Meloidogyne chitwoodi (columbia root-knot nematode)
Index
- Pictures
- Identity
- Taxonomic Tree
- Notes on Taxonomy and Nomenclature
- Description
- Distribution
- Distribution Table
- Risk of Introduction
- Hosts/Species Affected
- Host Plants and Other Plants Affected
- Growth Stages
- Symptoms
- List of Symptoms/Signs
- Biology and Ecology
- Natural enemies
- Notes on Natural Enemies
- Pathway Vectors
- Plant Trade
- Impact
- Diagnosis
- Detection and Inspection
- Similarities to Other Species/Conditions
- Prevention and Control
- References
- Distribution Maps
Don't need the entire report?
Generate a print friendly version containing only the sections you need.
Generate reportPictures
Top of pageIdentity
Top of pagePreferred Scientific Name
- Meloidogyne chitwoodi Golden, O'Bannon, Santo & Finley, 1980
Preferred Common Name
- columbia root-knot nematode
International Common Names
- French: nématode cécidogène de columbia
EPPO code
- MELGCH (Meloidogyne chitwoodi)
Taxonomic Tree
Top of page- Domain: Eukaryota
- Kingdom: Metazoa
- Phylum: Nematoda
- Family: Meloidogynidae
- Genus: Meloidogyne
- Species: Meloidogyne chitwoodi
Notes on Taxonomy and Nomenclature
Top of pageDescription
Top of pageDistribution
Top of page
M. chitwoodi was first described from the Pacific Northwest of the USA in 1980, its common name deriving from the Columbia River between Oregon and Washington states. It is not clear whether this is its area of origin. It was first detected in the EPPO region in the 1980s, in the Netherlands, but a review of old illustrations and old specimens of Meloidogyne suggests that it may have occurred earlier (in the 1930s) and may have been present throughout the intervening period (OEPP/EPPO, 1991). It is possible that M. chitwoodi has a wider distribution, undetected, in Europe than is currently known; the question is now actively under investigation.
A record for Wyoming, USA, was incorrectly included in CABI/EPPO (2000). The record for Virginia, USA, has been changed to 'Absent, confirmed by survey' following surveys conducted by Virginia Department of Agriculture and Consumer Services (2007-2010) and the Department of Plant Pathology, Physiology and Weed Science, Virginia Tech.
Distribution Table
Top of pageThe distribution in this summary table is based on all the information available. When several references are cited, they may give conflicting information on the status. Further details may be available for individual references in the Distribution Table Details section which can be selected by going to Generate Report.
Last updated: 12 May 2022Continent/Country/Region | Distribution | Last Reported | Origin | First Reported | Invasive | Reference | Notes |
---|---|---|---|---|---|---|---|
Africa |
|||||||
Mozambique | Present | ||||||
South Africa | Present, Localized | ||||||
Tunisia | Absent, Unconfirmed presence record(s) | ||||||
Asia |
|||||||
Turkey | Present, Localized | ||||||
Europe |
|||||||
Belgium | Present | ||||||
Bulgaria | Absent, Confirmed absent by survey | ||||||
Denmark | Absent | ||||||
France | Present, Localized | ||||||
Germany | Present, Transient under eradication | ||||||
Italy | Absent, Invalid presence record(s) | ||||||
Lithuania | Absent, Confirmed absent by survey | ||||||
Netherlands | Present, Localized | ||||||
Portugal | Present, Few occurrences | ||||||
-Madeira | Present, Few occurrences | ||||||
Slovenia | Absent | ||||||
Spain | Present, Few occurrences | ||||||
Sweden | Present, Localized | ||||||
Switzerland | Present, Few occurrences | ||||||
United Kingdom | Absent, Confirmed absent by survey | ||||||
-England | Absent, Confirmed absent by survey | ||||||
North America |
|||||||
Canada | Absent, Confirmed absent by survey | ||||||
-Alberta | Absent, Confirmed absent by survey | ||||||
-British Columbia | Absent, Confirmed absent by survey | ||||||
Mexico | Present | ||||||
United States | Present, Localized | ||||||
-California | Present | ||||||
-Colorado | Present | ||||||
-Idaho | Present | ||||||
-Nevada | Present | ||||||
-New Mexico | Present | ||||||
-Oregon | Present | ||||||
-Texas | Present | ||||||
-Utah | Present | ||||||
-Virginia | Absent, Confirmed absent by survey | Original citation: Virginia Department of Agriculture & Consumer Services surveys 2007-2010 | |||||
-Washington | Present | ||||||
-Wyoming | Absent, Invalid presence record(s) | ||||||
South America |
|||||||
Argentina | Present | ||||||
Chile | Present, Localized |
Risk of Introduction
Top of pageA comparison of the air temperatures found in Finland with those found across the present distribution of the pest indicated that the nematode could survive and produce two generations per year in the southern part of Finland. Baker and Dickens (1993) concluded from their PRA that M. chitwoodi would be likely to produce three generations in the UK. They did not feel capable of predicting the likely economic impact of the pest, as this could depend on a number of other unknown factors such as soil wetness, varietal susceptibility and quality control thresholds. A recent PRA for Germany (Braasch et al., 1996) led to the conclusion that M. chitwoodi was most likely to be damaging on potatoes in the north-west of the country, in the area adjoining the Netherlands. Countries further south in the EPPO region would provide climatic conditions suitable for as many as four generations per year.
Potato crops would be most at risk from M. chitwoodi in the EPPO region. For a number of reasons, it represents a greater threat than other Meloidogyne species already widespread in the EPPO region, in particular M. hapla with which it often forms mixed populations. M. chitwoodi is less easily controlled by nematicides, it has a wider host range, it produces more severe tuber symptoms and is tolerant of lower soil temperatures. In fact, the soil temperature requirements for population development of M. chitwoodi are similar to those of Globodera rostochiensis (Tiilikkala et al., 1995), suggesting that the former species could occupy the same geographical distribution as the latter.
Hosts/Species Affected
Top of pageModerate to poor hosts occur in the Brassicaceae, Cucurbitaceae, Fabaceae, Lamiaceae, Liliaceae, Umbelliferae and Vitaceae.
Fourie et al. (1998), working with a South African population of M. chitwoodi, reported Lycopersicon esculentum, Brassica rapa, Eragrostis tef and Lolium multiflorum as supporting high populations, whereas Eragrostis curvula, Arachis hypogaea and Zea mays were poor hosts.
Korthals et al. (2000) assessed host plant suitability at two sites in the Netherlands. Population growth of M. chitwoodi was greatest in potato, rye and summer wheat while nematodes in sugarbeet, hemp, perennial ryegrass and Tagetes patula remained equivalent to those of fallow. Because of poor reproduction, they recommended perennial ryegrass as a cover crop after cereals, maize, carrots or potatoes.
Lucerne is a good host for race 2 but not for race 1 (see Biology and Ecology for information on races), whereas carrots are a non-host for race 2 but a good host for race 1. Ferris et al. (1994a,b), investigating suitable crops for rotation with potato in the presence of race 1 in the USA, recommend Amaranthus, lucerne, rape (Brassica napus var. oleifera), Raphanus sativus var. oleifera and safflower (Carthamus tinctorius). In the Netherlands, host crops recorded to be attacked by M. chitwoodi are carrots, cereals, maize, peas, Phaseolus vulgaris, potatoes, Scorzonera hispanica, sugarbeet and tomatoes (OEPP/EPPO, 1991).
Recent studies have expanded information on the host range of M. chitwoodi (e.g. Brinkman et al., 1996; Griffin and Rumbaugh, 1996). Nijs et al. (2004) presented the results of experiments performed in the Netherlands and provided information on the host status of many plants together with an assessment of their potential phytosanitary risk.
Host Plants and Other Plants Affected
Top of pagePlant name | Family | Context | References |
---|---|---|---|
Agrostis stolonifera var. palustris (bent grass) | Poaceae | Unknown | |
Avena sativa (oats) | Poaceae | Habitat/association | |
Beta vulgaris var. saccharifera (sugarbeet) | Chenopodiaceae | Habitat/association | |
Chenopodium quinoa (quinoa) | Chenopodiaceae | Other | |
Daucus carota (carrot) | Apiaceae | Main | |
Hordeum vulgare (barley) | Poaceae | Habitat/association | |
Medicago sativa (lucerne) | Fabaceae | Main | |
Phaseolus vulgaris (common bean) | Fabaceae | Other | |
Pisum sativum (pea) | Fabaceae | Other | |
Poa annua (annual meadowgrass) | Poaceae | Unknown | |
Poaceae (grasses) | Poaceae | Habitat/association | |
Quercus (oaks) | Fagaceae | Unknown | |
Scorzonera hispanica (oyster plant) | Asteraceae | Other | |
Solanum lycopersicum (tomato) | Solanaceae | Main | |
Solanum tuberosum (potato) | Solanaceae | Main | |
Triticum aestivum (wheat) | Poaceae | Habitat/association | |
Zea mays (maize) | Poaceae | Other |
Symptoms
Top of pageIn other crops, root galls and reduced root production decrease yields and marketability. Gall formation occurs on most cereals but is more noticeable on wheat and oats than on barley or maize. In tomatoes, M. chitwoodi produces root galls in some cultivars but not in others.
List of Symptoms/Signs
Top of pageSign | Life Stages | Type |
---|---|---|
Leaves / wilting | ||
Leaves / yellowed or dead | ||
Roots / galls along length | ||
Roots / hairy root | ||
Roots / swollen roots | ||
Whole plant / dwarfing |
Biology and Ecology
Top of pageM. chitwoodi passes the winter as eggs or juveniles and can survive extended periods of sub-zero temperatures. M. chitwoodi needs a temperature of 4°C for hatching and penetrating roots, and 6°C for development. Charchar and Santo (2001) reported on the effect of temperature on embryonic development and hatching of M. chitwoodi in Brazil. M. chitwoodi requires 600-800 degree-days to complete the first generation, whilst subsequent generations require 500-600 degree-days. Studies on potato in Oregon, USA, during 1992-1994 indicated that rapid population increase occurred after 1200 degree-days (Ingham and Rykbost, 1995). M. hapla requires a similar number of degree-days for development but does not begin development until temperatures rise above 10°C. Population dynamics in relation to degree-day accumulation have been considered by Pinkerton et al. (1991). M. chitwoodi was found to be more pathogenic at 25°C than at 30°C in glasshouse tests performed on yellow sweet clover (Griffin and Jensen, 1997). Brommer and Molendijk (2001) reported that there were at least two generations per year in fields naturally infected with M. chitwoodi in the Netherlands.
Several races of M. chitwoodi have been described, distinguished by slight differences in host range. The first two, known as race 1 and race 2, were in particular distinguished with regard to carrot and lucerne (Santo and Pinkerton, 1985; Mojtahedi et al., 1988). Race 3 has recently been described in California, USA (Mojtahedi et al., 1994). The nematode found in the Netherlands previously named M. chitwoodi B-type has been redescribed as a new species (M. fallax) (Karssen, 1996). Current research is attempting to clarify the position regarding races, Beek et al. (1999) proposing a pathotype scheme to describe intraspecific variation in pathogenicity.
Natural enemies
Top of pageNatural enemy | Type | Life stages | Specificity | References | Biological control in | Biological control on |
---|---|---|---|---|---|---|
Hypoaspis aculeifer | Predator | Eggs | ||||
Myrothecium verrucaria | Pathogen |
Notes on Natural Enemies
Top of pageM. chitwoodi was relatively susceptible to the nematode-trapping fungi Monacrosporium ellipsosporum and M. cionopagum, compared with Heterodera schachtii, in laboratory tests (Jaffee and Muldoon, 1995). Jacobsen (2002) reviewed biological control of potato pathogens. Wishart et al. (2004) reported attachment of the spores of Pasteuria penetrans and P. nishizawae to juveniles of M. chitwoodi, M. fallax and M. hapla.
Pathway Vectors
Top of pageVector | Notes | Long Distance | Local | References |
---|---|---|---|---|
Clothing, footwear and possessions | Eggs in soil. | Yes | ||
Containers and packaging - wood | Eggs in soil. | Yes | ||
Land vehicles | Eggs in soil. | Yes | ||
Soil, sand and gravel | Eggs in soil. | Yes |
Plant Trade
Top of pagePlant parts liable to carry the pest in trade/transport | Pest stages | Borne internally | Borne externally | Visibility of pest or symptoms |
---|---|---|---|---|
Growing medium accompanying plants | nematodes/adults; nematodes/eggs; nematodes/juveniles | Yes | Pest or symptoms not visible to the naked eye but usually visible under light microscope | |
Roots | nematodes/adults; nematodes/eggs; nematodes/juveniles | Yes | Yes | Pest or symptoms not visible to the naked eye but usually visible under light microscope |
Seedlings/Micropropagated plants | nematodes/adults; nematodes/eggs; nematodes/juveniles | Yes | Yes | Pest or symptoms not visible to the naked eye but usually visible under light microscope |
Plant parts not known to carry the pest in trade/transport |
---|
Bark |
Bulbs/Tubers/Corms/Rhizomes |
Flowers/Inflorescences/Cones/Calyx |
Fruits (inc. pods) |
Leaves |
Stems (above ground)/Shoots/Trunks/Branches |
True seeds (inc. grain) |
Wood |
Impact
Top of pageEffects on other crops are not as marked nor as well documented, but yields of cereals (wheat, barley, oats and maize) have been shown to be significantly reduced by infestation (Santo and O'Bannon, 1981).
In the Netherlands, M. chitwoodi has recently been found to have damaged potato crops (and certain vegetables) in a limited area in the east of the country. This damage is apparently associated with sandy soils and a succession of warm summers. It is possible that M. chitwoodi has been present in the area for many years, undetected because it caused no significant damage (see Geographical Distribution).
M. chitwoodi has also caused damage to potatoes in Germany (Muller et al., 1996). The multiplication rate and damage probability of M. chitwoodi seems to depend mainly on weather conditions in spring and temperature accumulation during the vegetative period (Braasch et al., 1996).
Chaves and Torres (2000) reported the presence of M. chitwoodi on golf courses in Buenos Aires province, Argentina. Chaves and Torres (2001) reported the presence of M. chitwoodi in potato seed producing areas in Argentina. The nematode occurred in 12.5% of the samples taken.
Diagnosis
Top of pageDetection and Inspection
Top of page
The presence of M. chitwoodi in infested soil can be determined by sampling and extraction of the second-stage juveniles, using a standard nematode extraction procedure for free-living nematodes of this size. External symptoms on tubers are obvious in the case of heavy infestations but, where nematode numbers are low or in the early stages of infection, such symptoms are not obvious. Clearing and staining of the tissues can show the presence of nematodes (Hooper, 1986) but this can be a laborious procedure. Storage of lightly infested tubers may lead to the development of obvious external symptoms.
Means of Movement and Dispersal
M. chitwoodi has very limited potential for natural movement; only second-stage juveniles can move in the soil and, at most, only a few tens of centimetres. The most likely method of introducing M. chitwoodi into a new area is through the movement of infected or contaminated planting material. Infected host plants or host products such as bulbs or tubers can easily transport the nematode. The movement of non-host seedling transplants, nursery stock, machinery or other products which are contaminated with soil infested with M. chitwoodi could also result in spread. Infective larvae of this genus have been known to persist for more than one year in the absence of host plants. Nematode movement can also be facilitated by contaminated irrigation water.
Detection based on host plant symptoms, and identification by morphological and molecular methods are detailed in OEPP/EPPO (2009).
Similarities to Other Species/Conditions
Top of pageM. chitwoodi differs from M. fallax by having smaller female and male stylet length, presence of small, irregular outlined male and female stylet knobs, male labial disk not elevated, shorter juvenile body-, tail-, and hyaline tail length, different hyaline tail shape, hemizonid position, esterase and malate dehydrogenase patterns (Karssen, 1996).
Schemes have been described to differentiate M. chitwoodi from M. hapla, M. microtyla and M. incognita by differential host tests (Townshend et al., 1984), and also to distinguish the two races of M. chitwoodi (Mojtahedi et al., 1988). Biochemical methods have also been used. A diagnostic DNA probe which distinguishes M. chitwoodi from M. hapla has been developed by Piotte et al. (1995) and Wishart et al. (2002) used a PCR-based technique involving the ribosomal intergenic spacer. Recently, M. chitwoodi has been distinguished from M. fallax by DNA methods (Petersen and Vrain, 1996; Williamson et al., 1997; Zijlstra et al., 1997; Castagnone-Sereno et al., 1999; Castagnone-Sereno, 2000; Zijlstra, 2000; Wishart et al., 2002).
Prevention and Control
Top of pageDue to the variable regulations around (de)registration of pesticides, your national list of registered pesticides or relevant authority should be consulted to determine which products are legally allowed for use in your country when considering chemical control. Pesticides should always be used in a lawful manner, consistent with the product's label.
Chemical Control
Control measures currently used against other root-knot nematodes have proved to be less effective against M. chitwoodi. In north-western USA, crop failures in several potato fields have been attributed to M. chitwoodi despite the use of spring soil fumigations.
Cultural Control and Sanitary Methods
Recent work on sugarbeet suggests that late drilling and reduced irrigation can play a part in reducing damage to crops (Heijbroek, 1996).
Crop rotation with cereals is often used to reduce populations of M. hapla. However, M. chitwoodi reproduces well on wheat, oats, barley and maize. Therefore, rotation with any of these crops will favour a build-up rather than a decrease of M. chitwoodi populations in infested soils. There are, however, other crops which will reduce populations (see Host Range) which can be used in rotations. Brinkman et al. (1996) suggested that chicory cultivars (Cichorium intybus), Dahlia (cv. Vuurvogel) and borage (Borago officinalis) supported low populations of M. chitwoodi and can offer alternatives in crop rotations. However, further studies are necessary to collect more information on crops which can be used in rotation to reduce nematode populations.
Some success has been achieved by the incorporation of green manure into the soil, which reduces population densities of M. chitwoodi (Mojtahedi et al., 1993a, b; Suloiman and Hafez, 1996).
Measures similar to those for potato cyst nematodes (EPPO/CABI, 1992) would appear relevant, i.e. that consignments of rooted plants should come from areas where the pest does not occur or from fields found free from the pest. Suitable survey and test methods have still to be established. Freedom from M. chitwoodi should be specifically assured by certification schemes for seed potatoes.
Host-Plant Resistance
Potato cultivars differ in their tolerance of M. chitwoodi (van Riel, 1993). There is interest in breeding for host resistance to M. chitwoodi, for example, in potatoes, using resistance from Solanum bulbocastanum and other sources (Brown et al., 1991; Austin et al., 1993; Janssen et al., 1997) and cereals (Jensen and Griffin, 1994). Yu (2001) and Yu and Lewellen (2004) registered nematode-resistant sugarbeet germplasm; Zoon et al. (2002) discussed durable resistance against M. chitwoodi and M. fallax whilst Brown et al. (1999, 2003, 2004) investigated resistance to M. chitwoodi in potato and evaluated several wild Solanum species as sources of resistance. Tovar-Soto et al. (1997) reported on the response of five potato genotypes to M. chitwoodi race 2 in Mexico. Berthou et al. (2003) characterized virulence in populations of M. chitwoodi by challenging with Capsicum annuum line PM217. Their results demonstrated great polymorphism in M. chitwoodi populations and the existence of a major gene in pepper controlling a specific resistance against some nematode populations.
IPM Programmes
Guidelines for integrated pest management in potatoes are still being devised in those countries affected by this M. chitwoodi (Ferris et al., 1994a,b; Santo, 1994; Hafez et al., 1997).
References
Top of pageAnon, 2005. Meloidogyne chitwoodi and Meloidogyne fallax. Bulletin OEPP, 34(2): 315-320
Baker RHA, Dickens JSW, 1993. Practical problems in pest risk assessment. In: Ebbels DL, ed. Plant Health and the European Single Market. Farnham, UK: BCPC. pp 209-220
Berthou F, Palloix A, Mugniery D, 2003. Characterisation of virulence in populations of Meloidogyne chitwoodi and evidence for a resistance gene in pepper Capsicum annuum L. line PM 217. Nematology, 5(3): 383-390
Brinkman H, van Riel HR, 1990. In: Jaarboek 1989-1990. Wageningen, Netherlands: Directie Gewasbescherming, Plantenziektenkundige Dienst
Brown CR, Mojtahedi H, Bamberg J, 2004. Evaluation of Solanum fendleri as a source of resistance to Meloidogyne chitwoodi. American Journal of Potato Research, 81(6): 415-419
Brown CR, Mojtahedi H, Santo GS, 2003. Characteristics of resistance to Columbia root-knot nematode introgressed from several Mexican and North American wild potato species. Acta Horticulturae, 619: 117-125
Eisenback JD, Stromberg EL, McCoy MS, 1986. First report of the Columbia root knot nematode (Meloidogyne chitwoodi) in Virginia. Plant Disease, 70:801
EPPO, 1997. Selected items from the EPPO Reporting Service of January 1997. EPPO Reporting Service, 97/001-97/003
EPPO, 2011. EPPO Reporting Service. EPPO Reporting Service. Paris, France: EPPO. http://archives.eppo.org/EPPOReporting/Reporting_Archives.htm
EPPO, 2014. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm
EPPO, 2018. EPPO Global Database (available online). https://gd.eppo.int
Heijbroek W, 1996. The influence of soil type, tillage and cultural measures on the effect of root knot and cyst nematodes on sugar-beet root growth. In: Proceedings of the 59th IIRB Congress, Brussels, Belgium: 239-252
Heinicke, 1993. Catch crops and nematode control. Kartoffelbau, 44(7):300
Hooper DJ, 1986. Preserving and staining nematodes in plant tissues. In: Southey JF, ed. Laboratory methods for work with plant and soil nematodes. London, UK: HMSO
Ingham RE, Rykbost KA, 1995. Relationship between seasonal population growth of Columbia Root-Knot Nematode and soil degree days in potato. American Potato Journal, 72 (10):631
IPPC, 2013. Meloidogyne chitwoodii never found in Denmark. IPPC Official Pest Report, No. DNK-14/1. Rome, Italy: FAO. https://www.ippc.int/
Mojtahedi H, Santo GS, Wilson JH, 1988. Host tests to differentiate Meloidogyne chitwoodi races 1 and 2 and M. hapla. Journal of Nematology 20, 468-473
Nijs LJMF den, Brinkman H, Sommen ATC van der, 2004. A Dutch contribution to knowledge on phytosanitary risk and host status of various crops for Meloidogyne chitwoodi Golden et al., 1980 and M. fallax Karssen, 1996: an overview. Nematology, 6(3): 303-312
Pinkerton JN, Santo GS, Ponti RP, Wilson JH, 1986. Control of Meloidogyne chitwoodi in commercially grown Russet Burbank potatoes. Plant Disease 70, 860-863
Santo GS, 1994. Biology and management of root-knot nematodes on potato in the Pacific Northwest. In: Zehner GW, Powelson ML, Jansson RK, Raman KV, eds. Advances in potato pest biology and management. St. Paul, USA: APS Press. pp. 193-201
Santo GS, Pinkerton JN, 1985. A second race of Meloidogyne chitwoodi discovered in Washington State. Plant Disease 69, 361
Skantar AM, Carta LK, 2005. Multiple displacement amplification (MDA) of total genomic DNA from Meloidogyne spp. and comparison to crude DNA extracts in PCR of ITS1, 28S D2-D3 rDNA and Hsp90. Nematology, 7(2): 285-293
Suloiman AR, Hafez S, 1996. Suppression of Columbia root-knot nematode, Meloidogyne chitwoodi, race 2, with selected green manure crops. American Potato Journal 73(8): 387
Wishart J, Blok VC, Phillips MS, Davies KG, 2004. Pasteuria penetrans and P. nishizawae attachment to Meloidogyne chitwoodi, M. fallax and M. hapla. Nematology, 6(4): 507-510
Wishart J, Phillips, MS, Paterson A, Blok VC, 2003. Comparison of gene expression in Solanum bulbocastanum infected with virulent and avirulent isolates of Meloidogyne chitwoodi. Plant Protection Science, 38(Special 2): 721-722
Yu MH, Lewellen RT, 2004. Registration of root-knot nematode-resistant sugarbeet germplasm M6-2. Crop Science, 44(4): 1502-1503
Zoon FC, Golinowski W, Janssen R, Mugniery D, Phillips MS, Schlathoelter M, Smant G, Kruijssen lL van, Beek JG van der, 2002. Durable resistance against Meloidogyne chitwoodi and M. fallaz. Plant Protection Science, 38: 711-713
Distribution References
CABI, Undated. Compendium record. Wallingford, UK: CABI
CABI, Undated a. CABI Compendium: Status as determined by CABI editor. Wallingford, UK: CABI
Eisenback JD, Stromberg EL, McCoy MS, 1986. First report of the Columbia root knot nematode (Meloidogyne chitwoodi) in Virginia. In: Plant Disease, 70 801.
IPPC, 2013. Meloidogyne chitwoodii never found in Denmark. In: IPPC Official Pest Report, No. DNK-14/1, Rome, Italy: FAO. https://www.ippc.int/
NPPO of the Netherlands, 2013. Pest status of harmful organisms in the Netherlands., Wageningen, Netherlands:
Distribution Maps
Top of pageSelect a dataset
Map Legends
-
CABI Summary Records
Map Filters
Unsupported Web Browser:
One or more of the features that are needed to show you the maps functionality are not available in the web browser that you are using.
Please consider upgrading your browser to the latest version or installing a new browser.
More information about modern web browsers can be found at http://browsehappy.com/