Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Xanthomonas vasicola pv. vasculorum
(bacterial leaf streak of corn)

Triplett L and Ravikumar Patel, 2020. Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn). Invasive Species Compendium. Wallingford, UK: CABI. DOI:10.1079/ISC.36777909.20210200690

Toolbox

Datasheet

Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn)

Summary

  • Last modified
  • 02 February 2021
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Preferred Scientific Name
  • Xanthomonas vasicola pv. vasculorum
  • Preferred Common Name
  • bacterial leaf streak of corn
  • Taxonomic Tree
  • Domain: Bacteria
  •   Phylum: Proteobacteria
  •     Class: Gammaproteobacteria
  •       Order: Xanthomonadales
  •         Family: Xanthomonadaceae
  • Summary of Invasiveness
  • Xanthomonas vasicola pv. vasculorum (Xvv) is a bacterial pathogen that causes both bacterial leaf streak of maize and sugarcane gumming disease. After decades limited to South Africa, bacterial leaf streak of maize sprea...

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms on lower canopy of an inbred line, showing foliar symptoms of bacterial leaf streak. Clay Center, Nebraska, USA. August, 2018.
TitleSymptoms
CaptionXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms on lower canopy of an inbred line, showing foliar symptoms of bacterial leaf streak. Clay Center, Nebraska, USA. August, 2018.
Copyright©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms on lower canopy of an inbred line, showing foliar symptoms of bacterial leaf streak. Clay Center, Nebraska, USA. August, 2018.
SymptomsXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms on lower canopy of an inbred line, showing foliar symptoms of bacterial leaf streak. Clay Center, Nebraska, USA. August, 2018.©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); foliar symptoms of bacterial leaf streak on corn (Zea mays).  Clay Center, Nebraska, USA. August, 2018.
TitleSymptoms
CaptionXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); foliar symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.
Copyright©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); foliar symptoms of bacterial leaf streak on corn (Zea mays).  Clay Center, Nebraska, USA. August, 2018.
SymptomsXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); foliar symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); foliar symptoms of bacterial leaf streak on corn (Zea mays).  Clay Center, Nebraska, USA. August, 2018.
TitleSymptoms
CaptionXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); foliar symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.
Copyright©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); foliar symptoms of bacterial leaf streak on corn (Zea mays).  Clay Center, Nebraska, USA. August, 2018.
SymptomsXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); foliar symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.
TitleSymptoms
CaptionXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.
Copyright©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.
SymptomsXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.
TitleSymptoms
CaptionXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.
Copyright©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US
Xanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.
SymptomsXanthomonas vasicola pv. vasculorum (bacterial leaf streak of corn); early symptoms of bacterial leaf streak on corn (Zea mays). Clay Center, Nebraska, USA. August, 2018.©Vinicius Garnica/Bugwood.org - CC BY-NC 3.0 US

Identity

Top of page

Preferred Scientific Name

  • Xanthomonas vasicola pv. vasculorum (Cobb 1894)

Preferred Common Name

  • bacterial leaf streak of corn

Other Scientific Names

  • Xanthomonas campestris pv. vasculorum (Cobb 1894) Dye 1978
  • Xanthomonas campestris pv. zeae
  • Xanthomonas vasicola Vauterin et al. 1995
  • Xanthomonas vasicola pv. zeae

International Common Names

  • Spanish: bacteriosis de la raya del maiz
  • Portuguese: estria bacteriana do milho

Local Common Names

  • South Africa: eucalyptus leaf blight and dieback; gumming disease of sugarcane

Summary of Invasiveness

Top of page

Xanthomonas vasicola pv. vasculorum (Xvv) is a bacterial pathogen that causes both bacterial leaf streak of maize and sugarcane gumming disease. After decades limited to South Africa, bacterial leaf streak of maize spread rapidly through maize-growing areas of Argentina, Brazil and the USA since 2014. The origin, method and biological underpinnings of this sudden spread are not well understood but are the subject of active research. Effective control methods remain elusive, but sanitation and crop debris management may limit the disease. Yield impact data are not yet available, but lesions may become severe enough to limit plant productivity in some varieties. The pathogen is not currently considered a quarantine threat by the USDA, EPPO or IPPC.

Taxonomic Tree

Top of page
  • Domain: Bacteria
  •     Phylum: Proteobacteria
  •         Class: Gammaproteobacteria
  •             Order: Xanthomonadales
  •                 Family: Xanthomonadaceae
  •                     Genus: Xanthomonas
  •                         Species: Xanthomonas vasicola pv. vasculorum

Notes on Taxonomy and Nomenclature

Top of page

The taxonomic nomenclature of the pathogen has undergone several changes and is still being resolved at the time of this report. The Xanthomonas clade causing bacterial leaf streak of maize was initially named X. campestris pv. vasculorum (Young et al., 1978), along with related strains of bacteria that cause a sugarcane gumming disease. Based on genetic typing, the maize pathogenic isolates were later assigned to X. campestris pv. zeae, and then in 1995 reassigned to the species X. vasicola, a species which also included strains causing diseases of several different hosts (reviewed in Lang et al., 2017). Some publications referred to the maize pathogenic strains as X. vasicola pv. zeae. Based on comprehensive genomic analyses, the species X. vasicola has been proposed to include four named pathovars, of which X. vasicola pv. vasculorum includes strains causing both bacterial leaf streak and sugarcane gumming (Lang et al., 2017; Studholme et al., 2020). The other pathovars holcicola, araceae and musacearum cause diseases of sorghum, areca nut and banana and enset, respectively, but do not threaten maize and sugarcane. Although the pathovar X. vasicola pv. vasculorum has not achieved formal standing in nomenclature as of January 2020, this pathovar designation has been widely adopted by the research community. A pathovar description has been formally proposed and is likely to be recognized (Studholme et al., 2020).  

It should be noted that a phenotypically similar sugarcane gumming disease is caused by X. axonopodis pv. vasculorum (Xav). Prior to the 1990s, many Xanthomonas strains were classified according to their host and not by biological relatedness; during this time sugarcane-associated Xav and Xvv strains were grouped into the same species and pathovar, X. campestris pv. vasculorum. However, genetic analysis revealed that X. axonopodis is a distinct species not closely related to X. vasicola (Harrison and Studholme, 2014).

Description

Top of page

X. vasicola pv. vasculorum forms Gram-negative rods, 1.5-2 µm long and 0.4-0.5 µm in diameter, and is actively motile by means of a single polar flagellum. Bacteria produce yellow colonies on GYCA agar, eventually colouring the agar orange-yellow. It also produces abundant mucoid exopolysaccharides. Xvv is obligately aerobic, is asparagine-negative as the only source of carbon and nitrogen, oxidase-negative, and catalase-positive.

Xvv enters the leaves through stomata and colonizes the intercellular spaces (Ortiz-Castro, 2019). Despite its pathovar name, X. vasicola pv. vasculorum is not known to colonize the vasculature of maize, and has only been observed in nonvascular tissue. However, on sugarcane, the pathogen is reported to enter vascular or systemic phase in which it moves from the leaves to the stem vasculature, causing the symptom of gumming, or a vascular ooze emerging from the cut stem.

Distribution

Top of page

Distribution within the USA expanded rapidly between 2016 and 2020.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 25 Feb 2021
Continent/Country/Region Distribution Last Reported Origin First Reported Invasive Reference Notes

Africa

MadagascarPresent, Few occurrencesIsolated in 1960s
South AfricaPresent
ZimbabwePresent, Few occurrencesIsolated in 1960s.

North America

United StatesPresent
-ColoradoPresentIntroduced2017
-IllinoisPresentIntroduced2019
-IowaPresentIntroduced2016
-KansasPresentIntroduced2017
-MinnesotaPresentIntroduced2018
-NebraskaPresent, WidespreadIntroduced2017
-OklahomaPresentIntroduced2017
-South DakotaPresentIntroduced2019
-TexasPresentIntroduced2016
-WisconsinPresentIntroduced2018

South America

ArgentinaPresent, Widespread2010Cordoba, Buenos Aires, Santa Fe, San Luis, Entre Ríos, Santiago del Estero, Corrientes, Chaco, Tucumán, and Salta provinces.
Brazil
-ParanaPresent, WidespreadMaripá and Palotina.

History of Introduction and Spread

Top of page

X. vasicola pv. vasculorum causing leaf streak of maize was observed in South Africa over 70 years ago (Dyer, 1949). There were no reports of Xvv on maize in other countries prior to 2010, when symptoms were first observed in Argentina. The pathogen may have spread regionally before being officially documented in 2018, the same year it was reported in Brazil (Plazas et al., 2018; Leite et al., 2019). The pathogen was first observed in the USA in 2014 and has now been confirmed throughout major US maize-producing states including Nebraska, Minnesota, Colorado, Kansas, Oklahoma, Iowa, Illinois, Wisconsin and South Dakota (Korus et al., 2017; Damicone et al., 2018; Jamann et al., 2018; Byamukama, 2019; Groves et al., 2020). Isolates collected from the American epidemic tended to be more virulent than isolates from South African maize (Perez-Quintero et al., 2020). DNA sequence analysis has demonstrated that the US epidemic isolates generally belong to a single group that is more closely related to strains from Argentina than those from South Africa, but these data are not sufficient to conclusively point to a single origin or time of introduction (Broders, 2017; Perez-Quintero et al., 2020).

Xvv was also collected on sugarcane in Zimbabwe and Madagascar in the 1960s (Wasukira et al., 2014). Interestingly, a Xanthomonas sugarcane disease called ‘false red stripe’ with leaf symptoms similar to Xvv was reported in Brazil in the 1990s. This Xanthomonas sp. was also capable of infecting maize and sorghum, but this pathogen has not been identified to species (Mantovani et al., 2006). Reports of Xvv disease on eucalyptus are thus far limited to South Africa.

Risk of Introduction

Top of page

There is no evidence yet of yield or crop loss due to Xvv in maize, and it is not considered a quarantine pathogen by the USDA and EPPO. However, the spread of the disease within North and South America suggests a significant potential risk of introduction to new areas.

Hosts/Species Affected

Top of page

Xvv most significantly affects maize and sugarcane. An outbreak in eucalyptus was reported in association with Pantoea ananatis, representing a host jump from monocot to dicot (Coutinho et al., 2015). In artificial inoculation studies in the field and greenhouse, isolates from North American maize caused symptoms on sorghum, Jerry oats, and several grass species, but did not infect wheat, barley, cereal rye or other grasses (Lang et al., 2017; Hartman, 2018). However, X. vasicola pv. vasculorum has not been detected on these hosts in a naturally-infected context. Infection attributed to Xvv has also been reported in naturally infected Tripsacum laxum, a wild species also called Guatemala grass (Broders, 2017), but genetic analysis shows that T. laxum strains are distinct from Xvv, and they are no longer considered part of this pathovar (Studholme et al., 2020).

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContextReferences
Andropogon gerardii (Big bluestem)PoaceaeHabitat/association
    Areca catechu (betelnut palm)ArecaceaeHabitat/association
      Bromus tectorum (downy brome)PoaceaeHabitat/association
        Cyperus esculentus (yellow nutsedge)CyperaceaeHabitat/association
          Dactylis glomerata (cocksfoot)PoaceaeHabitat/association
            Dictyosperma albumArecaceaeHabitat/association
              Eucalyptus grandis (saligna gum)MyrtaceaeMain
                Phleum pratense (timothy grass)PoaceaeHabitat/association
                  Roystonea regia (cuban royal palm)ArecaceaeHabitat/association
                    Saccharum officinarum (sugarcane)PoaceaeMain
                      Schizachyrium scopariumPoaceaeHabitat/association
                        Setaria verticillata (bristly foxtail)PoaceaeHabitat/association
                          Setaria viridis (green foxtail)PoaceaeHabitat/association
                            Sorghastrum nutans (Indian grass)PoaceaeHabitat/association
                              Sorghum bicolor (sorghum)PoaceaeOther
                                Sorghum halepense (Johnson grass)PoaceaeHabitat/association
                                  Zea mays (maize)PoaceaeMain

                                    Growth Stages

                                    Top of page
                                    Vegetative growing stage

                                    Symptoms

                                    Top of page

                                    Bacterial leaf streak symptoms on maize are identified by thin, long lesions that run parallel to the leaf vein and have wavy or jagged margins. The lesions can range from yellow and orange to brown, and when held up to the sun appear translucent and surrounded by a yellow halo. Early lesions may appear watersoaked and greasy. These lesions range from one to several inches long, expanding over the time to cover a large area of the leaf. Ooze formed from xanthomonadins and extracellular polysaccharides is produced on leaves in humid environments.

                                    Xvv also causes sugarcane gumming or gummosis disease. In sugarcane, Xvv similarly causes long, thin streak-like lesions on the leaves, initially appearing orange or yellow then turning brown or grey with age (Coutinho et al., 2015). Lesions can sometimes appear as white streaks, and bacterial ooze may appear (Peros and Lombard, 1992; Lang et al., 2017). The pathogen may enter a vascular wilt phase associated with gumming, seen as thick ooze emerging from a cut stem, and eventual death of the plant.

                                    List of Symptoms/Signs

                                    Top of page
                                    SignLife StagesType
                                    Leaves / abnormal colours
                                    Leaves / necrotic areas
                                    Leaves / ooze
                                    Leaves / wilting
                                    Leaves / yellowed or dead
                                    Stems / internal discoloration
                                    Stems / ooze

                                    Biology and Ecology

                                    Top of page

                                    Genetics

                                    It is hypothesized that the rapid spread of the disease in the Americas may have been facilitated by the emergence of new genetic adaptations in the epidemic strains. The comparison of 41 X. vasicola genomes from the USA, Argentina, South Africa, and Zimbabwe confirmed that maize solates are genetically distinct from sugarcane isolates (Perez-Quintero et al., 2020). This suggests that while many maize isolates can cause symptoms when inoculated on sugarcane, and vice-versa (Lang et al., 2017), they probably segregate into specialized host niches in nature. Several genomic insertions were associated with the US isolates, including multiple regions acquired through genomic exchange with the sorghum pathogen Xanthomonas vasicola pv. holcicola. One cluster of genes was identified specifically in maize isolates from the USA and Argentina, but not found in older South African isolates (Perez-Quintero et al., 2020). This cluster contains several genes that could potentially contribute to virulence, but their role in Xvv pathogenesis has not yet been determined.

                                    Genomic analysis also determined that most isolates from the USA epidemic are related to a single lineage of Argentine strains (Perez-Quintero et al., 2020). However, one US isolate was related to a separate group, while one South African isolate was closely related to the US group, so the historical global path of Xvv is still not fully resolved.     

                                    Environmental Requirements

                                    Moisture seems to be an important factor in Xvv infection, and irrigation is a top predictor of bacterial leaf streak infection in maize (Hartman, 2018). The temperature range and overwintering habits of Xvv are still not well understood. The presence of the disease over several seasons in Nebraska, USA, where temperatures routinely drop below -18°C for extended periods in the winter and exceed 37°C in the summer, suggests that the pathogen can survive in a broad range of temperatures. Crop debris is considered the most likely site for pathogen overwintering as volunteer maize was also found with Xvv in Nebraska, USA. Xvv survives in crop debris, but survival is greatly reduced in buried debris or inoculated soil (Ortiz-Castro, 2019).

                                    Means of Movement and Dispersal

                                    Top of page

                                    While the dispersal mechanisms of Xvv are not yet confirmed, other Xanthomonas foliar pathogens of rice and wheat can be dispersed by wind-blown water droplets, irrigation water, or agricultural machinery. The observance of new Xvv infections in non-irrigated fields through the season is consistent with wind and rain dispersal. Wind dispersal may be aided by drops of exopolysaccharide exudates, or ‘ooze’, that form on the leaf surface in humid conditions. It may also be possible for infected plant residue to spread between maize fields through baling, tillage or combines. The mechanisms of long-distance and international spread are still unclear. There are no known insect vectors for Xvv

                                    Seedborne Aspects

                                    Top of page

                                    Xvv was not detectable in the vast majority of field-collected seeds (Arias et al., 2018). However, the bacteria were detected on a few seeds from one site, and more research is needed to understand whether seeds carry a significant risk of disease transmission. 1% sodium hypochlorite (bleach) was effective in decontaminating artificially infested seeds (Arias et al., 2019).

                                    Pathway Causes

                                    Top of page
                                    CauseNotesLong DistanceLocalReferences
                                    Crop productionMechanisms of introduction and spread still unknown Yes

                                    Plant Trade

                                    Top of page
                                    Plant parts liable to carry the pest in trade/transportPest stagesBorne internallyBorne externallyVisibility of pest or symptoms
                                    Leaves Yes Yes Pest or symptoms usually visible to the naked eye
                                    Stems (above ground)/Shoots/Trunks/Branches Yes Yes Pest or symptoms usually visible to the naked eye

                                    Impact Summary

                                    Top of page
                                    CategoryImpact
                                    Economic/livelihood Negative

                                    Economic Impact

                                    Top of page

                                    Maize bacterial leaf streak infects field maize, seed maize, sweetcorn and popcorn varieties. Yield loss data are not yet available for maize bacterial leaf streak in the Americas, but lesions have been observed to cover 50% of the leaf surface in some varieties. The loss of leaf surface area to necrosis could potentially reduce yield by reducing photosynthetic capacity. No effects of bacterial leaf streak on grain quality have been reported.

                                    In sugarcane, the disease is reported to enter a systemic phase associated with substantial yield loss (reviewed in Hartman, 2018). Yield loss specifically due to Xvv gummosis on sugarcane is not clear; quantitative data are scarce, and many reports do not distinguish this pathogen from the phenotypically similar X. axonopodis pv. vasculorum

                                    Risk and Impact Factors

                                    Top of page
                                    Invasiveness
                                    • Proved invasive outside its native range
                                    • Highly adaptable to different environments
                                    • Reproduces asexually
                                    Impact outcomes
                                    • Negatively impacts agriculture

                                    Diagnosis

                                    Top of page

                                    Preliminary diagnosis can be achieved by observation of streaming from lesions cut in water under a stereo microscope. The pathogen can be isolated from surface sterilized symptomatic leaves, forming mucoid, pale yellow colonies after 48h on GYCA. Molecular diagnostic tools have recently been developed for highly sensitive detection of Xvv in samples prior to symptom development. Lang et al. (2017) reported four primer sets for diagnosis of all strains of Xvv using conventional PCR, of which Xvv3 and Xvv5 were the most robust; these two tests have begun to be adopted for confirming Xvv in new regions of the USA (Jamann et al., 2018). Stulberg et al. (2020) developed two diagnostic tests that specifically detect the subgroup of Xvv associated with the maize epidemic in the Americas, but not South African or sugarcane isolates. These tests include a LAMP PCR assay that is compatible with in-field detection, and a qPCR assay that could be used for quantitative detection. 

                                    Detection and Inspection

                                    Top of page

                                    The pathogen can be observed upon visual inspection of symptomatic plants by the appearance of elongated, yellow to reddish-brown lesions running parallel to the leaf veins of maize or sugarcane. Lesions have wavy or irregular margins and are surrounded by a yellow halo when held against the light. Advanced sugarcane disease can be confirmed by cutting the stem to look for ooze and gumming.

                                    Similarities to Other Species/Conditions

                                    Top of page

                                    Symptoms of leaf streak on maize can appear similar to common fungal diseases, such as northern corn leaf blight, southern corn leaf blight, and particularly grey leaf spot caused by Cercospora zeae-maydis. Bacterial leaf streak can be distinguished from grey leaf spot by its irregular lesion margins and, when backlit, the appearance of long, yellow halos surrounding the lesion. Grey leaf spot has rectangular lesions with smooth, straight margins and no halos. Bacterial leaf streak also tends to develop earlier in the season than grey leaf spot, and lesions produce visible bacterial streaming when cut in water.

                                    Sugarcane gumming disease is also caused by Xanthomonas axonopodis pv. vasculorum, which is a distantly related species of Xanthomonas. The two species cause very similar diseases on sugarcane - in fact, there are no documented distinctions between the symptoms of sugarcane gumming caused by Xav and those caused by Xvv. However, they have distinct geographical distributions, and Xav has not been reported in South Africa, South America or North America, or naturally infecting maize. The two species may be distinguished by sequencing of the gyrB housekeeping gene. Because sugarcane-infecting strains of X. axonopodis and X. vasicola were both classified as X. campestris pv. vasculorum (1978-1995), they are often conflated in older publications, and sometimes by newer texts and bulletins citing those publications.

                                    Prevention and Control

                                    Top of page

                                    Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

                                    There are no completely effective prevention or control measures known for Xvv diseases. Current recommendations mainly focus on debris management and sanitary practices. More research is needed to evaluate optimal management and control strategies and identify genetic resistance.

                                    Cultural Control and Sanitary Measures

                                    Pathogen spread and disease incidence may be reduced by tillage or removal of crop residue at the end of the growing season and/or by rotation with non-host crops. In maize, late planting dates and irrigation are also associated with disease occurrence, so minimizing these factors may limit disease development.

                                    Physical/Mechanical Control

                                    Removing infested crop debris from equipment may prevent pathogen spread. Sanitation of equipment between fields may prevent the spreading of the pathogen to other fields. Harvesting severely infected fields last may help prevent or slow pathogen spread, although wind can still move infected water droplets and plant residues.

                                    Biological Control

                                    No biological control is available. However, colonization of maize plants with the endophytic bacterium Pantoea ananatis was associated with reduced symptoms after Xvv inoculation (Ortiz-Castro, 2019).

                                    Chemical Control

                                    Currently, there are no effective bactericides recommended for control of bacterial leaf streak or gummosis.

                                    Host-Plant Resistance

                                    Xvv infects a wide range of maize varieties, including field (dent) maize, sweetcorn, seed maize and popcorn, and there are no major (qualitative) resistance genes known. Some corn varieties appear to have partial resistance, and research is underway to identify the genetic basis of this resistance toward breeding resistant varieties. Five genomic regions associated with partial resistance have been mapped (Qiu et al., 2020).

                                    Monitoring and Surveillance

                                    University and government researchers have been actively scouting for bacterial leaf streak of maize in the USA, and communicating with growers to recognize and report the disease.

                                    IPM

                                    Weed management may play a role in disease mitigation, as it prevents host weeds from harbouring the bacteria when maize is not grown in the field.

                                    Gaps in Knowledge/Research Needs

                                    Top of page

                                    Although major early strides have been made toward understanding and managing Xvv since 2016, there remains much work to be done. Epidemiological and ecological studies are needed to understand the local and international mechanisms for disease spread in order to prevent further global expansion. Applied agricultural studies will be important to evaluate methods of cultural, chemical, and biological controls. Molecular and genetic work is necessary to understand whether the epidemic was enabled by specific mutations in the bacteria. Finally, the work of plant geneticists and breeders toward genetic resistance may be the best hope of controlling this disease.

                                    References

                                    Top of page

                                    Arias S, Block CC, Mayfield DA, Broders KD, Jackson-Ziems TA, Munkvold GP, 2018. Potential for seed transmission of Xanthomonas vasicola pv. vasculorum on maize collected from fields in the United States. Phytopathology, 108(10), 3340.

                                    Arias S, Block CC, Mayfield DA, Munkvold GP, 2019. Effects of seed storage conditions and chemical disinfestation treatments on the survival of Xanthomonas vasicola pv. vasculorum on maize seed. In: Plant Health 2019 . Cleveland, Ohio, USA

                                    Broders K, 2017. Status of bacterial leaf streak of corn in the United States. In: Proceedings of the Integrated Crop Management Conference . https://doi.org/10.31274/icm-180809-247

                                    Byamukama, E, 2019. Bacterial Leaf Streak of Corn: A New Corn Disease in South Dakota. In: South Dakota state University Extension Bulletin,https://extension.sdstate.edu/bacterial-leaf-streak-corn-new-corn-disease-south-dakota

                                    Coutinho, T. A., Westhuizen, L. van der, Roux, J., McFarlane, S. A., Venter, S. N., 2015. Significant host jump of Xanthomonas vasicola from sugarcane to a Eucalyptus grandis clone in South Africa. Plant Pathology, 64(3), 576-581. doi: 10.1111/ppa.12298

                                    Damicone, J., Cevallos, F., Olson, J., 2018. First report of bacterial leaf streak of corn caused by Xanthomonas vasicola pv. vasculorum in Oklahoma. Plant Disease, 102(2), 437. doi: 10.1094/PDIS-04-17-0523-PDN

                                    Dyer, R. A. , 1949. Botanical surveys and control of plant diseases. Farming in South Africa, 24(275), 119-121 pp.

                                    Groves, CL, Lueloff, S, Hudelson, B, Kasiborski, B, Stulberg, MJ, Bates, R, Chaky, J, Mueller, B, Smith, DL, 2020. First Report of Bacterial Leaf Streak of Corn Caused by Xanthomonas vasicola pv. vasculorum in Wisconsin. Plant Disease, https://doi.org/10.1094/PDIS-04-20-0700-PDN

                                    Harrison, J., Studholme, D. J., 2014. Draft genome sequence of Xanthomonas axonopodis pathovar vasculorum NCPPB 900. FEMS Microbiology Letters, 360(2), 113-116. doi: 10.1111/1574-6968.12607

                                    Hartman TM, 2018. Investigation of Alternative Hosts and Agronomic Factors Affecting Xanthomonas vasicola pv. vasculorum, Causal Agent of Bacterial Leaf Streak of Corn. MSc Thesis. Nebraska, USA: University of Nebraska. https://digitalcommons.unl.edu/agronhortdiss/152/

                                    Jamann, TM, Plewa, D, Mideros, SX, Bissonnette, S, 2018. First Report of Bacterial Leaf Streak of Corn Caused by Xanthomonas vasicola pv. vasculorum in Illinois. Plant Disease, 103(5), 1018-1018. https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-10-18-1895-PDN

                                    Karamura, G., Smith, J., Studholme, D., Kubiriba, J., Karamura, E., 2015. Comparative pathogenicity studies of the Xanthomonas vasicola species on maize, sugarcane and banana. African Journal of Plant Science, 9(9), 385-400. http://www.academicjournals.org/journal/AJPS/article-full-text-pdf/2CA0D4255512

                                    Korus, K., Lang, J. M., Adesemoye, A. O., Block, C. C., Pal, N., Leach, J. E., Jackson-Ziems, T. A., 2017. First report of Xanthomonas vasicola causing bacterial leaf streak on corn in the United States. Plant Disease, 101(6), 1030-1031. doi: 10.1094/pdis-10-16-1426-pdn

                                    Lang, J. M., DuCharme, E., Caballero, J. I., Luna, E., Hartman, T., Ortiz-Castro, M., Korus, K., Rascoe, J., Jackson-Ziems, T. A., Broders, K., Leach, J. E., 2017. Detection and characterization of Xanthomonas vasicola pv. vasculorum (Cobb 1894) comb. nov. causing bacterial leaf streak of corn in the United States. Phytopathology, 107(11), 1312-1321. doi: 10.1094/PHYTO-05-17-0168-R

                                    Leite, R. P., Jr., Custódio, A. A. P., Madalosso, T., Robaina, R. R., Duin, I. M., Sugahara, V. H., 2019. First report of the occurrence of bacterial leaf streak of corn caused by Xanthomonas vasicola pv. vasculorum in Brazil. Plant Disease, 103(1), 145. http://apsjournals.apsnet.org/loi/pdis doi: 10.1094/PDIS-06-18-1100-PDN

                                    Mantovani, E. S., Marini, D. C., Giglioti, É. A., 2006. Host range of Xanthomonas sp., causal agent of the false red stripe of sugarcane, among grasses. (Gramíneas hospedeiras de Xanthomonas sp., agente causal da falsa estria vermelha da cana-de-açúcar). Summa Phytopathologica, 32(2), 124-130. doi: 10.1590/S0100-54052006000200005

                                    Ortiz-Castro, MC, 2019. Understanding the disease ecology of the corn bacterial leaf streak pathogen Xanthomonas vasicola pv. vasculorum. MSc thesis. Colorado, USA: Colorado State University.

                                    Perez-Quintero AL, Ortiz-Castro M, Wu G, Lang JM, Liu S, Chapman TA, Chang C, Ziegle J, Peng Z, White FF, Plazas MC, 2020. Genomic acquisitions in emerging populations of Xanthomonas vasicola pv. vasculorum infecting corn in the US and Argentina. BioRxiv, 1, 587915. doi: https://doi.org/10.1101/587915

                                    Peros, J. P., Lombard, H., 1992. In vitro evaluation of sugarcane resistance to gumming disease and of Xanthomonas campestris pv. vasculorum aggressiveness. Plant Cell, Tissue and Organ Culture, 29(2), 145-151. doi: 10.1007/BF00033620

                                    Plazas, M. C., Rossi, R. L. de, Brücher, E., Guerra, F. A., Vilaró, M., Guerra, G. D., Wu, G., Ortiz-Castro, M. C., Broders, K., 2018. First report of Xanthomonas vasicola pv. vasculorum causing bacteria leaf streak of maize (Zea mays) in Argentina. Plant Disease, 102(5), 1026. doi: 10.1094/PDIS-10-17-1578-PDN

                                    Qiu Y, Kaiser C, Schmidt C, Robertson A, Jamann T, 2020. Identification of quantitative trait loci associated with bacterial leaf streak of maize. Crop Science, https://doi.org/10.1002/csc2.20099

                                    Sanko, T. J., Kraemer, A. S., Niemann, N., Gupta, A. K., Flett, B. C., Mienie, C., Bezuidenhout, C. C., 2018. Draft genome assemblages of 10 Xanthomonas vasicola pv. zeae strains, pathogens causing leaf streak disease of maize in South Africa. Genome Announcements, 6(26), e00532-18. doi: 10.1128/genomea.00532-18

                                    Sivitis S, 2017. Bacterial leaf streak of corn. In: Cropwatch : Institute of Agriculture and Natural Resources, University of Nebraska.https://cropwatch.unl.edu/2017/bacterial-leaf-streak-corn

                                    Studholme DJ, Wicker E, Abrare SM, Aspin A, Bogdanove A, Broders K, Dubrow Z, Grant M, Jones JB, Karamura G, Lang J, 2020. Transfer of Xanthomonas campestris pv. arecae and X. campestris pv. musacearum to X. vasicola (Vauterin) as X. vasicola pv. arecae comb. nov. and X. vasicola pv. musacearum comb. nov. and Description of X. vasicola pv. vasculorum pv. nov. Phytopathology, 10, PHYTO-03. https://apsjournals.apsnet.org/doi/full/10.1094/PHYTO-03-19-0098-LE

                                    Wasukira A, Coulter M, Al-Sowayeh N, Thwaites, R, Paszkiewicz K, Kubiriba J, Smith J, Grant, M, Studholme DJ, 2014. Genome sequencing of Xanthomonas vasicola pathovar vasculorum reveals variation in plasmids and genes encoding lipopolysaccharide synthesis, type-IV pilus and type-III secretion effectors. Pathogens, 3(1), 211-237. https://www.mdpi.com/2076-0817/3/1/211

                                    Young, J. M., Dye, D. W., Bradbury, J. F., Panagopoulos, C. G., Robbs, C. F., 1978. A proposed nomenclature and classification for plant pathogenic bacteria. New Zealand Journal of Agricultural Research, 21(1), 153-177.

                                    Distribution References

                                    Anon, 2018. Bacterial leaf streak of corn. In: Fruit and vegetable news, University of Minnesota extension, Minnesota, USA: University of Minnesota extension. https://blog-fruit-vegetable-ipm.extension.umn.edu/2018/08/bacterial-leaf-streak-of-corn.html

                                    Byamukama E, 2019. Bacterial Leaf Streak of Corn: A New Corn Disease in South Dakota. In: South Dakota state University Extension Bulletin. https://extension.sdstate.edu/bacterial-leaf-streak-corn-new-corn-disease-south-dakota

                                    Damicone J, Cevallos F, Olson J, 2018. First report of bacterial leaf streak of corn caused by Xanthomonas vasicola pv. vasculorum in Oklahoma. Plant Disease. 102 (2), 437. DOI:10.1094/PDIS-04-17-0523-PDN

                                    Dyer R A, 1949. Botanical surveys and control of plant diseases. Farming in South Africa. 24 (275), 119-121 pp.

                                    French R, Isakeit T, 2016. New Bacterial Pathogen in Corn in Texas: Bacterial Leaf Streak. In: Texas row crops newsletter, Texas, USA: Texas A&M University. https://agrilife.org/texasrowcrops/2016/10/13/new-bacterial-pathogen-in-corn-in-texas-bacterial-leaf-streak/

                                    Groves CL, Lueloff S, Hudelson B, Kasiborski B, Stulberg MJ, Bates R, Chaky J, Mueller B, Smith DL, 2020. First Report of Bacterial Leaf Streak of Corn Caused by Xanthomonas vasicola pv. vasculorum in Wisconsin. Plant Disease. https://doi.org/10.1094/PDIS-04-20-0700-PDN

                                    Jamann TM, Plewa D, Mideros SX, Bissonnette S, 2018. First Report of Bacterial Leaf Streak of Corn Caused by Xanthomonas vasicola pv. vasculorum in Illinois. Plant Disease. 103 (5), 1018-1018. https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-10-18-1895-PDN

                                    Korus K, Lang J M, Adesemoye A O, Block C C, Pal N, Leach J E, Jackson-Ziems T A, 2017. First report of Xanthomonas vasicola causing bacterial leaf streak on corn in the United States. Plant Disease. 101 (6), 1030-1031. DOI:10.1094/pdis-10-16-1426-pdn

                                    Leite R P Jr, Custódio A A P, Madalosso T, Robaina R R, Duin I M, Sugahara V H, 2019. First report of the occurrence of bacterial leaf streak of corn caused by Xanthomonas vasicola pv. vasculorum in Brazil. Plant Disease. 103 (1), 145. http://apsjournals.apsnet.org/loi/pdis DOI:10.1094/PDIS-06-18-1100-PDN

                                    Plazas M C, Rossi R L de, Brücher E, Guerra F A, Vilaró M, Guerra G D, Wu G, Ortiz-Castro M C, Broders K, 2018. First report of Xanthomonas vasicola pv. vasculorum causing bacteria leaf streak of maize (Zea mays) in Argentina. Plant Disease. 102 (5), 1026. DOI:10.1094/PDIS-10-17-1578-PDN

                                    Robertson A, 2016. Bacterial Leaf Streak Confirmed in Iowa. In: ICM News, Iowa, USA: Iowa State University Extension and Outreach. https://crops.extension.iastate.edu/cropnews/2016/08/bacterial-leaf-streak-confirmed-iowa

                                    Smith DL, Groves C, Hudelson B, Lueloff S, 2018. Bacterial leaf streak of corn confirmed for the first time in Wisconsin. In: Wisconsin Crop Manager, Wisconsin, USA: University of Wisconsin-Madison. https://ipcm.wisc.edu/blog/2018/09/bacterial-leaf-streak-of-corn-confirmed-for-the-first-time-in-wisconsin/

                                    Wasukira A, Coulter M, Al-Sowayeh N, Thwaites R, Paszkiewicz K, Kubiriba J, Smith J, Grant M, Studholme DJ, 2014. Genome sequencing of Xanthomonas vasicola pathovar vasculorum reveals variation in plasmids and genes encoding lipopolysaccharide synthesis, type-IV pilus and type-III secretion effectors. Pathogens. 3 (1), 211-237. https://www.mdpi.com/2076-0817/3/1/211

                                    Contributors

                                    Top of page

                                    07/02/20 Original text by:

                                    Lindsay Triplett, Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, USA

                                    Ravikumar Patel, Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, USA

                                    Distribution Maps

                                    Top of page
                                    You can pan and zoom the map
                                    Save map
                                    Select a dataset
                                    Map Legends
                                    • CABI Summary Records
                                    Map Filters
                                    Extent
                                    Invasive
                                    Origin
                                    Third party data sources: