Invasive Species Compendium

Detailed coverage of invasive species threatening livelihoods and the environment worldwide


Meloidogyne enterolobii
(Pacara earpod tree root-knot nematode)



Meloidogyne enterolobii (Pacara earpod tree root-knot nematode)


  • Last modified
  • 26 April 2019
  • Datasheet Type(s)
  • Invasive Species
  • Pest
  • Natural Enemy
  • Preferred Scientific Name
  • Meloidogyne enterolobii
  • Preferred Common Name
  • Pacara earpod tree root-knot nematode
  • Taxonomic Tree
  • Domain: Eukaryota
  •   Kingdom: Metazoa
  •     Phylum: Nematoda
  •       Family: Meloidogynidae
  •         Genus: Meloidogyne
  • There are no pictures available for this datasheet

    If you can supply pictures for this datasheet please contact:

    CAB International
    OX10 8DE
  • Distribution map More information

Don't need the entire report?

Generate a print friendly version containing only the sections you need.

Generate report


Top of page

Preferred Scientific Name

  • Meloidogyne enterolobii Yang & Eisenback, 1983

Preferred Common Name

  • Pacara earpod tree root-knot nematode

Other Scientific Names

  • Meloidogyne mayaguensis Rammah & Hirschmann, 1988

Taxonomic Tree

Top of page
  • Domain: Eukaryota
  •     Kingdom: Metazoa
  •         Phylum: Nematoda
  •             Family: Meloidogynidae
  •                 Genus: Meloidogyne
  •                     Species: Meloidogyne enterolobii

Notes on Taxonomy and Nomenclature

Top of page

Meloidogyne enterolobii was described from roots of pacara earpod tree (Enterolobium contortisiliquum) on Hainan Island in China (Yang and Eisenback, 1983). On the basis of female perineal patterns, it was preliminary identified as Meloidogyne incognita, and further analysis indicated some resemblance with the latter species; however, from a morphological point of view, the population was very different from M. incognita and any other described root-knot nematode species (Yang and Eisenback, 1983). A few years later, a new species of root-knot nematode was described from specimens recovered from galled roots of aubergines (Solanum melongena) in Puerto Rico, and named Meloidogyne mayaguensis (Rammah and Hirschmann, 1988). The authors indicated that 'M. mayaguensis superficially resembles M. enterolobii but differs distinctly from it in (some) morphological features' (Rammah and Hirschmann, 1988). In addition, the esterase phenotype of M. mayaguensis (VS1-S1) was identical to that of M. enterolobii (Esbenshade and Triantaphyllou, 1985; Rammah and Hirschmann, 1988). In 2012, Karssen et al. (2012) compared holo- and paratypes of both species and confirmed that M. mayaguensis should be considered as a junior synonym of M. enterolobii.


Top of page

The original description was made from a population that seriously damaged pacara earpod trees (Enterolobium contortisiliqum) on Hainan Island in China (Yang and Eisenback, 1983), following a preliminary (false) identification from perineal patterns of females that indicated the presence of Meloidogyne incognita. The morphological characters from female, male and second-stage juvenile stages, as published in the original description, are detailed below.


Body white, pear-shaped to globular, variable in size, with prominent neck variable in size, without posterior protuberance. Head region not distinctly set off from neck. Labial disc and medial lips fuse to form head cap. Hexaradiate cephalic framework distinct but weak; vestibule and vestibule extension prominent. Cephalids and hemizonids not observed. Position of excretory pore variable, often near metacorpus. Cuticular body annulations become progressively finer posteriorly. Stylet slender; conical portion slightly curved dorsally, tapering toward tip; cylindrical shaft, posterior end often enlarged. Knobs set off from shaft, distinct from each other, and divided longitudinally by groove so that each knob appears as two. Dorsal oesophageal gland orifice (DGO) 4-6 µm from base of stylet knobs; orifice branches into three channels; dorsal gland ampula large. Subventral gland orifices branched, located immediately posterior to enlarged lumen lining of metacorpus; subventral gland ampula small but distinct. Oesophageal gland comprised of one large uninucleate dorsal oesophageal gland lobe; two small, nucleated subventral oesophageal gland lobes usually posterior to dorsal gland lobe but variable in position, shape and size; all three lobes overlap intestine ventrally. Two small, rounded, singly nucleated oesophago-intestinal cells located between metacorpus and intestine. Perineal pattern usually oval, with coarse and smooth striae; dorsal arch moderately high to high, often rounded, nearly square in some specimens. Lateral lines not distinct. Perivulval region generally free of striae; striae may occur on lateral sides of vulva. Striae on ventral area of pattern generally finer and smoother. Tail tip visible; phasmidial ducts large.


Body translucent white, vermiform, tapering at both ends. Tail end more rounded than anterior end, twisting through 90° in heat-killed specimens. In lateral view, head cap high and rounded, head region only slightly set off from body. Hexaradiate cephalic framework moderately developed; vestibule and extension distinct. In SEM, stoma slit-like, prestoma hexagonal, surrounded by pit-like openings of six inner labial sensilla. Labial disc and medial lips fuse, forming elongate head cap and labial disc slightly elevated above medial lips. Four cephalic sensilla marked on medial lips by shallow cuticular depressions. Amphid openings slit-like; lateral lips absent; head region not annulated; body annules distinct. Lateral field begins near level of stylet knobs as two incisures; two additional incisures start near level of metacorpus; lateral field areolated, encircles tail. Stylet robust; cone straight, pointed; opening located several micrometres from tip. Shaft cylindrical; knobs large, rounded, distinctly set off from shaft; in some specimens each knob is divided longitudinally by groove so that each knob appears as two but not as pronounced as in female. Distance of GDO to stylet base long, orifice branched into three channels, ampulla poorly defined. Procorpus distinct; metacorpus elongate, oval with enlarged cuticular lumen lining; oesophago-intestinal junction indistinct, at leveI of nerve ring. Gland lobe variable in length, with two nuclei. Excretory pore far from anterior end, terminal duct long. Hemizonid 2-4 annules anterior to excretory pore. One or two testes, usually outstretched. Spicules arcuate, with rounded base, single tip. Gubernaculum short and simple. Tail short and rounded. Phasmids small, pore-like, at level of cloaca. 

Second–Stage Juvenile (J2)

Body translucent white, vermiform, rather long, tapering at both ends with very long, narrow tail. Anterior end truncate; head region only slightly set off from body. Vestibule and extension more developed than remainder of hexaradiate cephalic framework. In SEM, stoma slit-like, located in oval prestoma, surrounded by six pore-like openings of inner labial sensilla. Medial lips and labial disc dumbbell-shaped in face view. Labial disc rounded, raised slightly above medial lips. Lateral lips large and triangular, lower than labial disc and medial lips. Posterior edge of one or both lateral lip may fuse with tile head region in some specimens. Elongate amphidial apertures located between labial disc and lateral lips. Head region not annulated; body annules distinct but fine. Lateral field beginning near level of procorpus as two lines; near metacorpus third line begins and shortly splits making four lines, running entire length of body before gradually decreasing to two lines which end near hyaline tail terminus, irregularly areolated. In LM, stylet delicate; cone straight, narrow, sharply pointed; shaft becomes slightly wider posteriorly; knobs large, rounded, separate from each other, set off from shaft. Distance from base of stylet to dorsal oesophageal gland orifice long; orifice branched into three channels; ampulla indistinct. Procorpus faintly outlined; metacorpus oval with enlarged lumen lining; isthmus not clearly defined oesophago-intestinal junction difficult to observe. Gland lobe variable in length, with three equal-sized nuclei; overlaps intestine ventrally. Excretory pore distinct; hemizonid 1-2 annules anterior to excretory pore, 3-5 annules long; cuticle slightly raised over hemizonid. Tail very thin; annulations increase in size, become more irregular posteriorly. Hyaline tail terminus clearly defined; tail tip broad, bluntly rounded. Rectum dilated. A few fat droplets may occur in hyaline tail terminus. Phasmids small, difficult to observe, located posterior to anus.


Top of page

M. enterolobii is largely distributed in regions with typical tropical climatic conditions, including Asia, Africa, South and Central America and the Caribbean. It has also been reported from areas of North America exhibiting a warmer climate, e.g., Florida and North Carolina (Kaur et al., 2006; Ye et al., 2013). Because of its thermal requirements, M. enterolobii will probably not survive in colder regions. However, it might be able to establish in Mediterranean climates or in greenhouses (e.g., the nematode was detected on vegetables in greenhouses in Switzerland; Kiewnick et al., 2008). M. enterolobii has been intercepted on several occasions in a few European countries in plant materials imported from tropical areas. 

Distribution Table

Top of page

The distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.

Continent/Country/RegionDistributionLast ReportedOriginFirst ReportedInvasiveReferenceNotes


ChinaPresentZhang, 1987; Jindapunnapat et al., 2013; CABI/EPPO, 2014
-FujianPresentXiao et al., 2018
-GuangdongPresentYang, 1984; CABI/EPPO, 2014; Gao et al., 2014
-HainanPresentYang and Eisenback, 1983; Liu et al., 2005; Zhuo et al., 2010; CABI/EPPO, 2014; Long et al., 2014; Long et al., 2015
-LiaoningPresentNiu et al., 2012; CABI/EPPO, 2014
-ShandongPresentZhang, 1987; CABI/EPPO, 2014
-YunnanPresentWang et al., 2015
IndiaRestricted distributionEPPO, 2018
-Tamil NaduPresentEPPO, 2018
SingaporePresentAnonymous, 2010; CABI/EPPO, 2014
ThailandRestricted distributionJindapunnapat et al., 2013; CABI/EPPO, 2014
VietnamPresentIwahori et al., 2009; CABI/EPPO, 2014


Burkina FasoRestricted distributionTrudgill et al., 2000; Blok et al., 2002; CABI/EPPO, 2014
Côte d'IvoirePresentFargette, 1987; Blok et al., 2002; CABI/EPPO, 2014
KenyaPresentKaruri et al., 2017
MalawiRestricted distributionTrudgill et al., 2000; Blok et al., 2002; CABI/EPPO, 2014
NigeriaPresentKolombia et al., 2016
SenegalPresentDuponnois et al., 1997; Gueye et al., 1997; Trudgill et al., 2000; CABI/EPPO, 2014
South AfricaPresentWillers, 1997; Onkendi and Moleleki, 2013; CABI/EPPO, 2014
TogoPresentFargette, 1987; CABI/EPPO, 2014

North America

MexicoPresentRamírez-Suárez et al., 2014; Villar-Luna et al., 2016
USARestricted distributionCABI/EPPO, 2014
-FloridaPresentKaur et al., 2006; Cetintas et al., 2008; Han et al., 2012; CABI/EPPO, 2014
-North CarolinaRestricted distributionYe et al., 2013; CABI/EPPO, 2014
-South CarolinaPresent, few occurrences2018Rutter et al., 2019

Central America and Caribbean

Costa RicaPresentHumphreys et al., 2012; CABI/EPPO, 2014
CubaWidespreadDecker and Rodriguez, 1989; Rodríguez et al., 1995; Cuadra et al., 1999; Rodríguez et al., 1999; Molinari et al., 2005; CABI/EPPO, 2014
GuadeloupePresentRammah and Hirschmann, 1988; CABI/EPPO, 2014
GuatemalaPresentCarneiro et al., 2000; Carneiro et al., 2004; CABI/EPPO, 2014
MartiniquePresentQuénéhervé et al., 2011; CABI/EPPO, 2014
Puerto RicoWidespreadRammah, 1989; Brito et al., 2004; CABI/EPPO, 2014
Trinidad and TobagoRestricted distributionTrudgill et al., 2000; Blok et al., 2002; CABI/EPPO, 2014

South America

BrazilWidespreadAlmeida et al., 2012; Gomes et al., 2012; Jindapunnapat et al., 2013; CABI/EPPO, 2014; Rosa et al., 2014
-AlagoasPresent2010Castro and Santana, 2010; CABI/EPPO, 2014
-BahiaPresentGuimarães et al., 2003; CABI/EPPO, 2014
-CearaPresentTorres et al., 2005; CABI/EPPO, 2014
-GoiasPresentSiqueira et al., 2009; CABI/EPPO, 2014
-MaranhaoPresent2008Silva et al., 2008; CABI/EPPO, 2014
-Mato GrossoPresentAlmeida et al., 2008; Paes et al., 2012; CABI/EPPO, 2014
-Mato Grosso do SulPresentReis et al., 2011; CABI/EPPO, 2014
-Minas GeraisPresent2007Oliveira et al., 2007; Silva and Oliveira, 2010; Almeida and Santos, 2011; CABI/EPPO, 2014
-ParanaPresentCarneiro et al., 2006; CABI/EPPO, 2014
-PernambucoPresentGuimarães et al., 2003; Maranhão et al., 2003; Carneiro et al., 2004; CABI/EPPO, 2014
-PiauiPresentSilva et al., 2006; Sousa et al., 2012; CABI/EPPO, 2014
-Rio de JaneiroPresentAlmeida et al., 2011a; Marques et al., 2012; CABI/EPPO, 2014
-Rio Grande do NortePresentTorres et al., 2004; Torres et al., 2007; CABI/EPPO, 2014
-Rio Grande do SulPresentGomes et al., 2008; CABI/EPPO, 2014
-Santa CatarinaPresentGomes et al., 2008; CABI/EPPO, 2014
-Sao PauloPresentAlmeida et al., 2011b; Almeida et al., 2008; Almeida et al., 2010; CABI/EPPO, 2014
-TocantinsPresent2009Charchar et al., 2009; CABI/EPPO, 2014
VenezuelaPresentLugo et al., 2005; Perichi and Crozzoli, 2010; CABI/EPPO, 2014


FranceAbsent, formerly presentEPPO, 2008; CABI/EPPO, 2014
NetherlandsAbsent, intercepted onlyNPPO of the Netherlands, 2013Absent, intercepted only, confirmed by survey. 75 survey observations in 2012.
SwitzerlandPresent, few occurrences2008Kiewnick et al., 2008; Kiewnick et al., 2009; CABI/EPPO, 2014

Risk of Introduction

Top of page

As a root-knot nematode species, M. enterolobii can easily be transmitted with soil and plant material. Infested soil and growing media, plants for planting, bulbs and tubers from countries where M. enterolobii occurs are the most probable pathways of introduction into different regions. Soil attached to machinery, tools, footwear or plant products is also another possible pathway. The recent interception of this pest in several countries in Europe and the Mediterranean region (Germany, The Netherlands, UK) illustrates that it has the potential to enter different regions. In addition, M. enterolobii could survive under glasshouse conditions across regions with a sub-Mediterranean or a continental climate. Once root-knot nematodes have been introduced, it is generally difficult to control or eradicate them. Only in the EPPO region has this nematode been listed as a quarantine pest (EPPO A2 list No.361).

Hosts/Species Affected

Top of page

M. enterolobii is considered to be a highly polyphagous species, with a host range similar to that of Meloidogyne incognita (Yang and Eisenback, 1983). The most frequently recorded hosts include many vegetables, e.g., tomato, pepper and watermelon (Yang and Eisenback, 1983; Rammah and Hirschmann, 1988) but also guava (Gomes et al., 2011), ornamental plants (Brito et al., 2010) and weeds (Rich et al., 2009). Of particular concern is the ability of M. enterolobii to develop on crop genotypes carrying resistance to the major Meloidogyne species, among which are resistant cotton, sweet potato, tomatoes (Mi-1 gene), potato (Mh gene), soyabean (Mir1 gene), bell pepper (N gene), sweet pepper (Tabasco gene) and cowpea (Rkgene) (Yang and Eisenback, 1983; Fargette and Braaksma, 1990; Berthou et al., 2003; Brito et al., 2007; Cetintas et al., 2008). Very few crop species have been recorded as non-hosts for M. enterolobii, including grapefruit, sour orange, garlic and peanut (Rodriguez et al., 2003; Brito et al., 2004).

Biology and Ecology

Top of page


M. enterolobii is a sedentary endoparasite. Its life-cycle is very similar to other root-knot nematodes, and can be summarized briefly as follows. The worms hatch in the soil as second-stage, infective juveniles (J2s) and migrate towards the root of their host plant, which they invade in the zone of elongation. There, they migrate intercellularly, first to the root apex and then to the vascular cylinder, where permanent feeding sites (i.e., giant cells) are established. Now sedentary, J2s further undergo three successive moults to develop into adults. The saccate (pyriform) females remain sedentary, producing large egg masses that are extruded in a gelatinous matrix out of the root, while males (if any) migrate out of the plant tissues (Abad et al., 2003). The life-cycle of M. enterolobii takes 4-5 weeks under favourable conditions and females produce around 400-600 eggs.


The reproduction of M. enterolobii is by mitotic parthenogenesis and the somatic chromosome number is 2n = 44-46. Most oocytes advance to metaphase and telophase soon after they have entered the uterus and show no extended prophase stage (Yang and Eisenback, 1983).

Impact Summary

Top of page
Economic/livelihood Negative
Environment (generally) Negative
Human health Negative

Economic Impact

Top of page

M. enterolobii is considered as a very damaging pest because of its wide host range, high reproduction rate and the induction of large galls (Castagnone-Sereno, 2012). Although few detailed studies are available, M. enterolobii is referred to as a highly aggressive species (i.e., a very successful parasitic species with high infestation rate on the roots of host plants) and induces more severe root galling than other root-knot nematode species. In a microplot experiment, tomato yield losses of up to 65% have been observed (Cetintas et al., 2007). In two greenhouses in Switzerland, yield losses of up to 50% and severe stunting of tomato rootstocks and cucumber were observed (Kiewnick et al., 2008). In heavily infested areas, cultivation may become unviable, as exemplified for guava in Brazil (Carneiro et al., 2007).


Top of page


A species-specific esterase phenotype (VS1-S1) with two major bands has been described for M. enterolobii, while occasionally, one of these bands could resolve into two minor bands (Esbenshade and Triantaphyllou, 1985; Carneiro et al., 2000). However, the limitation of this technique is that J2s cannot be reliably diagnosed, which hinders its use in e.g., routine examination of soil samples.

Molecular identification

In recent years, a number of molecular protocols have been developed that proved to be efficient in differentiating M. enterolobii from the most common root-knot nematode species, based on the presence/absence and/or size of the amplicons in PCR reactions. Conversely to isoenzyme electrophoresis, the interest of such PCR methods is that they can be applied to all developmental stages of nematodes. The molecular targets chosen in the various protocols available mainly include mitochondrial DNA (Block et al., 2002; Brito et al., 2004; Xu et al., 2004), ribosomal DNA (Adam et al., 2007), satellite DNA (Randig et al., 2009) and an anonymous SCAR marker (Tigano et al., 2010).

Detection and Inspection

Top of page

Similar to other root-knot nematode species, M. enterolobii induces typical galls on the roots of infested plants. In case of severe attacks, extremely large and numerous galls can be found (Cetintas et al., 2007). Above-ground symptoms include stunted growth, wilting, leaf yellowing and deformation of plant organs. Overall, crop yield is reduced both qualitatively and quantitatively. In addition, M. enterolobii infestation may favour attacks of roots by secondary plant pathogens.

The presence of M. enterolobii in infested soil and plant material can de determined after extraction of the nematodes using conventional methods and microscopic examination. However, as morphological characters often overlap in root-knot nematode species, misidentification of species using morphology as the only criteria may occur. Alternatively, the use of biochemical and molecular tools, such as esterase profiling and DNA-based markers, has proven to be a good complement to provide reliable diagnostics in most cases.

Prevention and Control

Top of page

Due to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.

As is the case for other root-knot nematodes, general management strategies against M. enterolobii rely on a combination of prevention and control practices to achieve effective reduction of the nematode population density below a damage threshold enabling sustainable crop production. Reviews describing such general practices are available in recent literature (e.g., Coyne et al., 2009; Nyczepir and Thomas, 2009).

Basically, taking into account the banning of most chemical nematicides, growing resistant crops or non-host plants currently represents the best method for reducing M. enterolobii populations. However, the list of non-host plants for this species is very limited. In addition, resistance genes active against the major tropical root-knot nematode species (i.e., M. incognita, M. javanica and M. arenaria) do not control M. enterolobii, for example, in the case the Mi-1, N and Rk genes from tomato, pepper and cowpea, respectively. Therefore, some efforts have been devoted in recent years to the identification of new sources of resistance to M. enterolobii, with some success in perennial crops. A decade ago, a screening experiment using high and durable inoculum pressure indicated that Ma genes in Myrobolan plum, known to control the main tropical root-knot nematode species, also control resistance to M. enterolobii (Rubio-Cabetas et al., 1999). In peach, commercial rootstocks carrying the RMia resistance gene were shown resistant to the nematode in greenhouse evaluation tests (Nyczepir et al., 2008; Daniel Esmenjaud, pers. comm.). In guava trees, whose cultivation may suffer high damage in cases of heavy infestations, resistance has recently been identified in Psidium spp. accessions (de Almeida et al., 2009; Freitas et al., 2014). Clearly, search for new sources of resistance to M. enterolobii, especially in vegetables and annual crops, and their introgression into cultivars of agronomic interest, currently represent a major challenge to plant breeders worldwide.

Another alternative to chemical nematicides is based on the use of biocontrol agents, and several organisms have been investigated for their antagonistic effects against M. enterolobii. However, although some show promise, the results of all these studies require validation in various field conditions before a biological agent active against M. enterolobii may be commercially released.


Top of page

Abad P, Favery B, Rosso MN, Castagnone-Sereno P, 2003. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4(4):217-224

Adam MAM, Phillips MS, Blok VC, 2007. Molecular diagnostic key for identification of single juveniles of seven common and economically important species of root-knot nematode (Meloidogyne spp.). Plant Pathology, 56(1):190-197.

Almeida AM, Gomes VM, Souza RM, 2011. Greenhouse and field assessment of rhizobacteria to control guava decline. Bragantia, 70(4):837-842.

Almeida EJ, Alves GCS, Santos JM, Martins ABG, 2011. Records of Meloidogyne enterolobii on guava orchards and weeds in the State of São Paulo, Brazil. (Assinalamentos de meloidogyne enterolobii em goiabeira e em plantas invasoras no estado de São Paulo, Brasil.) Nematologia Brasileira, 35(1/2):50-52.

Almeida EJ, Santos JM, 2011. Occurrence of Meloidogyne enterolobii in the municipality of Uberlândia, State of Minas Gerais, Brazil. (Ocorrência de Meloidogyne enterolobii Yang & Eisenback, no município de Uberlândia, Minas Gerais, Brasil.) Bioscience Journal, 27(6):877-878.

Almeida EJ, Santos JM, Martins ABG, 2010. Population fluctuation of Meloidogyne enterolobii in guava (Psidium guajava) orchard. (Flutuação populacional de Meloidogyne enterolobii em pomar de goiabeira (Psidium guajava).) Nematologia Brasileira, 34(3):164-168.

Almeida EJde, Paes Vdos S, Barbosa BFF, Santos JMdos, Soares PLM, 2012. Eucalyptus clones reaction to Meloidogyne enterolobii. (Reação de clones de eucalipto a Meloidogyne enterolobii.) Nematologia Brasileira, 36(3/4):80-82.

Almeida EJde, Santos JMdos, Martins ABG, 2009. Resistance of guava and araça to Meloidogyne mayaguensis. (Resistência de goiabeiras e araçazeiros a Meloidogyne mayaguensis.) Pesquisa Agropecuária Brasileira, 44(4):421-423.

Almeida EJde, Soares PLM, Silva ARda, Santos JMdos, 2008. New records on Meloidogyne mayaguensis in Brazil and comparative study with M. incognita. (Novos registros sobre Meloidogyne mayaguensis no Brasil e estudo morfológico comparativo com M. incognita.) Nematologia Brasileira, 32(3):236-241

Anonymous, 2010. A new root-knot nematode - Meloidogyne enterolobii in Singapore. Pest News., Singapore: Agri-Food & Veterinary Authority of Singapore

Berthou F, Kouassi A, Bossis M, Dantec JP, Eddaoudi M, Ferji Z, Pellé R, Taghzouti M, Ellissèche D, Mugniéry D, 2003. Enhancing the resistance of the potato to Southern Root-knot Nematodes by using Solanum sparsipilum germplasm. Euphytica, 132(1):57-65

Blok VC, Wishart J, Fargette M, Berthier K, Phillips MS, 2002. Mitochondrial DNA differences distinguishing Meloidogyne mayaguensis from the major species of tropical root-knot nematodes. Nematology, 4(7):773-781; 31 ref

Brito J, Powers TO, Mullin PG, Inserra RN, Dickson DW, 2004. Morphological and molecular characterization of Meloidogyne mayaguensis isolates from Florida. Journal of Nematology, 36(3): 232-240

Brito JA, Kaur R, Cetintas R, Stanley JD, Mendes ML, Powers TO, Dickson DW, 2010. Meloidogyne spp. infecting ornamental plants in Florida. Nematropica, 40:87-103

Brito JA, Stanley JD, Kaur R, Cetintas R, Vito Mdi, Thies JA, Dickson DW, 2007. Effects of the Mi-1, N and Tabasco genes on infection and reproduction of Meloidogyne mayaguensis on tomato and pepper genotypes. Journal of Nematology, 39(4):327-332.

CABI/EPPO, 2014. Meloidogyne enterolobii. [Distribution map]. Distribution Maps of Plant Diseases, No.April. Wallingford, UK: CABI, Map 804 (Edition 2)

Carneiro RG, Mônaco APdo A, Moritz MP, Nakamura KC, Scherer A, 2006. Identification of Meloidogyne mayaguensis in guava and weeds, in loam soil in Paraná State. (Identificação de Meloidogyne mayaguensis em goiabeira e em plantas invasoras, em solo argiloso, no Estado do Paraná.) Nematologia Brasileira, 30(3):293-298

Carneiro RMDG, Almeida MRA, Quénéhervé P, 2000. Enzyme phenotype of Meloidogyne spp. populations. Nematology, 2:645-654

Carneiro RMDG, Cirotto PA, Quintanilha AP, Silva DB, Carneiro RG, 2007. Resistance to Meloidogyne mayaguensis in Psidium spp. accessions and their grafting compatibility with P. guajava cv. paluma. Fitopatologia Brasileira, 32(4):281-284.

Carneiro RMDG, Tigano MS, Randig O, Almeida MRA, Sarah JL, 2004. Identification and genetic diversity of Meloidogyne spp. (Tylenchida: Meloidogynidae) on coffee from Brazil, Central America and Hawaii. Nematology, 6(2):287-298.

Castagnone-Sereno P, 2012. Meloidogyne enterolobii (=M. mayaguensis): profile of an emerging, highly pathogenic, root-knot nematode species. Nematology, 14(2):133-138.

Castro JMC, Santana TAS, 2010. First record of Meloidogyne enterolobii on guava in the state of Alagoas, Brazil. (Primeiro registro de Meloidogyne enterolobii em Goiabeira no estado de Alagoas.) Nematologia Brasileira, 34(3):169-171.

Cetintas R, Brito JA, Dickson DW, 2008. Virulence of four Florida isolates of Meloidogyne mayaguensis to selected soybean genotypes. Nematropica, 38(2):127-136.

Cetintas R, Kaur R, Brito JA, Mendes ML, Nyczepir AP, Dickson DW, 2007. Pathogenicity and reproductive potential of Meloidogyne mayaguensis and M. floridensis compared with three common Meloidogyne spp. Nematropica, 37(1):21-31.

Charchar JM, Fonseca MEN, Boiteux LS, Lima Neto AF, 2009. Occurrence of Meloidogyne mayaguensis on guava in Tocantins State, Brazil. (Ocorrência de Meloidogyne mayaguensis em goiabeira no estado do Tocantins.) Nematologia Brasileira, 33(2):182-186

Coyne DL, Fourie HH, Moens M, 2009. Current and future management strategies in resource-poor farming. In: Root-knot nematodes [ed. by Perry, R. N.\Moens, M.\Starr, J. L.]. Wallingford, UK: CABI, 444-475.

Cuadra R, Pérez JA, Machado J, Vázquez J, 1999. Effect of Nemacur, Terracur and Furadan on root-knot nematodes in coffee plantations. (Efecto de la aplicación de Nemacur, Terracur y Furadan sobre nematodos de las agallas en plantaciones de cafeto.) Revista de Protección Vegetal, 14(2):111-115

Decker H, Rodriguez Fuentes M-E, 1989. The occurrence of root gall nematodes Meloidogyne mayaguensis on Coffea arabica in Cuba. Wissenschaftliche Zeitschrift der Wilhelm-Pieck-Universita^umlaut~t Rostock, Naturwissenschaftliche Reihe, 38(3):32-34; 6 ref

Duponnois R, Gueye M, Bâ AM, Sène V, 1997. Fungi control nematodes. Biological control in Senegal. (Champignons contre nématodes. Lutte biologique au Sénégal.) ORSTOM Actualités, No. 54:35-39

EPPO, 2008. An emerging root-knot nematode, Meloidogyne enterolobii: addition to the EPPO Alert List. EPPO Reporting Service, Issue 05, Item 2008/105, 2008/105. Paris, France: EPPO

EPPO, 2018. EPPO Global Database (available online).

Esbenshade PR, Triantaphyllou AC, 1985. Use of enzyme phenotypes for identification of Meloidogyne species. Journal of Nematology, 17(6-20)

European and Mediterranean Plant Protection Organization, 2011. Diagnostics: Meloidogyne enterolobii. Bulletin OEPP/EPPO Bulletin, 41(3):329-339.

Fargette M, 1987. Use of the esterase phenotype in the taxonomy of the genus Meloidogyne. 2. Esterase phenotypes observed in West African populations and their characterization. Revue de Nématologie, 10(1):45-55

Fargette M, Braaksma R, 1990. Use of the esterase phenotype in the taxonomy of the genus Meloidogyne. 3. A study of some "B" race lines and their taxonomic position. Revue de Nématologie, 13(4):375-386

Freitas VM, Correa VR, Motta FC, Sousa MG, Gomes ACMM, Carneiro MDG, Silva DB, Mattos JK, Nicole M, Carneiro RMDG, 2014. Resistant accessions of wild Psidium spp. to Meloidogyne enterolobii and histological characterization of resistance. Plant Pathology, 63(4):738-746.

Gao B, Wang RY, Chen SL, Li XH, Ma J, 2014. First report of root-knot nematode Meloidogyne enterolobii on sweet potato in China. Plant Disease, 98(5):702.

Gomes CB, Couto MEO, Carneiro RMDG, 2008. Occurrence of Meloidogyne mayaguensis on guava and tabacco in South of Brazil. (Registro de ocorrência de Meloidogyne mayaguensis em goiabeira e fumo no Sul do Brasil.) Nematologia Brasileira, 32(3):244-247

Gomes VM, Souza RM, Midorikawa G, Miller R, Almeida AM, 2012. Guava decline: evidence of nationwide incidence in Brazil. Nematropica, 42(1):153-162.

Gomes VM, Souza RM, Mussi-Dias V, Silveira SFda, Dolinski C, 2011. Guava decline: a complex disease involving Meloidogyne mayaguensis and Fusarium solani. Journal of Phytopathology, 159(1):45-50.

Gueye M, Duponnois R, Samb PI, Mateille T, 1997. Biological control by three strains of Arthrobotrys oligospora: characterization and effects on Meloidogyne mayaguensis parasitizing tomato in Senegal. (Etude de trois souches d'Arthrobotrys oligospora: caractérisation biologique et effets sur Meloidogyne mayaguensis parasite de la tomate au Sénégal.) Tropicultura, 15(3):109-115

Guimaraes LMP, Moura RM de, Pedrosa EMR, 2003. Meloidogyne mayaguensis parasitism on different plant species. Nematologia Brasileira, 27(2): 139-145

Han H, Brito JA, Dickson DW, 2012. First report of Meloidogyne enterolobii infecting Euphorbia punicea in Florida. Plant Disease, 96(11):1706.

Hernandez A, Fargette M, Sarah JL, 2004. Characterization of Meloidogyne spp. (Tylenchida: Meloidogynidae) from coffee plantations in Central America and Brazil. Nematology, 6(2):193-204.

Humphreys DA, Williamson VM, Salazar L, Flores-Chaves L, Gómez-Alpizar L, 2012. Presence of Meloidogyne enterolobii Yang & Eisenback (=M. mayaguensis) in guava and acerola from Costa Rica. Nematology, 14(2):199-207.

Iwahori H, Truc NTN, Ban DV, Ichinose K, 2009. First report of root-knot nematode Meloidogyne enterolobii on guava in Vietnam. Plant Disease, 93(6):675.

Jindapunnapat K, Chinnasri B, Kwankuae S, 2013. Biological control of root-knot nematodes (Meloidogyne enterolobii) in guava by the fungus Trichoderma harzianum. Journal of Developments in Sustainable Agriculture, 8(2):110-118.

Karssen G, Liao JL, Kan Z, Heese Evan, Nijs Lden, 2012. On the species status of the root-knot nematode Meloidogyne mayaguensis Rammah & Hirschmann, 1988. ZooKeys, No.181:67-77.

Karuri HW, Olago D, Neilson R, Mararo E, Villinger J, 2017. A survey of root knot nematodes and resistance to Meloidogyne incognita in sweet potato varieties from Kenyan fields. Crop Protection, 92:114-121.

Kaur R, Brito JA, Dickson DW, Stanley JD, 2006. First report of Meloidogyne enterolobii on Angelonia angustifolia. Plant Disease, 90:1113

Kiewnick S, Dessimoz M, Franck L, 2009. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. Journal of Nematology, 41(2):134-139.

Kiewnick S, Karssen G, Brito JA, Oggenfuss M, Frey JE, 2008. First report of root-knot nematode Meloidogyne enterolobii on tomato and cucumber in Switzerland. Plant Disease, 92(9):1370. HTTP://

Kolombia YA, Kumar PL, Claudius-Cole AO, Karssen G, Viaene N, Coyne D, Bert W, 2016. First report of Meloidogyne enterolobii causing tuber galling damage on white yam (Dioscorea rotundata) in Nigeria. Plant Disease, 100(11):2173-2174.

Liu Hao, Long Hai, Yan XiaoNing, Xu JianHua, 2005. Species identification and host range testing of a root-knot nematode infecting guava in Hainan Province. Journal of Nanjing Agricultural University, 28(4):55-59

Long HB, Bai C, Peng J, Zeng FY, 2014. First report of the root-knot nematode Meloidogyne enterolobii infecting Jujube in China. Plant Disease, 98(10):1451-1452.

Long HB, Sun YF, Bai C, Peng DL, 2015. First report of the root-knot nematode Meloidogyne enterolobii infecting jackfruit tree in China. Plant Disease, 99(12):1868.

Lugo Z, Crozzoli R, Molinari S, Greco N, Perichi G, Jiménez-Pérez N, 2005. Isozyme patterns of Venezuelan populations of Meloidogyne spp. (Patrones isoenzimáticos de poblaciones Venezolanas de Meloidogyne spp.) Fitopatología Venezolana, 18(2):26-29

Luquini, L., Barbosa, D., Ferreira, C., Rocha, L., Haddad, F., Amorim, E., 2019. First report of the root-knot nematode Meloidogyne enterolobii on bananas in Brazil. Plant Disease, 103(2), 377. doi: 10.1094/PDIS-04-18-0602-PDN

Maranhão SRVL, Moura RMde, Pedrosa EMR, 2003. Reaction of Psidium guineense genotypes to Meloidogyne incognita race 1, M. javanica and M. mayaguensis. (Reação de indivíduos segregantes de araçazeiro a Meloidogyne incognita raça 1, M. javanica e M. mayaguensis.) Nematologia Brasileira, 27(2):173-178

Marques MLda S, Pimentel JP, Tavares OCH, Veiga CFde M, Berbara RLL, 2012. Host suitability of different plant species to Meloidogyne enterolobii in the state of Rio de Janeiro. (Hospedabilidade de diferentes espécies de plantas a Meloidogyne enterolobii no estado do Rio de Janeiro.) Nematropica, 42(2):304-313.

Molinari S, Lamberti F, Crozzoli R, Sharma SB, Sánchez Portales L, 2005. Isozyme patterns of exotic Meloidogyne spp. populations. Nematologia Mediterranea, 33(1):61-65

Niu JH, Jian H, Guo QX, Chen CL, Wang XY, Liu Q, Guo YD, 2012. Evaluation of loop-mediated isothermal amplification (LAMP) assays based on 5S rDNA-IGS2 regions for detecting Meloidogyne enterolobii. Plant Pathology, 61(4):809-819.

Nyczepir AP, Brito JA, Dickson DW, Beckman TG, 2008. Host status of selected peach rootstocks to Meloidogyne mayaguensis. HortScience, 43(3):804-806.

Nyczepir AP, Thomas SH, 2009. Current and future management strategies in intensive crop production systems. In: Root-knot nematodes [ed. by Perry, R. N.\Moens, M.\Starr, J. L.]. Wallingford, UK: CABI, 412-443.

Oliveira RDde L, Silva MBda, Aguiar NDda C, Bérgamo FLK, Costa ASVda, Prezotti L, 2007. The influence of parasitic nematodes on okra crop in eastern Minas Gerais State, Brazil. (Nematofauna associada à cultura do quiabo na região leste de Minas Gerais.) Horticultura Brasileira, 25(1):88-93.

Onkendi EM, Moleleki LN, 2013. Distribution and genetic diversity of root-knot nematodes (Meloidogyne spp.) in potatoes from South Africa. Plant Pathology, 62(5):1184-1192.

Paes Vdos S, Soares PLM, Murakami DM, Santos JMdos, Barbosa BFF, Neves SS, 2012. Occurrence of Meloidogyne enterolobii on muricizeiro of (Byrsonima cydoniifolia). (Ocorrência de Meloidogyne enterolobii em muricizeiro (Byrsonima cydoniifolia).) Tropical Plant Pathology, 37(3):215-219.

Paes-Takahashi Vdos S, Soares PLM, Carneiro FA, Ferreira RJ, Almeida EJde, Santos JMdos, 2015. Detection of Meloidogyne enterolobii in mulberry seedlings (Morus nigra L.). (Detecção de Meloidogyne enterolobii em mudas de amoreira (Morus nigra L.).) Ciência Rural, 45(5):757-759.

Perichi G, Crozzoli R, 2010. Morphology, morphometry and differential host of populations of Meloidogyne from Aragua and Zulia State, Venezuela. (Morfología, morfométría y hospedantes diferenciales de poblaciones de Meloidogyne de los Estados Aragua y Zulia, Venezuela.) Fitopatología Venezolana, 23(1):5-15.

Quénéhervé P, Godefroid M, Mège P, Marie-Luce S, 2011. Diversity of Meloidogyne spp. parasitizing plants in Martinique Island, French West Indies. Nematropica, 41(2):191-199.

Ramírez-Suárez A, Rosas-Hernández L, Alcasio-Rangel S, Powers TO, 2014. First report of the root-knot nematode Meloidogyne enterolobii Parasitizing watermelon from Veracruz, Mexico. Plant Disease, 98(3):428.

Rammah A, 1989. Dissertation Abstracts International, B (Sciences and Engineering), 49(7)., USA: North Carolina State University, 2447

Rammah A, Hirschmann H, 1988. Meloidogyne mayaguensis n.sp. (Meloidogynidae), a root-knot nematode from Puerto Rico. Journal of Nematology, 20:58-69

Randig O, Deau F, Santos MFAdos, Tigano MS, Carneiro RMDG, Castagnone-Sereno P, 2009. A novel species-specific satellite DNA family in the invasive root-knot nematode Meloidogyne mayaguensis and its potential use for diagnostics. European Journal of Plant Pathology, 125(3):485-495.

Reis HFdos, Bacchi LMA, Vieira CRYI, Silva VSda, 2011. Occurrence of Meloidogyne enterolobii (sin. M. mayaguensis) on guava in I in Ivinhema City, State of Mato Grosso do Sul, Brazil. (Ocorrência de Meloidogyne enterolobii (sin. M. mayaguensis) em pomares de goiabeira no município de Ivinhema, Estado de Mato Grosso do Sul.) Revista Brasileira de Fruticultura, 33(2):676-679.

Rich JR, Brito JA, Kaur R, Ferrell JA, 2009. Weed species as hosts of Meloidogyne: a review. Nematropica, 39(2):157-185.

Rodríguez MG, Rodríguez I, Sánchez L, 1995. Species of the genera Meloidogyne which parasitize coffee in Cuba. Geographical distribution and symptomology. (Especies del genero Meloidogyne que parasitan el cafeto en Cuba. Distribution geografica y sintomatologia.) Revista de Protección Vegetal, 10(2):123-128

Rodríguez MG, Sánchez L, Regalado RE, 1999. Evaluation of hosts for the bioassay of Meloidogyne spp. populations present in coffee crops. (Evaluacion de hospedantes para el monitoreo de poblaciones de Meloidogyne spp. presentes en el cafeto.) Revista de Protección Vegetal, 14(1):51-54

Rodriguez MG, Sanchez L, Rowe J, 2003. Host status of agriculturally important plant families to the root-knot nematode Meloidogyne mayaguensis in Cuba. Nematropica, 33(2):125-130

Rosa JMO, Oliveira SAde, Jordão AL, Siviero A, Oliveira CMGde, 2014. Plant parasitic nematodes on cassava cultivated in the Brazilian Amazon. (Nematoides fitoparasitas associados à mandioca na Amazônia brasileira.) Acta Amazonica, 44(2):271-277.

Rubio-Cabetas MJ, Minot JC, Voisin R, Esmenjaud D, Salesses G, Bonnet A, 1999. Resistance response of the Ma genes from 'Myrobalan' plum to Meloidogyne hapla and M. mayaguensis. HortScience, 34(7):1266-1268; 24 ref

Rutter, W. B., Skantar, A. M., Handoo, Z. A., Mueller, J. D., Aultman, S. P., Agudelo, P. , 2019. Meloidogyne enterolobii found infecting root-knot nematode resistant sweetpotato in South Carolina, United States. Plant Disease,

Silva GS, Pereira AL, Araújo JRG, Carneiro RMDG, 2008. Occurrence of Meloidogyne mayaguensis on Psidium guajava in the State of Maranhão, Brazil. (Ocorrência de Meloidogyne mayaguensis em Psidium guajava no estado do Maranhão.) Nematologia Brasileira, 32(3):242-243

Silva GSda, Athayde Sobrinho C, Pereira AL, Santos JMdos, 2006. Occurrence of Meloidogyne mayaguensis on guava in the State of Piauí, Brazil. (Ocorrência de Meloidogyne mayaguensis em goiabeira no Estado do Piauí.) Nematologia Brasileira, 30(3):307-309

Silva RV, Oliveira RDL, 2010. Meloidogyne enterolobii (syn. M. mayaguensis) attacking guava in the state of Minas Gerais, Brazil. (Ocorrência de Meloidogyne enterolobii (sin. M. mayaguensis) em Goiabeiras no Estado de Minas Gerais, Brasil.) Nematologia Brasileira, 34(3):172-177.

Siqueira KMSde, Freitas VM, Almeida MRA, Santos MFAdos, Cares JA, Tigano MS, Carneiro RMDG, 2009. Detection of Meloidogyne mayaguensis on guava and papaya in Goiás State of Brazil using molecular markers. (Detecção de Meloidogyne mayaguensis em goiabeira e mamoeiro no estado de Goiás, usando marcadores moleculares.) Tropical Plant Pathology, 34(4):256-260.

Sousa ADde, Beserra Júnior JEA, Rego TJS, Farias LMO, Castro JMC, 2012. Occurrence of Meloidogyne enterolobii on guava tree in the Picos municipality, Piauí state, Brazil. (Ocorrência de Meloidogyne enterolobii em goiabeiras no município de Picos (PI).) Nematologia Brasileira, 36(3/4):87-89.

Tigano M, Siqueira Kde, Castagnone-Sereno P, Mulet K, Queiroz P, Santos Mdos, Teixeira C, Almeida M, Silva J, Carneiro R, 2010. Genetic diversity of the root-knot nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-damaging species. Plant Pathology, 59(6):1054-1061.

Torres GR de C, Sales R, Nerivania V, Rehn C, Pedrosa EMR, Moura RM de, 2005. Occurrence of Meloidogyne mayaguensis on guava in the state of Ceara. Nematologia Brasileira, 29(1): 105-107

Torres GRC, Covello VN, Sales Júnior R, Pedrosa EMR, Moura RM, 2004. Meloidogyne mayaguensis on Psidium guajava in Rio Grande do Norte. (Meloidogyne mayaguensis em Psidium guajava no Rio Grande do Norte.) Fitopatologia Brasileira, 29(5):570.

Torres GRCde, Medeiros HAde, Sales Junior R, Moura RMde, 2007. Meloidogyne mayaguensis: Novos assinalamentos no Rio Grande do Norte associados à goiabeira. Caatinga, 20:106-112

Trudgill DL, Bala G, Blok VC, Daudi A, Davies KG, Gowen SR, Fargette M, Madulu JD, Mateille T, Mwageni W, Netscher C, Phillips MS, Abdoussalam Sawadogo, Trivino CG, Voyoukallou E, 2000. The importance of tropical root-knot nematodes (Meloidogyne spp.) and factors affecting the utility of Pasteuria penetrans as a biocontrol agent. Nematology, 2(8):823-845

Villar-Luna E, Goméz-Rodriguez O, Rojas-Martínez RI, Zavaleta-Mejía E, 2016. Presence of Meloidogyne enterolobii on Jalapeño pepper (Capsicum annuum L.) in Sinaloa, Mexico. Helminthologia, 53(2):155-160.

Wang Y, Wang XQ, Xie Y, Dong Y, Hu XQ, Yang ZX, 2015. First report of Meloidogyne enterolobii on hot pepper in China. Plant Disease, 99(4):557-558.

Willers P, 1997. First record of Meloidogyne mayaguensis Rammah and Hirschmann, 1988: Heteroderidae on commercial crops in the Mpumalanga province, South Africa. Inligtingsbulletin - Instituut vir Tropiese en Subtropiese Gewasse, No. 294:19-20; 2 ref

Xiao, S., Hou, X. Y., Cheng, M., Deng, M. X., Cheng, X., Liu, G. K., 2018. First report of Meloidogyne enterolobii on ginger (Zingiber officinale) in China. Plant Disease, 102(3), 684. doi: 10.1094/pdis-09-17-1477-pdn

Xu J, Liu P, Meng Q, Long H, 2004. Characterization of Meloidogyne species from China using isozyme phenotypes and amplified mitochondrial DNA restriction fragment length polymorphism. European Journal of Plant Pathology, 110:309-315

Yang B, Eisenback JD, 1983. Meloidogyne enterolobii n.sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China. Journal of Nematology, 15(3):381-391

Yang BJ, 1984. The identification of 15 root-knot nematode populations. Acta Phytopathologica Sincia, 14:107-112

Yang BJ, 1984. The identification of 15 root-knot nematode populations. Acta Phytopathologica Sinica, 14(2):107-112

Ye WM, Koenning SR, Zhuo K, Liao JL, 2013. First report of Meloidogyne enterolobii on cotton and soybean in North Carolina, United States. Plant Disease, 97(9):1262.

Zhang YM, 1987. Vegetable root-knot nematode diseases and their control. Shandong Agricultural Science, No. 3:15-17

Zhuo K, Hu MX, Liao JL, Rui K, 2010. First report of Meloidogyne enterolobii on arrowroot in China. Plant Disease, 94(2):271.


Top of page

30/10/14 Original text by:

Philippe Castagnone-Sereno, INRA, Institut Sophia Agrobiotech, UMR INRA1355/UNS/CNRS7254, 400 route des Chappes, BP167 – 06903 Sophia Antipolis Cedex, France.

Distribution Maps

Top of page
You can pan and zoom the map
Save map