Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Pennisetum purpureum
(elephant grass)

Toolbox

Datasheet

Pennisetum purpureum (elephant grass)

Summary

  • Last modified
  • 22 November 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Host Plant
  • Preferred Scientific Name
  • Pennisetum purpureum
  • Preferred Common Name
  • elephant grass
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Monocotyledonae
  • Summary of Invasiveness
  • P. purpureum is a robust perennial grass widely naturalized in tropical and subtropical regions of the world. This C4 grass is included in the Global Compendium of Weeds where it is listed as an agricultural and environmental w...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Pennisetum purpureum (elephant grass); habit - plant with inflorescences.
TitleHabit
CaptionPennisetum purpureum (elephant grass); habit - plant with inflorescences.
Copyright©Smithsonian Institution/P. Acevedo
Pennisetum purpureum (elephant grass); habit - plant with inflorescences.
HabitPennisetum purpureum (elephant grass); habit - plant with inflorescences.©Smithsonian Institution/P. Acevedo
Pennisetum purpureum (elephant grass); habit and foliage.
TitleHabit and foliage
CaptionPennisetum purpureum (elephant grass); habit and foliage.
Copyright©Smithsonian Institution/P. Acevedo
Pennisetum purpureum (elephant grass); habit and foliage.
Habit and foliagePennisetum purpureum (elephant grass); habit and foliage.©Smithsonian Institution/P. Acevedo
Roadside area in Puerto Rico infested by Pennisetum purpureum
TitleHabit
CaptionRoadside area in Puerto Rico infested by Pennisetum purpureum
Copyright©Smithsonian Institution/P. Acevedo
Roadside area in Puerto Rico infested by Pennisetum purpureum
HabitRoadside area in Puerto Rico infested by Pennisetum purpureum©Smithsonian Institution/P. Acevedo
Pennisetum purpureum (elephant grass); close-up of inflorescence.
TitleInflorescence
CaptionPennisetum purpureum (elephant grass); close-up of inflorescence.
Copyright©Smithsonian Institution/P. Acevedo
Pennisetum purpureum (elephant grass); close-up of inflorescence.
InflorescencePennisetum purpureum (elephant grass); close-up of inflorescence.©Smithsonian Institution/P. Acevedo
Pennisetum purpureum (elephant grass); detail of inflorescence.
TitleInflorescence
CaptionPennisetum purpureum (elephant grass); detail of inflorescence.
Copyright©Smithsonian Institution/P. Acevedo
Pennisetum purpureum (elephant grass); detail of inflorescence.
InflorescencePennisetum purpureum (elephant grass); detail of inflorescence.©Smithsonian Institution/P. Acevedo

Identity

Top of page

Preferred Scientific Name

  • Pennisetum purpureum Schumach

Preferred Common Name

  • elephant grass

Other Scientific Names

  • Cenchrus purpureus (Schumach.) Morrone
  • Gymnotrix nitens Andersson
  • Pennisetum benthamii Steud.
  • Pennisetum benthamii var. nudum Hack.
  • Pennisetum benthamii var. sambesiense Hack.
  • Pennisetum benthamii var. ternatum Hack.
  • Pennisetum blepharideum Gilli
  • Pennisetum flavicomum Leeke
  • Pennisetum flexispica K. Schum
  • Pennisetum gossweileri Stapf & C.E. Hubb.
  • Pennisetum hainanense H.R.Zhao & A.T. Liu
  • Pennisetum lachnorrhachis Peter
  • Pennisetum nitens (Andersson) Hack.
  • Pennisetum pallescens Leeke
  • Pennisetum pruinosum Leeke
  • Pennisetum purpureum subsp. benthamii (Steud.) Maire & Weiller
  • Pennisetum purpureum subsp. flexispica (K.Schum.) Maire & Weiller

International Common Names

  • English: cane grass; elephantgrass; merker grass; napier fodder; napier grass; napiergrass; Uganda grass
  • Spanish: hierba elefante; pasto elefente; pasto Napier; yerba elefante; zacate elefante
  • French: canne fourragère; fausse canne à sucre; Herbe a elephant; herbe éléphant; Sissongo; z'herbe éléphant
  • Chinese: xiang cao
  • Portuguese: capim-elefante

Local Common Names

  • Africa: mfufu
  • Australia: barner grass; cane grass; merker grass
  • Brazil: capim-cameroon; capim-camerron; capim-napier
  • Colombia: elefante; elefante morado
  • Cook Islands: 'erepani
  • Costa Rica: pasto azul; pasto gigante
  • Dominican Republic: árbol del pan; bufala; búfala; yerba merck; yerba mercury
  • Germany: Elefantengras
  • Italy: Erba elefantina; Penniseto rosso
  • Japan: pokao
  • Mexico: gigante; merkerón; zacante gigante
  • Micronesia, Federated states of: acfucsracsracsr
  • Palau: bokso
  • Samoa: vao povi
  • Vietnam: co voi

EPPO code

  • PESPU (Pennisetum purpureum)

Summary of Invasiveness

Top of page

P. purpureum is a robust perennial grass widely naturalized in tropical and subtropical regions of the world. This C4 grass is included in the Global Compendium of Weeds where it is listed as an agricultural and environmental weed as well as an invasive species (Randall, 2012). P. purpureum is an aggressive grass that grows rapidly, colonizing new areas and forming dense thickets. Once established, it can change features of ecosystem functions by altering fire regimes, hydrology cycles, biophysical dynamics, nutrient cycles, and community composition (D’Antonio and Vitousek, 1992). P. purpureum is well adapted to drought conditions and can also dominate fire-adapted grassland communities (Holm et al., 1979). This species has the capability to resprout easily from small rhizomes left after disturbance, resulting in the out-competing and smothering of native plant communities (Holm et al., 1979; D’Antonio and Vitousek, 1992; Langeland et al., 2008). P. purpureum is considered one of the most successful invasive grasses in the world.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Monocotyledonae
  •                     Order: Cyperales
  •                         Family: Poaceae
  •                             Genus: Pennisetum
  •                                 Species: Pennisetum purpureum

Notes on Taxonomy and Nomenclature

Top of page

The genus Pennisetum is included in the subfamily Panicoideae of the Poaceae family. This is a large and variable genus, but the bristly, spike-like inflorescence is always readily recognizable. The only other panicoid genus with a similar bristly inflorescence is Setaria, but in that genus the bristles are not deciduous with the spikelets, instead remaining on the rachis at maturity. The bristles are derived from reduced panicle branches (Gould and Shaw, 1983; Gibson, 2009). The common name of elephant grass reflects it making up the bulk of the diet of forest elephants in West Africa (Francis, 1992).

Description

Top of page

Robust perennial grass up to 4 metres tall; grows forming thick clumps or colonies from basal offshoots or short rhizomes. Stems often branched above; internodes more or less bluish glaucous; young nodes with white hairs, later becoming smooth, glabrous. Leaf sheaths glabrous, usually shorter than the internodes; ligule a narrow rim densely fringed with long white hairs. Leaf blades linear to tapering, flat, often bluish green, to 1 m long and 3 cm wide, pilose near the base, especially on margins; blade margins generally rough; midvein stout, whitish above, strongly keeled below. Inflorescence a dense terminal bristly spike, tawny to purple-tinged, to about 20 cm long and 2 cm wide. Spikelets 4-6 mm long, solitary or in clusters of 2-6 on hairy axis, surrounded by sparsely plumose bristles to 2 cm long that fall with the spikelets at maturity; outermost glume minute or absent (Langeland et al., 2008).

Plant Type

Top of page
Grass / sedge
Herbaceous
Perennial
Seed propagated
Vegetatively propagated

Distribution

Top of page

P. purpureum is native to Tropical Africa and the sub-Saharan region (Clayton et al., 2013). It has been widely introduced into tropical and subtropical regions of the Old and New World where it commonly becomes naturalized, and in some cases invasive (see distribution table for details; Duke, 1983; Langeland et al., 2008; FAO, 2013).

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 25 Feb 2021
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

AlgeriaPresentNative
AngolaPresentNative
BeninPresentNative
Burkina FasoPresentNative
CameroonPresentNativeWeed (Randall, 2012)
Central African RepublicPresentNativeWeed (Randall, 2012)
ChadPresentNative
Congo, Democratic Republic of thePresentNative
Congo, Republic of thePresentNativeInvasive
Côte d'IvoirePresentNative
EgyptPresent
Equatorial GuineaPresentNative
EswatiniPresentIntroduced
EthiopiaPresentNative
GabonPresentNative
GambiaPresentNative
GhanaPresentNative
Guinea-BissauPresentNative
KenyaPresentNative
LiberiaPresentNative
MadagascarPresentIntroduced
MalawiPresentNative
MaliPresentNative
MauritiusPresentIntroduced
-RodriguesPresentIntroducedInvasive
MoroccoPresentIntroduced
MozambiquePresentNative
NigeriaPresentNativeInvasiveWeed in tree crops (Komolafe, 1976)
RéunionPresentIntroducedInvasive
RwandaPresentNative
Saint HelenaPresentIntroduced
SenegalPresentIntroduced
Seychelles
-Aldabra IslandsPresentNative
Sierra LeonePresentNative
South AfricaPresentIntroducedInvasive
TanzaniaPresentNative
TogoPresentNative
UgandaPresentNative
ZambiaPresentNative
ZimbabwePresentNative

Asia

BangladeshPresentIntroduced
BhutanPresentIntroduced
CambodiaPresentIntroduced
ChinaPresentPresent based on regional distribution.
Hong KongPresentIntroducedInvasive
IndiaPresent
-Andaman and Nicobar IslandsPresent
-Arunachal PradeshPresentIntroducedInvasive
-AssamPresentIntroducedInvasive
-Himachal PradeshPresentIntroducedInvasive
-Jammu and KashmirPresentIntroducedInvasive
-ManipurPresentIntroducedInvasive
-MeghalayaPresentIntroducedInvasive
-NagalandPresentIntroducedInvasive
-OdishaPresent
-SikkimPresentIntroducedInvasive
-TripuraPresentIntroducedInvasive
-Uttar PradeshPresentIntroducedInvasive
-UttarakhandPresentIntroducedInvasive
-West BengalPresentIntroducedInvasive
IndonesiaPresentIntroducedInvasiveWeed (Holm et al., 1977)
JapanPresentPresent based on regional distribution.
-Ryukyu IslandsPresentIntroducedInvasive
LaosPresentIntroduced
MalaysiaPresent
-Peninsular MalaysiaPresentIntroducedInvasiveWeed (Holm et al., 1977)
MyanmarPresentIntroducedListed as agricultural weed (Randall, 2012)
OmanPresentIntroduced
PhilippinesPresentIntroducedInvasive
Saudi ArabiaPresentIntroduced
SingaporePresentIntroduced
Sri LankaPresentIntroduced
TaiwanPresentIntroducedInvasive
ThailandPresentIntroducedInvasiveWeed (Holm et al., 1977)
VietnamPresentIntroducedInvasive

Europe

CyprusPresentIntroducedInvasive
PortugalPresentPresent based on regional distribution.
-MadeiraPresentIntroducedInvasive
SpainPresentPresent based on regional distribution.
-Canary IslandsPresentIntroducedInvasive

North America

Antigua and BarbudaPresent, WidespreadIntroduced
BahamasPresent, WidespreadIntroducedInvasive
BarbadosPresent, WidespreadIntroduced
BelizePresentIntroduced
Cayman IslandsPresentIntroduced
Costa RicaPresentIntroducedInvasive
CubaPresentIntroducedInvasive
Dominican RepublicPresentIntroduced
El SalvadorPresentIntroducedInvasive
GrenadaPresent, WidespreadIntroducedInvasive
GuatemalaPresentIntroduced
HaitiPresentIntroduced
HondurasPresentIntroducedInvasive
JamaicaPresentIntroducedInvasive
MexicoPresentIntroducedInvasive
Netherlands AntillesPresentIntroducedBonaire
NicaraguaPresentIntroduced
PanamaPresentIntroduced
Puerto RicoPresentIntroducedInvasive
Saint LuciaPresent, WidespreadIntroduced
U.S. Virgin IslandsPresentIntroducedSt Croix
United StatesPresent
-CaliforniaPresentIntroduced1913
-FloridaPresentIntroduced1913InvasiveInvasive category I
-HawaiiPresentIntroducedInvasive
-TexasPresentIntroduced1913

Oceania

American SamoaPresentIntroducedInvasive
AustraliaPresentPresent based on regional distribution.
-New South WalesPresentIntroducedInvasive
-Northern TerritoryPresentIntroducedInvasive
-QueenslandPresentIntroducedInvasive
-Western AustraliaPresentIntroducedInvasive
Cook IslandsPresentIntroducedInvasiveOriginal citation: Space and Flynn (2002)
Federated States of MicronesiaPresentIntroducedInvasive
FijiPresentIntroducedInvasive
French PolynesiaPresentIntroducedInvasive
GuamPresentIntroducedInvasive
KiribatiPresentIntroducedInvasive
Marshall IslandsPresentIntroducedInvasive
New CaledoniaPresentIntroducedInvasive
New ZealandPresentIntroducedInvasive
NiuePresentIntroducedInvasiveOriginal citation: Space et al. (2004)
Norfolk IslandPresentIntroducedInvasive
Northern Mariana IslandsPresentIntroducedInvasive
PalauPresentIntroducedInvasive
Papua New GuineaPresentIntroducedInvasive
SamoaPresentIntroducedInvasive
Solomon IslandsPresentIntroducedInvasive
TokelauPresentIntroduced
VanuatuPresentIntroduced
Wallis and FutunaPresentIntroducedInvasive

South America

ArgentinaPresentIntroduced
BoliviaPresentIntroduced
BrazilPresentPresent based on regional distribution.
-AmapaPresentIntroducedInvasive
-AmazonasPresentIntroducedInvasive
-BahiaPresent
-CearaPresentIntroducedInvasive
-Espirito SantoPresentIntroducedInvasive
-GoiasPresentIntroducedInvasive
-MaranhaoPresentIntroducedInvasive
-Mato GrossoPresentIntroducedInvasive
-Mato Grosso do SulPresentIntroducedInvasive
-Minas GeraisPresentIntroducedInvasive
-ParanaPresentIntroducedInvasive
-PernambucoPresentIntroducedInvasive
-Rio de JaneiroPresentIntroducedInvasive
-Santa CatarinaPresentIntroducedInvasive
-Sao PauloPresentIntroducedInvasive
ChilePresentPresent based on regional distribution.
-Easter IslandPresentIntroducedInvasive
ColombiaPresentIntroducedInvasive
EcuadorPresentIntroducedInvasive
-Galapagos IslandsPresentIntroducedInvasive
French GuianaPresentIntroduced
GuyanaPresentIntroduced
ParaguayPresentIntroducedInvasive
PeruPresentIntroducedInvasive
SurinamePresentIntroduced
UruguayPresentIntroduced
VenezuelaPresentIntroduced

History of Introduction and Spread

Top of page

P. purpureum has been intentionally introduced as a forage crop in many tropical and subtropical countries (Holm et al., 1979; Francis, 1992; FAO, 2013). It has been the subject of breeding for improved cultivars and hybrids for forage and silage (Tropical Forages, 2013). In the United States, this grass was introduced in 1913. It was established into natural areas of Florida by 1971 (Langeland et al., 2008). In the West Indies, Central and South America, many cultivars were introduced in the early 1950s. For example, the cultivar “Merkeron” was introduced in Puerto Rico in 1955 and in 1962 the cultivar “Capricorn was introduced in Australia (FAO, 2013; Tropical Forages, 2013).  

Risk of Introduction

Top of page

The risk of introduction of P. purpureum is very high. This grass has been repeatedly intentionally introduced in tropical and subtropical regions to be used as a forage and silage crop. It has escaped from cultivation into natural areas, where it rapidly colonizes new areas forming dense stands which are very difficult to control (Langeland et al., 2008; Queensland Department of Primary Industries and Fisheries, 2011).

Habitat

Top of page

P. purpureum is a common weed in agricultural fields, pastures, and along roadsides. It also grows in waterways, wetlands, floodplains, riverbanks, swamps, forest edges, disturbed sites, and waste ground especially in mesic to wet sites (Francis, 1992; Wagner et al., 1999; Langeland et al., 2008; Queensland Department of Primary Industries and Fisheries, 2011). P. purpureum is well-adapted to drought conditions and can be found colonizing arid lowlands (e.g., habitats on Galápagos Islands; McMullen, 1999).

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial ManagedCultivated / agricultural land Present, no further details Harmful (pest or invasive)
Terrestrial ManagedCultivated / agricultural land Present, no further details Natural
Terrestrial ManagedManaged forests, plantations and orchards Present, no further details Harmful (pest or invasive)
Terrestrial ManagedManaged forests, plantations and orchards Present, no further details Natural
Terrestrial ManagedManaged forests, plantations and orchards Present, no further details Productive/non-natural
Terrestrial ManagedManaged grasslands (grazing systems) Present, no further details Harmful (pest or invasive)
Terrestrial ManagedManaged grasslands (grazing systems) Present, no further details Natural
Terrestrial ManagedManaged grasslands (grazing systems) Present, no further details Productive/non-natural
Terrestrial ManagedDisturbed areas Present, no further details Harmful (pest or invasive)
Terrestrial ManagedDisturbed areas Present, no further details Natural
Terrestrial ManagedRail / roadsides Present, no further details Harmful (pest or invasive)
Terrestrial ManagedRail / roadsides Present, no further details Natural
Terrestrial Natural / Semi-naturalNatural grasslands Present, no further details Harmful (pest or invasive)
Terrestrial Natural / Semi-naturalNatural grasslands Present, no further details Natural
Terrestrial Natural / Semi-naturalRiverbanks Present, no further details Harmful (pest or invasive)
Terrestrial Natural / Semi-naturalRiverbanks Present, no further details Natural
Terrestrial Natural / Semi-naturalWetlands Present, no further details Harmful (pest or invasive)
Terrestrial Natural / Semi-naturalWetlands Present, no further details Natural
Terrestrial Natural / Semi-naturalScrub / shrublands Present, no further details Harmful (pest or invasive)
Terrestrial Natural / Semi-naturalScrub / shrublands Present, no further details Natural
Terrestrial Natural / Semi-naturalArid regions Present, no further details Harmful (pest or invasive)
Terrestrial Natural / Semi-naturalArid regions Present, no further details Natural

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContextReferences
Anacardium occidentale (cashew nut)AnacardiaceaeMain
    Ananas comosus (pineapple)BromeliaceaeMain
      Camellia sinensis (tea)TheaceaeMain
        CitrusRutaceaeMain
          Coffea (coffee)RubiaceaeOther
            Cola acuminata (cola)SterculiaceaeMain
              Elaeis guineensis (African oil palm)ArecaceaeMain
                Hevea brasiliensis (rubber)EuphorbiaceaeMain
                  Musa (banana)MusaceaeMain
                    Oryza sativa (rice)PoaceaeMain
                      pasturesMain
                        Saccharum officinarum (sugarcane)PoaceaeMain
                          Theobroma cacao (cocoa)MalvaceaeMain

                            Biology and Ecology

                            Top of page

                            Genetics

                            The chromosome number in P. purpureum is 2n = 27, 28, 56 (Sinha et al., 1990; Vidhya and Khna, 2003; Tropical Forages, 2013). There are numerous ecotypes grown for agriculture in various countries, and a range of commercial cultivars have been bred, including the widely grown cv. Mott bred in Georgia, USA from cv. Merkeron. A number of hybrids with Pennisetum glaucum are also commercially available. Tropical Forages (2013) lists important cultivars and hybrids used for forage and silage production. 

                            Reproductive Biology

                            P. purpureum relies on wind to achieve cross-pollination, due to asynchrony of male and female flower parts. However, this is also an apomictic species which can produce seed by this asexual method of reproduction (Brown and Emery, 1958; Stevens, 2012). The species is an inconsistent seed producer and in some habitats it rarely develops seeds, possibly due to low pollen viability (Tropical Forages, 2013). When seeds are produced they are dispersed by wind (Francis, 1992), but are often of low viability. 

                            Physiology and Phenology

                            P. purpureum is a fast-growing perennial grass (FAO, 2013). In Florida, P. purpureum produces flowers from July through February (Langeland et al., 2008). In Mexico and Central America, flowering occurs all year long with peaks from December to May (Vibrans, 2009). In South Africa this species flowers from January to June (Tropical Forages, 2013).

                            As many other C4 grasses, P. purpureum is well adapted to environments with high daytime temperatures, intense sunlight, drought and nitrogen and /or CO2 limitations (Gibson, 2009). It grows during the rainy season, but its deep root system allows it to survive long drought periods. In an agricultural research plot in Puerto Rico, P. purpureum reached the height of 4 metres in just 3 months (Francis, 1992). 

                            Environmental Requirements

                            P. purpureum prefers to grow in moist tropical habitats at elevations from sea level to 2000 metres (Francis, 1992; FAO, 2013). It grows best in high-rainfall areas (>1500 mm/year), but its deep root system allows it to survive in dry times and it is reported to tolerates areas with annual precipitation of 200-4000 mm (Duke, 1983). It is well adapted to grow on a wide range of soil types from poorly drained clay soils to excessively drained sandy soils with pH ranging from 4.5 to 8.2, but grows best in rich well-drained soils (Duke, 1983; FAO, 2013; Tropical Forages, 2013). Temperatures for optimum growth should be from 25°C to 40°C, and there is little growth below about 15°C (FAO, 2013). It does not tolerate much frost. It recovers well following fire, and can dominate fire-adapted grassland communities (Tropical Forages, 2013). P. purpureum has the capability to grow in completely open sunlit areas to partially light-shaded areas but does not survive under a closed tree canopy (Francis, 1992; FAO, 2013).

                            Climate

                            Top of page
                            ClimateStatusDescriptionRemark
                            Af - Tropical rainforest climate Preferred > 60mm precipitation per month
                            Am - Tropical monsoon climate Preferred Tropical monsoon climate ( < 60mm precipitation driest month but > (100 - [total annual precipitation(mm}/25]))
                            As - Tropical savanna climate with dry summer Preferred < 60mm precipitation driest month (in summer) and < (100 - [total annual precipitation{mm}/25])
                            Aw - Tropical wet and dry savanna climate Preferred < 60mm precipitation driest month (in winter) and < (100 - [total annual precipitation{mm}/25])
                            BS - Steppe climate Tolerated > 430mm and < 860mm annual precipitation
                            BW - Desert climate Tolerated < 430mm annual precipitation
                            Cf - Warm temperate climate, wet all year Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, wet all year
                            Cs - Warm temperate climate with dry summer Tolerated Warm average temp. > 10°C, Cold average temp. > 0°C, dry summers
                            Cw - Warm temperate climate with dry winter Tolerated Warm temperate climate with dry winter (Warm average temp. > 10°C, Cold average temp. > 0°C, dry winters)

                            Latitude/Altitude Ranges

                            Top of page
                            Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
                            40 40

                            Air Temperature

                            Top of page
                            Parameter Lower limit Upper limit
                            Mean annual temperature (ºC) 25 40
                            Mean minimum temperature of coldest month (ºC) 11.5

                            Rainfall

                            Top of page
                            ParameterLower limitUpper limitDescription
                            Mean annual rainfall2004500mm; lower/upper limits

                            Rainfall Regime

                            Top of page
                            Bimodal

                            Soil Tolerances

                            Top of page

                            Soil drainage

                            • free
                            • seasonally waterlogged

                            Soil reaction

                            • acid
                            • alkaline
                            • neutral

                            Soil texture

                            • heavy
                            • light
                            • medium

                            Special soil tolerances

                            • shallow

                            Natural enemies

                            Top of page
                            Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
                            Aphelenchus avenae Pathogen All Stages not specific N
                            Leptosphaeria sacchari Pathogen All Stages not specific N
                            Meloidogyne incognita Pathogen All Stages not specific N
                            Meloidogyne javanica Pathogen All Stages not specific N
                            Pectobacterium carotovorum Pathogen All Stages not specific N
                            Phyllosticta Pathogen All Stages not specific N
                            Pratylenchus brachyurus Pathogen All Stages not specific N

                            Means of Movement and Dispersal

                            Top of page

                            P. purpureum reproduces sexually by seeds and also vegetatively by stem fragments, cuttings, and tillers. Seeds are dispersed by the wind, but they can also become attached to animals and vehicles. Seeds may also be spread as a contaminant of agricultural produce (i.e., fodder). Stem fragments and rhizomes may be broken off and dispersed to new locations by humans, wild animals, livestock, vehicles, and/or floodwaters. Seeds and stem fragments can also be spread by the movement of soil (Francis, 1992; Langeland et al., 2008; Queensland Department of Primary Industries and Fisheries, 2011; FAO, 2013).

                            Pathway Causes

                            Top of page
                            CauseNotesLong DistanceLocalReferences
                            Animal productionP. purpureum is one of the most valuable forage, hay, and silage crops in the wet tropics Yes Yes FAO (2013)
                            ForageP. purpureum is one of the highest yielding tropical forage grasses Yes Yes FAO (2013)
                            Habitat restoration and improvementEffective controlling erosion Yes Yes FAO (2013)
                            Hedges and windbreaksUsed for hedgerows, windbreaks and living fences in horticultural crops and orchards Yes Yes Tropical Forages (2013)
                            Intentional releaseWidely introduced in wet tropics Yes Yes FAO (2013)

                            Pathway Vectors

                            Top of page
                            VectorNotesLong DistanceLocalReferences
                            Debris and waste associated with human activitiesSeed and plant segments Yes Yes Queensland Department of Primary Industries and Fisheries (2011)
                            Land vehiclesSeed and plant segments attached to vehicles Yes Yes Queensland Department of Primary Industries and Fisheries (2011)
                            LivestockContaminant in fodder and silage crops Yes Yes Queensland Department of Primary Industries and Fisheries (2011)
                            Machinery and equipmentSeed and plant segments Yes Yes Queensland Department of Primary Industries and Fisheries (2011)
                            Soil, sand and gravelSeed and plant segments Yes Yes Queensland Department of Primary Industries and Fisheries (2011)
                            WindSeeds Yes Yes Duke (1983)

                            Impact Summary

                            Top of page
                            CategoryImpact
                            Economic/livelihood Positive and negative
                            Environment (generally) Positive and negative

                            Environmental Impact

                            Top of page

                            P. purpureum is an aggressive grass that grows rapidly, colonizing new areas and forming dense thickets. It has the potential to alter fire regimes, hydrology cycles, biophysical dynamics, nutrient cycles, and community composition in invaded habitats (D’Antonio and Vitousek, 1992). P. purpureum is well adapted to drought conditions and can also dominate fire-adapted grassland communities. Consequently, it can completely out-compete native vegetation communities very rapidly. P. purpureum also creates problems in flood-control systems by blocking access to canals, reducing water flows, and overgrowing pump stations (Langeland et al., 2008; Queensland Department of Primary Industries and Fisheries, 2011).

                            Threatened Species

                            Top of page
                            Threatened SpeciesConservation StatusWhere ThreatenedMechanismReferencesNotes
                            Linum carteri (Carter's small-flowered flax)USA ESA listing as endangered speciesFloridaCompetition - stranglingUS Fish and Wildlife Service (2010)

                            Risk and Impact Factors

                            Top of page
                            Invasiveness
                            • Invasive in its native range
                            • Proved invasive outside its native range
                            • Has a broad native range
                            • Abundant in its native range
                            • Highly adaptable to different environments
                            • Is a habitat generalist
                            • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
                            • Pioneering in disturbed areas
                            • Highly mobile locally
                            • Benefits from human association (i.e. it is a human commensal)
                            • Fast growing
                            • Has high reproductive potential
                            • Reproduces asexually
                            Impact outcomes
                            • Altered trophic level
                            • Damaged ecosystem services
                            • Ecosystem change/ habitat alteration
                            • Modification of fire regime
                            • Modification of hydrology
                            • Modification of nutrient regime
                            • Modification of successional patterns
                            • Monoculture formation
                            • Negatively impacts agriculture
                            • Reduced native biodiversity
                            • Threat to/ loss of native species
                            Impact mechanisms
                            • Allelopathic
                            • Competition - monopolizing resources
                            • Competition - shading
                            • Competition - smothering
                            • Pest and disease transmission
                            • Rapid growth
                            • Rooting
                            Likelihood of entry/control
                            • Highly likely to be transported internationally accidentally
                            • Highly likely to be transported internationally deliberately
                            • Difficult to identify/detect as a commodity contaminant
                            • Difficult/costly to control

                            Uses

                            Top of page

                            P. purpureum is one of the most valuable forage and silage crops in its native Africa and throughout the wet tropics. It is an important forage and pasture grass especially for cattle and it is also cut for hay and fermented for silage (Francis, 1992; FAO, 2013). This grass is also planted as hedgerows for erosion protection and forage production in the alley cropping system of agroforestry (Magcale-Macandog et al., 1998). P. purpureum is also used as a windbreak in horticultural crops and orchards and lines of these plants are used to mark boundaries between plots and properties (FAO, 2013; Tropical Forages, 2013). In Africa, P. purpureum is planted on riverbanks to prevent erosion, and the thick culms are made into fences, screens, and reinforcement for mud huts (Francis, 1992). Plant extracts are used as a diuretic in Africa, and it is also used in a number of other herbal remedies (Francis, 1992).

                            Uses List

                            Top of page

                            Animal feed, fodder, forage

                            • Fodder/animal feed
                            • Forage

                            Environmental

                            • Agroforestry
                            • Boundary, barrier or support
                            • Erosion control or dune stabilization
                            • Soil conservation
                            • Windbreak

                            General

                            • Ornamental

                            Materials

                            • Fibre
                            • Green manure

                            Similarities to Other Species/Conditions

                            Top of page

                            P. purpureum is similar to Pennisetum polystachion (mission grass), Pennisetum macrourum (African feather grass), Pennisetum pedicellatum (Deenanth grass) and Pennisetum alopecuroides (swamp foxtail). It can usually be distinguished from these species by its perpendicular size, but can also be separated by the following characteristics:

                            1. P. purpureum is a very large and robust perennial grass (1-7 m tall) with greenish, yellowish or purplish coloured seed-heads. The main stem (i.e., rachis) of the seed-head is rounded and the bristles below each flower spikelet are relatively long (8-40 mm).
                               
                            2. P. polystachion is a perennial grass (usually 2-3 m tall) with yellowish or brownish coloured seed-heads. The rachis of the seed-head is angular and the bristles below each flower spikelet are relatively long (4-25 mm long). P. purpureum is distinguished by its yellow or yellowish-brown bristles with or without purple tip, and its softer stem.
                               
                            3. P. macrourum is a large perennial grass (usually 1-2 m tall) with greenish or yellowish coloured seed-heads. The rachis of the seed-head is rounded and the bristles below each flower spikelet are relatively short (mostly less than 10 mm long).
                               
                            4. P. pedicellatum is a moderately-sized annual grass (usually 30-150 cm tall) with pale purplish coloured seed-heads. The rachis of the seed-head is angular and the bristles below each flower spikelet are relatively long (6-24 mm long).
                               
                            5. P. alopecuroides is a moderately-sized perennial grass (usually 60-100 cm tall) with greenish or purplish coloured seed-heads. The rachis of the seed-head is rounded and the bristles below each flower spikelet are relatively long (15-30 mm long). 

                            P. purpureum is also similar to some Setaria species such as Setaria sphacelata (Queensland Department of Primary Industries and Fisheries, 2011). In Florida, P. purpureum may be confused with the larger native foxtails (Setaria spp., also called bristle grasses), but their spikelet bristles are persistent on the flowering stalks, not falling with mature spikelets. P. purpureum can be distinguished from other Pennisetum species in Florida by its long leaf blades, sparsely plumose bristles, and minute or absent first glumes (Langeland et al., 2008).

                            Prevention and Control

                            Top of page

                            Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

                            A combination of manual and chemical methods is recommended for the management of large infestations of P. purpureum. In the case of smaller infestations, plants can be cut out and all rhizomes must be removed (Weber, 2003). Larger infestations can be controlled by mowing or burning the foliage and the aboveground segments of the grass. Later any re-sprout should be sprayed with a foliar application of the herbicide 2,2 dichloropropionic acid (2,2 DPA; Weber, 2003). The herbicide glyphosate provides acceptable control in at least aquatic sites (Francis, 1992).

                            References

                            Top of page

                            Acevedo-Rodríguez P, Strong MT, 2012. Catalogue of the Seed Plants of the West Indies. Smithsonian Contributions to Botany, 98:1192 pp. Washington DC, USA: Smithsonian Institution. http://botany.si.edu/Antilles/WestIndies/catalog.htm

                            Adams CD, 1972. Flowering Plants of Jamaica. University of the West Indies, 267

                            Broome R, Sabir K, Carrington S, 2007. Plants of the Eastern Caribbean. Online database. Barbados: University of the West Indies. http://ecflora.cavehill.uwi.edu/index.html

                            BROWN WV, EMERY HP, 1958. Apomixis in the Gramineae: Panicoideae. American Journal of Botany, 45:253-63

                            Chacón E, Saborío G, 2012. Red Interamericana de Información de Especies Invasoras, Costa Rica ([English title not available]). San José, Costa Rica: Asociación para la Conservación y el Estudio de la Biodiversidad. http://invasoras.acebio.org

                            Chandra-Sekar K, 2012. Invasive Alien Plants of Indian Himalayan Region- Diversity and Implication. American Journal of Plant Sciences, 3:177-184

                            Charles Darwin Foundation, 2008. Database inventory of introduced plant species in the rural and urban zones of Galapagos. Database inventory of introduced plant species in the rural and urban zones of Galapagos. Galapagos, Ecuador: Charles Darwin Foundation, unpaginated

                            Chong KY, Tan HTW, Corlett RT, 2009. A checklist of the total vascular plant flora of Singapore: native, naturalised and cultivated species. Singapore: Raffles Museum of Biodiversity Research, National University of Singapore, 273 pp. http://lkcnhm.nus.edu.sg/nus/pdf/PUBLICATION/LKCNH%20Museum%20Books/LKCNHM%20Books/flora_of_singapore_tc.pdf

                            Clayton WD, Govaerts R, Harman KT, Williamson H, Vorontsova M, 2013. World Checklist of Poaceae. Richmond, UK: Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/

                            DAISIE, 2013. Delivering Alien Invasive Species Inventories for Europe. DAISIE (online). www.europe-aliens.org

                            D'Antonio CM, Vitousek PM, 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global chance. Annual Review in Ecology and Systematics, 23:63-87

                            Duke JA, 1983. Handbook of Energy Crops. Unpublished. Purdue University, West Lafayette, Indiana, USA: Centre for New Crops and Plant Products. World Wide Web page at http://www.hort.purdue.edu/newcrop/Indices/index_ab.html

                            Edgar E, Connor HE, 2000. Flora of New Zealand. Volume V: Grasses. Lincoln, New Zealand: Manaaki Whenua Press, 650 pp

                            FAO, 2013. Grassland species profiles: Pennisetum purpureum. Rome, Italy: FAO. http://www.fao.org/ag/AGP/AGPC/doc/Gbase/data/pf000301.htm

                            Florence J, Chevillotte H, Ollier C, Meyer JY, 2011. [English title not available]. (Base de données botaniques Nadeaud de l'Herbier de la Polynésie Française (PAP).) . http://www.herbier-tahiti.pf

                            Florida Exotic Pest Plant Council, 2011. Florida EPPC's 2011 Invasive Plant Species List. http://www.fleppc.org/list/11list.html

                            Forzza RC, Leitman PM, Costa AF, Carvalho Jr AA, et al. , 2012. List of species of the Flora of Brazil (Lista de espécies Flora do Brasil). Rio de Janeiro, Brazil: Rio de Janeiro Botanic Garden. http://floradobrasil.jbrj.gov.br/2012/

                            Fosberg FR, Sachet M-H, Oliver R, 1987. A geographical checklist of the Micronesian monocotyledonae. Micronesia 20: 1-2, 19-129

                            Foxcroft LC, Richardson DM, Wilson JRU, 2007. Ornamental plants as invasive aliens: problems and solutions in Kruger National Park, South Africa. Environmental Management, 41(1):32-51

                            Francis JK, 1992. Pennisetum purpureum Schumacher. [U.S. Forest Service Factsheet.] http://www.fs.fed.us/global/iitf/pdf/shrubs/Pennisetum%20purpureum.pdf

                            Gibson DJ, 2009. Grasses and grassland ecology. New York, USA: Oxford University Press, 315 pp

                            González-Torres LR, Rankin R, Palmarola A (eds), 2012. Invasive plants in Cuba. (Plantas Invasoras en Cuba.) Bissea: Boletin sobre Conservacion de Plantad del Jardin Botanico Nacional, 6:1-140

                            Gould KW, Shaw RB, 1983. Grass Systematics. Second Edition., USA: Texas A&M University Press, 412 pp

                            Holm L, Pancho JV, Herberger JP, Plucknett DL, 1979. A Geographical Atlas of World Weeds. Toronto, Canada: John Wiley and Sons Inc

                            I3N-Brasil, 2013. Base de dados nacional de espécies exóticas invasoras ([English title not available]). Florianópolis, Brazil: Instituto Hórus de Desenvolvimento e Conservação Ambiental. http://i3n.institutohorus.org.br/www/

                            Kairo M, Ali B, Cheesman O, Haysom K, Murphy S, 2003. Invasive species threats in the Caribbean region. Report to the Nature Conservancy. Curepe, Trinidad and Tobago: CAB International, 132 pp. http://www.issg.org/database/species/reference_files/Kairo%20et%20al,%202003.pdf

                            Khanna KK, 2009. Invasive alien angiosperms of Uttar Pradesh. Biological Forum, 1(2):34-39. http://www.researchtrend.net

                            Komolafe DA, 1976. Weed problems in tree crops in Nigeria. PANS, 22(2):250-256

                            Langeland KA, Cherry HM, McCormick CM, Craddock Burks KA, 2008. Identification and Biology of Non-native Plants in Florida's Natural Areas. Gainesville, Florida, USA: University of Florida IFAS Extension

                            Lorence DH, Flynn T, 2010. Checklist of the plants of Kosrae. Unpublished checklist. National Tropical Botanical Garden. Lawai, Hawaii: National Tropical Botanical Garden, 26

                            MacKee HS, 1994. Catalogue of introduced and cultivated plants in New Caledonia. (Catalogue des plantes introduites et cultivées en Nouvelle-Calédonie.) Paris, France: Muséum National d'Histoire Naturelle, unpaginated

                            Magcale-Macandog DB, Predo CD, Menz KM, Calub AD, 1998. Napier grass strips and livestock: a bioeconomic analysis. Agroforestry Systems, 40(1):41-58

                            Mbale H, 2010. Checklist of Invasive Plants of the Congo. Discover Life. http://www.discoverlife.org/mp/20q?guide=Invasive_plants_of_Congo

                            McMullen CK, 1999. Flowering plants of the Galápagos. Ithaca, New York, USA: Comstock Publisher Assoc., 370 pp

                            McVaugh R, 1983. Gramineae. In: Flora Novo-Galiciana. A descriptive account of the vascular plants of Western Mexico, Vol. 14 [ed. by Anderson, W. R.]. Ann Arbor, Michigan, USA: The University of Michigan Press

                            Meyer JY, 2000. Preliminary review of the invasive plants in the Pacific Islands (SPREP member countries). In: Invasive species in the Pacific: A technical review and draft regional strategy [ed. by Sherley G]. Samoa: South Pacific Regional Environment Programme, 190 pp

                            Meyer JY, 2007. Rapport de mission sur l'Ile d'Uvea (Wallis & Futuna) du 6 au 17 Novembre 2007: Inventaire preliminaire de la flore vasculaire secondaire ([English title not available]). Papeete, Tahiti: Ministère de l'Education, l'Enseignement Supérieur et la Recherche, 39 pp. http://www.li-an.fr/jyves/Meyer_2007_Rapport_Plantes_Introduites_Wallis.pdf

                            Meyer JY, 2008. Report of the expert mission to Rapa Nui, 2-11 June 2008. Strategic action plan to control invasive alien plants on Rapa Nui (Easter Island) (Rapport de mission d'expertise a Rapa Nui du 02 au 11 Juin 2008: Plan d'action strategique pour lutter contre les plantes introduites envahissantes sur Rapa Nui (Île de pâques)). Papeete, Tahiti: Délégation à la Recherche, Ministère de l'Education, l'Enseignement supérieur et la Recherche, 62 pp. http://www.li-an.fr/jyves/Meyer_2008_Rapport_Expertise_Rapa_Nui.pdf

                            Oviedo Prieto R, Herrera Oliver P, Caluff MG, et al. , 2012. National list of invasive and potentially invasive plants in the Republic of Cuba - 2011. (Lista nacional de especies de plantas invasoras y potencialmente invasoras en la República de Cuba - 2011). Bissea: Boletín sobre Conservación de Plantas del Jardín Botánico Nacional de Cuba, 6(Special Issue 1):22-96

                            PIER, 2013. Pacific Islands Ecosystems at Risk. Honolulu, Hawaii, USA: HEAR, University of Hawaii. http://www.hear.org/pier/index.html

                            Queensland Department of Primary Industries and Fisheries, 2011. Special edition of Environmental Weeds of Australia for Biosecurity Queensland., Australia: The University of Queensland and Department of Primary Industries and Fisheries. http://keyserver.lucidcentral.org/weeds/data/03030800-0b07-490a-8d04-0605030c0f01/media/Html/Index.htm

                            Ragone D, Lorence DH, 2003. Botanical and Ethnobotanical Inventories of the National Park of American Samoa. Hawaii, USA: Pacific Cooperative Studies Unit, Department of Botany, University of Hawaii, 91 pp

                            Randall RP, 2012. A Global Compendium of Weeds. Perth, Australia: Department of Agriculture and Food Western Australia, 1124 pp. http://www.cabi.org/isc/FullTextPDF/2013/20133109119.pdf

                            Shine C, Reaser JK, Gutierrez AT, 2003. Invasive alien species in the Austral-Pacific Region: National Reports & Directory of Resources

                            Sinha RR, Bhardwaj AK, Singh RK, 1990. SOCGI plant chromosome number reports-IX. Journal of Cytology and Genetics, 25:140-143

                            Smith AC, 1979. Flora Vitiensis nova: A new flora of Fiji. Volume I. Lawai, Kauai, Hawaii, USA: National Tropical Botanical Garden, 494 pp

                            Space JC, Flynn T, 2002a. Report to the Government of Samoa on invasive plant species of environmental concern. Honolulu, USA: USDA Forest Service, 83 pp

                            Space JC, Imada CT, 2004. Report to the Republic of Kiribati on invasive plant species on the islands of Tarawa, Abemama, Butaritari and Maiana. Honolulu, Hawaii, USA: USDA Forest Service and Bishop Museum, 103 pp

                            Space JC, Lorence DH, LaRosa AM, 2009. Report to the Republic of Palau: 2008 update on Invasive Plant Species. Hilo, Hawaii, USA: USDA Forest Service, 227. http://www.sprep.org/att/irc/ecopies/countries/palau/48.pdf

                            Space JC, Waterhouse BM, Newfield M, Bull C, 2004. Report to the Government of Niue and the United Nations Development Programme: Invasive plant species on Niue following Cyclone Heta. 80 pp. [UNDP NIU/98/G31 - Niue Enabling Activity.] http://www.hear.org/pier/reports/niue_report_2004.htm

                            Stevens PF, 2012. Angiosperm Phylogeny Website. http://www.mobot.org/MOBOT/research/APweb/

                            Tan PW, Chuan TS, Ismail BS, 2012. Allelopathic potential effects of Pennisetum purpureum on Cyperus iria. In: Second International Conference on Environmental and Agricultural Engineering., Singapore: IACSIT Press, 109-113. [IPCBEE vol. 37.]

                            Tropical Forages, 2013. Tropical forages: an interactive selection tool. http://www.tropicalforages.info/index.htm

                            USDA-ARS, 2013. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

                            Vander VN, 2003. The vascular plants of Majuro Atoll, Republic of the Marshall Islands. Atoll Research Bulletin, 503:1-141

                            Vibrans H, 2009. Malezas de México- Pennisetum purpureum ([English title not available]). http://www.conabio.gob.mx/malezasdemexico/poaceae/pennisetum-purpureum/fichas/ficha.htm

                            Vidhya K, Khan AK, 2003. Hybrid between Pennisetum schweinfurthii and Napier Grass. Cytologia, 68:183-190

                            Villaseñor JL, Espinosa-Garcia FJ, 2004. The alien flowering plants of Mexico. Diversity and Distributions, 10(2):113-123

                            Wagner WL, Herbst DR, Sohmer SH, 1999. Manual of the flowering plants of Hawaii. Revised edition. Honolulu, Hawaii, USA: University of Hawaii Press/Bishop Museum Press, 1919 pp

                            Waterhouse DF, 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. ACIAR Monograph No. 21. Canberra, Australia: Australian Centre for International Agricultural Research, 141 pp

                            Waterhouse DF, 1997. The Major Invertebrate Pests and Weeds of Agriculture and Plantation Forestry in the Southern and Western Pacific. ACIAR Monograph No. 44. Canberra, Australia: ACIAR

                            Weber E, 2003. Invasive Plant Species of the World. A Reference Guide to Environmental Weeds. Wallingford, UK: CABI Publishing

                            Wu SH, Hsieh ChangFu, Rejmánek M, 2004. Catalogue of the naturalized flora of Taiwan. Taiwania, 49(1):16-31

                            Wu TL, 2001. Check List of Hong Kong Plants. Hong Kong Herbarium and the South China Institute of Botany. Agriculture, Fisheries and Conservation Department Bulletin 1 (revised):384 pp. http://www.hkflora.com/v2/flora/plant_check_list.php

                            Distribution References

                            Acevedo-Rodríguez P, Strong M T, 2012. Catalogue of the Seed Plants of the West Indies. Washington, DC, USA: Smithsonian Institution. 1192 pp. http://botany.si.edu/Antilles/WestIndies/catalog.htm

                            Adams C D, 1972. Flowering plants of Jamaica. Mona, Jamaica: University of the West Indies. 848 pp.

                            Assefa Y, Conlong D E, Mitchell A, 2006. Status of Eldana saccharina (Lepidoptera: Pyralidae), its host plants and natural enemies in Ethiopia. Bulletin of Entomological Research. 96 (5), 497-504. http://journals.cambridge.org/download.php?file=%2FBER%2FBER96_05%2FS0007485306000587a.pdf&code=3d18c2276fca8d32d563057d88374391

                            Basu M, Patro B, 2007. New records of host plants and natural enemies of Aphis gossypii Glover (Aphididae: Homoptera) from Orissa, India. Journal of Plant Protection and Environment. 4 (2), 74-80.

                            Broome R, Sabir K, Carrington S, 2007. Plants of the Eastern Caribbean. Online database., Barbados: University of the West Indies. http://ecflora.cavehill.uwi.edu/index.htm

                            CABI, Undated. Compendium record. Wallingford, UK: CABI

                            CABI, Undated a. CABI Compendium: Status inferred from regional distribution. Wallingford, UK: CABI

                            CABI, Undated b. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI

                            Chacón E, Saborío G, 2012. [English title not available]. (Red Interamericana de Información de Especies Invasoras, Costa Rica)., San José, Costa Rica: Asociación para la Conservación y el Estudio de la Biodiversidad. http://invasoras.acebio.org

                            Chandra-Sekar K, 2012. Invasive Alien Plants of Indian Himalayan Region- Diversity and Implication. In: American Journal of Plant Sciences, 3 177-184.

                            Charles Darwin Foundation, 2008. Database inventory of introduced plant species in the rural and urban zones of Galapagos. In: Database inventory of introduced plant species in the rural and urban zones of Galapagos, Galapagos, Ecuador: Charles Darwin Foundation. unpaginated.

                            Chong KY, Tan HTW, Corlett RT, 2009. A checklist of the total vascular plant flora of Singapore: native, naturalised and cultivated species., Singapore, Raffles Museum of Biodiversity Research, National University of Singapore. 273 pp. http://lkcnhm.nus.edu.sg/nus/pdf/PUBLICATION/LKCNH%20Museum%20Books/LKCNHM%20Books/flora_of_singapore_tc.pdf

                            Clayton WD, Govaerts R, Harman KT, Williamson H, Vorontsova M, 2013. World Checklist of Poaceae., Richmond, UK: Royal Botanic Gardens, Kew. http://apps.kew.org/wcsp/

                            DAISIE, 2013. Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/

                            Edgar E, Connor HE, 2000. Flora of New Zealand., V Lincoln, New Zealand: Manaaki Whenua Press. 650 pp.

                            Florence J, Chevillotte H, Ollier C, Meyer JY, 2011. [English title not available]. (Base de données botaniques Nadeaud de l'Herbier de la Polynésie Française (PAP))., http://www.herbier-tahiti.pf

                            Forzza RC, Leitman PM, Costa AF, Carvalho Jr AA et al, 2012. List of species of the Flora of Brazil. (Lista de espécies Flora do Brasil)., Rio de Janeiro, Brazil: Rio de Janeiro Botanic Garden. http://floradobrasil.jbrj.gov.br/2012/

                            Fosberg FR, Sachet M-H, Oliver R, 1987. A geographical checklist of the Micronesian monocotyledonae. In: Micronesia, 20 1-2, 19-129.

                            Foxcroft LC, Richardson DM, Wilson JRU, 2007. Ornamental plants as invasive aliens: problems and solutions in Kruger National Park, South Africa. In: Environmental Management, 41 (1) 32-51.

                            González-Torres LR, Rankin R, Palmarola A, 2012. Invasive plants in Cuba. (Plantas Invasoras en Cuba). In: Bissea: Boletin sobre Conservacion de Plantad del Jardin Botanico Nacional, 6 [ed. by González-Torres LR, Rankin R, Palmarola A]. 1-140.

                            Hoddle M S, Triapitsyn S V, Morgan D J W, 2003. Distribution and plant association records for Homalodisca coagulata (Hemiptera: Cicadellidae) in Florida. Florida Entomologist. 86 (1), 89-91. http://www.fcla.edu/FlaEnt/ DOI:10.1653/0015-4040(2003)086[0089:DAPARF]2.0.CO;2

                            I3N-Brasil, 2013. [English title not available]. (Base de dados nacional de espécies exóticas invasoras)., Florianópolis, Brazil: Instituto Hórus de Desenvolvimento e Conservação Ambiental. http://i3n.institutohorus.org.br/www/

                            Kairo M, Ali B, Cheesman O, Haysom K, Murphy S, 2003. Invasive species threats in the Caribbean region. Report to the Nature Conservancy. In: Invasive species threats in the Caribbean region. Report to the Nature Conservancy. Curepe, Trinidad and Tobago: CAB International. 132 pp. http://www.issg.org/database/species/reference_files/Kairo%20et%20al,%202003.pdf

                            Kankonda O M, Akaibe D, Massamba W, Ong'amo G O, Ru B P le, 2014. Stem borer species composition on maize and two non-cereal hosts in the forest zone of Kisangani, DRC. Journal of Agricultural Science and Technology A. 4 (10), 822-829. http://www.davidpublisher.org/Public/uploads/Contribute/5534549379856.pdf

                            Khanna K K, 2009. Invasive alien angiosperms of Uttar Pradesh. Biological Forum. 1 (2), 34-39. http://www.researchtrend.net

                            Korayem A M, Youssef M M A, Mohamed M M M, Lashein A M S, 2015. Plant-parasitic nematodes associated with different plants grown in newly reclaimed area in North West Egypt. Egyptian Journal of Agronematology. 14 (1), 127-136. http://nemasociety.com/en/wp-content/uploads/Plant-parasitic-nematodes16.pdf

                            Lorence DH, Flynn T, 2010. Checklist of the plants of Kosrae., Lawai, Hawaii, National Tropical Botanical Garden. 26.

                            MacKee H S, 1994. Catalogue des plantes introduites et cultivées en Nouvelle-Calédonie. Paris, France: Muséum National d'Histoire Naturelle. unpaginated.

                            Mbale H, 2010. Checklist of Invasive Plants of the Congo. In: Discover Life, http://www.discoverlife.org/mp/20q?guide=Invasive_plants_of_Congo

                            Meyer J Y, 2000. Preliminary review of the invasive plants in the Pacific Islands (SPREP member countries). In: Invasive species in the Pacific: A technical review and draft regional strategy. [ed. by Sherley G]. Samoa: South Pacific Regional Environment Programme. 190 pp.

                            Meyer J-Y, 2007. [English title not available]. (Rapport de mission sur l'ile d'Uvea (Wallis et Futuna) du 6 au 17 novembre 2007: inventaire preliminaire de la flore vasculaire secondaire)., http://www.li-an.fr/jyves/Meyer_2007_Rapport_Plantes_Introduites_Wallis.pdf

                            Meyer JY, 2008. Report of the expert mission to Rapa Nui, 2-11 June 2008. Strategic action plan to control invasive alien plants on Rapa Nui (Easter Island). ((Rapport de mission d'expertise a Rapa Nui du 02 au 11 Juin 2008: Plan d'action strategique pour lutter contre les plantes introduites envahissantes sur Rapa Nui (Île de pâques)))., Papeete, Tahiti, Délégation à la Recherche, Ministère de l'Education, l'Enseignement supérieur et la Recherche. 62 pp. http://www.li-an.fr/jyves/Meyer_2008_Rapport_Expertise_Rapa_Nui.pdf

                            Ndemah R, Schulthess F, Poehling M, Borgemeister C, 2001. Spatial dynamics of lepidopterous pests on Zea mays (L.) and Pennisetum purpureum (Moench) in the forest zone of Cameroon and their implications for sampling schemes. Journal of Applied Entomology. 125 (9/10), 507-514. DOI:10.1046/j.1439-0418.2001.00581.x

                            Nutsugah S K, Twumasi J K, Chipili J, Sere Y, Sreenivasaprasad S, 2008. Diversity of the rice blast pathogen populations in Ghana and strategies for resistance management. Plant Pathology Journal (Faisalabad). 7 (1), 109-113. http://scialert.net/pdfs/ppj/2008/109-113.pdf?sess=jJghHkjfd76K8JKHgh76JG7FHGDredhgJgh7GkjH7Gkjg57KJhT&userid=jhfgJKH78Jgh7GkjH7Gkjg57KJhT68JKHgh76JG7Ff

                            PIER, 2013. Pacific Islands Ecosystems at Risk., Honolulu, Hawaii, USA: HEAR, University of Hawaii. http://www.hear.org/pier/index.html

                            Queensland Department of Primary Industries and Fisheries, 2011. Special edition of Environmental Weeds of Australia for Biosecurity Queensland., Australia: The University of Queensland and Department of Primary Industries and Fisheries. http://keyserver.lucidcentral.org/weeds/data/03030800-0b07-490a-8d04-0605030c0f01/media/Html/Index.htm

                            Ragone D, Lorence DH, 2003. Botanical and Ethnobotanical Inventories of the National Park of American Samoa., Hawaii, USA: Pacific Cooperative Studies Unit, Department of Botany, University of Hawaii. 91 pp.

                            Septiadi L, Wahyudi D, Rachman R S, Syafrudin, Alfaruqi N T S, 2018. The invasive plants species along the hiking track of Mount Panderman Nature Tourism, Batu, East Java. Journal of Indonesian Tourism and Development Studies. 6 (1), 55-62. http://jitode.ub.ac.id/index.php/jitode/article/view/244/241

                            Shine C, Reaser J K, Gutierrez A T, 2003. Invasive alien species in the Austral-Pacific Region: national reports and directory of resources. [ed. by Shine C, Reaser J K, Gutierrez A T]. Cape Town, South Africa: Global Invasive Species Programme. 185 pp. http://www.gisp.org

                            Silva K N, Nicolini C, Silva M S, Fernandes C D, Nagata T, Resende R O, 2013. First report of Johnsongrass mosaic virus (JGMV) infecting Pennisetum purpureum in Brazil. Plant Disease. 97 (7), 1003-1004. DOI:10.1094/PDIS-01-13-0013-PDN

                            Smith AC, 1979. Flora Vitiensis nova: A new flora of Fiji., I Lawai, Kauai, Hawaii, USA: National Tropical Botanical Garden. 494 pp.

                            Space JC, Imada CT, 2004. Report to the Republic of Kiribati on invasive plant species on the islands of Tarawa, Abemama, Butaritari and Maiana., Honolulu, Hawaii, USA: USDA Forest Service and Bishop Museum. 103 pp.

                            Space JC, Lorence DH, LaRosa AM, 2009. Report to the Republic of Palau: 2008 update on Invasive Plant Species., Hilo, Hawaii, USA: USDA Forest Service. 227. http://www.sprep.org/att/irc/ecopies/countries/palau/48.pdf

                            USDA-ARS, 2013. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx

                            Vander VN, 2003. The vascular plants of Majuro Atoll, Republic of the Marshall Islands. In: Atoll Research Bulletin, 503 1-141.

                            Villaseñor J L, Espinosa-Garcia F J, 2004. The alien flowering plants of Mexico. Diversity and Distributions. 10 (2), 113-123. DOI:10.1111/j.1366-9516.2004.00059.x

                            Wagner W L, Herbst D R, Sohmer S H, 1999. Manual of the flowering plants of Hawai'i, Vols. 1 & 2. Honolulu, USA: University of Hawai'i Press/Bishop Museum Press. 1918 + [1] pp.

                            Waterhouse D F, 1993. The major arthropod pests and weeds of agriculture in Southeast Asia. Canberra, Australia: ACIAR. v + 141 pp.

                            Waterhouse D F, 1997. The major invertebrate pests and weeds of agriculture and plantation forestry in the southern and western Pacific. In: The major invertebrate pests and weeds of agriculture and plantation forestry in the southern and western Pacific. Canberra, Australia: Australian Centre for International Agricultural Research (ACIAR). vi + 93 pp.

                            Wu S H, Hsieh ChangFu, Rejmánek M, 2004. Catalogue of the naturalized flora of Taiwan. Taiwania. 49 (1), 16-31.

                            Wu TL, 2001. Check List of Hong Kong Plants. In: Hong Kong Herbarium and the South China Institute of Botany. Agriculture, Fisheries and Conservation Department Bulletin 1 (revised), 384 pp. http://www.hkflora.com/v2/flora/plant_check_list.php

                            Links to Websites

                            Top of page
                            WebsiteURLComment
                            Flora of the West Indieshttp://botany.si.edu/antilles/WestIndies/
                            GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.
                            Global register of Introduced and Invasive species (GRIIS)http://griis.org/Data source for updated system data added to species habitat list.
                            GrassBase - The Online World Grass Florahttp://www.kew.org/data/grasses-db/www/imp10752.htm
                            Tropical Forages: An Interactive Selection Toolhttp://www.tropicalforages.info/
                            Wildland shrubs of the United States and its territorieshttp://www.fs.fed.us/global/iitf/wildland_shrubs.htm

                            Contributors

                            Top of page

                            03/07/13 Original text by:

                            Julissa Rojas-Sandoval, Department of Botany-Smithsonian NMNH, Washington DC, USA

                            Pedro Acevedo-Rodríguez, Department of Botany-Smithsonian NMNH, Washington DC, USA

                            Distribution Maps

                            Top of page
                            You can pan and zoom the map
                            Save map
                            Select a dataset
                            Map Legends
                            • CABI Summary Records
                            Map Filters
                            Extent
                            Invasive
                            Origin
                            Third party data sources: