Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide

Datasheet

Myzus persicae
(green peach aphid)

Toolbox

Datasheet

Myzus persicae (green peach aphid)

Summary

  • Last modified
  • 14 July 2018
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Vector of Plant Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Myzus persicae
  • Preferred Common Name
  • green peach aphid
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Arthropoda
  •       Subphylum: Uniramia
  •         Class: Insecta

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report

Pictures

Top of page
PictureTitleCaptionCopyright
Myzus persicae (green peach aphid); an alate (winged) adult, an important vector of plum pox virus.
TitleAdult
CaptionMyzus persicae (green peach aphid); an alate (winged) adult, an important vector of plum pox virus.
Copyright©Scott Bauer/USDA Agricultural Research Service/Bugwood.org - CC BY 3.0 US
Myzus persicae (green peach aphid); an alate (winged) adult, an important vector of plum pox virus.
AdultMyzus persicae (green peach aphid); an alate (winged) adult, an important vector of plum pox virus.©Scott Bauer/USDA Agricultural Research Service/Bugwood.org - CC BY 3.0 US

Identity

Top of page

Preferred Scientific Name

  • Myzus persicae Sulzer (1776)

Preferred Common Name

  • green peach aphid

Other Scientific Names

  • Aphis convolvuli Kaltenbach, 1843
  • Aphis cynoglossi Walker, 1848
  • Aphis derelicta Walker, 1849
  • Aphis dianthi Schrank, 1801
  • Aphis dubia Curtis, 1842
  • Aphis egressa Walker, 1849
  • Aphis malvae Mosl., 1841
  • Aphis persicae Sulzer, 1776
  • Aphis persiciphila
  • Aphis persola Walker, 1848
  • Aphis rapae Curtis, 1842
  • Aphis redundans Walker, 1849 sec. Laing, 1925
  • Aphis suffragans Walker, 1848
  • Aphis tuberoscellae
  • Aphis vastator
  • Aphis vulgaris Kyber, 1815 (sec. Walker)
  • Aulacorthum convolvuli
  • Myzodes persicae (Sulzer)
  • Myzodes tabaci Mordvilko, 1914
  • Myzoides persicae
  • Myzus dianthi (Schrank)
  • Myzus malvae Oestl., 1886 (sec. Theob.)
  • Myzus nicotianae Blackman
  • Myzus pergandei Sanders, 1901 sec. Patch
  • Myzus persicae var. cerastii Theobald
  • Myzus persicae var. sanguisorbella Theobald, 1926
  • Nectarosiphon persicae (Sulzer)
  • Phorodon cynoglossi Williams, 1891 sec. Davis, 1911
  • Phorodon persicae (Sulzer)
  • Rhopalosiphum betae Theobald, 1913
  • Rhopalosiphum calthae Koch, 1854
  • Rhopalosiphum dianthi
  • Rhopalosiphum lactucellum
  • Rhopalosiphum lactucellum Theobald, 1915
  • Rhopalosiphum persicae
  • Rhopalosiphum solani Theobald, 1912 nonKalt, 1843
  • Rhopalosiphum tuberosellae Theobald, 1922
  • Rhopalosiphum tulipae Thos., 1879 sec. Davis, 1911
  • Siphonophora achyrantes Mon., 1879
  • Siphonophora nasturtii Koch, 1855

International Common Names

  • English: cabbage aphid; green sesame aphid; peach aphid; peach curl aphid; peach-potato aphid; potato aphid; tobacco aphid
  • Spanish: afido amarillo del tabaco; afido verde; afido verdoso; pulgón verde; pulgón verde del melocotonero
  • French: puceron des carottes; puceron gris du pecher; puceron vert du pêcher
  • Portuguese: pulgao verde do pessegueiro

Local Common Names

  • Argentina: pulgón verde del duraznero
  • Brazil: pulgao verde da batatinha
  • Denmark: ferskenbladlus
  • Dominican Republic: melaito; melaito verde
  • Finland: persikkakirva; perunakirva
  • Germany: Bocksdorn-Blattlaus; Gruene Pfirsichblattlaus; Nelken-Blattlaus
  • Israel: knimat haafarsek
  • Italy: afide verde del pesco
  • Japan: momoaka-aburamusi
  • Netherlands: Groene Perzikbladluis; Groene Tabaksluis
  • Norway: ferskenbladlus
  • Sweden: persikbladlus
  • Turkey: seftali yaprak biti

EPPO code

  • MYZUPE (Myzus persicae)
  • RHOPDI (Rhopalosiphum dianthi)

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Arthropoda
  •             Subphylum: Uniramia
  •                 Class: Insecta
  •                     Order: Hemiptera
  •                         Suborder: Sternorrhyncha
  •                             Unknown: Aphidoidea
  •                                 Family: Aphididae
  •                                     Genus: Myzus
  •                                         Species: Myzus persicae

Notes on Taxonomy and Nomenclature

Top of page

Myzus persicae was first described by Sulzer in 1776 as Aphis persicae. Its numerous synonyms are listed by Börner (1952) and Remaudiere and Remaudiere (1997) and taxonomy is reviewed by Blackman and Paterson (1986) and Blackman (1986). The name M. persicae as applied here refers to a complex of sibling species and host plant races, including the tobacco-adapted form, described by Blackman (1986) as a separate species (M. nicotanae); this needs to be borne in mind when designing control strategies.

Description

Top of page

Adult wingless parthenogenetic females are oval-bodied, 1.2-2.1 mm in body length, of very variable colour; whitish green, pale yellow green, grey green, mid-green, dark green, pink or red. The tobacco form (nicotianae) varies even more and can also be bright yellow, or almost black. Apart from genetically determined colour variation, any one genotype will be more deeply pigmented green or magenta in cold conditions. Immature stages are quite shiny, but adults are less so. Winged morphs have a black central dorsal patch on the abdomen. Immatures of the winged females are often pink or red, especially in autumn populations, and immature males are yellowish (Blackman and Eastop, 1985).

Distinguishing characters of the M. persicae group with a hand lens or under the microscope are the convergent inner faces of the antennal tubercles in dorsal view, and the very slightly clavate siphunculi, which are usually dark-tipped and about as long as the terminal process of the antenna.

M. persicae alate virginoparae from populations derived from overwintering eggs on Prunus have cylindrical cornicles, whereas those from populations derived from overwintering virginoparae are clavate.

Distribution

Top of page

M. persicae is probably of Asian origin, like its primary host plant (Prunus persica) but now occurs everywhere in the world except where there are extremes of temperature or humidity.

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes

Asia

AfghanistanPresentCIE, 1979
ArmeniaPresentCIE, 1979
AzerbaijanPresentCIE, 1979
BangladeshPresentCIE, 1979; APPPC, 1987
BhutanPresentAgarwala, 1983
CambodiaPresentCIE, 1979
ChinaPresentAPPPC, 1987
-BeijingPresentWang et al., 2009
-FujianPresentCIE, 1979
-GansuPresentHu et al., 2004
-GuangdongPresentCIE, 1979
-GuizhouPresentGu et al., 2006
-HebeiPresentHu et al., 2004
-HeilongjiangPresentCheng et al., 1992
-HenanPresentLiu et al., 2000
-Hong KongPresentCIE, 1979
-HubeiPresentCIE, 1979
-HunanPresentCIE, 1979
-JiangsuPresentCIE, 1979
-LiaoningPresentCIE, 1979
-ShaanxiPresentLi et al., 1992
-ShandongPresentCIE, 1979
-ShanghaiPresentWang et al., 2000
-SichuanPresentCIE, 1979
-XinjiangPresentCIE, 1979
-YunnanPresentSong et al., 2006
-ZhejiangPresentCIE, 1979
GazaPresentCIE, 1979
Georgia (Republic of)PresentCIE, 1979
IndiaWidespreadGhosh, 1975
-Andhra PradeshPresentKumar et al., 2001
-BiharPresentRam and Kishore Parihar, 2002
-ChhattisgarhPresentPatel and Thakur, 2005
-GujaratPresentTrivedi et al., 2002
-HaryanaPresentLakra, 2004
-Himachal PradeshPresentCIE, 1979
-Indian PunjabPresentDaljeet et al., 2004
-Jammu and KashmirPresentVerma and Das, 1992
-KarnatakaPresentKumar et al., 2010
-Madhya PradeshPresentPokhraj et al., 2005
-MaharashtraPresentCIE, 1979
-ManipurPresentShantibala et al., 2007
-OdishaPresentMandal and Patnaik, 2006
-RajasthanPresentGupta and Yadava, 1990
-SikkimPresentDeka et al., 2014
-Tamil NaduPresentCIE, 1979
-Uttar PradeshPresentCIE, 1979
-UttarakhandPresentTrivedi et al., 2002; Rashmi et al., 2008; Arvind et al., 2009
-UttarakhandPresentTrivedi et al., 2002; Rashmi et al., 2008; Arvind et al., 2009
-UttarakhandPresentTrivedi et al., 2002; Rashmi et al., 2008; Arvind et al., 2009
-West BengalPresentCIE, 1979; Biswas and Mandal, 1992
IndonesiaPresentWaterhouse, 1993
-JavaPresentCIE, 1979
-SumatraPresentCIE, 1979
IranPresentCIE, 1979
IraqPresentCIE, 1979
IsraelPresentCIE, 1979
JapanPresentAPPPC, 1987
-HokkaidoPresentCIE, 1979
-HonshuPresentCIE, 1979
-KyushuPresentCIE, 1979
-Ryukyu ArchipelagoPresentCIE, 1979
-ShikokuPresentCIE, 1979
JordanPresentCIE, 1979
KazakhstanPresentLoebenstein and Manadilova, 2003
Korea, DPRPresentCIE, 1979
Korea, Republic ofPresentCIE, 1979; APPPC, 1987
KyrgyzstanPresentGabrid, 1989
LaosPresentCIE, 1979; Waterhouse, 1993
LebanonPresentCIE, 1979
MalaysiaPresentWaterhouse, 1993
MongoliaPresentCIE, 1979
MyanmarPresentWaterhouse, 1993
NepalPresentCIE, 1979
PakistanPresentCIE, 1979
PhilippinesPresentCIE, 1979; Waterhouse, 1993
Saudi ArabiaPresentCIE, 1979
SingaporePresentCIE, 1979; APPPC, 1987; Waterhouse, 1993
Sri LankaPresentCIE, 1979
SyriaPresentCIE, 1979
TaiwanWidespreadCIE, 1979; Tao, 1991
ThailandPresentCIE, 1979; APPPC, 1987; Waterhouse, 1993
TurkeyPresentCIE, 1979
TurkmenistanPresentCIE, 1979
UzbekistanPresentCIE, 1979
VietnamPresentCIE, 1979; APPPC, 1987; Waterhouse, 1993
YemenPresentCIE, 1979

Africa

AlgeriaPresentCIE, 1979
AngolaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
BeninPresentRemaudiere and Autrique, 1985; Millar, 1994
BurundiPresentRemaudiere and Autrique, 1985; Millar, 1994
CameroonPresentCIE, 1979; Millar, 1994
Central African RepublicPresentRemaudiere and Autrique, 1985; Millar, 1994
CongoPresentMillar, 1994
Congo Democratic RepublicPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
Côte d'IvoirePresentRemaudiere & Autrique, 1984; Millar, 1994
EgyptPresentCIE, 1979
EthiopiaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
GhanaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
KenyaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
LibyaPresentCIE, 1979
MadagascarPresentCIE, 1979
MalawiPresentMillar, 1984; CIE, 1979; Remaudiere and Autrique, 1985
MauritiusPresentCIE, 1979
MoroccoPresentCIE, 1979
MozambiquePresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
NigeriaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
RéunionPresentCIE, 1979
RwandaPresentRemaudiere and Autrique, 1985; Millar, 1994
Saint HelenaPresentCIE, 1979
SeychellesPresentCIE, 1979
Sierra LeonePresentCIE, 1979
South AfricaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
Spain
-Canary IslandsPresentCIE, 1979
SudanPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
TanzaniaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
TunisiaPresentCIE, 1979
UgandaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
ZambiaPresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994
ZimbabwePresentCIE, 1979; Remaudiere and Autrique, 1985; Millar, 1994

North America

BermudaPresentCIE, 1979; Smith and Cermeli, 1979
CanadaWidespreadCIE, 1979
-AlbertaPresentCIE, 1979
-British ColumbiaPresentCIE, 1979
-ManitobaPresentCIE, 1979
-New BrunswickPresentCIE, 1979
-Newfoundland and LabradorPresentCIE, 1979
-Nova ScotiaPresentCIE, 1979
-OntarioPresentCIE, 1979
-Prince Edward IslandPresentCIE, 1979
-QuebecPresentCIE, 1979
-SaskatchewanPresentCIE, 1979
MexicoPresentCIE, 1979; Smith and Cermeli, 1979
USAPresentPresent based on regional distribution.
-ArizonaPresentCIE, 1979; UC, 1986
-ArkansasPresentHander et al., 1993
-CaliforniaPresentCIE, 1979
-ColoradoPresentCIE, 1979; UC, 1986
-ConnecticutPresentSmith and Parron, 1978
-DelawarePresentSmith and Parron, 1978
-FloridaPresentCIE, 1979
-GeorgiaPresentCIE, 1979
-HawaiiPresentCIE, 1979
-IdahoPresentSmith and Parron, 1978; Kish et al., 1994
-IllinoisPresentSmith and Parron, 1978
-IndianaPresentCIE, 1979
-IowaPresentSmith and Parron, 1978
-KansasPresentSmith and Parron, 1978
-KentuckyPresentSmith and Parron, 1978
-LouisianaPresentSmith and Parron, 1978
-MainePresentCIE, 1979
-MarylandPresentCIE, 1979
-MassachusettsPresentSmith and Parron, 1978
-MichiganPresentSmith and Parron, 1978
-MinnesotaPresentSmith and Parron, 1978
-MississippiPresentCIE, 1979
-MissouriPresentCIE, 1979
-MontanaPresentCIE, 1979; UC, 1986
-NebraskaPresentSmith and Parron, 1978
-NevadaPresentCIE, 1978; UC, 1986
-New JerseyPresentSmith and Parron, 1978
-New MexicoPresentUC, 1986
-New YorkPresentCIE, 1979
-North CarolinaPresentCIE, 1979
-North DakotaPresentSmith and Parron, 1978
-OhioPresentSmith and Parron, 1978
-OklahomaPresentSmith and Parron, 1978
-OregonPresentCIE, 1979; UC, 1986
-PennsylvaniaPresentSmith and Parron, 1978
-South CarolinaPresentSmith and Parron, 1978
-TennesseePresentSmith and Parron, 1978
-TexasPresentCIE, 1979
-UtahPresentCIE, 1979; UC, 1986
-VirginiaPresentSmith and Parron, 1978
-WashingtonPresentCIE, 1979
-West VirginiaPresentSmith and Parron, 1978; Kaakeh and Hogmire, 1991
-WisconsinPresentSmith and Parron, 1978

Central America and Caribbean

BahamasPresentSmith and Cermeli, 1979
BarbadosPresentCIE, 1979; Smith and Cermeli, 1979
Costa RicaPresentCIE, 1979; Smith and Cermeli, 1979
CubaPresentCIE, 1979; Smith and Cermeli, 1979
Dominican RepublicPresentCIE, 1979; Smith and Cermeli, 1979
El SalvadorPresentCIE, 1979; Smith and Cermeli, 1979
GuatemalaPresentCIE, 1979; Smith and Cermeli, 1979
HondurasPresentCIE, 1979; Smith and Cermeli, 1979
JamaicaPresentCIE, 1979; Smith and Cermeli, 1979
PanamaPresentCIE, 1979; Remaudiere et al., 1991
Puerto RicoPresentCIE, 1979; Smith and Cermeli, 1979

South America

ArgentinaWidespreadCIE, 1979; Smith and Cermeli, 1979
BoliviaPresentCIE, 1979; Smith and Cermeli, 1979
BrazilWidespreadCIE, 1979; Smith and Cermeli, 1979
-BahiaPresentSigaran Tarrago et al., 1994
-Espirito SantoPresentMartins et al., 2016
-Mato GrossoPresentMichelotto and Busoli, 2003
-Minas GeraisPresentCIE, 1979
-ParanaPresentCIE, 1979
-Rio de JaneiroPresentCIE, 1979
-Rio Grande do SulPresentCIE, 1979
-Santa CatarinaPresentCIE, 1979
-Sao PauloPresentCIE, 1979
ChilePresentCIE, 1979; Smith and Cermeli, 1979
-Easter IslandPresentCIE, 1979
ColombiaPresentCIE, 1979; Smith and Cermeli, 1979
EcuadorPresentCIE, 1979; Smith and Cermeli, 1979
PeruPresentCIE, 1979; Smith and Cermeli, 1979
SurinamePresentCIE, 1979; Smith and Cermeli, 1979
UruguayPresentCIE, 1979; Smith and Cermeli, 1979
VenezuelaPresentCIE, 1979; Smith and Cermeli, 1979

Europe

AlbaniaPresentBalliu and Cota, 2007
AustriaPresentCIE, 1979
BelarusPresentPrishchepa et al., 2003
BelgiumPresentCIE, 1979
Bosnia-HercegovinaPresentMusa et al., 2003
BulgariaPresentCIE, 1979
CroatiaPresentCuljak et al., 2008
CyprusWidespreadCIE, 1979
Czech RepublicPresentMuška, 2007
Czechoslovakia (former)PresentCIE, 1979
DenmarkWidespreadCIE, 1979; Heie, 1994
FinlandPresentCIE, 1979; Heie, 1994
FranceWidespreadCIE, 1979
GermanyWidespreadCIE, 1979
GibraltarPresentCIE, 1979
GreecePresentCIE, 1979
HungaryPresentCIE, 1979
IrelandPresentCIE, 1979
ItalyPresentCIE, 1979
LatviaPresentCIE, 1979
LithuaniaPresentCIE, 1979
MacedoniaPresentMargaritopoulos et al., 2002
MaltaPresentCIE, 1979
MoldovaPresentVereshchagin et al., 1985
MontenegroPresentRadonjic and Hrncic, 2011
NetherlandsPresentCIE, 1979
NorwayPresentCIE, 1979; Heie, 1994
PolandPresentCIE, 1979
PortugalPresentCIE, 1979
-AzoresPresentIlharco, 1982
-MadeiraPresentNieto Nafria et al., 1977
RomaniaPresentCIE, 1979
Russian FederationPresentPresent based on regional distribution.
-Central RussiaPresentCIE, 1979
-Russia (Europe)PresentCIE, 1979
-Russian Far EastPresentCIE, 1979
SerbiaPresentPeric et al., 2009
SlovakiaPresentCIE, 1979; Pajmon, 1997
SpainWidespreadCIE, 1979
-Balearic IslandsPresentNieto Nafria et al., 1977
SwedenPresentCIE, 1979; Heie, 1994
SwitzerlandWidespreadCIE, 1979
UKWidespreadCIE, 1979
-England and WalesPresentParker, 2005
UkrainePresentCIE, 1979
Yugoslavia (former)PresentCIE, 1979

Oceania

AustraliaPresentPresent based on regional distribution.
-Australian Northern TerritoryPresentCIE, 1979
-New South WalesPresentCIE, 1979
-QueenslandPresentCIE, 1979
-South AustraliaPresentCIE, 1979
-TasmaniaPresentCIE, 1979
-VictoriaPresentCIE, 1979
-Western AustraliaPresentCIE, 1979
FijiPresentCIE, 1979
New CaledoniaPresentCIE, 1979
New ZealandPresentCIE, 1979
Northern Mariana IslandsPresentCIE, 1979
Solomon IslandsPresentCIE, 1979
TongaPresentCarver et al., 1993

Risk of Introduction

Top of page Aerial dispersal of winged forms over long distance is the main mode of dispersal of this cosmopolitan pest. However, phytosanitary measures are important to stop the spread of virus-infected planting material (for example, seed potatoes) from which native aphid vectors could spread subsequently.

Habitat

Top of page Open vegetation; crops and herbaceous plants in open situations. Peach orchards.

Hosts/Species Affected

Top of page

The winter (primary) host of M. persicae is almost invariably Prunus persica (peach), including var. nectarina; sometimes P. nigra in USA, and possibly P. tenella, P. nana, P. serotina, P. americana and peach-almond hybrids. It is not clear whether the sexual part of the life-cycle is completed on species other than P. persica and P. nigra.

M. persicae is highly polyphagous on summer hosts, which are in over 40 different families, including Brassicaceae, Solanaceae, Poaceae, Leguminosae, Cyperaceae, Convolvulaceae, Chenopodiaceae, Compositae, Cucurbitaceae and Umbelliferae. Summer hosts include many economically important plants.

Host Plants and Other Plants Affected

Top of page
Plant nameFamilyContext
Abelmoschus esculentus (okra)MalvaceaeOther
AleuritesEuphorbiaceaeOther
Aloe (grey alder)AloaceaeOther
Anchusa (Bugloss)BoraginaceaeWild host
Anethum graveolens (dill)ApiaceaeOther
Anthriscus (chervil)ApiaceaeWild host
Antirrhinum (snapdragon)ScrophulariaceaeWild host
Apium graveolens (celery)ApiaceaeMain
AraceaeAraceaeMain
Arachis hypogaea (groundnut)FabaceaeMain
Armoracia rusticana (horseradish)BrassicaceaeMain
Artemisia (wormwoods)AsteraceaeWild host
Asclepias meadii (Mead's milkweed)AsclepiadaceaeWild host
Asparagus officinalis (asparagus)LiliaceaeMain
Beta vulgaris var. saccharifera (sugarbeet)ChenopodiaceaeMain
BrassicaBrassicaceaeMain
Brassica oleracea (cabbages, cauliflowers)BrassicaceaeUnknown
Brassica oleracea var. viridis (collards)BrassicaceaeOther
Brassica rapa cultivar group CaixinBrassicaceaeOther
Brassica rapa subsp. chinensis (Chinese cabbage)BrassicaceaeMain
Cajanus cajan (pigeon pea)FabaceaeMain
Capsella bursa-pastoris (shepherd's purse)BrassicaceaeWild host
Capsicum (peppers)SolanaceaeMain
Capsicum annuum (bell pepper)SolanaceaeMain
Carica papaya (pawpaw)CaricaceaeMain
Carthamus tinctorius (safflower)AsteraceaeOther
Catharanthus roseus (Madagascar periwinkle)ApocynaceaeOther
Chenopodium (Goosefoot)ChenopodiaceaeWild host
Chenopodium quinoa (quinoa)ChenopodiaceaeOther
Chrysanthemum (daisy)AsteraceaeMain
Chrysanthemum indicum (chrysanthemum)AsteraceaeOther
Cichorium intybus (chicory)AsteraceaeMain
Citrullus lanatus (watermelon)CucurbitaceaeMain
CitrusRutaceaeMain
Colocasia esculenta (taro)AraceaeMain
Convallaria majalis (lily of the valley)LiliaceaeOther
Convolvulus (morning glory)ConvolvulaceaeWild host
Coriandrum sativum (coriander)ApiaceaeMain
Crocus sativus (saffron)IridaceaeOther
Cucumis (melons, cucuimbers, gerkins)CucurbitaceaeMain
Cucurbita (pumpkin)CucurbitaceaeMain
Cucurbita moschata (pumpkin)CucurbitaceaeOther
Cucurbita pepo (marrow)CucurbitaceaeOther
Cuminum cyminum (cumin)ApiaceaeMain
Cydonia oblonga (quince)RosaceaeOther
Cynara cardunculus var. scolymus (globe artichoke)AsteraceaeMain
Cyphomandra betacea (tree tomato)SolanaceaeOther
DahliaAsteraceaeOther
Daucus carota (carrot)ApiaceaeMain
Dianthus (carnation)CaryophyllaceaeOther
Dianthus caryophyllus (carnation)CaryophyllaceaeMain
Euphorbia (spurges)EuphorbiaceaeWild host
Foeniculum vulgare (fennel)ApiaceaeOther
Fragaria chiloensis (Chilean strawberry)RosaceaeMain
Gladiolus hybrids (sword lily)IridaceaeOther
Glycine max (soyabean)FabaceaeOther
Gossypium (cotton)MalvaceaeMain
Hemerocallis (daylilies)LiliaceaeOther
Hordeum vulgare (barley)PoaceaeMain
Humulus lupulus (hop)CannabaceaeOther
Impatiens (balsam)BalsaminaceaeWild host
Indigofera (indigo)FabaceaeOther
Ipomoea batatas (sweet potato)ConvolvulaceaeMain
Iris (irises)IridaceaeOther
Lactuca sativa (lettuce)AsteraceaeMain
Lavandula angustifolia (lavender)LamiaceaeOther
Lepidium sativum (garden cress)BrassicaceaeOther
Lepidium virginicum (Virginian peppercress)BrassicaceaeOther
Lilium (lily)LiliaceaeOther
Lolium (ryegrasses)PoaceaeMain
Lolium multiflorum (Italian ryegrass)PoaceaeWild host
Lupinus (lupins)FabaceaeMain
Malus domestica (apple)RosaceaeMain
Malva (mallow)MalvaceaeWild host
MatthiolaBrassicaceaeOther
Medicago sativa (lucerne)FabaceaeMain
Mentha (mints)LamiaceaeOther
Narcissus (daffodil)LiliaceaeOther
Nasturtium officinale (watercress)BrassicaceaeOther
Nicotiana tabacum (tobacco)SolanaceaeMain
Origanum majorana (sweet marjoram)LamiaceaeMain
Papaver somniferum (Opium poppy)PapaveraceaeMain
Passiflora edulis (passionfruit)PassifloraceaeOther
Pastinaca sativa (parsnip)ApiaceaeMain
Persea americana (avocado)LauraceaeOther
Petroselinum (parsley)ApiaceaeMain
Phaseolus (beans)FabaceaeMain
Pisum sativum (pea)FabaceaeOther
Poa (meadow grass)PoaceaeMain
Prunus (stone fruit)RosaceaeMain
Prunus amygdalusRosaceaeOther
Prunus armeniaca (apricot)RosaceaeMain
Prunus mume (Japanese apricot tree)RosaceaeOther
Prunus nanaRosaceaeOther
Prunus nigra (Canada plumtree)RosaceaeOther
Prunus persica (peach)RosaceaeMain
Prunus serotina (black cherry)RosaceaeOther
Psidium guajava (guava)MyrtaceaeOther
Punica granatum (pomegranate)PunicaceaeOther
Raphanus sativus (radish)BrassicaceaeMain
Rhus (Sumach)AnacardiaceaeOther
Rosa (roses)RosaceaeOther
Rumex acetosa var. hortensis (garden sorrel)PolygonaceaeOther
Saccharum officinarum (sugarcane)PoaceaeMain
Secale cereale (rye)PoaceaeOther
Senecio (Groundsel)AsteraceaeWild host
Senecio vulgarisAsteraceaeWild host
Sesamum indicum (sesame)PedaliaceaeMain
Solanum lycopersicum (tomato)SolanaceaeMain
Solanum melongena (aubergine)SolanaceaeMain
Solanum nigrum (black nightshade)SolanaceaeOther
Solanum tuberosum (potato)SolanaceaeMain
Spinacia oleracea (spinach)ChenopodiaceaeMain
Trifolium (clovers)FabaceaeMain
Trigonella foenum-graecum (fenugreek)FabaceaeOther
Triticum (wheat)PoaceaeMain
Tulipa (tulip)LiliaceaeOther
Vicia (vetch)FabaceaeMain
Vigna unguiculata (cowpea)FabaceaeOther
Zea mays (maize)PoaceaeMain

Growth Stages

Top of page Flowering stage, Post-harvest, Seedling stage, Vegetative growing stage

Symptoms

Top of page

Effect of infestation depends greatly on host plant and transmitted viruses. Spring populations on peach cause severe leaf curl and shoot distortion. In potato, PLRV symptoms are leaf rolling and tuber stem necrosis. In sugarbeet, beet yellows viruses (BYV, BYDV, BWYV) cause yellowing in older leaves, chlorotic spotting, and thickening of the leaves, which become leathery and brittle.

On many crop plants (for example, potato, brassicas, sugarbeet) M. persicae only occurs at low densities, particularly on older leaves. Large colonies of the tobacco form (nicotianae) occur on growing stems and younger leaves.

List of Symptoms/Signs

Top of page
SignLife StagesType
Growing point / external feeding
Inflorescence / external feeding
Leaves / abnormal colours
Leaves / abnormal patterns
Leaves / honeydew or sooty mould
Leaves / honeydew or sooty mould
Leaves / honeydew or sooty mould
Leaves / leaves rolled or folded
Leaves / necrotic areas
Leaves / necrotic areas
Stems / external feeding
Whole plant / dwarfing
Whole plant / wilt

Biology and Ecology

Top of page

M. persicae is heteroecious holocyclic (host alternating, with sexual reproduction during part of life-cycle) between Prunus (usually peach) and summer host plants, but anholocyclic on secondary (summer) hosts in many parts of the world where peach is absent, and where a mild climate permits active stages to survive throughout the winter. It is usually anholocyclic in tropics and sub-tropics, with exceptions: for example, Ghosh and Verma (1990) reported apterous oviparous females of M. persicae for the first time from India, collected on Prunus persica. Blackman (1974) discussed the life-cycle variability of M. persicae on a worldwide basis.

For host-alternating populations, in spring, winged female emigrants (alate virginoparae) produced from the fundatrices migrate to summer hosts. A series of generations of wingless (apterous) and alate virginoparae are produced viviparously by thelytokous (all-female) parthenogenesis. These develop on summer hosts until reduced daylength (critical photoperiod between 12.5 and 14 hours in Europe), in conjunction with temperature below a certain threshold, induces autumn migrants (gynoparae) which migrate back to peach. Gynoparae will attempt to colonize a range of trees and shrubs, but the sexual part of the cycle is only completed on Prunus persica and close relatives. Gynoparae produce oviparae (mating females) that feed and develop on peach leaves. Males are produced after gynoparae (1 month later in a study from Italy) on the summer hosts, and migrate independently to peach, where they mate with the oviparae, which by then have become adult. Males appear to be attracted by sex pheromone released by sexual females, and are also attracted to the odour of the winter host (Tamaki et al., 1970). Oviparae lay 4-13 eggs, usually in crevices around and in axillary buds. Up to 20,000 eggs may occur per P. persica tree, although 4000 is around average, with large variation between trees (van Emden et al., 1969). The eggs overwinter in diapause, requiring a period of chilling to develop, and are extremely cold resistant (surviving temperatures as low as -46°C). Hatching coincides with swelling of flower buds, which provide food for first fundatrices. High fundatrix mortality may occur (van Emden et al., 1969). Fundatrigeniae feed on opened buds, flowers and soft shoots of the peach tree. Winged female emigrants are produced in the second generation after the fundatrix, but production of wingless females may continue for several generations, with increasing numbers of emigrants being produced as the nutritional suitability of the peach tree declines.

On the summer hosts, populations tend to be dispersed. M. persicae tends to feed on older senescing leaves, often along the leaf veins. van Emden et al. (1969) described how a range of host-plant variables affected aphid development and fecundity. Plant nutrition is a factor in the induction of winged forms, along with temperature, but there is also a strong genetic component. In laboratory experiments, low temperature promoted, while high temperature tended to suppress, the development of winged forms. Kuo (1991) described development and reproduction on radishes and potatoes at six constant temperatures (5-30°C) in the laboratory. M. persicae is relatively cold resistant. Howling et al. (1994) described mortality of aphids at various cold temperatures and their results suggested that an acclimatized overwintering population of M. persicae would persist without significant mortality after a period of 7-10 days with -5°C frosts each night.

Between six and eight generations developed on sugar-beet plants during the growing season in the Czech Republic, wheras 10-25 generations a year were possible on potatoes in southwestern USA. Wingless parthenogenetic females produce 30-80 progeny each. Higher growth rates have been observed on virus-infested plants. Winged females alight fairly indiscriminately on summer hosts, as expected for a polyphagous species, although they have a landing preference on yellow and yellow-green surfaces. Decreased departure rates account for accumulation on favoured hosts.

M. persicae has 2n=12 chromosomes normally, but a form heterozygous for a chromosomal translocation is worldwide and common (Blackman et al., 1978). M. persicae is a highly variable species; strains, races and biotypes have been distinguished by morphology, colour, biology, host-plant preference, ability to transmit viruses and insecticide resistance (van Emden et al., 1969). A distinct form of M. persicae (=nicotianae Blackman) occurs throughout most of the world on tobacco (Blackman, 1986; Takada and Tamura, 1987). Hybridisation in a region where the two forms both have a sexual phase on peach may account for the fact that both now have the same genes for insecticide resistance (Field et al., 1994). Remaudiere et al. (1991) reported a winged viviparous albino of M. persicae from South America.

The literature on M. persicae is probably larger than for any other aphid species. Major reviews of this aphid include those by van Emden et al. (1969) and Mackauer and Way (1976).

Natural enemies

Top of page
Natural enemyTypeLife stagesSpecificityReferencesBiological control inBiological control on
Acridotheres tristis Predator Adults/Nymphs
Adalia bipunctata Predator Adults/Nymphs Finland; France
Agonum dorsale Predator Adults/Nymphs
Allothrombium pulvinus Parasite
Alloxysta discreta Parasite
Anisosticta novemdecimpunctata Predator Adults/Nymphs
Anomalochrysa maclachlani Predator Adults/Nymphs
Anthocoris gallarumulmi Predator Adults/Nymphs
Anthocoris nemorum Predator Adults/Nymphs
Anthocoris sibiricus Predator Adults/Nymphs
Aphelinus abdominalis Parasite Nymphs France
Aphelinus asychis Parasite Nymphs France
Aphelinus mali Parasite Adults/Nymphs
Aphelinus semiflavus Parasite Nymphs
Aphidencyrtus aphidivorus Parasite
Aphidius colemani Parasite Nymphs Tamil Nadu
Aphidius ervi Parasite Adults/Nymphs Chile; Morocco peaches; potatoes
Aphidius funebris Parasite
Aphidius gifuensis Parasite Nymphs Yunnan
Aphidius matricariae Parasite Nymphs France; Poland; Romania; UK; USA; USSR peaches
Aphidius nigripes Parasite Adults/Nymphs
Aphidius picipes Parasite Adults/Nymphs
Aphidius rhopalosiphi Parasite Adults/Nymphs Chile
Aphidius rosae Parasite
Aphidius similis Parasite Adults/Nymphs
Aphidius sonchi Parasite
Aphidius urticae Parasite Adults/Nymphs
Aphidius uzbekistanicus Parasite Adults/Nymphs Chile
Aphidoletes aphidimyza Predator Adults/Nymphs Heilongjiang; Russia; USSR
Asaphes lucens Parasite
Bacillus thuringiensis kurstaki Pathogen Adults/Nymphs
Bacillus thuringiensis thuringiensis Pathogen Adults/Nymphs
Beauveria bassiana Pathogen
Bembidion quadrimaculatum Predator Adults/Nymphs
Brinckochrysa scelestes Predator Adults/Nymphs
Brumoides suturalis Predator Adults/Nymphs India Cuminum cyminum
Carabidae Predator Nymphs
Cheilomenes sexmaculata Predator Adults/Nymphs Andhra Pradesh; India
Chrysopa chrysops Predator Adults/Nymphs
Chrysopa formosa Predator Adults/Nymphs Bulgaria; France
Chrysopa nigricornis Predator Adults/Nymphs
Chrysopa pallens Predator Adults/Nymphs Bulgaria
Chrysopa quadripunctata Predator Adults/Nymphs
Chrysopa slossonae Predator
Chrysoperla carnea Predator Adults/Nymphs Bulgaria; Finland; Moldova; USSR tobacco
Chrysoperla downesi Predator Adults/Nymphs
Chrysoperla harrisii Predator Adults/Nymphs Bulgaria;France;Poland tobacco
Chrysoperla sinica Predator Adults/Nymphs
Coccinella hieroglyphica Predator Adults/Nymphs
Coccinella quinquepunctata Predator Adults/Nymphs
Coccinella septempunctata Predator Adults/Nymphs Bulgaria; Finland; India; Maine; New York Cuminum cyminum; tobacco
Coccinella septempunctata brucki Predator Adults/Nymphs
Coccinella transversalis Predator Adults/Nymphs India aubergines
Coccinella transversoguttata Predator Adults/Nymphs Maine
Coleomegilla maculata Predator Adults/Nymphs
Coleomegilla maculata cubensis Predator Adults/Nymphs
Conidiobolus coronatus Pathogen Adults/Nymphs
Conidiobolus obscurus Pathogen Adults/Nymphs USA; Maine potatoes
Conidiobolus thromboides Pathogen Adults/Nymphs
Cotesia rubecula Parasite Adults/Nymphs
Cycloneda limbifer Predator Adults/Nymphs
Deraeocoris flavilinea Predator Adults/Nymphs
Deraeocoris pallens Predator
Diaeretiella rapae Parasite Adults/Nymphs Morocco; Poland potatoes
Dicyphus errans Predator Adults/Nymphs
Endaphis aphidimyza Predator
Entomophaga aphidis Pathogen Adults/Nymphs
Entomophaga chromaphidis Pathogen Adults/Nymphs
Ephedrus californicus Parasite Adults/Nymphs
Ephedrus cerasicola Parasite Nymphs Norway Capsicum annuum
Ephedrus persicae Parasite Adults/Nymphs
Ephedrus plagiator Parasite Adults/Nymphs China; Yunnan radishes
Episyrphus alternans Predator Adults/Nymphs
Episyrphus balteatus Predator Adults/Nymphs Bulgaria; India potatoes; tobacco
Eriopis connexa Predator Adults/Nymphs
Erynia neoaphidis Pathogen Adults/Nymphs
Erynia nouryi Pathogen Adults/Nymphs
Erynia phalloides Pathogen Adults/Nymphs
Erynia radicans Pathogen Adults/Nymphs
Eupeodes confrater Predator Adults/Nymphs India; Andhra Pradesh; India; Punjab mustard; tobacco
Eupeodes corollae Predator Adults/Nymphs
Eupeodes latilunulatus Predator Adults/Nymphs India; Punjab mustard
Forficula decipiens Predator Adults/Nymphs
Fusarium pallidoroseum Pathogen Adults/Nymphs India; Tamil Nadu Capsicum annuum; kohlrabi
Geocoris bullatus Predator Adults/Nymphs
Glomerella cingulata Pathogen Adults/Larvae/Nymphs
Harmonia axyridis Predator Adults/Nymphs
Harmonia conformis Predator Adults/Nymphs
Harmonia dimidiata Predator Adults/Nymphs India aubergines
Hemerobius pacificus Predator Adults/Nymphs
Hippodamia convergens Predator Adults/Nymphs France
Hippodamia undecimnotata
Hippodamia variegata Predator Adults/Nymphs Bulgaria; India Cuminum cyminum; tobacco
Ischiodon aegyptius Predator Adults/Nymphs
Ischiodon scutellaris Predator Adults/Nymphs India; India; Andhra Pradesh; India; Punjab mustard; potatoes; tobacco
Jalysus wickhami Predator Adults/Nymphs
Lasiochalcidia erythropus Parasite
Lecanicillium lecanii Pathogen Adults/Nymphs UK Brassica
Lipolexis scutellaris Parasite Adults/Nymphs
Lysiphlebia mirzai Parasite Adults/Nymphs
Lysiphlebus confusus Parasite
Lysiphlebus delhiensis Parasite Adults/Nymphs
Lysiphlebus fabarum Parasite
Lysiphlebus testaceipes Parasite Adults/Nymphs
Macrolophus caliginosus Predator Adults/Nymphs
Macrolophus caluginosus Predator Adults/Nymphs
Macrolophus nubilus Predator Adults/Nymphs
Mallada boninensis Predator Adults/Nymphs India; Andhra Pradesh tobacco
Melanostoma fasciatum Predator
Micraspis discolor Predator Adults/Nymphs
Micraspis vincta Predator Adults/Nymphs India; Andhra Pradesh tobacco
Micromus angulatus Predator Adults/Nymphs
Micromus pusillus Predator Adults/Nymphs
Micromus tasmaniae Predator Adults/Nymphs
Nabis alternatus Predator Adults/Nymphs
Neoephedrus kalimpongensis Parasite Adults/Nymphs
Nineta pallida Predator Adults/Nymphs
Orius insidiosus Predator Adults/Nymphs
Orius minutus Predator Adults/Nymphs China apples; Astragalus sinicus
Orius sauteri Predator Adults/Nymphs
Orius vicinus Predator Adults/Nymphs
Pandora neoaphidis Pathogen Adults/Nymphs
Phalangium opilio Predator Adults/Nymphs
Podisus maculiventris Predator Adults/Nymphs
Polistes crinitus americanus Predator Adults/Nymphs
Praon myzophagum Parasite Adults/Nymphs
Praon unicum Parasite Adults/Nymphs USA; Washington peaches
Praon volucre Parasite Adults/Nymphs Morocco potatoes
Propylea quatuordecimpunctata Predator Adults/Nymphs France aubergines
Propylea quatuordecimpunctata
Pterostichus melanarius Predator Adults/Nymphs
Scaeva latimaculata Predator Adults/Nymphs India; Punjab mustard
Scaeva pyrastri Predator Adults/Nymphs Bulgaria tobacco
Scymnodes lividigaster Predator Adults/Nymphs
Scymnus bicolor Predator Adults/Nymphs
Scymnus ferrugatus Predator Adults/Nymphs
Scymnus marginicollis Predator Adults/Nymphs
Scymnus morelleti
Scymnus posticalis Predator Adults/Nymphs
Sphaerophoria indiana Predator Adults/Nymphs India; Punjab mustard
Synharmonia lyncea Predator Adults/Nymphs
Syrphus ribesii Predator Adults/Nymphs
Tjederina gracilis Predator Adults/Nymphs
Toxares deltiger Parasite Adults/Nymphs
Toxares zakai Parasite Adults/Nymphs
Trioxys angelicae Parasite Adults/Nymphs
Trioxys indicus Parasite Adults/Nymphs
Trioxys similis Parasite Nymphs
Trioxys tucumanus Parasite Adults/Nymphs
Verticillium lamellicola Pathogen Adults/Nymphs
Wesmaelius subnebulosus Predator
Zele chlorophthalma Parasite Adults/Nymphs

Notes on Natural Enemies

Top of page

Aphid natural enemies tend to be habitat-specific rather than host-specific, so the important natural enemies attacking particular aphid pests on crops tend to vary according to the crop, the circumstances under which it is grown and the climate. This is particularly true of aphid pests attacking a range of different crops over large geographical areas. Besides, many parasitoids are members of species complexes, morphologically very similar but with different host preferences and geographical distributions. Those in the list of natural enermies are only a selection of species that have been considered as important by investigators and should not be taken as definitive.

M. persicae is attacked by over 30 species of primary parasitoid. Most also attack a range of other aphid species, although some, for example, Trioxys similis, appear host-specific. T. angelicae is a parasitoid on Prunus only. M. persicae is the preferred host for Aphidius matricariae and Aphelinus semiflavus in the USA. Aphidius colemani is also an important natural enemy in North and South America. The second and third aphid nymphal instars are usually preferred by ovipositing parasites (Hågvar and Hofsvang, 1991) with older nymphs usually avoided as they result in small parasite adults emerging which leave few offspring; though Aphidius gifuensis prefers third and fourth instars (van Emden et al., 1969). Parasites often use aphid honeydew as a host-finding cue (Hågvar and Hofsvang, 1991).

Coccinellids, adults and larvae, are important predators worldwide, particularly Adonia spp., Coccinella spp., Hippodamia spp. and Scymnus spp. Coccinella septempunctata and Chilomese sexmaculata were the most abundant predators in potatoes, and other crops, in India (for example, Raj, 1989; Gupta and Yadava, 1989). Important syrphid larvae predators worldwide include Episyrphus balteatus, Ischiodon scutellaris, Metasyrphus corollae and Scaeva pyrastri. Kumar et al. (1987) provided a key for syrphid larvae that prey on M. persicae in India.

Van Emden et al. (1969) provided an extensive list of known natural enemies of M. persicae, which has been updated from the literature to 1996. Halima et al. (1993) described parasites and predators attacking M. persicae in Tunisia, and Nakata (1995) described fluctuations of aphids and their natural enemies on potato in Japan. In India, the common myna bird (Acridotheres tristis) was recorded preying on M. persicae in cumin (Gupta and Yadava, 1989).

Kish et al. (1994) described infestation of M. persicae by Verticillium lecanii on peach leaves, and Beauveria bassiana and Conidiobolus sp. on potatoes; while aphids collected from weeds growing in and near a peach orchard were infected with Entomophaga chromaphidis, Conidiobolus obscurus and V. lecanii. Aphids on potatoes and non-solanaceous hosts in Idaho, USA, were infected with Pandora neoaphidis, Chromaphidis and Conidiobolus spp. (Kish et al., 1994). Li et al. (1992) described Entomophthorales in China. Pathogenicity of these fungi is greatest when humidity is high.

Impact

Top of page

M. persicae is the most important aphid virus vector. It has been shown to transmit well over 100 plant virus diseases, in about 30 different families, including many major crops. Persistent viruses transmitted include Beet western yellows virus, Beet yellows virus, Beet mild yellowing virus, Pea enation mosaic virus, Bean leaf roll virus, Potato leaf roll virus and several viruses of tobacco (for example, Tobacco vein-distorting virus, Tobacco yellow net virus). Many more are transmitted by the non-persistent method, including Potato virus Y, Cucumber mosaic virus, Clover yellow vein virus, Alfalfa mosaic virus, Pepper veinal mottle virus, Plum pox virus, Lettuce mosaic virus and Tobacco vein mottling virus.

Direct feeding damage can result in stunting and reduced root weight, but populations on most crops do not reach levels causing obvious symptoms such as chlorosis or leaf curling, and the production of copious honeydew with associated sooty mould. However, significant yield losses can arise from direct damage on potatoes (Sexson et al., 2005) and visible distortion of leaves can occur on peach in the spring as well as on peppers and flower crops in greenhouses.

M. persicae is a major pest everywhere potatoes are grown. It is the most important vector of Potato leafroll virus (PLRV), which causes leaf roll and tuber rot necrosis. Seed potatoes have low tolerance for PLRV and low aphid populations can be very damaging.

Yield losses in sugarbeet due to beet yellows are more serious if infection occurs early in the season and can be up to 30-50%, with an increase also in the impurities present in the harvested sugar.

On peach (the primary host) the aphid causes twisting of the young leaves and on nectarines, pitting on and discoloration of the young fruits (Barbagallo et al., 2007).

Threatened Species

Top of page
Threatened SpeciesConservation StatusWhere ThreatenedMechanismReferencesNotes
Asclepias meadii (Mead's milkweed)NatureServe NatureServe; USA ESA listing as threatened species USA ESA listing as threatened speciesIllinois; Iowa; KansasHerbivory/grazing/browsingUS Fish and Wildlife Service, 2003

Risk and Impact Factors

Top of page Impact mechanisms
  • Herbivory/grazing/browsing

Diagnosis

Top of page

Methods have been developed for diagnosing economically important characteristics of field-collected aphids. Enzyme-linked immunosorbent assay (ELISA) is widely used to detect plant viruses carried by M. persicae (for example, Carlebach et al., 1982; Reinhardt et al., 1988). Levels of insecticide resistance in individual aphids can be estimated from their esterase content measured by immunoassay, and DNA diagnostic methods for resistant M. persicae have also been developed (Field et al., 1997).

Detection and Inspection

Top of page

On Prunus persica, inspect for curled leaves, in which colonies develop in early spring.

Monitoring is important in field crops, but M. persicae transmits viruses of crops such as sugar beet and potato at low densities, and is therefore difficult to detect on the crop before the damage is done. Suction and yellow traps are the most efficient way to detect first migration of winged aphids into the crop. Networks of suction traps have been developed to monitor migrating aphids, for example, the Rothamsted Insect Survey in the UK and AGRAPHID in France (Hulle et al., 1987), as part of the 'Euraphid' forecasting system in European Union countries. Much effort has been expended on developing forecasting methods, for example for sugarbeet (Harrington et al., 1989). Appropriate applications of insecticides are often based on monitoring data. Insecticide application in sugar beet against M. persicae is only necessary when aphids are carrying yellows viruses. Vertical nets placed downwind of fields of infected potato plants can be used to quantify the proportion of M. persicae carrying virus (diagnosed by use of ELISA; see Diagnosis).

Similarities to Other Species/Conditions

Top of page

M. persicae is a member of a group of closely related and very similar-looking species in the subgenus Nectarosiphon. Some of these are specific to particular host plants and confined to Europe; see Blackman and Paterson (1986) for a key to these. Others are more widely distributed: Myzus certus is a red species that restricts its feeding to Caryophyllaceae and Violaceae, and occurs in Europe and North America. This species does not host-alternate to peach; a sexual generation, with wingless males, can occur on Caryophyllaceae. Myzus dianthicola is a deep yellow-green colour and is only known from carnations (Dianthus) causing chlorotic patches on the leaves. It is recorded from USA, Europe and New Zealand, and has no sexual phase.

Myzus antirrhinii is mid-green to dark grey green and rather polyphagous. It forms dense colonies on certain host plants, for example, Buddleja, Antirrhinum and Pittosporum, but it sometimes also occurs on field crops. Production of winged morphs is rather sporadic, and it has no sexual phase. M. antirrhinii is known from western USA and Canada, Europe and Australia.

Myzus nicotianae occurs in most parts of the world where tobacco is grown. It has slight but consistent morphological differences from M. persicae and Blackman (1986) gives linear discriminant functions for winged and wingless females, but the two taxa can only be reliably separated using multivariate morphometrics.

M. nicotianae is anholocyclic (permanently parthenogenetic) almost everywhere, but has a sexual phase on peach in some parts of the world (for example, northern Greece) and some hybridization with M. persicae may occur, which would account for the fact that it has the same genes for insecticide resistance as M. persicae (Field et al., 1994), and the same resistance-linked chromosomal translocation. Because the extent of gene flow between the two taxa is still uncertain, and because the two are confused in the literature, data for M. nicotianae is here included in the treatment of M. persicae.

Electrophoretic techniques can distinguish between M. persicae and M. antirrhinii, based on patterns of esterases (Ffrench-Constant et al., 1988; Blackman and Spence, 1992).

Two other widely distributed and polyphagous pest species are less closely related but liable to confusion with M. persicae: the shallot aphid, Myzus ascalonicus, which is straw-coloured with contrastingly black tips to antennae and legs, and Myzus cymbalariae, which is yellowish brown to dark reddish brown. Both these species have siphunculi much shorter than those of M. persicae. The preferred hosts of both species are in Alliaceae and Caryophyllaceae.

Prevention and Control

Top of page

Chemical Control

As M. persicae is mainly important as a virus vector, a high level of control as provided by insecticides is often required. However, insecticides are relatively ineffective for non-persistent viruses, because transmission by the aphid occurs in just a few seconds. Moreover, there are varied restrictions on active ingredients in different parts of the world, and further restrictions on formulation, method of application, crop and time of year. Additionally, resistance to most groups of insecticides that defeats their use has appeared in many places (Foster et al., 2007; Bass et al., 2014). The aphid has several mechanisms conferring resistance primarily to different groups of insecticides; amplification of carboxylesterase for organophosphate insecticides, insensitive target site (MACE) against dimethyl carbamates, knock-down resistance (kdr and super-kdr) against pyrethroids and most recently a mechanism known as Nic-R++ against neonicotinoids (Bass et al., 2011). Other insecticides such as pymetrozine and flonicamid may therefore be required to obtain adequate control of the aphid, and diamide insecticides should become available in the future. 

IPM Programmes

Insecticidal soaps have been found useful in greenhouses, where they have low toxicity to many beneficial organisms. The fungal pathogen Lecanicillium lecanii is compatible with insecticides and is effective against M. persicae in a wide range of greenhouse crops, but only where high humidities can be maintained. In field crops, however, the main form of IPM is the modification of choice of insecticide and time of application to minimise damage to indigenous natural enemies

Biological Control

Releasing natural enemies produced by commercial breeding companies has become a routine component in the control of M. persicae on greenhouse crops (Powell and Pell, 2007). Here lacewing larvae have given good control on aubergines, and the midge Aphidoletes aphidimyza has proved an effective predator of the aphid on peppers. However. Most releases are of parasitoids of M. persicae, the main species being Aphidius colemani, Aphidius matricariae and Aphidoletes abdominalis

Host-Plant Resistance

Host-plant resistance to insects is commonly based on secondary plant chemistry. As M. persicae can attack plants in many unrelated botanical families, such resistance is hard to obtain, and the focus has been more on morphological plant characters. Glandular trichomes on potatoes are an important resistance factor. Gibson and Pickett (1983) described the release of the repellent aphid alarm pheromone chemical, (E)-ß-farnesene, from these glandular hairs of wild potato. Trichomes also release a sticky exudate, which immobilizes aphids, and contains toxic sucrose ester compounds, shown to inhibit settling and probing. Glandular hairs have been bred into resistant potato cultivars (Vallejo et al., 1994). Gatehouse et al. (1996) reported enhanced resistance to M. persicae in transgenic potato plants expressing lectins, but such plants present a potential toxicity hazard to humans and have not been commercialised.

Increased waxiness in brassicas decreased aphid colonization, mainly due to a non-preference resistance mechanism (Stoner, 1992).

Cultural Control

Most cultural measures are aimed at reduction of the virus problem, and are particularly important when rapidly transmitted non-persistent viruses are involved. Among cultural control methods recommended  are early sowing (e.g. of potatoes), weed management and the use of certified seeds, known to be virus-free (for example, seed potatoes). In peach orchards normal pruning procedures on peach to reduce the number of overwintering eggs are effective control against overwintering eggs. This in turn is also beneficial to crops to which aphids migrate in summer. In potatoes, sprout inhibitor is sprayed to reduce emergence of infested volunteer plants which could serve as reservoirs of infection for the following year's crop. In sugarbeet, where beet itself is the most important reservoir of infection, elimination of overwintering plants is important.

Some success in reducing M. persicae numbers and virus has been achieved in high value field crops by the expensive technique of laying aluminium foil between the plant rows to reflect the sky and disorientate arriving aphids. This approach has been modified and costs reduced by spraying the crop with highly reflective kaolin-based particles (Glenn and Puterka, 2005). Lightweight row covers ('horticultural fleece') of spun-bonded polyester or polyethylene can protect seedlings from viruliferous M. persicae (Harrewijn et al., 1991); the plants grow through the fleece as they get older.

References

Top of page

Agarwala BK, 1983. Notes on some aphids (Homoptera: Aphididae) affecting economically important plants in Bhutan. Indian Agriculturist, 27(3):261-262.

APPPC, 1987. Insect pests of economic significance affecting major crops of the countries in Asia and the Pacific region. Technical Document No. 135. Bangkok, Thailand: Regional Office for Asia and the Pacific region (RAPA).

Arvind Kumar, Singh CP, Renu Pandey, 2009. Insect pests of Ashwagandha, Withania somnifera Linn. in tarai region of Uttarakhand. Entomon, 34(2):115-118.

Balliu A, Cota E, 2007. Biological control of main greenhouse pests in Albania. Acta Horticulturae, 729:489-492. http://www.actahort.org

Barbagallo S, Cocuzza G, Cravedi P, Komazaki S, 2007. IPM case studies: deciduous fruit trees. In: Aphids as crop pests [ed. by Emden, H. F. van\Harrington, R.]. Wallingford, UK: CABI, 651-661. http://www.cabi.org/cabebooks/ebook/20073204012

Bass C, Puinean AM, Andrews M, Culter P, Daniels M, Elias J, Paul VL, Crossthwaite AJ, Denholm I, Field LM, Foster SP, Lind R, Williamson MS, Slater R, 2011. Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience, 12(51):(31 May 2011). http://www.biomedcentral.com/content/pdf/1471-2202-12-51.pdf

Bass C, Puinean AM, Zimmer CT, Denholm I, Field LM, Foster SP, Gutbrod O, Nauen R, Slater R, Williamson MS, 2014. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 51:41-51. http://www.sciencedirect.com/science/journal/09651748

Biswas AK, Mandal SK, 1992. Occurrence of insect pests in different types of tobacco cultivated in West Bengal. Crop Research (Hisar), 5(1):169-171.

Blackman RL, 1974. Life-cycle variation of Myzus persicae (Sulz.) (Hom., Aphididae) in different parts of the world, in relation to genotype and environment. Bulletin of Entomological Research, 63(4):595-607.

Blackman RL, 1987. Morphological discrimination of a tobacco-feeding form from Myzus persicae (Sulzer) (Hemiptera: Aphididae), and a key to new world Myzus (Nectarosiphon) species. Bulletin of Entomological Research, 77(4):713-730

Blackman RL, Eastop VF, 1984. Aphids on the World's Crops. An Identification and Information Guide. Chichester, UK: John Wiley.

Blackman RL, Paterson AJC, 1986. Separation of Myzus (Nectarosiphon) antirrhinii (Macchiati) from Myzus (N.) persicae (Sulzer) and related species in Europe (Homoptera: Aphididae). Systematic Entomology, 11(3):267-276.

Blackman RL, Spence JM, 1992. Electrophoretic distinction between the peach-potato aphid, Myzus persicae, and the tobacco aphid, M. nicotianae (Homoptera: Aphididae). Bulletin of Entomological Research, 82(2):161-165.

Blackman RL, Takada H, Kawakami K, 1978. Chromosomal rearrangement involved in insecticide resistance of Myzus persicae. Nature, UK, 271(5644):450-452

Börner C, 1952. Europae Centralis Aphides. Mitt. Thür. Bot. Ges., Weimer, 3:1-488.

Carlebach R, Raccah B, Loebenstein G, 1982. Detection of potato virus Y in the aphid Myzus persicae by enzyme-linked immunosorbent assay (ELISA). Annals of Applied Biology, 101(3):511-516.

Carver M, Hart PJ, Wellings PW, 1993. Aphids (Hemiptera: Aphididae) and associated biota from The Kingdom of Tonga, with respect to biological control. Pan-Pacific Entomologist, 69(3):250-260.

Castro e Castro BMde, Soares MA, Andrade Júnior VCde, Pires EM, 2013. Sweet potato (Ipomoea batatas (L.) Lam): a new host for Brevicoryne brassicae (L.) and Myzus persicae (Sulzer) (Hemiptera: Aphididae). (Batata-doce (Ipomoea batatas (L.) Lam.): um novo hospedeiro para Brevicoryne brassicae (L.) e Myzus persicae (Sulzer) (Hemiptera: Aphididae).) Comunicata Scientiae, 4(2):220-223. http://comunicata.ufpi.br/index.php/comunicata/article/view/256/184

Cheng HK, Zhao JH, Xie M, Wei SX, Song XP, Wang JZ, 1992. Tests on the effect of releasing Aphidoletes aphidimyza (Dip.: Cecidomyiidae) to control the aphid, Myzus persicae, in greenhouses and plastic tunnels. Chinese Journal of Biological Control, 8(3):97-100

CIE, 1979. Distribution Maps of Plant Pests, No. 45. Wallingford, UK: CAB International.

Crossthwaite AJ, Denholm I, Field LM, Foster SP, Lind R, Williamson MS, Slater R, 2011. Mutation of a nicotinic acetylcholine receptor ss subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience (online), 12:51.

Culjak TG, Jelovcan S, Grubi?ic D, Badurina D, Sesvecanec M, 2008. Oilseed rape pests. (?tetnici uljane repice.) Glasilo Biljne Za?tite, 8(5):285-296.

Daljeet Singh, Sandeep Kaur, Dhillon TS, Parminder Singh, Hundal JS, Singh GJ, 2004. Protected cultivation of sweet pepper hybrids under net-house in Indian conditions. Acta Horticulturae [Proceedings of the VIIth International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition, Kissimmee, Florida, USA, 23-27 March, 2004.], No.659(1):515-521. http://www.actahort.org

Deka TN, Gudade BA, Vijayan AK, Chhetri P, 2014. Mollitrichosiphum spp: a new record of aphid from Alder-large cardamom ecosystem in Sikkim. International Journal of Forestry and Crop Improvement, 5(2):94-97. http://www.researchjournal.co.in/online/IJFCI.htm

Devonshire AL, Devine GJ, Moores GD, 1992. Comparison of microplate esterase assays and immunoassay for identifying insecticide resistant variants of Myzus persicae (Homoptera: Aphididae). Bulletin of Entomological Research, 82(4):459-463.

Eastop VF, Hille Ris Lambers D, 1976. Survey of the World's Aphids. The Hague, Netherlands: DR. W. Junk bv Publishers.

Emden HFvan, Eastop VF, Hughes HD, Way MJ, 1969. The ecology of Myzus persicae. Annual Review of Entomology, 14:197-270.

Ffrench-Constant RH, Byrne FJ, Stribley MF, Devonshire AL, 1988. Rapid identification of the recently recognised Myzus antirrhinii (Macchiati) (Hemiptera: Aphididae) by polyacrylamide gel electrophoresis. Entomologist, 107(1):20-23.

Field LM, Anderson AP, Denholm I, Foster SP, Harling ZK, Javed N, Martinez-Torres D, Moores GD, Williamson MS, Devonshire AL, 1997. Use of biochemical and DNA diagnostics for characterising multiple mechanisms of insecticide resistance in the peach-potato aphid, Myzus persicae (Sulzer). Pesticide Science, 51(3):283-289; 20 ref.

Field LM, Javed N, Stribley MF, Devonshire AL, 1994. The peach-potato aphid Myzus persicae and the tobacco aphid Myzus nicotianae have the same esterase-based mechanisms of insecticide resistance. Insect Molecular Biology, 3(3):143-148.

Fischer S, Leger A, 1996. Macrolophus caliginosus W. (Heteroptera, Miridae), un auxiliare a exploiter en serre. Revue Suisse de Viticulture,- Arboriculture et d'Horticulture, 28(2):111-112.

Foster SP, Denholm I, Harling ZK, Moores GD, Devonshire AL, 1998. Intensification of insecticide resistance in UK field populations of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae) in 1996. Bulletin of Entomological Research, 88(2):127-130; 15 ref.

Foster SP, Devine G, Devonshire AL, 2007. Insecticide resistance. In: Aphids as crop pests [ed. by Emden, H. F. van\Harrington, R.]. Wallingford, UK: CABI, 261-285. http://www.cabi.org/cabebooks/ebook/20073203993

Gabrid NV, 1989. Aphids of Trees and Shrubs of the Issyk-Kul' Region. Frunze, Ilim, SSR: Institut Biologii, Akademiya Nauk Kirgizskoi SSR.

Gao XW, Zheng BZ, Cao BJ, 1992. Resistance in Myzus persicae to organophosphorus and carbamate insecticides in China. Acta Phytophylacica Sinica, 19(4):365-371; 11 ref.

Gatehouse AMR, Down RE, Powell KS, Sauvion N, RahbT Y, Newell CA, Merryweather A, Hamilton WDO, Gatehouse JA, 1996. Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomologia Experimentalis et Applicata, 79(3):295-307; 53 ref.

Ghosh AK, 1975. Aphids of economic importance in India. Calcutta, India: The Agricultural Society of India.

Ghosh LK, Verma KD, 1990. Discovery of sexual female of Myzus persicae (Sulzer) (Homoptera: Aphididae) with redescription of its alate male in India. Journal of Aphidology, 4(1-2):30-35.

Gibson RW, Pickett JA, 1983. Wild potato repels aphids by release of aphid alarm pheromone. Nature, UK, 302(5909):608-609

Gilkeson LA, Hill SB, 1987. Release rates for control of green peach aphid (Homoptera: Aphidae) by the predatory midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae) under winter greenhouse conditions. Journal of Economic Entomology, 80(1):147-150.

Glenn DM, Puterka GJ, 2005. Particle films: a new technology for agriculture. Horticultural Reviews, 31:1-44.

Granges A, Leger A, 1995. Seven years of experiments on biological-integrated control on tomatoes and cucumbers under glass at the Fougeres Centre at Conthey. Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, 27(3):189-191.

Griffiths DC, Pickett JA, Smart LE, Woodcock CM, 1989. Use of insect antifeedants against aphid vectors of plant virus disease. Pesticide Science, 27(3):269-276; 22 ref.

Gu ChunBo, Wang Gang, Wang KaiYun, Ma Hui, Guo QingLong, 2006. Studies on the resistance level of Myzus persicae (Sulzer) in main tobacco regions of southwestern China. Acta Phytophylacica Sinica, 33(1):77-80. http://www.wanfangdata.com.cn

Gupta BM, Yadava CPS, 1989. Role of coccinellid predators in regulating the aphid Myzus persicae (Sulzer) population on cumin in field. Indian Journal of Entomology, 51(1):24-28.

Gupta BM, Yadava CPS, 1990. Seasonal incidence of aphid Myzus persicae (Sulzer) on cumin in semi arid Rajasthan. Indian Journal of Entomology, 52(3):465-469.

Hagvar EB, Hofsvang T, 1991. Aphid parasitoids (Hymenoptera, Aphidiidae): biology, host selection and use in biological control. Biocontrol News and Information, 12(1):13-42

Halima-Kamel MBB, Hamouda MHB, 1993. Aphids from protected crops and their enemies in Tunisia. Tropicultura, 11(2):50-53.

Hander CA, McLeod PJ, Scott HA, 1993. Incidence of aphids (Homoptera: Aphididae) and associated potyviruses in summer squash in Arkansas. Journal of Entomological Science, 28(1):73-81.

Harrewijn P, Ouden Hden, Piron PGM, 1991. Polymer webs to prevent virus transmission by aphids in seed potatoes. Entomologia Experimentalis et Applicata, 58(2):101-107.

Harrington R, Dewar AM, George B, 1989. Forecasting the incidence of virus yellows in sugar beet in England. Annals of Applied Biology, 114(3):459-469.

Heie OE, 1994. The Aphidoidea of Fennoscandia and Denmark. V. Family Aphididae: Part 2 of tribe Macrosiphini of subfamily Aphidinae. Fauna Entomologica Scandinavica, 28:1-242.

Herron GA, Rophail J, 1994. Insecticide resistance detected in Myzus persicae (Sulzer) (Hemiptera: Aphididae) from New South Wales cotton. Journal of the Australian Entomological Society, 33(3):263-264.

Hockland S, Hines C, Furk C, Devonshire AL, Devine GJ, Dewar AM, Read LA, 1992. Monitoring insecticide resistance of aphids in sugar beet and potatoes in England and Wales 1982-1991. Aspects of Applied Biology, No. 32:81-88; 14 ref.

Howling GG, Bale JS, Harrington R, 1994. Effects of extended and repeated exposures to low temperature on mortality of the peach-potato aphid Myzus persicae. Ecological Entomology, 19(4):361-366.

Hu GuanFa, Liu MinYan, Zhang XinRui, Zhang YueLian, 2004. Screening of susceptible colonies of Myzus persicae and their evolution insecticide resistance. Plant Protection, 30(4):50-53.

Hulle M, Robert Y, Gamon A, 1987. Developing the AGRAPHID database, the permanent suction trap network for monitoring alate aphids. Comptes Rendus de l'Academie d'Agriculture de France, 73(7):59-70.

Ilharco FA, 1982. Aphidofauna Aeoriana: Comentarios zoogeograficos. Boletim da Sociedade Portuguese de Entomologia, 7:275-285.

Kaakeh W, Hogmire HW, 1991. Biology and control of green peach aphid Myzus persicae (Sulzer), on peach in West Virginia, USA. Arab Journal of Plant Protection, 9(2):128-124

Kish LP, Majchrowicz I, Biever KD, 1994. Prevalence of natural fungal mortality of green peach aphid (Homoptera: Aphididae) on potatoes and nonsolanaceous hosts in Washington and Idaho. Environmental Entomology, 23(5):1326-1330

Kumar A, Kapoor VC, Laska P, 1987. Immature stages of some aphidophagous syrphid flies of India (Insecta, Diptera, Syrphidae). Zoologica Scripta, 16(1):83-88

Kumar KP, Reddy DJ, Narendranath VV, 2001. Bio-efficacy of selected insecticides against pest complex in chilli (Capsicum annuum Linn). Pesticide Research Journal, 13(1):36-41.

Kumar NKK, Singh HS, Kalleshwaraswamy CM, 2010. Aphid (Aphididae: Homoptera) vectors of Papaya ringspot virus (PRSV), bionomics, transmission efficiency and factors contributing to epidemiology. Acta Horticulturae [II International Symposium on Papaya, Madurai, India, 9-12 December 2008.], No.851:431-443. http://www.actahort.org/books/851/851_67.htm

Kuo MH, 1991. The effect of temperature and host plant on development and reproduction by Myzus persicae (Sulzer). Chinese Journal of Entomology, 11(2):118-129

Lakra BS, 2004. Health status of potato crop in Haryana - an overall view. Haryana Journal of Horticultural Sciences, 33(3/4):294-296.

Li ZZ, Fan MZ, Qin CZ, 1992. New species and new records of Entomophthorales in China. Acta Mycologica Sinica, 11(3):182-187

Liu AiZhi, Li SuJian, Wu YuQing, Li ShiGong, 2000. Comparison of the effects of several insecticides of a new type for controlling Myzus persicae. Plant Protection, 26(4):50.

Loebenstein G, Manadilova A, 2003. Potatoes in the Central Asian Republics. In: Virus and virus-like diseases of major crops in developing countries [ed. by Loebenstein, G.\Thottappilly, G.]. Dordrecht, Netherlands: Kluwer Academic Publishers, 195-222.

Lowery DT, Isman MB, Brard NL, 1993. Laboratory and field evaluation of neem for the control of aphids (Homoptera: Aphididae). Journal of Economic Entomology, 86(3):864-870

Mackauer M, Way MY, 1976. Myzus persicae Sulz., an aphid of world importance. In: Delucchi VF, ed. Studies in Biological Control. Cambridge, UK: Cambridge University Press, 51-119.

Mandal SMA, Patnaik NC, 2006. Insect pests and natural enemies associated with cabbage in the coastal belt of Orissa. Journal of Plant Protection and Environment, 3(1):76-80.

Margaritopoulos JT, Tsitsipis JA, Goudoudaki S, Blackman RL, 2002. Life cycle variation of Myzus persicae (Hemiptera: Aphididae) in Greece. Bulletin of Entomological Research, 92(4):309-319.

Martins Ddos S, Ventura JA, Paula Rde CAL, Fornazier MJ, Rezende JAM, Culik MP, Ferreira PSF, Peronti ALBG, Carvalho RCZde, Sousa-Silva CR, 2016. Aphid vectors of Papaya ringspot virus and their weed hosts in orchards in the major papaya producing and exporting region of Brazil. Crop Protection, 90:191-196. http://www.sciencedirect.com/science/journal/02612194

Michelotto MD, Busoli AC, 2003. Aphids diversity on cotton field in Campo Verde, Mato Grosso State. Bragantia, 62(1):75-79.

Millar IM, 1994. A catalogue of the aphids (Homoptera: Aphidoidea) of sub-Saharan Africa. Plant Protection Research Institute Handbook No. 4. Pretoria, South Africa: Agricutural Research Council.

Musa F, Carli C, Karic N, 2003. Distribution of the aphids in potato crop in the climatic condition of Kosovo. (Rasprostranjenost lisnih usiju na usjevima krompira u klimatskim uvjetima Kosova.) Radovi Poljoprivrednog Fakulteta Univerziteta u Sarajevu (Works of the Faculty of Agriculture University of Sarajevo), 48(52):69-82.

Muška F, 2007. Damaging presence of aphids on sugarbeet and beet in Czech Republic - historical summary until 2005. (Škodlivé výskyty mšic na cukrové a krmné repe na území Ceské republiky - historický prehled do roku 2005.) Listy Cukrovarnické a Reparské, 123(9/10):284-287. http://www.cukr-listy.cz

Nakata T, 1995. Population fluctuations of aphids and their natural enemies on potato in Hokkaido, Japan. Applied Entomology and Zoology, 30(1):129-138

Nauen R, 1995. Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pesticide Science, 44(2):145-153

Nieto Nafria JM, Mier Durante MP, Carnero Hernandez A, 1977. The aphid fauna of Macaronesia. In: Nieto Nafria JM, Mier Durante MP, Hernandez AC, ed. Nafria, J. M. Nieto; Durante, M. P. Mier: Studies on the aphids of the Canary Islands and of Macaronesia.: Estudios afidologicas de las Islas Canarias y de la Macaronesia. Cabildo Insular de Tenerife. Canary Islands, 55-65

Pajmon A, 1997. Appearance of aphids in seed potato crops. Sodobno Kmetijstvo, 30(2):75-78.

Parker WE, 2005. The direct feeding effects of aphids (Macrosiphum euphorbiae and Myzus persicae) on the yield of potato crops in the UK. Aspects of Applied Biology [Production and protection of sugar beet and potatoes, Homerton College, Cambridge, UK, 15 to 16 December 2005.], No.76:167-174.

Patel RK, Thakur BS, 2005. Insect pest complex and seasonal incidence in linseed with particular reference to bud fly (Dasineura lini Barnes). Journal of Plant Protection and Environment, 2(2):102-107.

Peric P, Marcbreve~ic D, Prijovic M, Ogurlic I, Andric G, 2009. Effectiveness of biorational pesticides for controlling some vegetable pests in Serbia. Acta Horticulturae [Proceedings of the IV Balkan Symposium on Vegetables and Potatoes, Plovdiv, Bulgaria, 9-12 September 2008.], No.830:531-538. http://www.actahort.org/books/830/830_76.htm

Pokhraj Patel, Ganguli RN, Jayalaxmi Ganguli, Dubey VK, 2005. Pest succession in cabbage at Raipur, Chhattisgarh (India). Journal of Applied Zoological Researches, 16(1):28-29.

Powell W, Pell JK, 2007. Biological control. In: Aphids as crop pests [ed. by Emden, H. F. van\Harrington, R.]. Wallingford, UK: CABI, 469-513. http://www.cabi.org/cabebooks/ebook/20073204001

Prishchepa IA, Kolyadko NN, Novikova OT, Naumova GV, 2003. On the possibility of using preparations of plant origin for protection of vegetables from pests. Vestsi¯ Natsyyanal'nai Akademii Navuk Belarusi¯. Seryya Agrarnykh Navuk, No.3:61-65.

Radonjic S, Hrncic S, 2011. An overview of invasive species on vegetables in greenhouses in southern part of Montenegro. IOBC/WPRS Bulletin [Proceedings of the IOBC/WPRS Working Group "Integrated Control in Protected crops, Temperate Climate", Sutton Scotney, UK, 18-22 September 2011.], 68:153-157. http://www.iobc-wprs.org/pub/bulletins/bulletin_2011_68_table_of_contents_abstracts.pdf

Raj BT, 1989. Seasonal abundance of natural enemies of aphids infesting potato crop. Journal of Aphidology, 3(1-2):157-161

Ram Kishore, Parihar SBS, 2002. Aphids species infesting tomato and brinjal crops. Insect Environment, 8(1):8-9.

Rashmi Pandey, Kuldeep Sharma, Deepti Chaudhari, Mayank Rai, 2008. Effect of weather parameters on incidence of Bemisia tabaci and Myzus persicae on potato. Annals of Plant Protection Sciences, 16(1):78-80. http://www.indianjournals.com/ijor.aspx?target=ijor:apps&type=home

Reinhardt I, Kastirr R, Richter J, 1988. Studies on the detection by ELISA of beet yellows virus in its vector Myzus persicae (Sulz.). Archiv fur Phytopathologie und Pflanzenschutz, 24(6):467-473

Remaudiere G, Autrique A, 1985. Contribution à l'écologie des aphides africains. étude FAO Production Végétale et Protection des Plantes, 64: 1-214. Rome, Italy: FAO.

Remaudiere G, Remaudiere M, 1997. Catalogue of the world's Aphididae: Homoptera Aphidoidea. Catalogue des Aphididae du monde: Homoptera Aphidoidea., 473 pp.; 1275 ref.

Remaudiere G, Weemaels N, Nicolas J, 1991. Contribution to the knowledge of the aphid fauna of Bolivia (Homoptera: Aphididae). Parasitica, 47(1):19-46

Sexson DL, Wyman J, Radcliffe EB, Hoy CJ, Ragsdale DW, Dively GP, 2005. .

Shantibala T, Singh TK, Shah MAS, 2007. Insect pest complex of pea crop (Pisum sativum Linn.) and their succession in agro-ecosystem of Manipur. Uttar Pradesh Journal of Zoology, 27(1):75-81.

Sigaran Tarrago MF, Bredemeier D, Schafer PP, 1994. Chemical control of the aphid Myzus persicae (Sulzer, 1776) (Homoptera - Aphididae) in tobacco crop. Ciencia Rural, 24(2):253-256

Smith CF, Cermeli MM, 1979. An annotated list of Aphididae (Homoptera) of the Caribbean Islands and South and Central America. Technical Bulletin, North Carolina Agricultural Research Service, No. 259:[+]131 pp.

Smith CF, Parron CS, 1978. An annotated list of Aphididae (Homoptera) of North America. Technical Bulletin, North Carolina Agricultural Experiment Station, No. 255:viii+428 pp.

Song ChunMan, Wu XingFu, Deng JianHua, Lei ChaoLiang, 2006. Monitoring insecticide resistance of Myzus persicae in tobacco fields in Yunnan. Chinese Bulletin of Entomology, 43(4):500-503.

Stoner KA, 1992. Density of imported cabbageworms (Lepidoptera: Pieridae), cabbage aphids (Homoptera: Aphididae), and flea beetles (Coleoptera: Chrysomelidae) on glossy and trichome-bearing lines of Brassica oleracea. Journal of Economic Entomology, 85(3):1023-1030

Tabilio MR, Vita G, 1995. Osservazioni preliminari sulla possibilita di contenere gli afidi del pesco in pieno campo, con l'ausilio della Forficula decipiens Gene. Italus-Hortus, 2(5-6):28-31.

Takada H, Tamura M, 1987. Occurrence of tobacco-specific forms of Myzus persicae (Homoptera, Aphididae). Kontyu, 55(4):573-586

Tamaki G, Butt BA, Landis BJ, 1970. Arrest and aggregation of male Myzus persicae (Hemiptera: Aphididae). Annals of the Entomological Society of America, 63:955-960.

Tao CC, 1991. Aphid Fauna of Taiwan Province, China. Taipei, Taiwan: Provincial Museum.

Trivedi TP, Khurana SMP, Puri SN, Bhar LM, Mehta SC, Jain RC, Singh G, Chaudhari SM, Mohasin M, Dhandapani A, Naveen Chona, 2002. Development of forewarning system of potato aphid (Myzus persicae) on potato (Solanum tuberosum) in India. Indian Journal of Agricultural Sciences, 72(6):341-345.

UC (University of California), 1986. IPM for Potatoes in the Western United States. University of California, Division of Agriculture and Natural Resources, Oakland, Statewide Integrated Pest Mangement Project, Pub. No. 3316.

US Fish and Wildlife Service, 2003. In: Mead's Milkweed (Asclepias meadii) Recovery Plan. US Fish and Wildlife Service, 131 pp.. http://ecos.fws.gov/docs/recovery_plan/030922b.pdf

Vallejo RL, Collins WW, Moll RH, 1994. Inheritance of A and B glandular trichome density and polyphenol oxidase activity in diploid potatoes. Journal of the American Society for Horticultural Science, 119(4):829-832; 25 ref.

van Emden HF, Eastop VF, Hughes HD, Way MJ, 1969. The ecology of Myzus persicae. Annual Review of Entomology, 14:197-270.

Vereshchagin BV, Andreev AV, Vereshchagina AB, 1985. Aphids of Moldavia. Kishinev, USSR; "Shtiintsa", 157pp.

Verma KD, Das SM, 1992. The Aphidididae of North-West India. New Delhi, India: Ashish Publishing House.

Wang DS, Kuang KY, Wu SC, Zhu ZY, Yuan YD, Chen YL, Yang XQ, 2000. The occurrence and control of dominant insect pests and diseases on sweet pepper in advanced greenhouses. Acta Agriculturae Shanghai, 16(Supplement):10-16.

Wang YouNian, Xing YanFeng, Zhou ShiLong, Meng HaiLing, Guan Wei, Shi GuangLu, 2009. Structure, dynamics and niche of dominant population of insect community in peach orchards of Beijing. Scientia Silvae Sinicae, 45(4):88-94. http://lyke.chinajournal.net.cn

Waterhouse DF, 1993. The Major Arthropod Pests and Weeds of Agriculture in Southeast Asia. ACIAR Monograph No. 21. Canberra, Australia: Australian Centre for International Agricultural Research, 141 pp.

Xin YF, 1986. Propagation of Aphidius qifuensis Ashmead using green peach aphid for greenhouse aphid control. Chinese Journal of Biological Control, 2(3):108-111

Distribution Maps

Top of page
You can pan and zoom the map
Save map