Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Nomuraea rileyi
(parasite of Anticarsia on soybean)

Toolbox

Datasheet

Nomuraea rileyi (parasite of Anticarsia on soybean)

Summary

  • Last modified
  • 21 November 2019
  • Datasheet Type(s)
  • Natural Enemy
  • Preferred Scientific Name
  • Nomuraea rileyi
  • Preferred Common Name
  • parasite of Anticarsia on soybean
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Fungi
  •     Phylum: Ascomycota
  •       Subphylum: Pezizomycotina
  •         Class: Sordariomycetes

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
N. rileyi symptoms on noctuid larvae.
TitleSymptoms
CaptionN. rileyi symptoms on noctuid larvae.
CopyrightErnst Neering
N. rileyi symptoms on noctuid larvae.
SymptomsN. rileyi symptoms on noctuid larvae.Ernst Neering
The life cycle of N. rileyi. The conidium (1) forms a germ tube (2). Vegetative hyphal bodies (3, 4) are then produced from the germ tubes. Hyphal bodies initiate a new hyphal (mycelial) stage (5, 6), and, under proper environmental conditions, the mycelia will generate conidiogenous phialides (7). These structures are then capable of producing a new generation of infectious conidia (1). The cycle lasts 5-7 days both in vivo and in vitro. Signals such as nutrient depletion in insect hemolymph or culture media can effect the switch from the yeast-like hyphal body phase to the hyphal or mycelial stage.
TitleLine artwork of life cycle
CaptionThe life cycle of N. rileyi. The conidium (1) forms a germ tube (2). Vegetative hyphal bodies (3, 4) are then produced from the germ tubes. Hyphal bodies initiate a new hyphal (mycelial) stage (5, 6), and, under proper environmental conditions, the mycelia will generate conidiogenous phialides (7). These structures are then capable of producing a new generation of infectious conidia (1). The cycle lasts 5-7 days both in vivo and in vitro. Signals such as nutrient depletion in insect hemolymph or culture media can effect the switch from the yeast-like hyphal body phase to the hyphal or mycelial stage.
CopyrightJ.C. Pendland
The life cycle of N. rileyi. The conidium (1) forms a germ tube (2). Vegetative hyphal bodies (3, 4) are then produced from the germ tubes. Hyphal bodies initiate a new hyphal (mycelial) stage (5, 6), and, under proper environmental conditions, the mycelia will generate conidiogenous phialides (7). These structures are then capable of producing a new generation of infectious conidia (1). The cycle lasts 5-7 days both in vivo and in vitro. Signals such as nutrient depletion in insect hemolymph or culture media can effect the switch from the yeast-like hyphal body phase to the hyphal or mycelial stage.
Line artwork of life cycleThe life cycle of N. rileyi. The conidium (1) forms a germ tube (2). Vegetative hyphal bodies (3, 4) are then produced from the germ tubes. Hyphal bodies initiate a new hyphal (mycelial) stage (5, 6), and, under proper environmental conditions, the mycelia will generate conidiogenous phialides (7). These structures are then capable of producing a new generation of infectious conidia (1). The cycle lasts 5-7 days both in vivo and in vitro. Signals such as nutrient depletion in insect hemolymph or culture media can effect the switch from the yeast-like hyphal body phase to the hyphal or mycelial stage.J.C. Pendland
N. rileyi infecting the rice pest Rivula atimeta (top), compared to an uninfected larva.|The fungus Nomuraea rileyi infecting R. atimeta.
TitleN. rileyi on Rivula atimeta|Nomuraea rileyi infection
CaptionN. rileyi infecting the rice pest Rivula atimeta (top), compared to an uninfected larva.|The fungus Nomuraea rileyi infecting R. atimeta.
Copyright©James Litsinger
N. rileyi infecting the rice pest Rivula atimeta (top), compared to an uninfected larva.|The fungus Nomuraea rileyi infecting R. atimeta.
N. rileyi on Rivula atimeta|Nomuraea rileyi infectionN. rileyi infecting the rice pest Rivula atimeta (top), compared to an uninfected larva.|The fungus Nomuraea rileyi infecting R. atimeta.©James Litsinger

Identity

Top of page

Preferred Scientific Name

  • Nomuraea rileyi (Farlow) Samson

Preferred Common Name

  • parasite of Anticarsia on soybean

Other Scientific Names

  • Beauveria rileyi
  • Spicarea rileyi
  • Spicaria prasina (Maublanc) Sawada
  • Spicaria rileyi (Farlow) Charles

Local Common Names

  • Germany: Parasit: Anticarsia / Soja

EPPO code

  • NOMURI (Nomuraea rileyi)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Fungi
  •         Phylum: Ascomycota
  •             Subphylum: Pezizomycotina
  •                 Class: Sordariomycetes
  •                     Subclass: Hypocreomycetidae
  •                         Order: Hypocreales
  •                             Family: Clavicipitaceae
  •                                 Genus: Nomuraea
  •                                     Species: Nomuraea rileyi

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Last updated: 10 Jan 2020

References

Top of page

Boucias DG; Pendland JC, 1982. Ultrastructural studies on the fungus, Nomuraea rileyi, infecting the velvetbean caterpillar, Anticarsia gemmatalis. Journal of Invertebrate Pathology, 39(3):338-345

Boucias DG; Pendland JC; Latge JP, 1988. Nonspecific factors involved in attachment of entomopathogenic deuteromycetes to host insect cuticle. Applied and Environmental Microbiology, 54(7):1795-1805

Greathead DJ; Greathead AH, 1992. Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News and Information, 13(4):61N-68N.

Kish LP; Allen GE, 1978. The biology and ecology of Nomuraea rileyi and a program for predicting its incidence on Anticarsia gemmatalis in soybean. Bulletin, Florida Agricultural Experiment Stations, No. 795:v + 48 pp.

Morrow BJ; Boucias DG; Heath MA, 1989. Loss of virulence in an isolate of an entomopathogenic fungus, Nomuraea rileyi, after serial in vitro passage. Journal of Economic Entomology, 82(2):404-407

Pendland JC, 1982. Resistant structures in the entomogenous hyphomycete, Nomuraea rileyi: an ultrastructural study. Canadian Journal of Botany, 60:1569-1576.

Pendland JC; Boucias DG, 1982. Ultrastructural aspects of conidiogenesis in the entomogenous hyphomycete, Nomuraea rileyi. Canadian Journal of Botany, 60:26-33.

Pendland JC; Boucias DG, 1997. In vitro growth of the entomopathogenic hyphomycete Nomuraea rileyi. Mycologia, 89(1):66-71; 18 ref.

Pendland JC; Lopez-Lastra C; Boucias DG, 1994. Laminin-binding sites on cell walls of the entomopathogen Nomuraea rileyi associated with growth and adherence to host tissues. Mycologia, 86(3):327-335

Distribution Maps

Top of page
You can pan and zoom the map
Save map
Select a dataset
Map Legends
  • CABI Summary Records
Map Filters
Extent
Invasive
Origin
Third party data sources: