Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Passiflora tripartita var. mollissima
(banana passionfruit)

Toolbox

Datasheet

Passiflora tripartita var. mollissima (banana passionfruit)

Summary

  • Last modified
  • 16 November 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Host Plant
  • Preferred Scientific Name
  • Passiflora tripartita var. mollissima
  • Preferred Common Name
  • banana passionfruit
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Plantae
  •     Phylum: Spermatophyta
  •       Subphylum: Angiospermae
  •         Class: Dicotyledonae
  • Summary of Invasiveness
  • Historical confusion over the taxonomy of this and its close relatives makes earlier reports on both distribution and invasiveness hard to interpret. For example, the species previously known in Hawaii as Passiflo...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Passiflora tripartita var. mollissima (banana passionfruit); scrambling and smothering habit.
TitleHabit
CaptionPassiflora tripartita var. mollissima (banana passionfruit); scrambling and smothering habit.
Copyright©Trevor James-2004/Hamilton, New Zealand
Passiflora tripartita var. mollissima (banana passionfruit); scrambling and smothering habit.
HabitPassiflora tripartita var. mollissima (banana passionfruit); scrambling and smothering habit.©Trevor James-2004/Hamilton, New Zealand
Passiflora tripartita var. mollissima (banana passionfruit); flower.
TitleFlower
CaptionPassiflora tripartita var. mollissima (banana passionfruit); flower.
Copyright©Trevor James-2004/Hamilton, New Zealand
Passiflora tripartita var. mollissima (banana passionfruit); flower.
FlowerPassiflora tripartita var. mollissima (banana passionfruit); flower.©Trevor James-2004/Hamilton, New Zealand
Passiflora tripartita var. mollissima (banana passionfruit); flower.
TitleFlower
CaptionPassiflora tripartita var. mollissima (banana passionfruit); flower.
Copyright©Trevor James-2004/Hamilton, New Zealand
Passiflora tripartita var. mollissima (banana passionfruit); flower.
FlowerPassiflora tripartita var. mollissima (banana passionfruit); flower.©Trevor James-2004/Hamilton, New Zealand
Passiflora tripartita var. mollissima (banana passionfruit); fruit.
TitleFruit
CaptionPassiflora tripartita var. mollissima (banana passionfruit); fruit.
Copyright©Trevor James-2004/Hamilton, New Zealand
Passiflora tripartita var. mollissima (banana passionfruit); fruit.
FruitPassiflora tripartita var. mollissima (banana passionfruit); fruit.©Trevor James-2004/Hamilton, New Zealand

Identity

Top of page

Preferred Scientific Name

  • Passiflora tripartita var. mollissima (Kunth) Holm-Niels. & P.Jørg

Preferred Common Name

  • banana passionfruit

Other Scientific Names

  • Passiflora mixta L.f.
  • Passiflora mollisima
  • Passiflora tarminiana Coppens & V.E. Barney
  • Passiflora tripartita var. tripartita Holm-Nie., Jorg. & Law.
  • Tacsonia mollissima Kunth

International Common Names

  • Spanish: curuba; tacso; tumbo
  • French: tacso

Local Common Names

  • Colombia: curuba de Castilla
  • Ecuador: tacso de Castilla
  • Germany: Bananen-Passionsblume; Curuba
  • South Africa: piesangdilla

EPPO code

  • PAQMO (Passiflora mollissima)

Summary of Invasiveness

Top of page

Historical confusion over the taxonomy of this and its close relatives makes earlier reports on both distribution and invasiveness hard to interpret. For example, the species previously known in Hawaii as Passiflora mollissima is now P. tarminiana (HEAR, 2012) and in New Zealand P. mollissima is now regarded as P. tripartita var. mollissima, although P. tripartita var. azuayensis also occurs there, as does  P. tarminiana, which was previously known as P. mixta (Heenan and Sykes 2003). However, P.mixta sens. strict. is still recognised in New Zealand, but is restricted to the Waitakere ranges, near Auckland.

Although there is no indication that any of these species are invasive in their native habitats, all are regarded as invasive in one or more countries. This invasiveness is exacerbated in all species by their climbing habit compounding the difficulty of control, and by the activities of birds and feral mammals in facilitating their spread. Observation indicates that spread is sufficiently rapid to effect the alteration of forest habitats in a short time, with blankets of Passiflora foliage covering trees, shrubs and the ground, thereby preventing natural regeneration and succession. Ecological processes are severely disrupted, and biodiversity threatened, because these native forests are home to many species that have been proposed for listing as threatened or endangered.

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Plantae
  •         Phylum: Spermatophyta
  •             Subphylum: Angiospermae
  •                 Class: Dicotyledonae
  •                     Order: Violales
  •                         Family: Passifloraceae
  •                             Genus: Passiflora
  •                                 Species: Passiflora tripartita var. mollissima

Notes on Taxonomy and Nomenclature

Top of page

The ITIS (2012) gives the species previously known as Passiflora mollissima the accepted name of P. tripartita var. mollissima (Kunth) Holms-Niels. & P.M. Jørg, placed in subgenus Tacsonia (Juss.) Triana & Planch, and this name is used by a variety of authors (e.g. Quintero, 2009; Segura et al., 2005; Esquerre-Ibañez et al., 2015). However, The Plant list (2013) still states the accepted name as P. mollissima, listing P. tripartita var. mollissima as a synonym as does Durate and Paull (2015).

Historically, the nomenclature of the species has been confused. P. mollissima was for a long time the most common binomial appearing in Hawaiian literature (Neal, 1965; Escobar, 1980; Pemberton, 1983; LaRosa, 1985), but had also been referred to as P. mixta L. (Muller-Dombois, 1977). In their Hawaiian flora, Wagner et al. (1990) recognized P. mollissima as the correct binomial, with Tacsonia mollissima Kunth as a synonym. Trujillo and his associates (Trujillo and Taniguchi, 1984; Casanas-Arango et al., 1990, 1996; Trujillo et al., 1994, 2001) presented arguments that the species is P. tripartita (Juss.) Poir. (Killip, 1938) var. tripartita Holm-Nie. Jorg. & Law. (Holm-Nielsen et al., 1988), and is distinct from P. tripartita var. mollissima Holm-Nie. Jorg. & Law. Thus, the name P. tripartita var. tripartita appears in publications by these workers, with the binomial P. mollissima Neal as a later synonym (Trujillo et al., 2001). To add further confusion into the nomenclature of the species, Coppens d’Eeckenbrugge et al. (2001) consider that there is another species, P. tarminiana, which can be identified due to differences in floral characters. Populations of P. tarminiana are particularly abundant in Hawaii suggesting that the earlier Hawaiian literature on the biology and control of P. mollissima actually refers to P. tarminiana. However, Lobo and Medina (2009) and Fischer et al. (2009) indicate that P. mollisima and P. tarminiana produce similar fruit; given that the two can be crossed without difficulty it suggests that they might rather be botanical varieties and not different species.

Critical assessment of the morphological (Villacis et al., 1998) and genetic (Fajardo et al., 1998; Sanchez et al., 1999) variation in Passiflora spp. indigenous to South America has resulted in new understanding of the relationships between the different species of Passiflora in Ecuador. P. tripartita var. mollissima is the main cultivated species of Passiflora in the high Andes (Coppens d'Eeckenbrugge et al., 2001; Segura et al., 2005). Segura et al. (2005) analysed isozyme variation in P. tripartita var. mollissima, P. tarminiana and their closest wild relative, P. mixta. Their results suggested a strong gene flow and close relationship between P. tripartita var. mollissima and P. mixta, whilst P. tarminiana constituted a clearly differentiated group. As a result of the earlier confusion over specific names, knowing which species was referred to in much of the literature is now difficult to interpret and should be treated with caution.

Other names given to this species are: P. tomentosa Lam., Murucuja mollisima Spreng., Tacsonia mixta subsp. tomentosa Mast., Tacsonia mollisima var. glabrescens Mast, P. tomentosa var. mollisima (Duarte and Paull, 2015).

The name in English is banana passionfruit because of the fruit shape. In Spanish, it is called tacso or tacso de Castilla in Ecuador, curuba or curuba de Castilla in Colombia, tumbo or tumbo serrano in Peru and Bolivia, and parcha in Venezuela. There is also a species called curuba roja (red banana passionfruit) that is P. cumbalensis (Duarte and Paull, 2015). In Hawaii it is known as banana poka.

Description

Top of page

General description

P. tripartita var. mollissima is a vigorous woody perennial liana and can grow up to 8-10 m. Stems are cylindrical and coated with yellow hairs. Like most of its relatives it has tendrils. The root system is shallow with 70% of the roots in the first 30 cm of soil (Bonnet, 1988).

Leaves

Leaves of P. tripartita var. mollissima are 6-16 cm long, 7-20 cm wide, deeply 3-lobed, moderately to densely pubescent, greyish or yellowish-velvety on the underside and downy above, with clearly defined veins and finely toothed margins (Duarte and Paull, 2015). Petioles with 6-14 glands, stipules obliquely ovate, 6-20 mm long by 12-30 mm wide, persistent.

Flowers

The length of the floral cup is the most conspicuous morphological difference of the Tacsonia group where the cylindrical 7-10 cm hypanthium is longer than the sepals (Duarte and Paull, 2015). Flowers of P. tripartita var. mollissima are pendent, showy, 6-9 cm in diameter, peduncles solitary, 3.8-10 cm long, bracts connate for 1/3-2/3 length, forming an enlarged tube over a base or hypanthium; hypanthium glabrous, grey-green, frequently blushed with red, tubular, >4 cm long; hypanthium/sepal length ratio (c. 2.0-)2.4-3.2; sepals and petals pink or shades of pink, to salmon-pink, lanceolate to oblong, 4-5 cm long; corona purple or white, tuberculate to dentate.

Fruit

The fruit of P. tripartita var. mollissima is an oblong or oblong-ovoid berry 5-12 cm long and 3-4 cm wide that has a soft but thick and protecting leathery peel with a pale yellow or yellow-orange, sometimes pale green colour at maturity, covered by a fine pubescence. The epicarp is hard but flexible and the mesocarp very thin. The orange shiny pulp, making up 60% of the fruit weight, contains small, black, flat, elliptic seeds that are surrounded by a sometimes almost sweet, other times fairly sour aril, with a typical fine and special aroma (Duarte and Paull, 2015). The common name refers to the yellow (when ripe) oblong-shaped fruit superficially resembling a banana.

Distribution

Top of page

Passiflora is a large genus with species distributed widely throughout the world. The subgenus Tacsonia is restricted to the Andes of South America with about 50 species that grow above 2000 m altitude (Escobar, 1992). P. tripartita var. mollissima is native to the high elevation Andean regions of southern Colombia, Ecuador, Peru, Bolivia and Venezuela. There are some plantings in southern Australia, and the plant may have become naturalized in southeastern Australia, but this has yet to be confirmed. Plantings have also occurred in Madras in India and New Guinea. New Zealand seems to have a climate that is suitable for it and it is grown in small amounts. In Hawaii, it was introduced as an ornamental and for the fruit, but it has become a very aggressive forest-destroying weed on the Big Island and Kaua’i (Duarte and Paull, 2015).

Williams and Buxton (1995) stated, "All three Passiflora spp. (P. mollissima, P. pinnastistipula and P. mixta) of the Tacsonia group originating in the Andean highlands are now widespread throughout the world, but only P. mollissima [now known to be P. tarminiana (Hear 2012, Coppens d'Eeckenbrugge et al., 2001)] has become a serious weed in Hawaii."

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasivePlantedReferenceNotes

Asia

ChinaPresentYu et al., 2005
PhilippinesPresentIntroducedWeeds of Australia, 2012
Sri LankaPresentIntroducedUSDA-ARS, 2012

Africa

KenyaPresentIntroduced
South AfricaPresentIntroducedUSDA-ARS, 2012
ZambiaPresentIntroducedUSDA-ARS, 2012

North America

MexicoPresentIntroducedMissouri Botanical Garden, 2003

Central America and Caribbean

Costa RicaPresentIntroducedMissouri Botanical Garden, 2003
PanamaPresentIntroducedMissouri Botanical Garden, 2003

South America

BoliviaWidespreadNative1921 Not invasive Killip, 1938; Holm-Nielsen et al., 1988
ChilePresentFriesen et al., 2008
ColombiaWidespreadNative Not invasive Killip, 1938; Holm-Nielsen et al., 1988; USDA-ARS, 2003
EcuadorWidespreadNative Not invasive Killip, 1938; Holm-Nielsen et al., 1988; USDA-ARS, 2003
PeruWidespreadNative Not invasive Missouri Botanical Garden, 2003; USDA-ARS, 2003
VenezuelaWidespreadNative1921 Not invasive Killip, 1938; Holm-Nielsen et al., 1988

Oceania

AustraliaAbsent, unreliable recordIntroduced
GuamPresentIntroducedPIER, 2012
New ZealandPresentIntroduced1958 Invasive Coppens d'Eeckenbrugge et al., 2001; Heenan and Sykes, 2003
Papua New GuineaPresentIntroducedMissouri Botanical Garden, 2003

History of Introduction and Spread

Top of page

The species formerly thought of as P. mollissima, but now known to be P. tarminiana, was introduced to the island of Hawaii in 1921 as an ornamental (LaRosa 1984; Norman and Trujillo, 1995).

P. mollissima’ was first collected in New Zealand from Nelson in 1947 and from Wellington in 1949 and 1952 (Heenan & Sykes, 2003). This and other species were introduced to New Zealand as ornamentals or as potential crops. Heenan & Sykes (2003) pointed out that a paucity of herbarium specimens makes the extent of distribution of the different species difficult to ascertain. However, they suggested that P. tarminiana is most common in northern North Island, P. tripartita var. mollissima in Wellington, Nelson and Marlborough, and P. tripartita var. azuayensis  in Wellington, Canterbury and Otago. P. mixta is only found in the Waitakere Ranges near Auckland, although its distribution there is unknown. 

Because of problems with the taxonomy of these species, the reliability of records of distribution in other countries must be suspect until further work has been done.

Risk of Introduction

Top of page

The risk of accidental movement of P. tripartita var. mollissima seed or other plant parts is considered minimal. Deliberate transport by human activity as a crop or an ornamental is the most likely avenue of introduction. However, this species' invasiveness has become widely recognized, and because of this, the danger of its intentional introduction to areas where it could survive and spread is now considered to be lower. It is a federally listed noxious weed in Hawaii.

Habitat

Top of page

P. tripartita var. mollissima is a perennial woody vine native to the high elevation Andean regions of southern Colombia, Ecuador, Peru, Bolivia and Venezuela, where it is widely grown for its fruit (Pemberton, 1983; LaRosa, 1984, 1985; Markin et al., 1992; Coppens d'Eeckenbrugge, 2001). In this regard, it is known in these habitats only in cultivation and from escaped populations.

Coppens d'Eeckenbrugge (2001) reported that in its native environment it is not well adapted to grow under 2400 m, and that its fruit grow bigger at higher altitudes.

In New Zealand, Baars et al. (1998) suggested that sites with introduced lianes (Clematis vitalba, Lonicerajaponica and 'P. mollissima' – almost certainly P. tripartita var. mollissima) - were generally characterised by high soil pH, warmer and lower altitude sites, proximity to the coast, westerly aspects and early successional vegetation. P. mollissima also tended to be restricted to low forest canopies, an observation shared by Williams and Buxton (1995) who were probably also dealing with P. tripartita var. mollissima. Baars et al. (1998) also found that P. mollissima (once again probably P. tripartita var. mollissima) was not very specific in its choice of supporting species, being more common in disturbed or regenerating forest which often had a lower canopy height.

Baars and Kelly (1996) and Beavon (2007) found that light availability was important for the survival of P. mollissima (probably P. tripartita var. mollissima) seedlings, and that growth and reproduction were restricted to high-irradiance environments.

Habitat List

Top of page
CategorySub-CategoryHabitatPresenceStatus
Terrestrial
Terrestrial ‑ Natural / Semi-naturalNatural forests Present, no further details Harmful (pest or invasive)

Hosts/Species Affected

Top of page

In habitats to which it has been introduced, P. tripartita var. mollissima colonizes native forests, where it spreads as dense layers that cover and shade trees, breaking them down by the weight of the vines. The vines also increase the surface area of supporting trees, rendering the trees vulnerable to breakage by high winds. Dense mats of foliage of this and related species on the ground smother and kill forest seedlings, preventing regeneration (Markin and Nagata, 1989). P. tripartita var. mollissima is not normally a weed of crops in its native habitats or where it has been introduced. Baars et al. (1998) in New Zealand found that P. mollissima was not very specific in its choice of supporting species, being more common in disturbed or regenerating forest which often had lower canopy height.

Biology and Ecology

Top of page

Genetics

The chromosome number of P. tripartita var. mollissima is 2n=18 (Wagner et al., 1990).

Physiology and Phenology

Williams and Buxton (1995), almost certainly working with P. tripartita var. mollissima, found that in New Zealand establishment is restricted to areas of high light levels and soil disturbance. P.tripartita var. mollissima vines in the forest canopy were found to originate from adjacent open areas up to 15 m away. Baars and Kelly (1996) and Beavon (2007) in New Zealand reported that for P. tripartita var. mollissima, light availability appears to be important for the survival of seedlings.

Reproductive Biology

Although P. tripartita var. mollissima does not appear to produce fruit apomictically (Beavon and Kelly, 2012), stems that are broken or cut can grow new roots if they contact moist soil (Williams and Buxton, 1995).

Self-incompatibility has not been observed in the Tacsonia group (Coppens d’Eeckenbrugge et al., 1997), and stigmatic movement does not occur during anthesis as is observed in the Passiflora group. Research in New Zealand on P. tripartita var. mollissima by Beavon (2007) and Beavon and Kelly (2012) investigated mating systems and reproductive traits. They and other authors pointed out that humming birds are responsible for pollination in the species’ native environments. According to Quintero (2009), honey bees are also important pollinizers helping to improve fruit size and quality. In New Zealand, visitors to flowers were almost exclusively introduced honey bees (Apis mellifera) and bumble bees (Bombus spp.). Beavon and Kelly (2012) compared fruit set, seed set and germination success between hand-selfed, hand-crossed, bagged and open flowers. Bagging flowers to exclude pollinators reduced fruit set from 18.0% to 3.0%. Fruit set in hand-selfed flowers was lower, at 17.5%, than in crossed flowers, at 29.5%. However, bees did not perform as well as either hand-selfing or hand-crossing, indicating significant pollen limitation. The flowers are large in relation to bees and bees can visit the nectar source in them without necessarily contacting either anthers or stigma. Clearly, however, pollination by bees is adequate to allow the species to flourish in New Zealand and elsewhere. The different pollination methods tested by Beavon and Kelly (2012) had no significant effect on fruit size, nor on the number of seeds per fruit, which averaged 108. Neither was there any consistent effect of pollination treatment on seed germination. In Hawaii, abundant fruit set is observed. This seems to be due to a mixture of spontaneous self-pollination and pollination by insects. The newly opened flowers have exposed stamens, favourable to cross-pollination by insects; if cross-pollination does not occur, each flower later pollinates itself through movement of the stigmas to touch the stamens (Duarte and Paull, 2015).

Williams and Buxton (1995) found that fresh seed germinated over 12 weeks at 25oC under constant low light, but that 73% remained ungerminated after that time. LaRosa (1992), in her studies on germination with P. tarminiana, found broadly similar results. Beavon (2007) found that seeds cleaned of flesh germinated in slightly higher numbers than did uncleaned seed, but there were significant differences between germination in the field (much lower, at 9% of cleaned seed) and in a glasshouse (66% of cleaned seed).

In its native environment, P. tripartita var. mollissima is capable of active growth, and of flower and fruit production throughout the year with little seasonal variation. Fruits are attractive to birds, pigs and small mammals, which consume the seeds with the fruit and may pass the undamaged seeds through their digestive tracts (LaRosa, 1984; Williams and Buxton, 1995; Beavon, 2007). Fruit production under cultivation in Bolivia is as high as 1000 kg of fruit/ha/week, and 13,000 kg/ha in 3 months during peak harvest (Casanas-Arango et al., 1996), indicating the potential for production and spread in areas of its introduction.

Environmental Requirements

P. tripartita var. mollissima is a species of mesic and wet, cool (10-20°C), upper-elevation habitats. It is a cool climate crop with ideal average temperatures of 14-16°C, conditions found between 1800 and 3200 m in the Andes (Fischer et al., 2009), with an optimum of 2200-2400 m altitude (Bonnet, 1988; Schoeniger, n.d.). Coppens d'Eeckenbrugge (2001) reported that in its native environment it is not well adapted to grow under 2400 m, and that its fruit grow bigger at higher altitudes. It grows at 3400 m in Cusco, Peru (Missouri Botanical Garden, 2003) and has adapted well to altitudes of 1200-1800 m in Hawaii and New Zealand. In New Zealand, Baars et al. (1998) found that sites where it grew were generally characterised by high soil pH, warmer and lower altitude sites, nearness to coast, westerly aspects and early successional vegetation. The plant can stand light frosts (Munier, 1961) and temperatures of -5°C for a short time. At higher altitudes, fewer anthracnose problems are experienced (Campos, 1992).

The optimal rainfall is between 1500 and 2000 mm (Quintero, 2009) uniformly distributed, otherwise irrigation is necessary for continuous fruit production. Dry periods occur in most of the Peruvian and Bolivian Andes where rain seldom reaches these amounts and normally occurs during only 6 months of the year (Duarte and Paull, 2015).

Both Baars and Kelly (1996) and LaRosa (1992) provided evidence that growth and reproduction appear to be restricted to high-irradiance environments, with ideal growing conditions of 1200-1500 h of sunshine per year (Campos, 1992). Photoperiod does not seem to have an effect on flowering since it does flower for long periods of the year at different latitudes.

Wind is very damaging to this plant, breaking young shoots and causing flower drop (MAG-INCCA, 1991). Fruit can also be damaged by rubbing with other plant parts. Pollinating insects are also affected by wind.

Soil type and soil pH appear not to be critical to the growth of P. mollissima. Plants have been grown experimentally in soils of various consistencies, as well as in sand and vermiculite (Gardner, 1989). The plant needs a soil profile that is at least 50-60 cm deep, medium textured (loam to sandy loam) and rich in organic matter (MAG-INCCA, 1991). The soil should have a good water retention capacity since the vine does not stand long dry periods. The area should not be subjected to flooding and requires good drainage. Campos (1992) suggests an ideal pH of 5.5-6.5. Casierra-Posada et al. (2011) explored the effects of soil salinity on P. tripartita var. mollissima, having commented that current agricultural practices in Columbia are tending to increase soil salinity. They found that with increasing salinity, number of leaves, shoot length, specific leaf weight, leaf area and dry matter all decreased, concluding that banana passionfruit seedlings are moderately sensitive to salt stress.

Latitude/Altitude Ranges

Top of page
Latitude North (°N)Latitude South (°S)Altitude Lower (m)Altitude Upper (m)
500 4600

Air Temperature

Top of page
Parameter Lower limit Upper limit
Mean annual temperature (ºC) 10 20

Rainfall

Top of page
ParameterLower limitUpper limitDescription
Dry season duration0number of consecutive months with <40 mm rainfall
Mean annual rainfall5002500mm; lower/upper limits

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Cyanotricha necyria Herbivore Leaves
Dasiops caustonae Herbivore Inflorescence
Josia fluonia Herbivore Leaves
Pyrausta perelegans Herbivore Fruits/pods/Growing point
Septoria passiflorae Pathogen Leaves

Notes on Natural Enemies

Top of page

To support a biological control programme in Hawaii, Pemberton (1983, 1989) explored the Andean regions of Peru, Ecuador and Colombia in search of natural enemies of P. mollissima (which then included both P. tripartita var, mollissima and P. tarminiana). Later, Causton and associates conducted similar explorations in Venezuela (Causton, 1993, 1997; Causton et al., 2000; Causton and Pena Rangel, 2002). A number of insects associated with this species were identified as a result of these efforts, with those showing promise for biocontrol receiving more intense research attention. Causton's work focused on the fly Dasiops caustonae, which feeds on bud anthers and causes premature flower abscission. In Ecuador and Colombia, Trujillo and Taniguchi (1984) noted a defoliating moth as being of particular interest as a potential biocontrol agent: Cyanotricha necyria Felder (Lepidoptera: Notodontidae) (Markin et al., 1989). A second potential agent, a bud and fruit-feeding moth, Pyrausta perelegans (Lepidoptera: Pyralidae) was also found (Markin and Nagata, 1990). Valero and Viana (1970) reported chlorotic spotting of P. mollissima caused by a species of the cicadellid insect Empoasca sp. in Colombia. Josia fluonia (Lepidoptera: Notodontidae), a foliage-feeding moth from Ecuador, was introduced into quarantine in Hawaii for testing as a potential biocontrol agent (Friesen et al., 1994; Hennessey, 1996). Likewise, an apparently new species of the fruit fly genus Zapriothrica (Diptera: Drosophilidae), a pest of high elevation Passiflora spp., was identified in Colombia as a potential biocontrol insect and was evaluated for this purpose (Casanas-Arango et al., 1996) (see Biological Control).

Other insect pests include leaf eaters Dione or Agraulis juno that are found in groups. Fruit flies (Anastrepha spp.) can be sporadically found. Foliage can be infested by mites (Tetranychus spp.) (Duarte and Paull, 2015). In humid and poorly drained situations, nematodes (Meloidogyne spp.) can be a problem.

Few virulent diseases are known to attack P. tripartita var. mollissima; however, the following diseases have been reported: a stem and leaf spot caused by Colletotrichum gloeosporioides (USDA, 1960) and C. passiflorae, which was originally reported from Hawaii as causing anthracnose on leaves and fruit (Stevens, 1925). The rust fungus Puccinia scleriae attacks Passiflora species, including P. tripartita var. mollissima (Gardner and Davis, 1982). The alternate hosts of Puccinia scleriae are Scleria species (nut-rushes). Trujillo et al. (1994, 2001) found several fungal pathogens in the native habitats of Passiflora tripartita var. mollissima. Only two significant pathogenic fungi, capable of defoliating the host, were found on P. tripartita var. mollissima: a powdery mildew, Phyllactinia sp., and Septoria passiflorae (Ponte et al., 1979). Other published records of natural enemies of 'P. mollissima' (i.e. P. tripartita var. mollissima) include those of Chacon and Rojas (1981, 1984) and Morales et al. (2000).

Means of Movement and Dispersal

Top of page

Natural Dispersal (Non-Biotic)

No significant means of non-biotic dispersal are known for P. tripartita var. mollissima. Seeds are not dispersed via wind or water.

Vector Transmission (Biotic)

P. tripartita var. mollissima is dispersed locally in New Zealand by feral pigs, Australian brush-tailed possums and, possibly, some species of birds which consume ripe fruit and pass seeds through their digestive systems (Beavon, 2007); rapid spread is facilitated by the rate of fruit production and large number of seeds per fruit (Casanas-Arango et al., 1996; Beavon, 2007). In Hawaii, introduced birds, pigs and rats are the primary seed dispersers of the related P. tarminiana (Warshauer et al., 1983; LaRosa, 1984). In addition to passage of ingested seeds through the digestive tract, rodents, in particular, may hoard seeds and then fail to relocate some storage sites, effectively planting them (Williams and Buxton, 1995; Williams et al., 2000). P. tripartita var. mollissima appears to have no pathogens or insect feeders in its habitats of introduction that limit its distribution or success.

Accidental Introduction

The likelihood of long-range accidental introduction of P. tripartita var. mollissima is considered minimal. Seeds are contained within the fleshy fruit and are sufficiently large to be readily detected. Their smooth coats make it unlikely that they would adhere to clothing or animals' fur.

Intentional Introduction

Intentional introduction of P. tripartita var. mollissima is the most probable means of introduction. It was brought to New Zealand as an ornamental or possibly as a potential crop. In regions where the fruit may be valued for consumption, its introduction as an agricultural crop is likely. In its native regions, where P. tripartita var. mollissima is grown as a food crop, local dispersal through agricultural practices is probably significant. In New Zealand this species is not commonly consumed as a food and is not grown as a crop. In Australia it, or P. tarminiana, has been used used in breeding programmes for food crops (Winks et al., 1988).

Impact Summary

Top of page
CategoryImpact
Animal/plant collections None
Animal/plant products Negative
Biodiversity (generally) Negative
Crop production None
Environment (generally) None
Fisheries / aquaculture None
Forestry production Negative
Human health None
Livestock production None
Native fauna Negative
Native flora Negative
Rare/protected species Negative
Tourism Negative
Trade/international relations None
Transport/travel None

Economic Impact

Top of page

P. tripartita var. mollissima is not known to be significantly invasive in its native habitats, although feral populations do exist (Causton, 1997). No direct economic impact of an invasion of any Passiflora species is known for New Zealand other than the cost of its control, although its effect on ecosystem services (water, air and environmental mantainance) must be significant. Costs are also incurred by central and local government in the administration of control efforts.

Environmental Impact

Top of page

Although P. tripartita var. mollissima has naturalised in New Zealand relatively recently, its ability to cause environmental damage is apparent. In areas of infestation where it is firmly established, it blankets trees and other vegetation with dense growths of vines, especially in regrowing forests, lower-growing forest margins and in regenerating bush (Williams and Buxton, 1995; Baars and Kelly, 1996). The harm to biodiversity of both flora and fauna is significant.

Threatened Species

Top of page
Threatened SpeciesConservation StatusWhere ThreatenedMechanismReferencesNotes
Drosophila ochrobasisUSA ESA listing as endangered species USA ESA listing as endangered speciesHawaiiNatureServe, 2010
Nothocestrum peltatum (Oahu aiea)CR (IUCN red list: Critically endangered) CR (IUCN red list: Critically endangered); USA ESA listing as endangered species USA ESA listing as endangered speciesHawaiiCompetition - smotheringUS Fish and Wildlife Service, 1995
Phyllostegia racemosa (kiponapona)NatureServe NatureServe; USA ESA listing as endangered species USA ESA listing as endangered speciesHawaiiCompetition - monopolizing resourcesUS Fish and Wildlife Service, 1998
Schiedea helleri (Kaholuamanu schiedea)CR (IUCN red list: Critically endangered) CR (IUCN red list: Critically endangered); USA ESA listing as endangered species USA ESA listing as endangered speciesHawaiiCompetition (unspecified); Ecosystem change / habitat alterationUS Fish and Wildlife Service, 2010
Schiedea kauaiensis (Kauai schiedea)CR (IUCN red list: Critically endangered) CR (IUCN red list: Critically endangered); USA ESA listing as endangered species USA ESA listing as endangered speciesHawaiiCompetition - monopolizing resourcesUS Fish and Wildlife Service, 2008

Social Impact

Top of page

Besides the economic and ecological impacts outlined above, native forests and their component species are of extreme value to the beliefs, practices and way of life of Maori culture in New Zealand and to indigenous culture elsewhere, and P. tripartita var. mollissima invasion poses a direct threat to these species and systems.

Risk and Impact Factors

Top of page Invasiveness
  • Proved invasive outside its native range
  • Tolerates, or benefits from, cultivation, browsing pressure, mutilation, fire etc
  • Highly mobile locally
  • Has high reproductive potential
  • Has propagules that can remain viable for more than one year
Impact outcomes
  • Damaged ecosystem services
  • Ecosystem change/ habitat alteration
  • Negatively impacts tourism
  • Reduced amenity values
  • Reduced native biodiversity
Impact mechanisms
  • Competition - monopolizing resources
  • Competition - smothering
  • Competition
Likelihood of entry/control
  • Difficult/costly to control

Uses

Top of page

P. tripartita var. mollissima is primarily used as a food crop in its native habitats of South America, where it is cultivated at individual home sites. The fruit of the sweeter types can be eaten out of hand but normally it is used to make juice. The juice can be made in a blender mixing it with water or milk and sugar, and straining out the seeds. It is also used in gelatine desserts. In Ecuador, ice cream is made with the pulp. It is also used to prepare drinks as a replacement of the lemon or lime flavours. In Bolivia, the juice is combined with aguardiente and sugar, and served as a pre-dinner cocktail. In New Zealand, the Department of Agriculture has developed recipes to encourage the growing and use of the pulp for pie fillings, and for making meringue pie, sauce, spiced relish, jelly, jam and other preserves. It is also advocated as an ingredient in fruit salad, especially with pineapple, and for blending with whipped cream as a pudding, and for cooking and preserving as an ice-cream topping (Morton, 1987).

P. tripartita var. mollissima is cultivated commercially, mainly in Colombia, with Boyaca being the principal producing area with a harvested area of 663 ha and a production of 6868 t, contributing 48% of the national production of the banana passionfruit (Lizarazo et al., 2013). Cassiera-Posada et al. (2011) reported that in 2009, 1323 ha of P. tripartita var. mollissima were cultivated in Colombia. In Ecuador and the other Andean countries, no large orchards exist and fruit sold in the markets comes from small areas or backyard plants. Occasionally, it can be found in the markets of San Salvador or Mexico City. Limited volumes are exported to the USA or the EU mainly from Colombia and Ecuador (Duarte and Paull, 2015). It has been introduced elsewhere as an ornamental or potential crop. In Australia it, or P. tarminiana, has been used used in breeding programmes for food crops (Winks et al., 1988).

Similarities to Other Species/Conditions

Top of page

Morphologically similar members of subgenus Tacsonia in the native habitats of P. tripartita var. mollissima, having flowers with tubular calyces, include P. tarminiana ('curuba de castilla') and P. mixta ('tasco de monte') (Escobar, 1980; Holm-Nielsen et al., 1988, Coppens d’Eekenbrugge et al., 2001). These forms are distinguished in field observation by variations in floral proportions, (e.g., floral tube length), presence and positioning of nectaries, pendent habit of the flowers, and by flower colour. P. tripartita var. mollissima flowers are fully pendent and a true pink to magenta, whereas those of P. mixta, for example, are semipendent and can be light pink to dark red. Hybridization among cultivated forms may further complicate morphological distinctions. Coppens d’Eekenbrugge et al. (2001) provide a useful key for distinguishing between P. tarmimiana, P. tripartita and P. mixta, and Heenan and Sykes (2003) provide a comprehensive key to the Passiflora species of New Zealand detailing the distinguishing characteristics of P. tarminiana.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

Cultural Control

Grazing cattle have been observed to effectively control P. tarminiana in Hawaiian forests, and Williams and Buxton (1995), in New Zealand, only found seedlings of P. tripartita var. mollissima in areas protected from sheep and cattle grazing. Rooting of pigs may also exert a temporary control, although Williams and Buxton (1995) pointed out that feral pigs are uncommon near human habitation, and in any case, disturbance caused by rooting is known to be deleterious to forest health in the long term and is not to be recommended.

Mechanical Control

Hand pulling of seedlings and small plants can be effective in a limited area, but this is very labour intensive and only useful for small infestations. As P. tripartita var. mollissima is a liana, and therefore closely associated with the overlain vegetation, finding all the stems can be difficult and removing them may involve damage to the supporting trees and other native vegetation.

Chemical Control

Herbicides that give effective control of Passiflora species include glyphosate and metsulfuron. They can be applied by knapsack, brush gun or by the cut stump method. Both herbicides will also kill or damage any desirable plant tissue they contact so they must be applied very carefully. Probably the best method of control involves cutting the vines back as low as possible in winter or early spring, and then spraying the regrowth later in spring with herbicide. The cut vines should be left hanging in the tree to dry out before being removed to prevent them from regrowing if they contact the ground, and to prevent damage to the host tree.

For larger plants the cut stump treatment works well. This means tracing the vines back to the root and cutting them off as close to the root as possible before immediately treating the cut surface with a suitable herbicide. This can be done by applying undiluted herbicide with a paint brush; alternatively, gel formulations of either glyphosate or picloram are available in some countries.

Using chemical control for vines like Passiflora spp. can be very laborious in large infestations and is best restricted to small or isolated populations.

Biological Control

Biological control has been long considered the most practical, cost effective, and long-range approach to P.mollissima (i.e. P. tarminiana) invasion in Hawaii (Waage et al., 1981; Gardner and Davis, 1982; Pemberton, 1983; 1989; Markin, 1989; Causton, 1997; Causton et al., 2000; Causton and Pena Rangel, 2002). In the late 1970s and early 1980s, Gilbert and his associates at the University of Texas at Austin, USA, expressed optimism that one or more species of heliconid butterflies from South America could be used successfully as biocontrol agents for P. mollissima in Hawaii, and with sufficient host specificity that the edible passion fruit, P. edulis, would not be threatened (Waage et al., 1981).

Aside from the efforts in Hawaii against P. mollissima (i.e. P. tarminiana), biocontrol work in New Zealand is outlined in unpublished Landcare research reports (Fowler, 1999; Winks and Fowler, 2000; Fröhlich and Gianotti, 2001).The Septoria leaf spot fungus was trialled as a biocontrol agent in New Zealand but, despite being virulent on weedy species of Passiflora, it also infected the crop species P. edulis and was therefore not considered safe for release (Hayes, 2005).

In 1982, the Hawaii Department of Land and Natural Resources provided funding support for exploration of the native Andean habitats in Peru and Colombia for potential biocontrol agents for P. mollissima, and Pemberton (1983, 1989) encountered several insects associated with P. mollissima though the necessary studies were not completed. Later, the leaf-feeding larvae of the moth Cyanotricha necyria were found to be effective defoliators (Lugo-Pena and Sanchez, 1974; Posada et al., 1976). Casanas-Arango et al. (1990) considered it to be the most important insect pest of P. mollissima in the Andean region (Ecuador-Colombian border) and to be readily available for collection throughout the year. C. necyria was the first insect introduced to quarantine in Hawaii in sufficient numbers to determine its biocontrol potential yielding positive results (Markin and Nagata, 1989). However, upon release into the field, C. necryia did not survive.

Likewise, Pyrausta perelegans, a bud and fruit-feeding moth from P. mollissima’s native habitats, yielded positive indications when tested in quarantine in Hawaii (Markin and Nagata, 1990; Casanas-Arango, 1996). Although P.perelegans became established in P. mollissima-infested forests on the islands of Maui and Hawaii, populations remain low and their impact on the weed is negligible. The reasons for the failure of these two species was thought to be due to predation by Lepidoptera and parasites already in the environment, released in Hawaii during previous years when indiscriminate release in attempts at biocontrol was practiced (Campbell et al., 1993; Casanas-Arango, 1996).

Other biocontrol agents have been tested for host specificity and found wanting for various reasons, including their likely impact on P. edulis. These include a species of Zapriothrica (Casanas-Arango, 1996) and the moth Josia fluonia from Ecuador (Friesen et al., 1994; Hennessey, 1996), as well as other species of flies.

The vascular wilt-causing fungus Fusarium oxysporum f.sp. passiflorae was reported to cause destruction in commercial plantings of the edible passion fruit P. edulis f. edulis in Australia in the 1950s (McKnight, 1951; Purss, 1954, 1958; Groszmann, 1958; Anon., 1960; Inch, 1978) and P. mollissima was also found to be susceptible (Gardner, 1989). The perceived threat to the passion fruit industry has prevented release the fungus into Hawaiian forests. Most of the pathogenic fungi found by Trujillo and associates in the native Andean habitats were on P. tripartita var. mollissima. Trujillo et al. (2001) did find two fungal defoliators on P.mollissima in Colombia that they considered sufficiently virulent to be potential biocontrol agents: a powdery mildew, Phyllactinia sp., and a leaf spot, Septoria passiflorae. The powdery mildew proved difficult to transport to Hawaii and its release was never accomplished. On the other hand, following host range testing, S.passiflorae was successfully released in heavily P. mollissima-infested forests at several sites on the islands of Maui and Hawaii (Trujillo et al., 1994, 2001) and has proven an effective defoliator of the target weed with no apparent damage to surrounding forest species or to other Passiflora spp. in Hawaii (Trujillo et al., 2001). Thus S. passiflorae continues to produce positive results and monitoring of its success is ongoing. Besides its application as a classical biocontrol agent, the possibility of developing S. passiflorae as a mycoherbicide, along with another classical biocontrol pathogen in Hawaii, Colletotrichum gloeosporioides f.sp. clidemiae, was also investigated (Norman and Trujillo, 1995). Again, results were favourable for S. passiflorae in comparison to C.gloeosporioides f. sp. clidemiae, although large-scale production of S. passiflorae as a mycoherbicide has not yet been undertaken.

Integrated Control

Taking into consideration the limited control possible with cattle or sheep grazing, mechanical means and herbicidal treatment, few control methods are available to integrate with biocontrol. This is especially true in forest preserves and national parks where manipulation by managers is kept to a minimum to preserve the natural setting as fully as possible.

References

Top of page

Anon., 1960. Passion vine wilt and collar rot. Orchardist, New Zealand, 33:225.

Baars R, Kelly D, 1996. Survival and growth responses of native and introduced vines in New Zealand to light availability. New Zealand Journal of Botany, 34(3):389-400; 41 ref

Baars R, Kelly D, Sparrow SD, 1998. Liane distribution within native forest remnants in two regions of the South Island, New Zealand, 22(1):71-85

Beavon M, 2007. Pollination and dispersal of the noxious vine Passiflora mollissima. Cantebury, New Zealand: University of Canterbury Environmental Science. http://ir.canterbury.ac.nz/bitstream/10092/1509/1/thesis_fulltext.pdf

Beavon MA, Kelly D, 2012. Invasional meltdown: pollination of the invasive liana Passiflora tripartita var. mollissima (Passifloraceae) in New Zealand. New Zealand Journal of Ecology, 36(1):100-107

Blood K, 2001. Environmental Weeds. Victoria, Australia: CH Jerram & Associates

Bonnet JG, 1988. The cultivation of curuba. (El Cultivo de la Curuba. Curso de Frutales.) In: Course of fruit trees. Instituto Colombiano Agropecuario, Colombia: Gerencia Regional UNO, 34-46

Campbell CL, Markin GP, Johnson MJ, 1993. Fate of Cyanotricha necyria (Lepidoptera: Notodontidae) and Pyrausta perelegans (Lepidoptera: Pyralidae) released for the biological control of banana poka (Passiflora mollissima) on the island of Hawaii. Proceedings of the Hawaiian Entomological Society, 32:123-130

Campos T, 1992. Cultivation of curuba (Passiflora mollisima (H. Bailey)) in Colombia. (El cultivo de la curuba (Passiflora mollisima (H. Bailey)) en Colombia.) Acta Horticulturae, 310:215-232

Casanas-Arango A, Trujillo EE, Hernandez AM de, Taniguchi G, 1990. Field biology of Cyanotricha necyria Felder (Lep., Dioptidae), a pest of Passiflora spp., in southern Colombia's and Ecuador's Andean region. Journal of Applied Entomology, 109(1):93-97

Casanas-Arango AD, Trujillo EE, Friesen RF, Hernandez AM de, 1996. Field biology of Zapriothrica sp. Wheeler (Dipt., Drosophilidae), a pest of Passiflora spp. of high elevation possessing long tubular flowers. Journal of Applied Entomology, 120(2):111-114; 11 ref

Casierra-Posada F, Peña-Olmos JE, Tejedor E, 2011. Growth of banana passionfruit seedlings (Passiflora tripartita var. mollissima (Kunth) L. Bailey) under saline stress. Growth of banana passionfruit seedlings under saline stress, 14(1):31-38. http://www.scielo.org.co/pdf/rudca/v14n1/v14n1a05.pdf

Causton CE, 1993. A fly of the genus Dasiops (Diptera: Lonchaeidae) attacking curuba (Passiflora mollissima) in El Edo. Merida, Venezuela. Boletín de Entomologia Venezolana, 8(2):146; 1 ref

Causton CE, 1997. Survey and ecological studies of natural enemies of Passiflora mollissima (H.B.K.) Bailey in Venezuela. PhD Thesis, University of Reading, UK

Causton CE, Markin GP, Friesen R, 2000. Exploratory survey in Venezuela for biological control agents of Passiflora mollissima in Hawaii. Biological Control, 18(2):110-119; 52 ref

Causton CE, Pena Rangel A, 2002. Field observations on the biology and behaviour of Dasiops caustonae Norrbom and McAlpine (Dipt., Lonchaeidae), as a candidate biocontrol agent of Passiflora mollissima in Hawaii. Journal of Applied Entomology, 126(4):169-174; 31 ref

Chacon P, Rojas M, 1981. Biology and natural control of Peridroma saucia, a pest of passion-fruit flowers. Revista Colombiana de Entomologia, 7:47-53

Chacon P, Rojas M, 1984. Arthropods associated with Passiflora mollissima, P. edulis f. flavicarpa and P. quadrangularis in the Department of Valle del Cauca. Turrialba, 34(3):297-311

Chaparro R., D. C., Maldonado C., M. E., Franco L., M. C., Urango M., L. A., 2015. Nutritional and antioxidant characteristics of banana passion fruit (Passiflora mollisima Bailey). Biotecnología en el Sector Agropecuario y Agroindustrial, 13(1), 120-128. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612015000100014&lng=en&nrm=iso&tlng=es

Coppens d'Eeckenbrugge G, Barney VE, Jorgensen PM, MacDougal, JM, 2001. Passiflora tarminiana, a new cultivated species of Passiflora subgenus Tacsonia (Passifloraceae). Novon, 11:8-15

Cuddihy LW, Stone CP, 1990. Alteration of native Hawaiian vegetation. Effects of humans, their activities and introductions. Honolulu, USA: University of Hawaii Press

Duarte O, Paul RE, 2015. Banana Passionfruit. In: Exotic Fruits and Nuts of the New World. Wallingford, UK: CAB International, 193-201

Duarte, O., Paull, R., 2015. Exotic fruits and nuts of the New World, CABI.ix + 332 pp. http://www.cabi.org/cabebooks/ebook/20153017861 doi:10.1079/9781780645056.0000

Escobar LA, 1992. The Systematics and Evolution of Passifloras (La Sistematica y Evolucion de las Passifloras)

Escobar LK, 1980. Interrelationships of the edible species of Passiflora, centering around Passiflora mollissima (HBK) Bailey, subgenus Tacsonia. PhD Thesis, University of Texas, Austin, USA

Esquerre-Ibañez B, 2015. Passiflora dorisiae, a new species in subgenus Passiflora (Passifloraceae). (Passiflora dorisiae, una nueva especie en el subgénero Passiflora (Passifloraceae).) Revista Peruana de Biología, 22(3):303-308. http://revistasinvestigacion.unmsm.edu.pe/index.php/rpb/article/view/11435/10240

Fajardo D, Angel F, Grum M, Tohme J, Lobo M, Roca, WM, Sanchez I, 1998. Genetic variation analysis of the genus Passiflora L. using RAPD markers. Euphytica, 101:341-347

Ferentinos L, Evans DO, 1997. Koa: A Decade of Growth. Symposium of The Hawaii Forest Industry Association, November 18-19, 1996; Honolulu, Hawaii, USA

Fowler SV, 1999. Feasibility study of the biological control of banana passionfruit (Passiflora mollissima and P. mixta) in New Zealand. Unpublished Landcare Research Contract Report LC9900/32, New Zealand

Friesen R, Markin GP, Nagata RF, 1994. Host suitability studies of the moth Josiah fluonia (Lepidoptera: Dioptidae) as a biological control agent for the weed Passiflora mollissima in Hawaii forests. Unpublished report, Hawaii Department of Agriculture, Plant Quarantine Branch, January 28, 1994

Friesen RD, Causton CE, Markin GP, 2008. Status of the biological control of banana poka, Passiflora mollissima (aka P. tarminiana) in Hawaii. In: Proceedings of the XII International Symposium on Biological Control of Weeds, La Grande Motte, France, 22-27 April, 2007 [ed. by Julien, M. H.\Sforza, R.\Bon, M. C.\Evans, H. C.\Hatcher, P. E.\Hinz, H. L.\Rector, B. G.]. Wallingford, UK: CAB International, 669-675. http://www.cabi.org/CABeBooks/default.aspx?site=107&page=45&LoadModule=PDFHier&BookID=413

Fröhlich J, Gianotti AF, 2001. Fungi recovered from banana passionfruit and its close relatives (Passiflora spp.) in New Zealand. Unpublished Landcare Research Contract Report LC0001/160, New Zealand

Gardner DE, 1989. Pathogenicity of Fusarium oxysporum f.sp. passiflorae to banana poka and other Passiflora spp. in Hawaii. Plant Disease, 73(6):476-478; 12 ref

Gardner DE, Davis CJ, 1982. The prospects for biological control of nonnative plants in Hawaiian national parks. Technical Report 45. University of Hawaii, Honolulu, USA: Cooperative National Park Resources Studies Unit

Groszmann HM, 1958. Beating passion vine wilt. Queensland Agricultural Journal, 84:341-346

Hayes L, 2005. Infidelity ends hopes of a passion-filled relationship. What's new in biological control of weeds. What's new in biological control of weeds, 34. http://www.landcareresearch.co.nz/__data/assets/pdf_file/0018/20646/wtsnew34.pdf

HEAR, 2009. Biocontrol target species & their biocontrol agents in Hawaii. University of Hawaii, Honolulu, USA: Hawaiian Ecosystems At Risk (HEAR)

HEAR, 2012. Alien species in Hawaii. Hawaii Ecosystems at Risk. Honolulu, USA: University of Hawaii. http://www.hear.org/AlienSpeciesInHawaii/index.html

Heenan PB, Sykes WR, 2003. Passiflora (Passifloraceae) in New Zealand: a revised key with notes on distribution. New Zealand Journal of Botany, 41:217-221

Hennessey RD, 1996. Field release of the exotic moth, Josia fluonia (Lepidoptera: Dioptidae), for biological control of banana poka, Passiflora mollissima (=P. tripartita) (Passifloraceae), in Hawaii. Environmental Assessment, USDA-APHIS, Riverdale, Maryland, USA

Holm-Nielsen LB, Moller Jorgensen P, Lawesson JE, 1988. 126. Passifloraceae. In: Harling G, Andersson L, eds. Flora of Ecuador. N. 31. Botanical Institute, University of Aarhus, Denmark, 130

Inch AJ, 1978. Passion fruit diseases. Queensland Agricultural Journal, 104(5):479-484

ITIS, 2013. Integrated Taxonomic Information System (ITIS). Washington, DC, USA: Smithsonian Institution/NMNH. http://www.itis.gov/

Jacobi JD, Scott JM, 1985. An assessment of the current status of native upland habitats and associated endangered species on the island of Hawaii. In: Stone CP, Scott JM, eds. Hawaii's Terrestrial Ecosystems: Preservation and Management. Honolulu, Hawaii, USA: Cooperative National Park Studies Unit and University of Hawaii Press, 3-22

Jacobi JD, Warschauer FR, 1992. Distribution of six alien plant species in upland habitats on the island of Hawaii. In: Stone CP, Smith CW, Tunison JT, eds. Alien Plant Invasions in Native Ecosystems of Hawai'i: Management and Research. Honolulu, Hawaii, USA: University of Hawaii Cooperative National Park Resources Studies Unit, 155-188

Killip EP, 1938. The American species of Passifloraceae. Field Museum of Natural History, Botanical Series, 19, Publication 407

LaRosa AM, 1984. The biology and ecology of Passiflora mollissima in Hawaii. Technical Report 50. University of Hawaii, Honolulu, USA: Cooperative National Park Resources Studies Unit

LaRosa AM, 1985. Note on the identity of the introduced passion flower vine "banana poka" in Hawaii. Pacific Science, 39:369-371

LaRosa AM, 1992. The status of banana poka in Hawaii. In: Stone CP, Smith CW, Tunison JT, eds. Alien Invasions in Native Ecosystems of Hawaii. Management and Research. Honolulu, Hawaii, USA: University of Hawaii Press, 271-299

Lizarazo MA, Hernández CA, Fischer G, Gómez MI, 2013.

Lugo-Pena NN, Sanchez PJ, 1974. Reconocimiento de plagas en curuba (Passiflora mollissima [HBK] Bailey) en el altiplano de Pasto, bajo condiciones de campo y laboratorio. Thesis, Narino University of Agricultural Science Faculty, Pasto, Colombia

MAG-INCCA, 1991. The cultivation of taxo. (El Cultivo del Taxo. Serie Agrícola.) Agricultural Series, Document No. 2. Quito, Ecuador: Ministry of Agriculture and Livestock (MAG), National Institute of Rural Training (INCCA)

Markin GP, 1989. Alien plant management by biological control. In: Stone CP, Stone DB, eds. Conservation Biology in Hawaii. Honolulu, Hawaii, USA: University of Hawaii Press, 70-73

Markin GP, Nagata RF, 1989. Host preference and potential climatic range of Cyanotricha necyria Felder (Lepidoptera: Dioptidae), a potential biocontrol agent of the weed Passiflora mollissima (HBK) Bailey in Hawaiian forests. Technical Report 67. University of Hawaii, Honolulu, USA: Cooperative National Park Resources Studies Unit

Markin GP, Nagata RF, 1990. Host suitability studies of the moth, Pyrausta perelegans (Lepidoptera: Pyralidae), as a control agent of the forest weed banana poka. State of Hawaii, Department of Agriculture, Division of Plant Industry, Plant Quarantine Branch, Honolulu, Hawaii, USA

Markin GP, Nagata RF, Taniguchi G, 1989. Biology and behavior of the South American moth, Cyanotricha necyria (Feld & Rogenhofer) (Lep., Notodontidae), a potential biocontrol agent in Hawaii of the forest weed, Passiflora mollissima (Hbk) Bailey. Proceedings of the Hawaiian Entomological Society, 29:115-123

Markin, GP, Nagata RF, Gardner DE, 1992. Biological control of introduced weeds of native forests. Proceedings, Tropical Forestry for People of the Pacific, XVII Pacific Science Congress, May 27-28, 1991. Albany, California, USA: General Technical Report PSW-129, USDA Forest Service Pacific Southwest Research Station

McKnight T, 1951. A wilt disease of the passion vine (Passiflora edulis) caused by a species of Fusarium. Queensland Journal of Agricultural Science, 8:1-4

Missouri Botanical Garden, 2003. VAScular Tropicos database. St. Louis, USA: Missouri Botanical Garden. http://mobot.mobot.org/W3T/Search/vast.html

Morales FJ, Munoz C, Castano M, Cecilia Velasco A, 2000. Geminiviruses transmitted by whitefly in Colombia. Fitopatología Colombiana, 24(1/2):95-98; 13 ref

Morton JF, 1987. Fruits of Warm Climates. Miami, USA: J.F. Morton, 517 pp

Muller-Dombois D, 1975. Some aspects of island ecosystem analysis. In: Golley FB, Medina E, eds. Tropical Ecological Systems-Trends In Aquatic And Terrestrial Research. Ecological Studies Series 11. New York, USA: Springer-Verlag, 353-367

Munier P, 1961. The curuba, passifloracea fruit cultivated in Colombia. (La curuba, passifloracée frutière cultivée en Colombie.) Fruits, 16:403-404

NatureServe, 2010. Arlington, Virginia, USA: http://www.natureserve.org/explorer

Neal MC, 1965. In Gardens of Hawaii. Bernice Pauahi Bishop Museum Special Publication No. 50. Honolulu, Hawaii, USA: Bishop Museum

Norman DJ, Trujillo EE, 1995. Development of Colletotrichum gloeosporioides f.sp. clidemiae and Septoria passiflorae into two mycoherbicides with extended viability. Plant Disease, 79(10):1029-1032

Pemberton RW, 1983. Exploration for natural enemies of Passiflora mollissima. USDA Biocontrol of Weeds Laboratory, Albany, California, USA

Pemberton RW, 1989. Insects attacking Passiflora mollissima and other Passiflora species; field survey in the Andes. Proceedings of the Hawaiian Entomological Society, 29:71-84

PIER, 2012. Pacific Islands Ecosystems at Risk. Honolulu, USA: HEAR, University of Hawaii. http://www.hear.org/pier/index.html

Ponte JJ da, Pinheiro MFR, Franco A, Cirino A, 1979. Septoria disease, an important disease of passion fruit in the Ibiapaba plateau (Ceara State, Brazil). Fitossanidade, 3(1/2):26-27

Posada LO, de Polonia IZ, de Arevalo IS, Saldarriaga AV, Garcia FR, Cardenas RM, 1976. Lista de insectos daninos y otras plagas en Colombia. Inst. Colombiano Agropecuario, Bogata, Bol. Tecnio No. 43

Purss GS, 1954. Identification of the species of Fusarium causing wilt in passion vines in Queensland. Queensland Journal of Agricultural Science, 11:79-81

Purss GS, 1958. Studies of the resistance of species of Passiflora to Fusarium wilt (F. oxysporum f. passiflorae). Queensland Journal of Agricultural Science, 15:95-99

Quintero OC, 2009. Integrated crop management of banana passionfruit (Passiflora tripartita var. mollisima). (Manejo integrado del cultivo de la curuba (Passiflora tripartita var. mollisima). Cultivo, Poscosecha y Comercialización de las Pasifloráceas en Colombia: Maracuyá, Granadilla, Gulupa y Curuba.) In: Cultivation, Postharvest and Marketing of Passifloraceae in Colombia: Maracuya, Granadilla, Gulupa and Curuba [ed. by Miranda, D. \Fischer, G. \Carranza, C. \Magnitskiy, S. \Cassierra, F. \Piedrahita, W. \Flores (eds), L. E.]. Bogotá, Colombia: Sociedad Colombiana de Ciencias Hortícolas, 191-209

Sánchez I, Angel F, Fajardo D, Castillo MF, Lobo M, Thome J, Roca W, 1998, publ. 2000. Use of molecular markers as the basis for genetic improvement in the genus Passiflora L. (Uso de marcadores moleculares, como base en el mejoramiento genetico del genero Passiflora L.) In: Proceedings of the Interamerican Society for Tropical Horticulture, 42 [ed. by Crane, J. H.]. 267-271

Sanchez I, Angel F, Grum M, Duque MC, Lobo M, Tohme J, Roca W, 1999. Variability of chloroplast DNA in the genus Passiflora L. Euphytica, 106:15-26

Schoeniger G, 1950. Cultivation of banana passionfruit. (Cultivo de la Curuba.) Mimeograph

Segura SD, Coppens d'Eeckenbrugge G, Ollitrault P, 1998, publ. 2000. Isozyme variation in five species of Passiflora subgenus Tacsonia and P. manicata. In: Proceedings of the Interamerican Society for Tropical Horticulture, 42 [ed. by Crane, J. H.]. 260-266

Segura SD, d'Eeckenbrugge GC, Ocampo CH, Ollitrault P, 2005. Isozyme variation in Passiflora subgenus Tacsonia: geographic and interspecific differentiation among the three most common species. Genetic Resources and Crop Evolution, 52(4):455-463. http://springerlink.metapress.com/link.asp?id=102893

Smith RP, Leinecke J, Harper B, Mayer E, Yuen A, Maxfield B, 1994. Draft ecological plan for Pacific Islands. Honolulu, Hawaii, USA: Department of the Interior, US Fish and Wildlife Service, Region 1. (unpublished report)

Stevens FL, 1925. Hawaiian Fungi. Bernice P. Bishop Mus. Bull., 19:1-189

Sykes WR, 1982. Checklist of dicotyledons naturalized in New Zealand. 12. Haloragales, Myrtales, Proteales, Theales, Violales (excluding Violaceae). New Zealand J. Bot, 20:73-80

The Council of Heads of Australasian Herbaria, 2012. Australia's Virtual Herbarium., Australia: The Council of Heads of Australasian Herbaria. http://avh.chah.org.au

Trujillo EE, Kadooka C, Tanimoto V, Bergfeld S, Shishido G, Kawakami G, 2001. Effective biomass reduction of the invasive weed species banana poka by Septoria leaf spot. Plant Disease, 85(4):357-361; 20 ref

Trujillo EE, Norman DJ, Killgore EM, 1994. Septoria leaf spot, a potential biological control for banana poka vine in forests of Hawaii. Plant Disease, 78(9):883-885

Trujillo EE, Taniguchi G, 1984. Trip reports of explorations for biocontrol agents of banana poka in Colombia and Ecuador. Honolulu, Hawaii, USA: Department of Land and Natural Resources, Division of Forestry and Wildlife

United States Department of Agriculture, 1960. Index of Plant Diseases in the United States. Agriculture Handbook No. 165

US Fish and Wildlife Service, 1995. Recovery Plan for the Kauai Plant Cluster. In: Recovery Plan for the Kauai Plant Cluster : US Fish and Wildlife Service.270 pp.

US Fish and Wildlife Service, 1998. Big Island II: Addendum to the Recovery Plan for the Big Island Plant Cluster. In: Big Island II: Addendum to the Recovery Plan for the Big Island Plant Cluster : US Fish and Wildlife Service.80 pp. + appendices.

US Fish and Wildlife Service, 2008. 5-Year Review, Short Form Summary: Species Reviewed: Schiedea kauaiensis (no common name). In: 5-Year Review, Short Form Summary: Species Reviewed: Schiedea kauaiensis (no common name) : US Fish and Wildlife Service.6 pp.

US Fish and Wildlife Service, 2010. 5-Year Review, Short Form Summary: Species Reviewed: Schiedea helleri (no common name). In: 5-Year Review, Short Form Summary: Species Reviewed: Schiedea helleri (no common name) : US Fish and Wildlife Service.6 pp.

USDA-ARS, 2003. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

USDA-ARS, 2012. Germplasm Resources Information Network (GRIN). Online Database. Beltsville, Maryland, USA: National Germplasm Resources Laboratory. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

Valero LAM, Viana GB, 1970. Chlorotic spotting of curuba (Passiflora mollissima H.B.K. Bailey) caused by Empoasca sp. in Narino. Revista do Ciencias Agricolas, 2:5-16

Villacis LA, Vega J, Grum M, Coppens d'Eeckenbrugge G, 1998. Morphological characterization of Andean passifloras (Passiflora spp.) from Ecuador. Plant Genetic Resources Newsletter, 115:51-55

Waage JK, Smiley JT, Gilbert LE, 1981. The Passiflora problem in Hawaii: prospects and problems of controlling the forest weed P. mollissima (Passifloraceae) with heliconiine butterflies. Entomophaga, 26(3):275-284

Wagner WL, Herbst DR, Sohmer SH, 1990. Manual of Flowering Plants of Hawaii. Bernice Pauahi Bishop Museum Special Publication 83. Honolulu, Hawaii, USA: University of Hawaii

Warshauer FR, Jacobi JD, LaRosa AM, Scott JM, Smith CW, 1983. The distribution impact and potential management of the introduced vine Passiflora mollissima (Passifloraceae) in Hawaii. Technical Report 48. University of Hawaii, Honolulu, USA: Cooperative National Park Resources Studies Unit

Weeds of Australia, 2012. Weeds of Australia, Biosecurity Queensland Edition. http://keyserver.lucidcentral.org/weeds/data/03030800-0b07-490a-8d04-0605030c0f01/media/Html/search.html?zoom_query=

Wheeler MR, 1959. Three new species of Zapriothrica Wheeler (Diptera, Drosophilidae). The Southwestern Naturalist, 4:83-87

Williams PA, Buxton RP, 1995. Aspects of the ecology of two species of Passiflora (P. mollissima (Kunth) L. Bailey and P. pinnatistipula Cav.) as weeds in South Island, New Zealand. New Zealand Journal of Botany, 33(3):315-323; 21 ref

Williams PA, Karl BJ, Bannister P, Lee WG, 2000. Small mammals as potential seed dispersers in New Zealand. Austral Ecology, 25(5):523-532

Winks CJ, Fowler SV, 2000. Banana passionfruit, Passiflora mollissima and Passiflora mixta (Passifloraceae), in New Zealand: surveys of their weed status and invertebrate fauna. Unpublished Landcare Research Contract Report LC9900/144, New Zealand

Winks CW, Menzel CM, Simpson DR, 1988. Passionfruit in Queensland. 2. Botany and cultivars. Queensland Agricultural Journal, 114(4):217-224; [6 col. pl., 1 map.]; 6 ref

Wong WHC, 1971. The banana poka problem. Speech to the 13th Forestry Conference, Hilo, Hawaii; May 13, 1971. Honolulu, Hawaii, USA: On file at Hawaii Department of Land and Natural Resources

Yu Dong, Xiong BingQuan, Yuan Jun, Zeng Ming, 2005. The germplasm resources of passion fruit and its research and utilization situation. South China Fruits, No.1:36-37

Links to Websites

Top of page
WebsiteURLComment
GISD/IASPMR: Invasive Alien Species Pathway Management Resource and DAISIE European Invasive Alien Species Gatewayhttps://doi.org/10.5061/dryad.m93f6Data source for updated system data added to species habitat list.

Contributors

Top of page

30/11/2012 Updated by:

Ian Popay, consultant, New Zealand, with the support of Landcare Research.

Distribution Maps

Top of page
You can pan and zoom the map
Save map