbour J, Dogramaci M, 2007. Biology and management of the potato tuberworm in the Pacific Northwest. Oregon State University Extension Service, No. PNW 594, PNW 594. Corvallis, USA: Oregon State University Extension Service. http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/20785/pnw594.pdf?sequence=1

                  Rondon SI, Hane D, Brown CR, Vales MI, Dogramaci M, 2009. Screening potato generation crosses for resistance to potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 102(2):1649-1653.

                  Rondon SI, Xue L, 2010. Practical techniques and accuracy for sexing the potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Florida Entomologist, 93(1):113-115. http://www.fcla.edu/FlaEnt/

                  Salah HB, Aalbu R, 1992. Field use of granulosis virus to reduce initial storage infestation of the potato tuber moth, Phthorimaea operculella (Zeller), in North Africa. Agriculture, Ecosystems & Environment, 38(3):119-126.

                  Salem SA, 1991. Evaluation of neem seed oil as tuber protectant against Phthorimaea operculella Zell. (Lepidoptera, Gelechiidae). Annals of Agricultural Science, Moshtohor, 29(1):589-595

                  Sankara T, Girling DJ, 1980. The current status of biological control of the potato tuber moth. Biocontrol News and Information, 1:207-211.

                  Shands WA, Allen N, Gilmore JW, 1938. A survey of insect injury to tobacco grow for the flue curing. Journal of Economic Entomology, 3:116-117.

                  Sharaby A, 1988. Effect of orange, Citrus sinensis (L.) peel oil on reproduction in Phthorimpa operculella (Zell.). Insect Science and its Application, 9(2):201-203

                  Sharma RN, Vrushali Tare, Deshpande SG, 1998. Improved plant based formulations for preventing Phthorimaea operculella damage on stored potatoes - Plantmix I and Plantmix II. Pesticide Research Journal, 10(2):214-218; 24 ref.

                  Sikura AI, Shendaraskaya LP, 1983. The potential area of distribution of the potato moth in the territory of the USSR. Zashchita Rasteni-i, No. 8, 34.

                  Thal J, 1979. Investigations on the presence of the potato-tuber moth, Phthorimpa operculella Zeller (Lep., Gelechiidae) in storehouses by the use of the pheromone trap. Anzeiger fur Schadlingskunde Pflanzenschutz Umweltschutz, 52(3):44-47

                  Trivedi TP, Rajagopal D, 1992. Distribution, biology, ecology and management of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae): a review. Tropical Pest Management, 38(3):279-285

                  Trivedi TP, Rajagopal D, Tandon PL, 1994. Life table for establishment of potato tubermoth Phthorimaea operculella. Journal of the Indian Potato Association, 21(1/2):97-105

                  Waterhouse DF, 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. ACIAR Monograph No. 21. Canberra, Australia: Australian Centre for International Agricultural Research, 141 pp.

                  Westedt AL, Douches DS, Pett W, Grafius EJ, 1998. Evaluation of natural and engineered resistance mechanisms in Solanum tuberosum for resistance to Phthorimaea operculella (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 91(2):552-556; 28 ref.

                  Winters P, Fano H, 1997. The economics of biological control in Peruvian potato production. Working Paper Series International Potato Center. No. 97-7.

                  Xu GG, 1985. Potato tuberworm. Potato tuberworm. Beijing, China: Institute of Plant Protection, Chinese Academy of Agricultural Sciences.

                  YATHOM S, 1968. Phenology of the tuber moth, Gnorimoschema operculella Zell., in Israel in the spring. Israel Journal of Agricultural Research, 18(2):89-90 pp.

                  Distribution References

                  Ajamhasani M, Salehi L, 2004. Effect of three non cultivated plants on host preference and on oviposition rate of the potato tuber moth (Phthorimaea operculella). Journal of Agriculture Sciences. 1 (5), 112-119. http://research.guilan.ac.ir/jas/papers/385555Ajamhasani.pdf

                  Ali M A, 1993. Effects of cultural practices on reducing field infestation of potato tuber moth (Phthorimaea operculella) and greening of tubers in Sudan. Journal of Agricultural Science. 121 (2), 187-192. DOI:10.1017/S0021859600077042

                  Amitava Konar, Mohasin M, 2004. Incidence of potato tuber moth, Phthorimaea operculella (Zell.) (Gelechidae: Lepidoptera), at different locations of West Bengal. Journal of Interacademicia. 8 (2), 230-235.

                  APPPC, 1987. Insect pests of economic significance affecting major crops of the countries in Asia and the Pacific region. In: Technical Document No. 135, Bangkok, Thailand: Regional Office for Asia and the Pacific region (RAPA).

                  Baideng E L, Lengkong H J, Frans T M, Koneri R, Pontororing H, 2019. Types of insects associated with potato plants (Solanum tuberosum L.) and the incidence of the disease in Modoinding, North Sulawesi, Indonesia. Scientific Papers Series - Management, Economic Engineering in Agriculture and Rural Development. 19 (4), 25-28. http://managementjournal.usamv.ro/pdf/vol.19_4/Art3.pdf

                  Baklanova O V, Lappa N V, Doroshenko N N, 1990. Biological investigation on the potato moth and its sensitivity to microbial pesticides. Zashchita Rasteniĭ (Kiev). 38-42.

                  CABI, Undated. Compendium record. Wallingford, UK: CABI

                  CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

                  CABI/EPPO, 2012. Phthorimaea operculella. [Distribution map]. In: Distribution Maps of Plant Pests, Wallingford, UK: CABI. Map 10 (2nd revision. DOI:10.1079/DMPP/20123252643

                  Debnath M C, Borah B K, 2002. Record of natural enemies of potato tuber moth, Phthorimaea operculella (Zeller) in Assam. Insect Environment. 8 (4), 161-162.

                  EPPO, 2020. EPPO Global database. In: EPPO Global database, Paris, France: EPPO. https://gd.eppo.int/

                  Hilje L, 1994. Characterization of the damage by the potato moths Tecia solanivora and Phthorimaea operculella (Lepidoptera: Gelechiidae) in Cartago, Costa Rica. (Caracterización del daño de las polillas de la papa, Tecia solanivora y Phthorimaea operculella (Lepidoptera: Gelechiidae), en Cartago, Costa Rica.). Manejo Integrado de Plagas. 43-46.

                  Horváth D, Fazekas I, Keszthelyi S, 2017. Phthorimaea operculella (Zeller, 1873), first record of an invasive pest in Hungary (Lepidoptera, Gelechiidae). Acta Phytopathologica et Entomologica Hungarica. 52 (1), 117-122. https://akademiai.com/doi/abs/10.1556/038.52.2017.006

                  IPPC, 2013. Phthorimaea operculella absent in Denmark. In: IPPC Official Pest Report, No. DNK-16/1, Rome, Italy: FAO. https://www.ippc.int/

                  Keller S, 2003. Integrated Pest Management of the Potato Tuber Moth in Cropping Systems of Different Agro-ecological Zones [Abstract]. In: In J. Kroschel (Ed.), Advances in Crop Research. 1 Germany: Margraf. https://agris.fao.org/agris-search/search.do?recordID=US201300089705

                  Kroschel J, Koch W, 1994. Studies on the population dynamics of the potato tuber moth (Phthorimaea operculella Zell. (Lep., Gelechiidae)) in the Republic of Yemen. Journal of Applied Entomology. 118 (4/5), 327-341. DOI:10.1111/j.1439-0418.1994.tb00808.x

                  Markosyan A F, 1992. Effect of temperature on the development of the potato moth Phthorimaea operculella Zell. (Lepidoptera, Gelechiidae). Ėntomologicheskoe Obozrenie. 71 (2), 334-338.

                  Parker B L, Hunt G L T, 1989. Phthorimaea operculella (Zell.), the potato tuber moth: new locality records for East Africa. American Potato Journal. 66 (9), 583-586. DOI:10.1007/BF02852122

                  Pokharkar D S, Naik R L, Ambekar J S, 1991. Field evaluation of certain insecticides for the control of potato tubermoth. Journal of Maharashtra Agricultural Universities. 16 (1), 128.

                  Pucci C, Spanedda A F, Minutoli E, 2003. Field study of parasitism caused by endemic parasitoids and by the exotic parasitoid Copidosoma koehleri on Phthorimaea operculella in Central Italy. Bulletin of Insectology. 56 (2), 221-224.

                  Subchev M, Toshova T B, Atanasova D I, Petrova V D, Tóth M, 2013. Seasonal flight of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) in three regions in Bulgaria established by pheromone traps. Acta Phytopathologica et Entomologica Hungarica. 48 (1), 75-85. DOI:10.1556/APhyt.48.2013.1.7

                  Trivedi T P, Rajagopal D, Tandon P L, 1994. Life table for establishment of potato tubermoth Phthorimaea operculella. In: Journal of the Indian Potato Association, 21 (1/2) 97-105.

                  Waterhouse D F, 1993. The major arthropod pests and weeds of agriculture in Southeast Asia. Canberra, Australia: ACIAR. v + 141 pp.

                  Links to Websites

                  Top of page
                  WebsiteURLComment
                  GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.
                  Global register of Introduced and Invasive species (GRIIS)http://griis.org/Data source for updated system data added to species habitat list.

                  Distribution Maps

                  Top of page
                  You can pan and zoom the map
                  Save map
                  Select a dataset
                  Map Legends
                  • CABI Summary Records
                  Map Filters
                  Extent
                  Invasive
                  Origin
                  Third party data sources: